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Abstract 

This paper delves into the strategic utilization of inspections to determine the appropriate action for 

components within redundant systems following unit and switch failures. Post-failure, the timely 

execution of repair and replacement procedures is paramount for restoring system functionality. By 

assigning inspection tasks to servers, this paper aims to evaluate the condition of system components 

and make informed decisions regarding repair or replacement. It addresses the standardization of 

inspection processes and subsequent repair/replacement protocols for industrial systems 

encountering failures. Introducing a model, the study endeavors to bolster system reliability and 

availability by addressing failures caused by faults through inspection and subsequent 

repair/replacement actions. Employing a quantitative approach, it provides insights into maintaining 

system reliability and availability via a stochastic framework. By integrating unit and switch 

inspections into the analysis, the paper proposes a strategic approach to optimizing redundant system 

operations, facilitating effective decision-making concerning repair and replacement strategies post-

failure. 

Keywords: switch, server, inspection, replacement, and repair. 

1. Introduction

Ensuring quality, dependability, and efficiency is paramount in today's industrial 

landscape; spanning sectors like manufacturing, aerospace, and automotive, where meeting 

precision standards and exceeding customer expectations are non-negotiable. Central to achieving 

these goals is the implementation of efficient inspection methods within industrial systems. 

Inspection procedures are indispensable for defect detection, ensuring product integrity, and 

upholding safety standards. The evaluation of the operational status is facilitated through 

inspections. Standby systems typically employ two approaches to inspection policies: routine checks 

or inspections triggered by failures. Periodic inspection policies aim to optimize standby system 

performance by conducting inspections at predetermined intervals [1]. Timing periodic inspections 

optimally can enhance standby system dependability while minimizing costs [2]. Alternatively, the 

expense and downtime associated with directly repairing a failed unit can be mitigated through 

post-failure inspections [3]. When a unit malfunctions, the options of repair or replacement are 
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considered based on its operational state [4]. Replacement involves substituting a defective unit with 

a new one, which can be reused after the switch [5]. The responsibility for all repair and replacement 

tasks lies with a single server, emphasizing the critical role of skilled personnel in maintaining 

system reliability. However, over time, server degradation may occur, leading to increased 

downtime and necessitating updates [6]. 

In the event of a main unit failure in a backup system, the switch plays a crucial role in 

activating the standby unit to ensure system availability and reliability. Switching may occur at 

predetermined intervals or when the operational unit fails [7]. Failures during switching can affect 

system functionality, necessitating reboots and repairs [8] and [9]. Switching reliability varies, with 

standby systems more prone to faulty switches [10]. Post-switch failure inspections dictate repair or 

replacement based on utility [11]. Insufficient switching can compromise warm standby system 

reliability, requiring intervention from repair personnel [12]. Server or switch failures during tasks 

can degrade system performance and significantly affect expenses [13] and [14]. Probabilistic models 

offer insights into system performance, availability, and failure detection [15]. Maintaining high 

availability hinges on ensuring the reliability and efficiency of switches and servers, with 

probabilistic models providing the most accurate assessment of standby system profitability. The 

Weibull distribution is particularly suitable for simulating random failures and evaluating standby 

system profitability [16]. Additionally, post-failure economic evaluations can be conducted for 

switches [17]. 

This paper introduces a probabilistic model of a standby system comprising two identical units, one 

serving as the primary operating unit and the other as the cold standby unit. In the event of the main 

unit failure, the switch activates the cold standby. Subsequently, the server initiates an inspection of 

the unit to determine whether repair or replacement is warranted, following similar procedures for 

switches after failure. Replacement is preferred only when repair costs are deemed prohibitive. The 

server oversees all inspection, repair, and replacement tasks, but can only handle one task at a time. 

Repairing switches takes time, whereas replacement is expedient. Numerical simulations in this 

study follow the Weibull distribution for accuracy. 

2. Notations

O The unit is in operative mode. 

Cs The unit is kept as cold standby. 

St The switching mechanism is good. 

Se The server is good. 

Csw The cold standby unit is under waiting. 

p/q The switch is under operation/failed. 

Fur / FUR The unit is under repair/under repair continuously from previous state. 

Fwr / FWR The failed unit is waiting for repair/waiting for repair continuously from previous state. 

Stur / StUR The switch mechanism is under repair/under repair continuously from previous state. 

Stwr / 

StWR 

The switch mechanism is failed and waiting for repair/under treatment continuously 

from previous state. 

Stwi / StWI 
The switch mechanism is waiting for inspection /continuously waiting for inspection 

from previous state. 

Seut /SeUT 
The server is failed and under treatment/under treatment continuously from previous 

state. 
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z(t)/Z(t) pdf/cdf of failure rate of the unit. 

r(t)/R(t) pdf/cdf of failure rate of the server. 

f(t)/F(t) pdf/cdf of repair time of the failed unit. 

h(t)/H(t) pdf/cdf of repair time of the failed switch. 

n(t)/N(t) pdf/cdf of switch inspection time of the server. 

m(t)/M(t) pdf/cdf of unit inspection time of the server. 

s(t)/S(t) pdf/cdf of the treatment time of the server. 

c/d Probability of Switch repair /replacement feasibility after inspection. 

a/b Probability of Unit repair /replacement feasibility after inspection. 

𝑀i(𝑡) 
Probability that the system is up initially in state Si ∈ E and remains up at time t 

without visiting any other regenerative state. 

𝑊i(𝑡) 

Probability that the unit, switch, and server remain busy in state Si up to time 't' 

without transitioning to another regenerative state or returning to the same state via 

non-regenerative states. 

   / Representation of regenerative states and failed regenerative states in a diagram. 

Regenerative points. 

3. Development of Model

3.1 Assumptions 

• One unit is initially powered on and the other is placed in cold standby.

• The unit is repaired directly after a failure, but the switch is checked to see if it can be

repaired/replaced.

• Switch switching is instantaneous.

• If the main unit fails then it goes under the inspection process, to check the feasibility of its

repair or replacement.

• If switch fails then it goes under the inspection process, to check the feasibility of its repair

or replacement.

• The switch is prioritized for repair or replacement after inspection and failure.

• The server can fail while doing its job, but not in an idle state.

• After a failure, the server moves directly to the recovery phase.

• Replacement is instantaneous.

• Inspection/ repair priority is given to switch after failure.

• All repairs and treatments are perfect.

• Random variables are statistically independent.

3.2 States of the System 

The following are possible transition states of the system model. 

The regenerative states:   

( ) ( ) ( )0 1 ui 2 urS = O,Cs,St,Sv ,S = F ,O ,S = F ,O , ( ) ( )3 wi ut 4 wr utS = O,F ,Sv ,S = O,F ,Sv .

The failed regenerative states: 

( )5 wi w uiS = F ,Cs ,St ,

The non-regenerative states: 
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( ) ( ) ( )6 WI w wi ut 7 UI wi 8 wi WI utS = F ,Cs ,St ,Sv ,S = F ,F ,S = F ,F ,Sv ,

( ) ( ) ( )9 wi WR UT 10 UR wi 11 wi WI UTS = F ,F ,Sv ,S = F ,F ,S = F ,F ,Sv ,

( ) ( ) ( )12 WI w ui 13 WI w ur 14 UI wiS = F ,Cs ,St ,S = F ,Cs ,St ,S = F ,F ,

( ) ( ) ( )15 WI w wr ut 16 ur WI 17 wr WI utS = F ,Cs ,St ,Sv ,S = F ,F ,S = F ,F ,Sv .

Figure 1: State transition diagram of model 

3.3 Transition Probabilities and Mean Sojourn Times 

Simple probabilistic considerations yield the following expressions for the non-zero element 

0

( ) ( )ij ij ijp Q q t dt



=  =   (1) 

The Mean Sojourn time 𝜇𝑖 in state 𝑆𝑖 are given by: 

0

( ) ( )


= = i E t P T t dt  (2) 

We get 

0,1

0

p = pz(t)dt,



 0,5

0

p = qz(t)dt,



 ( ) ( )1,0

0

p = am(t)Z t R t dt,





( ) ( )1,2

0

p = bm(t)Z t R t dt,



 ( ) ( )1,3

0

p = r(t)M t Z t dt,



 ( ) ( )1,4

0

p = z(t)R t M t dt,





( ) ( )2,0

0

p = f(t)Z t R t dt,



 ( ) ( )2,4

0

p = r(t)F t Z t dt,



 ( ) ( )2,10

0

p = z(t)R t F t dt,





( )3,1

0

p = s(t)Z t dt,



 ( )3,11

0

p = z(t)S t dt,



 ( )4,2

0

p = s(t)Z t dt,





( )4,9

0

p = z(t)S t dt,



 ( )5,1

0

p = dn(t)R t dt,



 ( )5,6

0

p = r(t)N t dt,




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( )5,13

0

p = cn(t)R t dt,



 6,12

0

p = s(t)dt,



 ( )7,1

0

p = am(t)R t dt,





( )7,8

0

p = r(t)M t dt,



 ( )7,16

0

p = bm(t)R t dt,



 ( )8,14

0

p = s t dt,





9,16

0

p = s(t)dt,



 ( )10,1

0

p = f(t)R t dt,



 ( )10,17

0

p = r(t)F t dt,





11,14

0

p = s(t)dt,



 ( )12,1

0

p = dn(t)R t dt,



 ( )12,6

0

p = r(t)N t dt,





( )12,13

0

p = cn(t)R t dt,



 ( )13,1

0

p = h(t)R t dt,



 ( )13,15

0

p = r(t)H t dt,





( )14,1

0

p = am(t)R t dt,



 ( )14,8

0

p = r(t)M t dt,



 ( )14,16

0

p = bm(t)R t dt,





15,13

0

p = s(t)dt,



 ( )16,1

0

p = f(t)R t dt,



 ( )16,17

0

p = r(t)F t dt,





17,16

0

p = s(t)dt,





The expressions for mean sojourn times are as follows: 

0

0

μ = Z(t)dt,



 1

0

μ = Z(t)R(t)M(t)dt,



 2

0

μ = Z(t)F(t)dt,



 3

0

μ = Z(t)S(t)dt,



 4

0

μ = Z(t)S(t)dt.





4. System’s Performance Measures

4.1 Mean Time to System Failure (MTSF) 

Let i (t) be the c.d.f of the first passage time from regenerative state iS to a failed state. Regarding 

the failed state as absorbing state, we have the following recursive relations for i (t) : 

 i i,j j i,k

j k

(t)= Q (t) s (t)+ Q (t) i = 0,1,3,4,5    (3) 

Taking LST of Eq. (3) and solving for 
~

0 (s) , we have 

01 ( )
( )

 −
=

s
R s

s
 (4) 

The reliability R(t) can be obtained by taking inverse Laplace transition of Eq.(4) and MTSF is given 

by 

0 1

0 0
1

1 ( )
( ) lim ( ) lim



→ →

−
= = =

s s

s N
MTSF t R s

s D
 (5) 

Where 

1 0 1,3 3,1 2,4 4,2 0,1 1 1,3 3 0,1 1,2 2 2,4 4N = μ [1- p p ][1- p p ]+ p μ + p μ + p p μ + p μ      

1 1,3 3,1 1,0 0,1 2,4 4,2 2,0 1,2 0,1D = [1- p p - p p ][1- p p ]- p p p . 
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4.2 Steady State Availability 

iM (t) is the probability that the system is up initially in state iS E is up at time t without visiting

to any other regenerative state, we have 

0

0

M = Z(t)dt,



 1

0

M = Z(t)R(t)M(t)dt,



 2

0

M = Z(t)F(t)dt,



 3

0

M = Z(t)S(t)dt,



 4

0

M = Z(t)S(t)dt,





Let iA (t) be the probability that the system is in up-state at an instant ‘t’ given that the system entered 

regenerative state iS at t=0. The recursive relations for iA (t) are as follows:  
( )  n

i i i,j j

j

A (t)=M (t)+ q (t) c A (t) i = 0,1,2,3,4,5   (6) 

Where
jS is any successive regenerative state to which the regenerative state iS can transit through n 

transitions. Taking LT of Eq. (6) and solving, the steady state availability is given by 

2

0 0
0

2

lim ( )

→
= =

s

N
A sA s

D
 (7) 

Where 

2 1,0 0 1 1,3 3 2,4 4,2 1,2 2,0 0 2 2,4 4N  = (p μ + μ + p μ )(1- p p )+ p (p μ + μ + p μ )

' ' ' ' '

2 1,0 0 1 1,3 3 0,5 5 2,4 4,2 1,2 2,0 0 2 2,4 4D  = (p μ + μ + p μ + p μ )(1- p p )+p (p μ + μ + p μ ) .

4.3  Busy Period Analysis for Server 

4.3.1 Due to Inspection 

Let I

iB (t)  be the probability that the server is busy in inspection at an instant t given that the system 

entered regenerative state iS  at t = 0. The recursive relations for I

iB (t)  are as follows: 
( )  nI I I

i i i,j j

j

B (t)=W (t)+ q (t) c B (t) i = 0,1,2,3,4,5  (8) 

Where 
jS  is any successive regenerative state to which the regenerative state iS can transit through 

n transitions. I

iW (t) be the probability that the server is busy in state iS due to repair of the unit up 

to time ‘t’ without making any transition to any other regenerative state or returning to the same via 

one or more non-regenerative state  
I

1W (t)=Z(t)M(t)R(t)+(z(t)R(t)[c]1)M(t)+(z(t)M(t)R(t)[c]r(t)M(t)[c]1)S(t)+(z(t)M(t)R(t)[c]r(t)M(t)[c]s(t)

[c]1)M(t)

I

5W (t)= N(t)R(t) + (r(t)N(t)[c]1)S(t) + (r(t)N(t)[c]s(t)[c]1)N(t) + (cn(t)R(t)[c]1)H(t)R(t)+ (cn(t)R(t)[c]r(t)H(t)

[c]1)S(t) + (cn(t)R(t)[c]r(t)H(t)[c]s(t)[c]1)H(t)

Using LT, of Eq. (8) and solving for I*

0B (s) , we have 

3

0 0
0

3

N
lim ( )

D

I

I I

Is
B sB s

→
= =  (9) 

Where 
I I I

13 2,4 4,2 1 0,5 1,0 2,4 4,2 1,2 2,0 5N = (1-p p )W (0) p (p (1-p p )+p p )W (0)+

I ' ' ' ' '

3 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p ) . 

4.3.2 Due to Repair 

Let R

iB (t)  be the probability that the server is busy in repair of the switch or unit due to inspection 

at an instant ‘t’ given that the system entered state 
iS at time t=0. The recursive relations for 

iB (t)R

are as follows: 
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( )  n

i i i,j j

j

B (t)=W (t)+ q (t) c B (t) i = 0,1,2,3,4,5R R R     (10) 

Where 
jS  is any successive regenerative state to which the regenerative state iS can transit through 

n transitions. 
iW (t)R be the probability that the server is busy in state iS due to preventive 

maintenance of server up to time ‘t’ without making any transition to any other regenerative state 

or returning to the same via one or more non-regenerative state  
R

2W (t)=Z(t)F(t)R(t)+(z(t)R(t)[c]1)F(t)+(z(t)F(t)R(t)[c]r(t)F(t)[c]1)S(t)+(z(t)F(t)R(t)[c]r(t)F(t)[c]s(t)[c]1)F(t)

Using LT, of Eq. (10) and solving for R*

0B (s) , we have 

3

0 0
0

3

N
lim ( )

D

R

R R

Rs
B sB s

→
= =    (11) 

Where 
R R*

3 12 2N  = p W (0) , 

' ' ' ' '

3 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p )R . 

4.4 Expected Number of Treatment of the Server 

Let 
iT (t) be the expected number of treatment of the failed server in (0, t] given that the system 

entered the regenerative state iS at t=0. The recursive relations for 
iT (t) are given as: 

 i i,j j j

j

(t)= Q (t) s [φ +T (t)] i = 0,1,2,3,4,5T   (12) 

where 

 

Using LT, of Eq. (12) and solving for 
~

0T (s) ,we get  

~
5

00
0

5

lim ( )
s

N
T sT s

D→
= =  (13) 

Where 

4 1,3 3,1 2,4 4,2 1,2 2,4 4,2N = p p (1 p p ) p p p− +

' ' ' ' '

4 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p ) . 

4.5 Expected Number of Inspections 

Let m

iI (t) be the expected number of inspections of the unit and switch in (0, t] given that the system 

entered regenerative state iS  at time t=0. The recursive relations for m

iI (t)  are as follows: 

 m m

i i,j j j

j

I (t)= Q (t) s [φ +I (t)] i = 0,1,2,3,4,5  (14) 

where 

 

Using LT, of Eq. (14) and solving for 
~
m

0I (s) ,we get  
m~

m
o0

0
I lim I (s) k

s
k

N
s

D→
= =  (15) 

Expected number of unit inspections u

iI (t) when m=u and k=5 in Eq. (15), we get  

5 1,2 0,5 2,0 1,0 0,5 2,4 4,2N = p p p (1 p p )(1 p p )+ + − ,              

' ' ' ' '

5 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p ) . 

j

j

1 if theserver performs the task in stateS .
φ =

0 otherwise





j

j

1 if theserver performs the task in stateS .
φ =

0 otherwise




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Expected number of switch inspections s

iI (t) when m=s and k=6 in Eq. (15), we get  

6 1,2 0,5 2,0 1,0 0,5 2,4 4,2N = p p p p p (1 p p )+ − ,      

' ' ' ' '

6 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p ) .        

4.6 Expected Number of Replacements 

Let m

iP (t) be the expected number of replacements of unit and switch in (0, t] given that the system 

entered the regenerative state 
iS at t=0. The recursive relations for m

iP (t)  are as follows: 

  m

i i,j j

j

P (t)= Q (t) s [φ +P (t)] i = 0,1,2,3,4,5m

i  (16) 

Where 

                              

Using LT, of Eq. (16) and solving for 
~
m

0P (s) ,we get  
m~

m
00

0
P lim P ( ) k

s
k

N
s s

D→
= =  (17) 

Expected number of unit replacements
~
u

0P (s) when m=u and k=7 in Eq. (17), we get  

n n7 2,4 4,2 1,0 1,1.7 1,3 3,1.11,141,1.7,(8,14) 3,1.11,(14,8)
N = (1-p p )(p + p + p +p (p + p  ) ) , 

' ' ' ' '

7 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p )

Expected number of switch replacements 
~
s

0P (s) when m=s and k=8 in Eq. (17), we get 

n8 0,5 1,0 2,4 4,2 2,0 1,2 5,1 5,1.(6,12)
N = p {p (1-p p ) p p }(p + p )+ ,   

' ' ' ' '

8 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p )

4.7 Expected Number of Repairs 

Let 
iO (t)m be the expected number of repairs of the unit or switch by the server in (0, t] given that the 

system entered regenerative state 
iS at time t=0. The recursive relations for 

iO (t)m are as follows: 

 m m

i i,j j j

j

O (t)= Q (t) s [φ +O (t)] i = 0,1,2,3,4,5     (18) 

Where 

    

Using LT, of Eq. (18) and solving for 
~
m

0O (s) ,we get 

~

00
0

lim ( )
m

m k

s
k

N
O sO s

D→
= =  (19) 

Expected number of unit repairs
~

u

0O (s) when m=u and k=9 in Eq. (19), we get  

n n9 1,0 1,1.7 1,3 3,1 3,1.11,14 2,4 4,21,1.7,(8,14) 3,1.11,(14,8)
N =(1- p -p -p - p (p +p +p ))(1- p p ) ,              

' ' ' ' '

9 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p )

Expected number of switch repairs
~
m

0O (s) when m=s and k=10 in Eq. (19), we get 

n10 0,5 1,0 2,4 4,2 2,0 1,2 5,1 5,1.(6,12)
N = p {p (1-p p ) p p }(1- p - p )+ ,      

' ' ' ' '

10 0,4 4,0 4,5 5,0 1 3 1,3 1,0 0 0,2 2 0,4 4 5 4,5D = (1- p (p +p p ))(μ + μ p )+ p (μ +p μ +p μ + μ p )

j

j

1 if theserver performs the task in stateS .
φ =

0 otherwise





j

j

1 if theserver performs the task in stateS .
φ =

0 otherwise




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5. The Profit

The Profit incurred to the system model in steady state is obtained after the deduction of all expenses 

from the total revenue generated from all sources. 
9

0 0

1

( ) C ( ) ( )j j

j

P t A t C L t
=

= −   (20) 

Where 

j : 1 2 3 4 5 6 7 8 9 

Lj(t): 

  Where     

0C = Revenue per unit up-time of the system 

1C = Cost per unit time for which server is in inspection 

2C = Cost per unit time for which server is busy in repair of failed unit or switch 

3C = Cost per treatment of the server  

4C = Cost per unit inspection of unit by the server 

5C = Cost per unit inspection of unit by the server  

6C = Cost per unit replacement of the unit  

7C = Cost per unit replacement of the switch 

8C = Cost per unit repair of the unit

9C = Cost per unit repair of the switch 

And 
I R

0 0 0 0 0 0 0 0 0 0A ,B ,B ,T ,I ,I ,P ,P ,O , and O ,u s u s u s
 are already defined. 

6. Particular Case

The particular cases are calculated for Weibull density function with common shape parameter and 

different scale parameters. The probability density function for various random variables included 

in the model for Weibull case are as follows: 
η-1 ηz(t) = ληt exp(- λt ) , η-1 ηf(t) = αηt exp(- αt ) , 

η-1 ηr(t) = μηt exp(- μt ) , η-1 ηh(t) = γηt exp(- γt ),
η-1 ηs(t) = βηt exp(- βt ),     η-1 ηm(t) = θηt exp(- θt ) ,   η-1 ηn(t) = ηt exp(- t ),   

Where 0t  and  η,α,λ,β,γ,μ,θ,ξ > 0  

Changes made in various parameters of failure rate and repair rate - 

Unit’s repair rate α vary from 0.4 to 0.7. 

Server’s failure rate μ vary from o.3 to 0.002. 

Server’s repair rate β from 0.6 to 0.9. 

Switch’s repair rate 𝛾 from 0.5 to 0.7. 

Switch’s operating/failure probability p/q from 0.8/0.2 to 0.7/0.3. 

Unit’s inspection rate θ from 0.6 to 0.8. 

Unit’s repair/replacement probability after inspection a/b from 0.7/0.3 to 0.9/0.1. 

Switch’s inspection rate 𝜉 from 0.7 to 0.9. 

Switch’s repair/replacement probability after inspection c/d from 0.6/0.4 to 0.8/0.2. 

0

IB 0

RB u

0I0T u

0P0I s

0P s u

0O
0O s
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   Figure 2(c): MTSF w.r.t. failure rate when η=2 

Figure 3(a): Availability w.r.t. failure rate when η=0.5     Figure 3(b): Availability w.r.t. failure rate when η=1 

 Figure 2(a):  MTSF w.r.t. failure rate when η=0.5  Figure 2(b):  MTSF w.r.t. failure rate when η=1 
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Figure 3(c): Availability w.r.t. failure rate when η=2 

 Figure 4(a): Profit w.r.t. failure rate when η=0.5  Figure 4(b): Profit w.r.t. failure rate when η=1 

Figure 4(c): Profit w.r.t. failure rate when η=2 
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Mean time to failure (MTSF) is a crucial part in assessing system performance, especially in fields 

such as engineering and technology. In this context, Figures 2(a), 2(b), and 2(c) depict the behavior 

of MTSF for different values of failure rate and size parameters. A notable observation is that as the 

failure rate (λ) increases, the MTSF decreases. This trend is important because it implies that higher 

failure rates correspond to lower mean time to failure, which can affect the overall efficiency of the 

system. The failure time distribution is another important aspect affected by parameters such as 

magnitude (η). Figures 3(a), 3(b), and 3(c) depict similar behavior in terms of availability and failure 

rate. When the magnitude parameter is less than one, the output decays rapidly, indicating a 

decrease in performance and reliability over time. In contrast, when the magnitude parameter is 

greater than one, it suggests an increasing availability trend with higher inspection rates. Figures 

4(a), 4(b), and 4(c) show the gain, which exhibits a decreasing trend as the shape parameter (η) 

increases. This implies that the gain reduces as the inspection rate increases, suggesting a saturation 

point beyond which further inspection does not significantly improve system performance. 

However, it is important to note that even though the gain reduces, inspection still has a positive 

impact on the overall system performance due to its high efficiency and availability. 

7. Conclusion
Our research leads us to the conclusion that the evaluation of a malfunctioning device and the 

subsequent determination of whether to repair or replace it play a crucial role in influencing system 

performance and availability. While repair may incur greater costs and time commitments, our 

study highlights that replacing the defective component post-failure stands out as the most effective 

solution, particularly in terms of enhancing system availability and reliability within server 

environments. These principles hold significant relevance in critical and hard-to-reach systems, 

where the failure of a single module can trigger substantial operational disruptions. Illustrative 

examples include DSLAM networks, wind power plants, hydra production facilities, and automatic 

plastering machines, underscoring the widespread application of these concepts across diverse 

industrial settings. 
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