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Abstract 

The study of robust missing observations has gained prominence in statistical research. In particular, 

the Response Surface Methodology (RSM), a widely applied approach in experimental design, faces 

challenges when dealing with missing data. This paper investigates two design variants: the three-

level second-order Box-Behnken design (BBD) with one missing observation and the Small Box-

Behnken Design (SBBD), which involves fewer experimental runs than the standard BBD. We 

evaluate prediction performance using a fraction of design space (FDS) plot, revealing the 

distribution of scaled prediction variance (SPV) values across the design space. Additionally, we 

assess the efficiency of design model parameters using information-based criteria (A, D, and G 

relative efficiency). Our analysis spans k factors, ranging from k = 3 to 9. The findings guide 

practitioners in selecting optimal design points for efficient parameter estimation and accurate 

prediction within the context of missing observations. This comparative study sheds light on the 

trade-offs between BBD and SBBD, providing valuable insights for experimental design 

practitioners. 

Keywords: Box-Behnken Design, Fraction of Design Space, Scaled Prediction 

Variance, Optimality, Small Box-Behnken Design 

I. Introduction

Response Surface Methodology is a powerful statistical and mathematical model construction 

technique blend. It's designed to assess the impact of multiple independent variables and find their 

optimal values to yield the most desirable outcomes. This methodology benefits scenarios that aim 

to optimize a product or process. The empirical model is based on data observed from the system or 

process. RSM involves building empirical models using multiple regression and statistical 

techniques [19]. The second-order model is commonly used in RSM, particularly in Central 

Composite Designs (CCD) and BBD. Robust missing observation is a critical research area in all 

statistical methodologies. Even in well-planned experiments, there may be a chaos of missing 

observations that becomes challenging for estimating parameters in a model. Much of the robust 

missing observation research in the literature review is performed in different Central Composite 

Design types using various alpha (α) values rather than second-order Box-Behnken Designs. Draper 

[7] reviews the research on robust missing observation methods in response surface design and

credits the first researcher to develop a parameter estimation formula. Akhtar and Prescott
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[2]proposed a minimax loss criterion for handling missing observations, which is now the most used

in response surface designs. Akhtar [1] examines a five-factor CCD with two missing observations

in three different settings. Smucker et al. [20] gave empirical results for the effect of missing

observations on various classical and optimal designs and a new type of missing-robust design in

screening and response surface settings. Alrweili et al. [4]  use the minimax loss criterion to create

more robust designs for missing observations by combining the latest CCDs from GSA and AEK,

which are new designs. Hayat et al. [8]explore designs from regular and irregular structure subsets,

assess how they dealt with missing design points using the minimax loss criterion, and investigate

their alphabetic optimality and prediction performance with FDS plots of the response difference

variance. Alanazi et al.[3] present closed-form expressions for missing two observations as a function

of 𝛼, the axial value used in CCDs with up to 10 factors. Whittinghill [22] explores how Box-Behnken

Designs can handle missing observations without losing the ability to estimate all the parameters of

interest and the article defines tmax as the maximum number of rows that can be arbitrarily deleted

from the design matrix and keep the parameters estimable. Tanco et al.[21] used tmax and D-

Efficiency criteria to evaluate three-level second-order polynomial designs, such as Box-Behnken,

Face Centered, and other smaller and intermediate designs. Rashid et al.[18] investigate how to deal

with one missing observation in Augmented BBD (ABBD) and Augmented Fractional BBD (AFBBD)

using the minimax loss criterion and relative D and G efficiency. Rashid et al. [17] examine how a

missing observation affects the estimation and prediction abilities of the ABBD’S relative A-, D-, and

G-efficiencies. Hemavathi et al. [9] explore how sequential third-order rotatable design can handle

missing observations without losing much information. Also, the paper measures the information

loss due to one or two missing experimental runs at different distances from the center of the design.

Park et al. [16] use graphical methods such as variance dispersion graphs, a fraction of the design

space plot, and G-, I- optimality criteria to examine how different experimental designs perform in

spherical and cuboidal regions for three to seven factors. Chigbu et al. [13] compare CCD, Small

Composite Design (SCD), and MinResV designs for spherical regions with k = 3 to 7 factors based on

the optimality criteria and the Variance Dispersion Graph (VDG), and the results show that none of

these designs is consistently better for themselves. Li et al. [12] evaluate different CCD, SCD, and

MinResV designs for spherical and cuboidal regions with various axial values, and they utilize FDS

plots and box plots to analyze the prediction variance properties of the designs. Onwuameze et al.

[14] use graphical methods such as VDG and FDS plots to evaluate the prediction variance

performance of CCD, SCD, and MinResV in the hypercube region. However, most research on robust

missing observations in Box-Behnken design recently focused on third-order designs, called ABBD.

This paper conducts a comparative analysis of the classical BBD and the SBBD focusing on the 

robustness of these designs when a single observation is missing. The SBBD [24] is noted for its 

advantage of requiring fewer runs than the BBD. The paper evaluates these designs using relative 

A-, D-, and G-efficiency to assess parameter estimation accuracy and explores a fraction of the design 

space plot in terms of scaled prediction variance. The paper is structured as follows: Section 2 

Outlines the methodology used in the study. Section 3.1: Presents the results and discussions on 

scaled prediction variance and relative efficiencies. Section 3.2: Provides an analysis and discussion 

using the Fraction of Design Space graph of both BBD and SBBD. Section 4: Summarizes the findings 

and conclusions of the study. 

II. Methodology

I. Description of Second Order Model

In numerous instances involving response surface methodology, we may not understand the 

relationship between the predictor variables and the response. A first-order model might not be 

sufficient to capture the curvature of the response function. Therefore, we often use higher-degree 

polynomials, such as a second-order model, to better evaluate curvature in optimization 
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experiments. For 𝑘 quantitative factors denoted by 𝑥1, 𝑥2, … , 𝑥𝑘, a second-order model is 

𝑦 = 𝛽0 + ∑𝑖=1
𝑘 𝛽𝑖𝑥𝑖 + ∑𝑖=1

𝑘 𝛽𝑖𝑖𝑥𝑖
2 + ∑𝑖=1

𝑘−1∑𝑗=𝑖+1
𝑘 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀   (1) 

where 𝛽0, 𝛽𝑖 , 𝛽𝑖𝑖, and 𝛽𝑖𝑗 are the intercept, linear, quadratic, and bilinear terms, respectively, and 

𝜖𝑖 is a random error with mean zero, variance 𝜎2 and independent between any pair of runs. The

number of unknown parameters to be estimated is denoted as 𝑝 = 𝑘 + 𝑘 + (
𝑘
2
) + 1, and to have 

sufficient degrees of freedom to estimate the model coefficients, the number of runs or observations 

𝑛 must be greater than or equal to 𝑝. 

II. Small Box-Behnken Design

Box and Behnken [6] combined balanced incomplete block design and factorial design to create a 

three-level factorial design called Box-Behnken design. Box-Behnken Designs are three-level, 

second-order spherical designs with all points on a sphere. They are typically used for fitting second-

order response surface models and are available for 3–12 and 16 factors. This design is widely used 

for second-order models in analytical chemistry and industrial applications. Small Box-Behnken 

Design is specially constructed by using a Balanced incomplete block design (BIBD) and Partially 

Balanced incomplete block design (PBIBD) and replaces treatments partly by 2III 
3−1designs and partly 

by full factorial designs. A unique feature of SBBD is that it has minimum runs compared to classical 

BBD. SBBD consists of two design point categories: Full Factorial design 22 or 23 denoted as (F), and 

2III
3−1Fractional Factorial design denoted as (FF), which has runs in the form (

1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

). 

Appendix A of the article outlines the detailed structures of the design point types or called as 

design matrix X for the Small Box-Behnken Design. Using the design matrix X of BBD and SBBD, we 

can calculate further computational analysis. To know about the further construction methods of 

SBBD, refer to article [24]. 

III. Scaled Prediction Variance

Borkowski [5] gives an analytical form for calculating scaled prediction variance values of central 
composite design and Box-Behnken design. Scaled prediction variance criteria is an essential tool for 
selecting response surface designs. It allows for good prediction of response variables at various 
points of interest throughout the experimental region. This scaling is widely used to facilitate 
comparisons among designs of various sizes. The prediction variance at a point x is given by  

𝑣(𝑥) =
𝑛⋅𝑣𝑎𝑟[𝑦̂(𝑥)]

𝜎2
= 𝑛 ⋅ 𝑋(𝑚)′(𝑋′𝑋)−1𝑋(𝑚)        (2) 

x (m) is the design point vector in the design space expanded to model form, n is the design size 
or runs, and σ2 is the observation error. Desirable designs are those which have the smallest value of 
scaled prediction variance. 

IV. Fraction of Design Space

The FDS plot is a useful tool to compare two or more designs, as it shows the SPV distributions of 

designs with a single curve and their G-efficiency and V-average values. FDS plot is [15] constructed 

by sampling many values, say n, from throughout the design space and obtaining the corresponding 

SPV values. The FDS plot informs the experimenter how the SPV varies throughout the design space, 
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including the minimum and maximum SPVs. The idea is that the design is better if a larger fraction 

of the design space is close to the minimum SPV value. Moreover, the design is more stable if the 

line is flatter. The FDS plot helps summarize the range and the proportions of SPV values in the 

design space and easily compares designs with a single curve. In addition, [23] it provides the 

researcher with a single plot to compare designs or study the properties of a specific design. 

Accordingly, the FDS technique could be applied to regular and non-regular design regions. 

V. Relative G-, D-, and A-, Efficiency

G-optimality is defined as minimizing the maximum variance of any predicted value over the

experimental space. Iwundu[10] investigates how single or multiple missing observations affect

cuboidal designs' Relative A-, D-, and G-efficiency. It is defined as the ratio of the determinant of the

information matrix of the design to the determinant of the information matrix of an optimal design.

𝐺eff =
𝑝

𝑛⋅𝑀𝐴𝑋𝑋∈𝑅𝑣(𝑥)
 (3)  

Here 𝑝 is the number of parameters of estimated model, 𝑛 is the number of observations in the 

respective design and 𝑀𝐴𝑋𝑋∈𝑅𝜈(𝑥) is the maximum value of the variance of predicted response. Thus, 

relative G-efficiency denoted by 𝑅𝐸𝐺  is given as the ratio of 𝐺𝑒𝑓𝑓  of reduced design and of complete 

design. 

𝑅𝐸𝐺 =
𝐺eff ( reduced )

𝐺eff 
=

𝑛⋅𝑀𝐴𝑋𝑋∈𝑅𝜈(𝑥)

𝑛𝑟⋅𝑀𝐴𝑋𝑋∈𝑅𝜈(𝑥)reduced 
 (4) 

where 𝑛 is the size of the runs of the complete design, and 𝑛r is the size of the runs of the reduced 

design. According to this definition of 𝑅𝐸𝐺 , a design with a higher value of 𝑅𝐸𝐺 will be preferred. 

By utilizing equations (3) and (4), we can compute the relative G-efficiency value. These values are 

then presented in tables 3 and 4. 

D- efficiency is defined as maximizing the determinant of the information matrix or

minimizing the determinant of the inverse of the information matrix. Thus, relative 𝐷-efficiency is 

given as 

𝑅𝐸𝐷 = (
|𝑋′𝑋|

reduced 

|𝑋′𝑋|
)

1

𝑝

 (5) 

Where, 𝑝 is the number of parameters of the model to be estimated, |𝑋′𝑋|reduced  is the

determinant of the information matrix of reduced design and |𝑋′𝑋| is the determinant of the 

complete design matrix. A value approaching one will represent a minor loss, whereas a value below 

one will represent a more significant loss in model estimation. Through the application of equation 

(5), we are able to determine the relative D-efficiency value. These computed values are then listed 

in tables 3 and 4. 

The A-Criterion considers the individual variances of the regression coefficients rather than the 

covariances among coefficients. Thus, relative 𝐴-efficiency is given as 

𝑅𝐸𝐴 =
trace(𝑋′𝑋)

−1

(trace(𝑋′𝑋)−1)reduced
 (6) 

where the trace is the sum of the main diagonal values of (𝑋′𝑋)−1 , where (trace⁡(𝑋′𝑋)−1)reduced 

is the trace of (𝑋′𝑋)−1 of the reduced design, and a design with a higher value of 𝑅𝐸𝐴 will be

preferable. By utilizing equation (6), we can ascertain the relative D-efficiency value. The calculated 

values are subsequently enumerated in tables 3 and 4. 
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III. Result and Discussion

I. Scaled Prediction Variance of One Missing Box-Behnken Design

The insignificant difference in the Average Scaled Prediction Variance (ASPV) between instances of 

missing and non-missing observations is evident from the values in Table 1. The smallest prediction 

value is preferred for optimal prediction performance among each factor's design points. Regarding 

missing factorial design points, factor k = 8 has the lowest SPV value of 24.08 compared to all other 

factors k = 3,4,5,6,7 and 9, all of which have SPV values ranging from 34 to 45. 

Table 1: SPV values of one missing observation of BBD k = 3 to 9 factors. 

Number of 

Factors 

Missing 

Design 

Points 

Runs                  SPV 

Min Avg Max 

k = 3 None 3.2521 7.3627 16.6260 

F  12 3.0656 8.9792 42.2400 

Centre  5 3.6256 7.0704 15.7584 

k = 4 

None 4.6440 10.4340 17.4960 

F  24 4.4892 10.9765 39.4400 

Centre  6 5.1591 10.1732 16.9157 

k = 5 

None 6.6424 14.9776 24.9964 

F  40 6.5025 15.3540 40.3875 

Centre  6 7.3260 14.8095 24.5565 

k = 6 

None 7.7598 13.1220 21.8160 

F  48 7.7009 13.3666 33.7663 

Centre  6 8.5807 13.3030 21.1735 

k = 7 

None 9.3248 15.3698 20.0942 

F  56 9.1744 15.6709 40.1258 

Centre  6 10.5530 15.5733 19.9958 

k = 8 

None 12.1800 16.7040 21.0480 

F 112 12.0309 16.7076 24.0856 

Centre 8 12.7449 17.3621 21.5985 

k = 9 None 11.8170 24.9730 34.4110 

F 120 11.7648 24.8325 34.8945 

Centre 10 12.7839 25.0647 34.4301 

II. Scaled Prediction Variance of One Missing Small Box-Behnken Design

In the case of the Small Box-Behnken Design, there is an upward trend in the Scaled Prediction 

Variance for most factors when there are non-missing design points and a center. However, factor k 

= 7 deviates from this increasing trend. When comparing the difference between full factorial 

and⁡2III 
3−1 fractional factorial design points based on average and Max SPV, there is a moderate 

difference in the average SPV of all the factors. Interestingly, factors k = 8 and 9 have similar 

differences. In contrast, Max SPV for factors k = 4,7 and 9 shows significant differences between F 

and FF design points, while other factors such as k = 5,6 and 8 exhibit moderate differences. 

Therefore, we can infer that full factorial observations perform better in terms of prediction when a 

factorial type of observation is missing, compared to fractional factorial observations. 
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Table 2: SPV values of one missing observation of SBBD k = 4 to 9 factors. 

Number 

of Factors 

Missing 

Design 

Points 

Runs      SPV 

Min AAvg Max 

k = 4 None 3.1856 14.1042 44.0000 

F 12 3.0954 18.6249 113.4000 

FF 4 2.8371 27.5100 307.2300 

Centre 6 3.3411 13.5639 43.2600 

k = 5 None 4.8030 18.8430 60.6000 

F 8 4.7096 19.9404 65.2500 

FF 16 4.7908 21.9820 123.8300 

Centre 6 5.1881 18.2294 58.2900 

k = 6 None 6.0458 21.2116 74.1000 

F 16 5.8793 21.7375 74.0000 

FF 16 5.9385 24.1092 109.1500 

Centre 6 6.6304 21.0974 75.8500 

k = 7 None 6.0000 23.5152 67.2000 

F 24 5.8750 25.9534 94.4700 

FF 16 5.7528 29.6429 248.6300 

Centre 8 6.4719 23.0723 70.5000 

k = 8 None 7.7760 30.6688 85.1200 

F 28 7.6608 32.4198 102.0600 

FF 28 7.6734 32.8734 121.5900 

Centre 8 8.7129 30.4668 85.0500 

k = 9 None 7.0000 40.4110 108.5000 

F 24 6.9000 46.1817 180.7800 

FF 36 6.9000 46.1196 325.6800 

Centre 10 7.6659 40.1373 100.0500 

III. Relative G, A, and D efficiency values of Box-Behnken Design

Regarding the impact on relative efficiencies, let's first consider the relative A-efficiency. Table 3 

presents the variations in relative A-efficiencies resulting from the absence of a factorial point, a 

center point, and a non-missing point for all factors from k = 3 to 9. The numerical data indicates that 

A-efficiency is marginally influenced by the absence of a factorial point for only factor k=3. On the

other hand, the absence of a factorial point has a statistically significant effect on all other factors.

When a center point is missing, the relative A efficiency is similar to that when no design points are

missing. Therefore, estimating the precision of individual variances of regression coefficients of the

second-order model performs quite well when either factorial or center run points are missing.

 The relative D-efficiencies closely mirror the A-efficiencies. When a factorial or center run 

observation is missing, the relative D-efficiencies are similar to the efficiencies of a complete design 

for factors k = 3 to 9. Furthermore, the relative D-efficiency value significantly estimates the 

covariances among coefficients when some observations are absent. 

 The relative G-efficiencies exhibit notable similarities with the relative A- and D-efficiencies. 

The absence of a factorial point significantly impacts the relative G-efficiencies for factors k = 3,4 and 

7, moderately affects factors k = 5,6, and is less concerning for factors k = 8,9. Regarding the missing 

center point, the relative G-efficiency exceeds one compared to when no observations are missing. 
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Table 3: Relative G, A, and D efficiency values one missing observation of BBD k = 3 to 9 factors 

Number of 

Factors 

Missing 

Design 

Points 

G 

Efficiency 

Relative G 

efficiency 

Relative A 

efficiency 

Relative D 

efficiency 

k = 3 None 60.1400 1.0000 1.0000 1.0000 

F 23.6900 0.3939 0.7846 0.8706 

Centre 63.4600 1.0552 0.9577 0.9779 

k = 4 

None 85.7300 1.0000 1.0000 1.0000 

F 37.9100 0.4422 0.9181 0.9433 

Centre 88.6700 1.0343 0.9736 0.9879 

k = 5 

None 85.5100 1.0000 1.0000 1.0000 

F 52.0000 0.6081 0.9569 0.9675 

Centre 13.7400 0.1607 0.9780 0.9914 

k = 6 

None 64.17 1.0000 1.0000 1.0000 

F 82.9200 0.6461 0.9607 0.9709 

Centre 66 1.0303 0.9818 0.9935 

k = 7 

None 89.5 1.0000 1.0000 1.0000 

F 89.7100 0.5007 0.9574 0.9731 

Centre 90.025 1.0049 0.9836 0.9949 

k = 8 

None 71.28 1.0000 1.0000 1.0000 

F 93.405 0.8736 0.9853 0.9890 

Centre 69.45 0.9744 0.9853 0.9970 

k = 9 None 79.84 1.0000 1.0000 1.0000 

F 78.81 0.9871 0.9957 0.9932 

Centre 79.88 1.0004 0.9957 0.9981 

IV. Relative G, A, and D efficiency values of SBBD K = 4 to 9 factors.

Relative A and D efficiencies exhibit similar effects for all factors from k = 5 to 9, except for factor k 

= 4. For factor k = 4, the relative A efficiency for⁡2III 
3−1 fractional factorial points is 0.3906, while the 

relative D efficiency is 0.7179. Both full factorial and 2III 
3−1⁡fractional factorial points demonstrate

good accuracy for individual coefficients and covariances among coefficients when observations are 

missing for factors k = 5 to 9 in terms of relative A and D efficiency. The numerical data indicates 

that the absence of a center point does not impact all factors' relative A and D efficiency. 

Relative G efficiencies are significantly influenced by factor k = 4. However, factors k = 7 and 9 

exhibit superior prediction performance compared to factor k = 4. Moreover, factors k = 5,6 and 8 

excel in minimizing the maximum prediction variance compared to all other factors when the full 

factorial observation is missing. When it comes to missing 2III 
3−1⁡fractional factorial observations, only

factors k= 6 and 8 have a marginally better effect than all other factors of SBBD. The absence of a 

center point does not impact the relative G efficiency for any factor. 

Table 4: Relative G, A, and D efficiency values one missing observation of SBBD K = 4 to 9 factors. 

Number 

of Factors 

Missing 

Design 

Points 

G 

Efficiency 

Relative 

G 

efficiency 

Relative 

A 

efficiency 

Relative D 

efficiency 

k = 4 

None 34.07 1.0000 1.0000 1.0000 

F 13.2300 0.3883 0.7360 0.8874 

FF 4.5600 0.1338 0.3906 0.7179 

Centre 34.6900 1.0182 0.9855 0.9879 
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V. Discussion on Box-Behnken Design by FDS plot

If we interpret Figure 1 (a) intending to identify the most effective design point types based on G-

efficiency and maximum SPV, it appears that the center and non-missing design points outperform 

factorial. They achieve a maximum SPV value of 15.98, which equates to a G-efficiency of 60.6%; this 

is considerably better than the factorial design points, which reach a high SPV value of 42.44 and a 

G-efficiency of 23.69%.

Figure 1: (a) FDS for BBD K = 3. (b) FDS for BBD K = 4. (c) FDS for BBD K = 5. (d) FDS for BBD K = 6 

k = 5 None 34.6200 1.0000 1.0000 1.0000 

F 32.2000 0.9301 0.9101 0.9399 

FF 16.9700 0.4902 0.8006 0.9127 

Centre 35.9900 1.0396 0.9883 0.9914 

k = 6 None 37.8100 1.0000 1.0000 1.0000 

F 37.8200 1.0003 0.9553 0.9582 

FF 25.6800 0.6792 0.8147 0.9285 

Centre 36.8300 0.9741 0.9904 0.9935 

k = 7 

None 53.6200 1.0000 1.0000 1.0000 

F 38.0800 0.7102 0.9097 0.9573 

FF 14.0700 0.2624 0.7087 0.8710 

Centre 51.0700 0.9524 0.9959 0.9963 

k = 8 

None 53.0100 1.0000 1.0000 

F 44.0600 0.8312 0.9426 0.9700 

FF 37.0600 0.6991 0.9013 0.9613 

Centre 52.7300 0.9947 0.9956 0.9971 

k = 9 None 50.7400 1.0000 1.0000 1.0000 

F 30.4500 0.6001 0.8923 0.9661 

FF 16.8800 0.3327 0.8130 0.9519 

Centre 54.8300 1.0023 0.9864 0.9981 
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When evaluating BBD k=4 in Figure 1 (b), we can see a clear difference between the 50th and 

75th percentiles of the design points. For the factorial points, the SPV at the 50% FDS is 19.80, and at 

the 75% FDS, it is 29.92, resulting in a difference of 10.12. On the other hand, for the center and non-

missing points, the SPV at the 50% FDS is 10.29, and at the 75% FDS, it is 13.68, yielding a smaller 

difference of only 3. This percentile-based assessment leads us to conclude that the center and non-

missing points demonstrate more consistent and superior performance across the design space than 

the factorial points. 

The FDS plot depicted in Figure 1 (c) for BBD k=5 suggests that the absence of both the center 

and factorial design points significantly reduces the likelihood of obtaining a horizontal flat line. The 

median FDS value for the center and non-missing points is 15.21 SPV, with a mean or average SPV 

value of 14.8, indicating a lack of symmetry in the SPV and FDS distributions [11]. When a factorial 

point is missing, the maximum SPV reaches 40.38, and the average SPV is 15.34, suggesting that 50% 

of the design space exhibits moderate prediction performance. 

The FDS plots in Figures 1 (d) and (e) reveal that the curves for the center and non-missing 

design points exhibit similar prediction performance. Both reach a maximum SPV value of 

approximately 20 at FDS=1 for factors six and seven. A slight flat line is noticeable in the horizontal 

curve of the center and non-missing design points for both factors. This increase begins from the 

median of the FDS and extends to roughly 90% of the design space region, suggesting a certain level 

of stability in the SPV distribution of the design points. When a factorial point is missing, factor six 

achieves a maximum SPV value of 33.76, indicating better prediction performance than factor seven, 

which has an SPV value of 40.13. 

Based on comparing factors eight and nine from the FDS plot in Figures 1 (f) and (g), BBD k=8 

exhibits a very similar curve across the entire design space region, with a slightly increasing 

horizontal line. The SPV values range from a minimum of 12 to a maximum of 21. For BBD k=9, the 

curves for the center, factorial, and non-missing design points have similar prediction performance 

and are very close to each other, with SPV values ranging from 12 (min) to 34 (max) across the entire 

design space region. Interestingly, each factor's prediction performance is comparable when both 

design points are missing in factors k = 8 and 9. 

Figure 1: (e) FDS for BBD K = 7. (f) FDS for BBD K = 8. (g) FDS for BBD K = 9. 
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VI. Discussion on Small Box-Behnken Design by FDS plot

Indeed, Figure 2 (a) presents four types of design points: full factorial, 2III 
3−1 fractional factorial, and 

center and non-missing design points. The point at approximately (0.50,12.15) represents that 50% 

of the total design space has an SPV value at or below 12 for the design point of one missing center 

run and non-missing run, where these design points exhibit a flat horizontal curve for the maximum 

design space region up to 1. A flatter curve implies that the maximum and minimum SPV values are 

closer together, indicating a more stable distribution of the SPV [11]. The full factorial design points 

of SBBD k = 4 consist of 12 runs. When 22 full factorial points are missing, the maximum SPV value 

is 113 for the maximum (FDS = 1) design space region, and 80% of the design region has an SPV 

value of 47 or below. This is similar to missing a center run for the max SPV value. From this, we can 

infer that 80% of the 22 full factorial design space region has moderate SPV compared to 100% of 

FDS. The 2III 
3−1⁡fractional factorial design point in SBBD has four runs. When an FF point is missing,

it results in a large SPV value of 307 for the maximum (FDS = 1) design space region. However, 50% 

of the total design space has an SPV value at or below 76.6, and 75% of the total design space region 

has an SPV value at or below 111.78. This suggests that FF has moderate SPV for 75% of the design 

space region compared to the large SPV value for the maximum (FDS = 1) region. 

The FDS plot of the 23 full factorial, center, and non-missing design points is depicted in Figure 

2 (b). These design points exhibit similar performance, as indicated by their comparable curves and 

G-efficiencies of 32.20, 35.99, and 34.62, respectively. Upon closer inspection, the center and non-

missing design points are strikingly similar across the entire design space region, from the minimum

(FDS=0) to the maximum (FDS=1), with SPV values of 60.60 and 58.29, respectively. However, the 23

full factorial design point deviates slightly from the other two similarity curves in the FDS region of

75%. The average SPV values for the center, full factorial, and non-missing points are also similar at

18.84, 19.94, and 18.22, respectively, suggesting that the absence of these design points during

experimentation does not significantly impact the prediction performance of SPV on average.

Despite having a high SPV value of 123.83 at maximum (FDS=1), 2III 
3−1⁡fractional factorial design

points maintain a median SPV value of 31.82 in the design space curve and an SPV value of 60.42 for 

88% of the total design space. This roughly equates to the maximum SPV value (FDS =1) of the center, 

factorial, and non-missing runs. Therefore, we can conclude that 2III 
3−1⁡fractional factorial design

points generally provide good prediction performance for most of the design space (90%), except for 

the maximum region (100%), where their performance is subpar. 

As depicted in Figure 2 (c), the design points for the factor k = 6, including centre, 23 full 

factorial, and non-missing, exhibit a similar horizontal curve across the entire design space region, 

from the minimum (FDS = 0) to the maximum (FDS = 1). These design points have a G-efficiency of 

37% and a maximum SPV value of 74. The SPV value fluctuates between 21 and 30, covering 55% to 

80% of the design space region. It's interesting to note that while both full factorial and fractional 

factorial design points consist of the same sixteen runs, the absence of a run from the⁡2III 
3−1 fractional 

factorial alone results in a significant SPV value of 109.45 in the maximum (FDS =1) region. The 

curves for 2III 
3−1⁡fractional factorial are closely aligned with other design points from the minimum

(FDS =0) region to 80% of the design space, with an SPV of 40.47 or less. All design points 

demonstrate moderate or average prediction performance up to 80% of the total design space region, 

indicating satisfactory prediction performance within this FDS region. 

As shown in Figure 2 (d), 2III 
3−1⁡fractional factorial design points are the only ones that do not

exhibit a flat horizontal curve among all design points. The center and non-missing design points 

share the same horizontal curve, with an average SPV of 22.79 and similar G-efficiencies of 51 and 

53.62, respectively. The 23 full factorial design points of SBBD k = 7 consist of 24 runs. If a run is 

missing from the experiment, the prediction performance of the design remains relatively consistent 

over approximately 80% of the total design space region, with an SPV value of 42.76. The 2III
3−1 

fractional factorial design points have a substantial SPV value of 248.63 in the maximum (FDS=1) 

design space region. However, the median of the FDS curve has an average SPV of 70, where the 

maximum SPV is more than twice the average SPV value. Therefore, we can conclude that the 
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prediction performance of 2III 
3−1⁡fractional factorial is moderate for only 50% of the total design space

region. 

As per the FDS plot in Figure 2 (e), it's observed that the prediction performance across all 

shrinkage levels is quite similar for all types of design points, ranging from the lowest to the highest 

SPV value. Approximately half of the FDS curves for all design points closely follow the average 

SPV values, while the remaining curves diverge towards the maximum of (FDS=1). The global FDS 

curve suggests that less than 25% of the design space has an SPV value of 29.61 or lower, and 50% 

has an SPV value of 39.62 or lower for all types of points, including those without missing values. 

For up to 75% of the design space, the prediction performance of non-missing and center points is 

significantly better than that of 22 or 23 full factorial points, and 22 or 23 full factorial missing points 

outperform 2III
3−1fractional factorial points. 

Figure 2: (a) FDS for SBBD K = 4. (b) FDS for SBBD K = 5. (c) FDS for SBBD K = 6 

Figure 2: (a) FDS for SBBD K = 7. (e) FDS for SBBD K = 8. (f) FDS for SBBD K = 9 
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IV. Conclusion

The robustness of a single missing observation in BBD and SBBD is examined to determine which 

design points offer the best design efficiency and model parameter estimation using an information-

based criterion. BBD and SBBD show good accuracy in estimating individual coefficients and 

covariances among coefficients when a design point is missing for all factors, except for factor k = 3 

in BBD and k = 4 in SBBD, which show poor accuracy. The relative G- efficiency of BBD indicates 

that factors with increasing numbers have lower maximum variance across the experimental space, 

except for factor k = 7. In SBBD, full factorial and center design points have lower maximum variance 

across the experimental space than fractional factorial design points. The FDS plot reveals that 

missing a center and non-missing run have similar SPV values for all factors across the entire design 

space region for both BBD and SBBD. In comparison, the factorial design point type in SBBD has 

higher SPV values than BBD despite the fewer runs in SBBD. For BBD, all factors have similar 

performance for factorial design points. However, in SBBD, full factorial design points outperform 

2III 
3−1⁡fractional factorial design points have a high SPV value at the maximum region (FDS =1). If a

design point is missing in the 2III 
3−1⁡fractional factorial design points of SBBD, it results in subpar

prediction performance.  

This research work indeed holds significant potential in identifying robust missing design point 

types when observations are missing in an experimental situation for both Box-Behnken Design and 

Small Box-Behnken Design for certain factors. The findings can be beneficial when data may be lost 

or corrupted during the experimental process. Moreover, the scope for further research is vast. 

Future studies could extend this work to include more factors and more than one missing 

observation with multiple combinations. This would allow for a more comprehensive 

understanding of the robustness of these designs under various conditions. 
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