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Abstract

Inventory management is a critical aspect of supply chain efficiency and can be influenced by various
factors such as advertising, pricing, and preservation policies. Recent research has proposed a model that
considers critical variables such as fluctuations in pricing, advertising tactics, and preservation expenses
within uncertain scenarios to improve inventory management. The study provides valuable insights into
advertising dynamics, optimal pricing strategies, and the impact of preservation costs on decision-making.
Decision-makers can apply these insights to enhance the efficiency of their supply chains in a competitive
environment. The study emphasizes the importance of flexibility while aligning inventory practices with
corporate sustainability goals. Although the model’s applicability may be context-specific, the findings
contribute to discussions on inventory management strategies while acknowledging certain assumptions
made during the study. Proper advertising, pricing, and preservation policies can increase awareness,
attract customers, and maintain quality, influencing product demand. This research proposes a model to
improve inventory management, considering variables such as pricing fluctuations, advertising tactics,
and preservation expenses in uncertain scenarios. The study provides insights into advertising dynamics,
optimal pricing strategies, and how preservation costs influence decision-making. Decision-makers can
apply these insights to improve supply chain efficiency. The study stresses the importance of flexibility
in a competitive environment and aligning inventory practices with corporate sustainability goals. The
findings contribute to discussions on inventory management strategies, but the model’s applicability may
be context-specific, and the study makes certain assumptions.

Keywords: Inventory, Deterioration, Preservation, Stochastic optimisation, Advertising

1. Introduction

The issue of demand uncertainty is a challenging problem in inventory control that makes it
difficult to accurately predict market dynamics and consumer behaviour. This uncertainty arises
due to several factors, including evolving consumer preferences influenced by societal changes
and trends and market dynamics such as economic conditions and currency fluctuations, which
compound the complexity of demand forecasting. For example, during a seasonal sale, a sudden
and unpredictable surge in demand for a popular product may occur due to external factors
such as economic incentives and promotional activities, in addition to consumer behaviour.
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The empirical evaluation section of this paper focuses on revealing the mathematical behaviour
and patterns of demand uncertainty by closely examining real-world data to identify trends
and deviations. The paper associates these findings with probability distributions, providing
businesses with a framework to respond to the uncertainty of market dynamics. It is characterised
by Stochastic dynamics, which are characterized by unpredictability and randomness, play a
critical role in understanding the dynamics of modern markets. The study aims to fill a gap in
existing knowledge by recognizing the stochastic nature of demand and seamlessly incorporating
it into the decision-making process.

Traditional models may need to pay more attention to the impact of preservation costs
on overall profitability. This research acknowledges preservation costs as a critical factor and
efforts to provide decision-makers with insights into optimizing preservation strategies. By
recognizing the insubstantial balance between the need for timely replenishment and the financial
implications of preserving inventory, businesses can make informed decisions that align with
their overarching goals. The element of expiry dates introduces a time-sensitive dimension to
inventory management. In industries where products have a limited shelf life, managing stock
effectively to avoid losses due to expiry is essential. By doing so, businesses can align their
stocking strategies with product lifecycles, minimizing waste and maximizing profitability.

This literature review focuses on the replenishment period, where inventory experiences a
continuous decrease due to the combined impact of demand and deterioration. The pioneering
work has revolutionized inventory modelling by introducing the concept of no-shortage stock
level [1]. An extension of this model, using a two-parametric Weibull distribution for variable
deterioration rates, has provided insights into different distribution patterns [2] and, in inventory
management, emphasized the significance of demand fluctuations [3]. And an inventory system
with deteriorating items, challenging the assumption of a constant demand rate [4].

Mostly, models considers deterioration rate is constant over time. However, in reality, deterio-
ration rate can fluctuating over time due to different factors like environmental factors, storage
conditions, and other external factors. To address this problem, the EOQ model was developed
with time-varying deterioration and inventory-dependent demand [5]. it can also be applied
to declining products with shifting demand based on factors like selling price and advertising
frequency. Moving forward, the exploration of time-dependent factors in inventory models
will be considered by considering holding costs and demand functions that vary over time [6].
This temporal dimension adds a layer of sophistication, acknowledging the dynamic nature of
both costs and demand, further enhancing the applicability of inventory models to real-world
scenario [7]. A two-phase inventory model is proposed for non-instantaneous decay items with
stock-dependent demand before and constant demand during decay and shortage periods [8].

A pricing strategy known as dynamic pricing was developed for products that have price
sensitive demand [9]. A seasonal inventory model proposed with preservation technology reveals
profit dynamics and determines optimal solutions for selling price, replenishment cycle, and
preservation investment across business setups [10]. Also, the model focuses on optimized
price and inventory control for items that deteriorate over time, experience partial backordering,
and highlight the need for a comprehensive approach to decision-making [11]. The framework
proposed by [12] presents strategies for aligning economic and environmental objectives, leading
to cost reductions, lower carbon footprints, and improved operational stability. A comparison of
deterministic and stochastic inventory modeling approaches reveals that deterministic models
may oversimplify demand dynamics, whereas stochastic models, particularly those utilizing
Particle Swarm Optimization (PSO), better address market uncertainties. This highlights the
value of stochastic methods for enhancing adaptive decision-making, resource allocation, and risk
management in complex supply chains. To maximize profits, [13] introduces a novel dynamic
pricing approach that optimizes the number of price adjustments during sales seasons based on
stochastic factors and real-time demand fluctuations. Further, A model for demand forecasting
and dynamic pricing evaluates Holt-Winters Exponential Smoothing (HWES) and Autoregressive
Integrated Moving Average (ARIMA) [14]. The study finds that ARIMA models outperform
HWES in minimizing lost sales and mitigating stockouts under varying economic conditions.

RT&A, No 4(80)

Volume 19, December, 2024

667



Kajal Sharma, Lalji Kumar , Uttam Kumar Khedlekar
STOCHASTIC OPTIMIZATION OF PERISHABLE INVENTORY

Table 1: Contribution table and highlighting the research gap

Author(s) Deterioration Preservation Freshness Pr. Opt. St. Opt.
[16] Non-Inst × × ✓ ×
[17] Non-Inst × × ✓ ×
[18] Non-Inst × × × ×
[19] Inst × × ✓ ×
[20] Non-Inst ✓ × × ✓
[21] Non-Inst ✓ × × ×
[22] Non-Inst × × ✓ ✓
[23] Non-Inst ✓ × ✓ ×
[24] Inst. ✓ × ✓ ✓
[25] × × × ✓ ✓
This Study Inst ✓ ✓ ✓ ✓

Non-Inst: Non-instantaneous deterioration; Pro. Opt.: Promotional Optimisation; St. Opt.: Stochastic Optimisation

Integrating promotional efforts, preservation technology, proportionate shortage time, and
partial backlogging emphasizes the need for a holistic understanding of inventory dynamics in
real-time scenarios. In their subsequent work, [15] extended their research to investigate profit
optimization in conversion processes such as milk to butter and debenture to share. By employing
Particle Swarm Optimization, the study addresses factors like conversion timing, quantity, cost,
and duration, offering insights into strategic decision-making for inventory managers. This
paper makes a significant contribution to the modelling of a retailer’s business by incorporating
promotional optimization and stochastic optimization. Our analysis has identified a research gap
in this field, emphasizing the need for further exploration. Table 1 summarizes these contributions
and gaps.

2. Problem Definition

In the traditional inventory models, which often rely on deterministic assumptions, fail to address
these uncertainties effectively. Another issue like deterioration is particularly critical for businesses
dealing with perishable goods. Conventional models often overlook the intricate dynamics of
deterioration, leading to suboptimal decisions and financial losses. This research addresses this
challenge by integrating strategies that account for the perishable nature of goods, providing
insights for optimizing stock levels and minimizing financial impact. Preservation costs further
complicate inventory management, requiring a balance between timely replenishment and the
costs associated with preserving inventory. This study investigates optimal resource allocation
strategies, considering preservation costs to enhance decision-making and align with broader
business objectives. Promotional efforts also impact inventory dynamics and profitability, yet
traditional models often neglect this aspect. The research examines the effect of promotional
activities, including advertising frequency, on inventory management and profitability. By
understanding the relationship between advertising strategies and inventory dynamics, businesses
can refine their promotional efforts for optimal results.

This research aims to develop a comprehensive inventory management model that incorporates
stochastic dynamics, addresses deterioration and preservation costs, integrates expiry dates, and
optimizes promotional efforts. The objective is to provide decision-makers with actionable
strategies to navigate modern market complexities and enhance overall inventory management
performance.

3. NOTATIONS

Notations bearing usual tradition, utilized in the subsequent discussions, are laid down as follows:
Parameters:
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τ : Maximum life span of the product,

γ : Advertising impact parameter associated with the advertising frequency,

a : Demand potential parameter,

α : Price sensitive parameter of the demand,

b : Time sensitive parameter of the demand,

ϵ : Continuous random variable associated with demand responsible for demand uncertainty,

λ : Preservation impact parameter,

η : Gain fraction of total demand in case of shortage,

Ch : Holding cost per unit per unit of time,

c1 : Shortage Cost per unit per unit of time,

c2 : Opportunity cost per unit of time,

C0 : Set up cost per set up,

W : Backlogged demand,

Q : Total order quantity of without shortage case,

S : Initial stock level in case of shortage,

f (u) : Instantaneous freshness index,

Decision variables:

p : Selling price per unit,

T : Total inventory period of the model including with and without shortage cases,

t1 : Shortage time period,

A : Advertisement frequency,

ξ : Per unit preservation cost,

q(t) : Instantaneous inventory level at variable time t,

Π1, Π2 : Total profit function for the model including without and with shortage respectively,

4. Assumptions

1. The proposed model is for single retailer model dealing with the perishable product having
fixed self-life τ,

2. Demand is influenced by the freshness level of the product and the freshness index is
determined by f (t) = τ−t

τ , t ∈ [0, τ]

3. The deterioration is considered instantaneous determined by θ(t) = 1−m(ξ)
1+τ−t , where per unit

preservation cost ξ is employed to reduce the rate of deterioration in 0 ≤ t ≤ T ≤ τ,

4. The preservation effort is a continuous and concave function of per unit preservation cost ξ,
and determined as m(ξ) = 1 − e−αξ . Thus, reduced rate of deterioration is 1 − m(ξ),

5. Price-sensitive and time dependent demand is employed under the influence of uncertain
factor ϵ and determined as D(t, p) = (a − αp − bt + ϵ), for a > 0, b > 0 and p > 0
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(a) Stock level without shortage (b) Stock level with shortage

Figure 1: Comparison of stock levels with and without shortage

6. The promotional effort is incorporated to enhance the demand with promotional efforts
parameter Aγ. Where, the γ is the frequency of advertisement and gives a freedom to
management that how many time it could advertise the product to get optimum profit,

7. The mathematical formulation section is categorised into two categories; ‘with’ and ‘with-
out’shortage. In shortage scenario, the demand is assumed to be partially backlogged with
the gain fraction η and Lead time is to be considered zero.

5. Mathematical Formulation

This paper introduces a mathematical framework to help retailers to increase profits when
restocking perishable items having a fix self-life τ. The proposed formulation focuses on opti-
mizing profit of retailer who invests in an ordering cost (C0) and restocking inventory regularly
having purchasing cost (Cp) and selling price p. With negligible lead time, This model accounts
for the critical relationship between freshness of stock level, demand level, as consumers strongly
prefer fresh, perishable items and the advertisement frequency. It is simply to understand that the
maximum lifespan of the product determines the maximum length of a business cycle (T) and as
well as less deterioration. As a result, products that stay longer their maximum lifespan will be
avid to sale for the customers and organisation’s welfare. Additionally, consumers always strug-
gle to purchase the best available product at a reasonable price, so the selling price is often the
primary factor for customers. Therefore, the proposed formulation optimises the replenishment
time T, optimal selling price p, advertising frequency A, and the preservation cost ξ.

The formulation is divided into two separate categories, with and without shortage. The
further section focuses on the case of without shortage.

Case I: The model with no shortage

The model (refer to figure 1(a)) starts by examining a situation where a retailer gets the order
quantity Q, of a perishable items from a supplier. After some time, the quality and quantity of
the products reduces gradually due to both natural decay and consumer demand. Eventually,
the quantity will reach zero at time t = T . In any instant t, the stock level q(t) follows following
differential equation:

dq(t)
dt

+
1 − m(ξ)

1 + τ − t
q(t) = −Aγ(a − αp − bt + ϵ)

τ − t
τ

, 0 ≤ t ≤ T (1)
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subject to q(T) = 0, and q(0) = Q. For notational convenience consider 1 − m(ξ) = k, and

ψ1 =
b

k − 3
; ψ2 =

−a + pα − ϵ + b(τ + 1)
k − 1

; ψ3 =
−a + pα − ϵ + b(τ + 2)

k − 2
;

ϕ1 = (1 + τ)3Cp +
Ch(1 + τ)4

4
; ϕ2 = (1 + τ)Cp +

Ch(1 + τ)2

2
;

ϕ3 = (1 + τ)2Cp +
Ch(1 + τ)3

3
; ϕ4 = (1 + τ)kCp +

Ch(1 + τ)(k+1)

k + 1
Equation (1), leads to

q(t) =
Aγ

τ

[
−(1 + τ − t)

{
ψ1(1 + τ − t)2 + ψ2 − ψ3(1 + τ − t)

}
+(1 + τ − t)k(1 + τ − T)(1−k)

{
ψ1(1 + τ − T)2 + ψ2 − ψ3(1 − T + τ)

}]
(2)

The retailer’s lot size Q with q(0) = Q, will be

Q(T) =
Aγ

τ

[
−ψ1(1 + τ)3 − ψ2(1 + τ) + ψ3(1 + τ)2

+(1 + τ)k
{

ψ1(1 + τ − T)(3−k) + ψ2(1 + τ − T)(1−k) − ψ3(1 + τ − T)(2−k)
}]

(3)

From the above inventory level and retailer’s lot size, there are several cost functions incorporated
in the proposed profit function. The purchase cost (PC) of each cycle for the retailer’s is as
follows:

PC(T) = CpQ = Cp
Aγ

τ

[
−ψ1(1 + τ)3 − ψ2(1 + τ) + ψ3(1 + τ)2+

(1 + τ)k
{

ψ1(1 + τ − T)(3−k) + ψ2(1 + τ − T)(1−k) − ψ3(1 + τ − T)(2−k)
}]

(4)

The cost associated with holding (CC) over the entire cycle

CC(T) = Ch

∫ T

0
q(t)dt

=
Ch Aγ

τ

[
ψ1(1 + τ − t)4

(
1
4
− 1

k + 1

)
+ ψ2(1 + τ − T)2

(
1
2
− 1

k + 1

)
−ψ3(1 + τ − t)3

(
1
3
− 1

k + 1

)
− (1 + τ)(k+1)

k + 1

[
ψ2(1 + τ − T)(1−k)+

ψ1(1 + τ − T)(3−k) − ψ3(1 + τ − T)(2−k)
]
− ψ1

4
(1 + τ)4 − ψ2

2
(1 + τ)2+

ψ3

3
(1 + τ)3

]
(5)

The advertising cost (AC) with advertisement frequency A is

AC = G × A (6)

where G is the cost per advertisement. During the interval [0, T], the total sales revenue (SR) is

SR(T) = p
∫ T

0
Aγ(a − αp − bt + ϵ)

τ − t
τ

dt

=
pAγ

6τ

[
2bT3 + 6T(a − αp + ϵ)τ − 3T2(a − αp + bτ + ϵ)

]
(7)
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Incorporating all the above cost, the profit earned by retailer in period [0, T] is ,

Π1(A, p, T) = SR − OC − AC − PC − CC

=
pAγ

6τ

[
2bT3 + 6T(a − αp + ϵ)τ − 3T2(a − αp + bτ + ϵ)

]
− C0 − GA

+
Aγ

τ

[
(ψ1ϕ1 + ψ2ϕ2 − ψ3ϕ3) +

{
−ψ1(1 + τ − T)(3−k) − ψ2(1 + τ − T)(1−k)

+ψ3(1 + τ − T)(2−k)
}

ϕ4 − Ch

{
ψ1(1 + τ − T)4

(
1
4
− 1

k + 1

)
+ψ2(1 + τ − T)2

(
1
2
− 1

k + 1

)
− ψ3(1 + τ − T)3

(
1
3
− 1

k + 1

)}]
(8)

Our primary objective is to determine the optimal advertisement frequency, per unit selling
price, and replenishment time that will lead to the highest expected profit for the retailer. We
determined the optimal advertisement frequency using an algorithmic approach, and obtained
conditions in the theorem given below.

Theorem 5.1. The proposed profit function Π1(A, p, T) is strictly concave for price p, for T < 2τ.
Proof: Consider the profit function equation (8), we have

∂Π1(A, p, T)
∂p

=
Aγ

6τ

[
2bT3 + 6T(a − αp + ϵ)τ − 3T2(a − αp + bτ + ϵ)

]
+

pAγ

6τ
[−6Tατ

+3T2α
]
+

Aγ

τ

[[
αϕ2

k − 1
− αϕ3

k − 2

]
+[

−α(1 + τ − t1)
1−k

k − 1
+

α(1 + τ − T)2−k

k − 2

]
ϕ4

−Ch

[
α(1 + τ − t1)

2( 1
2 − 1

k+1 )

k − 1
−

α(1 + τ − t1)
3( 1

3 − 1
k+1 )

k − 2

]]
(9)

Putting ∂Π1(A,p,T)
∂p = 0, we have optimal value of p denoted by p∗

p∗ =
1

αT(2 − T)

[
Aγ

6τ

(
2bT3 + 6Tτ(a + ϵ)− 3T2(a + bτ + ϵ)

)
+

Aγ

τ

{(
αϕ2

k − 1
− αϕ3

k − 2

)
−Ch

(
α(1 + τ − T)2( 1

2 − 1
k+1 )

k − 1
−

α(1 + τ − T)3( 1
3 − 1

k+1 )

k − 2

)}

+

(
α(1 + τ − T)2−k

k − 2
− α(1 + τ − T)1−k

k − 1

)
ϕ4

]
(10)

differentiating again the above equation, we have

∂2Π1(A, p, T)
∂p2 = 2AγαT

[
−1 +

T
2τ

]
< 0, f or T < 2τ (11)

Hence, for T < 2τ, the profit function Π1(A, p, T) is concave with respect to selling price p, and attained
maxima at p∗ (refer to figure 2(a)).

After, finding the condition for the optimal solution of the price, we have shown the concave
behaviour of the objective function with respect to the time T.

Theorem 5.2. The objective function Π1(A, p, T) is concave in T ∈ (0, τ].
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Proof: From the objective function Π1(A, p, T) (equation (8)), we have

∂Π1(A, p, T)
∂T

=

[
pAγ

6τ

{
6bT2 + 6(a − αp + ϵ)τ − 6T(a − αp + bτ + ϵ)

}
+

Aγ

τ

{
(3 − k)ψ1(1 + τ − T)(2−k) + (1 − k)ψ2(1 + τ − T)−k

−(2 − k)ψ3(1 + τ − T)(1−k)
}

ϕ4

−Ch
Aγ

τ

{
−4ψ1(1 + τ − T)3

(
1
4
− 1

k + 1

)
−2ψ2(1 + τ − T)

(
1
2
− 1

k + 1

)
+ 3ψ3(1 + τ − T)2

(
1
3
− 1

k + 1

)}]
(12)

The above equation leads to,

∂2Π1(A, p, T)
∂T2 =

Aγ

τ

[
p [b(2T − 1) + αp − (a + ϵ)]− (1 + τ − T)−k [−ψ1(k − 2)

(k − 3)(1 + τ − T) + k(k − 1)(1 + τ − T)−1ψ2 + ψ3(k − 1)(k − 2)
]

ϕ4

−Ch

[
12ψ1(1 + τ − T)2

(
1
4
− 1

k + 1

)
+2ψ2

(
1
2
− 1

k + 1

)
− 6ψ3(1 + τ − T)

(
1
3
− 1

k + 1

)]]
(13)

∂2Π1(A, p, T)
∂T2 =

Aγ

τ
(δ1 − δ2) < 0

for Max(δ1) < Min(δ2), where

δ1 = p [b(2T − 1) + αp − (a + ϵ)]− (1 + τ − T)−k [−ψ1(k − 2)(k − 3)(1 + τ − T)

+k(k − 1)(1 + τ − T)−1ψ2 + ψ3(k − 1)(k − 2)
]

ϕ4

and

δ2 = Ch

[
12ψ1(1 + τ − T)2

(
1
4
− 1

k + 1

)
+ 2ψ2

(
1
2
− 1

k + 1

)
− 6ψ3(1 + τ − T)

(
1
3
− 1

k + 1

)]
Here

∂δ1

∂T
> 0,

∂δ2

∂T
< 0

and thus, δ1 is increasing in T and δ2 is decreasing in T, Due to this, maximum and minimum value of
δ1and δ2 respectively is obtained on τ in the interval [0, τ].
From above,

Max(δ1)− Min(δ2) = − 1
(3 − k)(1 + k)

[(3 − k)(1 + k)p(a − pα + ϵ − b(−1 + 2τ))

+Ch [(a − αp − ϵ)(5 − k) + b(2 + 5τ − kτ)]

+(1 + τ)k(Ch + Cp + Cpk + Chτ)(a(−3 + 5k − 2k2)

+(3 − 5k + 2k2)(pα − ϵ) + b(3τ + 2k2(1 + τ)− k(4 + 5τ)))
]
< 0

(14)

Hence, the profit function Π1(A, p, T) (equation (8)) is concave with respect to T .

Using these obtained conditions for optimality of objective function, we have developed an
algorithm to obtain the numerical solution of the problem.
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Algorithm 1. Algorithm to determine the optimal solution without shortage
Input: Demand, Amax, Parameters, Objective function
Output: Optimal value of p∗, T∗, A∗, π∗

Define Module 1 taking argument (µ, σ)

1. Initialize ϵ = f (µ, σ)

2. Return ϵ

Main Body:

1. Initialize T∗ = 0, p∗ = 0, A∗ = 0, ξ∗ = 0, π∗ = −∞

2. for A = 1, 2, ..., Amax

3. Solve Eq. (8) and (11) for p and T.

4. Solve ∂π1
∂ξ = 0 for ξ.

5. If (T < 2τ) do

6. If [δ1]T=τ < [δ2]T=τ do

7. Calculate π1(A, p, T, ξ)

8. If π1(.) > π∗
1 (.)

9. Set T∗ = T, p∗ = p, A∗ = A, ξ∗ = ξ, π∗ = π1

10. end If

11. end If

12. end If

13. end for

14. Get T∗, p∗, A∗, ξ∗, π∗

Now, we have another category for the formulation, in which the shortage is allowed. Further
discussion have investigated the shortage condition and derived the condition for the optimal
solution. where

Case II: The model with shortage

At the beginning of the sale period, the retailer purchases Q units of a perishable products from
the supplier. These units are considered fresh and in their original state. Once the stock reaches
to zero, the retailer experiences shortages, and the demand is accumulated with a fraction η in
interval [t1, T] (Figure 1(b)). So, the inventory level at any instant is govern in equation 15 and 16.

dq1(t)
dt

+
1 − m(ξ)

1 + τ − t
q(t) = −Aγ(a − αp − bt + ϵ)

τ − t
τ

, 0 ≤ t ≤ t1 (15)

and

dq2(t)
dt

= −ηAγ(a − bt − αp + ϵ), t1 ≤ t ≤ T (16)
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with the help of q1(0) = S,q1(t1) = 0,q2(t1) = 0, and q2(T) = −W., the above equations, provide
solution given as follows

q1(t) =
Aγ

τ

[
−ψ1(1 + τ − t)3 − ψ2(1 + τ − t) + ψ3(1 + τ − t)2+

(1 + τ − t)k(1 + τ − t1)
(1−k)

{
ψ1(1 + τ − t1)

2 + ψ2 − ψ3(1 − t1 + τ)
}]

(17)

and,

q2(t) = ηAγ

[
(a − αp + ϵ)(t1 − t)−

b(t2
1 − t2)

2

]
(18)

The given amounts for initial inventory and backlogged shortage respectively are as follows:

S =
Aγ

τ

[
−ψ1(1 + τ)3 − ψ2(1 + τ) + ψ3(1 + τ)2+

(1 + τ)k
[
ψ1(1 + τ − t1)

(3−k) + ψ2(1 + τ − T)(1−k) − ψ3(1 + τ − T)(2−k)
]]

(19)

and,

W = ηAγ

[
(a − αp + ϵ)(T − t1)−

b(T2 − t2
1)

2

]
(20)

Employing the above inventory level and order quantities, there are several costs associated with
the inventory control. The cost incurred by the retailer for purchasing cost (PC) is given as,

PC = Cp(S + W)

= Cp
Aγ

τ

[
−ψ1(1 + τ)3 − ψ2(1 + τ) + ψ3(1 + τ)2

+(1 + τ)k
[
ψ1(1 + τ − t1)

(3−k) + ψ2(1 + τ − t1)
(1−k) − ψ3(1 + τ − t1)

(2−k)
]

+CpηAγ

[
(a − αp + ϵ)(T − t1)−

b(T2 − t2
1)

2

]]
(21)

The carrying cost (CC) for each cycle [0, t1] is,

CC(t1) = Ch

∫ t1

0
q1(t)dt

=
Ch Aγ

τ

[
ψ1(1 + τ − t1)

4
(

1
4
− 1

k + 1

)
+ ψ2(1 + τ − t1)

2
(

1
2
− 1

k + 1

)
−ψ3(1 + τ − t1)

3
(

1
3
− 1

k + 1

)
− (1 + τ)(k+1)

k + 1

[
ψ2(1 + τ − t1)

(1−k)

+ψ1(1 + τ − t1)
(3−k) − ψ3(1 + τ − t1)

(2−k)
]
− ψ1

4
(1 + τ)4

−ψ2

2
(1 + τ)2 +

ψ3

3
(1 + τ)3

]
(22)

The cost of backorder (BC), and lost sales (LSC) per replenishment cycle respectively is given as,

BC(t1, T) = −C1

∫ T

t1

q2(t)dt

= −C1ηAγ

[
(a − αp + ϵ)

(
t1T − T2

2
−

t2
1
2

)
− b

2

(
t2
1T − T3

3
−

2t3
1

3

)]
(23)
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and

LSC(t1, T) = C2(1 − η)
∫ T

t1

Aγ(a − αp − bt + ϵ)dt

= C2(1 − η)Aγ

[
(a − αp + ϵ)(T − t1)− b

T2 − t2
1

2

]
(24)

During inventory cycle, the total number of advertisements is A and the cost per advertisement is
G. Therefore, the total advertisement cost is GA.
The total sales revenue (SR) during [0, T] is

SR(p, t1) = p
∫ t1

0
Aγ(a − αp − bt + ϵ)

τ − t
τ

dt + pW

= pAγ

[
1

6τ

{
2bt3

1 + 6t1(a − αp + ϵ)τ − 3t2
1(a − αp + bτ + ϵ)

}
+

η

{
(a − αp + ϵ)(T − t1)−

b(T2 − t2
1)

2

}]
(25)

Hence, accumulating all the above costs the profit function given is,

Π2(A, p, t1, T) =
pAγ

6τ

[
2bt3

1 + 6t1(a − αp + ϵ)τ − 3t2
1(a − αp + τ + ϵ)

]
− C0 − GA

+
Aγ

τ

[
(ψ1ϕ1 + ψ2ϕ2 − ψ3ϕ3) +

{
−ψ1(1 + τ − t1)

(3−k) − ψ2(1 + τ − t1)
(1−k)

+ψ3(1 + τ − t1)
(2−k)

}
ϕ4 − Ch

{
ψ1(1 + τ − t1)

4
(

1
4
− 1

k + 1

)
+ψ2(1 + τ − t1)

2
(

1
2
− 1

k + 1

)
− ψ3(1 + τ − t1)

3
(

1
3
− 1

k + 1

)}]
+ηAγ

[
p

{
(a − αp + ϵ)(T − t1)−

b(T2 − t2
1)

2

}

+C1

{
(a − αp + ϵ)

(
t1T − T2

2
−

t2
1
2

)
− b

2

(
t2
1T − T3

3
− 2

t3
1
3

)}]

−C2(1 − η)Aγ

[
(a − αp + ϵ)(T − t1)−

b(T2 − t2
1)

2

]
(26)

Our objective is to analyse the above profit function (equation (26)) and identify the optimal values
for the frequency of advertisement, selling price, and replenishment time to achieve maximum
profit for the retailer. In order to achieve this, we have formulated the following theorems .

Theorem 5.3. For t1 < 2τ, the profit function Π2(A, p, t1, T) is strictly concave for price p, where
t1 ∈ (0, τ).

Proof: Consider the profit function equation (26), we obtained
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∂Π2(A, p, t1, T)
∂p

=
Aγ

6τ

[
2bt3

1 + 6t1(a − αp + ϵ)τ − 3t2
1(a − αp + bτ + ϵ)

]
+

pAγ

6τ

[
−6t1ατ + 3t2

1α
]

+
Aγ

τ


(

αϕ2

k − 1
− αϕ3

k − 2

)
+

α(1 + τ − t1)
2−k − α(1+τ−t1)

1−k

k−1
k − 2

 ϕ4

−Ch

(
α(1 + τ − t1)

2( 1
2 − 1

k+1 )

k − 1
−

α(1 + τ − t1)
3( 1

3 − 1
k+1 )

k − 2

)}
+

ηAγ

[(
(a − αp + ϵ)(T − t1)− b

(T2 − t2
1)

2
− αp(T − t1)

)

−C1α

(
t1T − T2

2
−

t2
1
2

)]
− C2(1 − η)Aγ [−α(T − t1)] (27)

Putting ∂Π2(A,p,T)
∂p = 0, we have optimal value of p is,

p∗ =
1

Aγ

τ

[
2t1ατ − αt2

1
]
+ ηAγ [2α(T − t1)]

[
Aγ

τ

{
bt3

1
3

+ t1(a + ϵ)τ −
t2
1(a + bτ + ϵ)

2

+
αϕ2

k − 1
− αϕ3

k − 2
+

(
−α(1 + τ − t1)

1−k

k − 1
+

α(1 + τ − t1)
2−k

k − 2

)
ϕ4

−Ch

(
α(1 + τ − t1)

2( 1
2 − 1

k+1 )

k − 1
−

α(1 + τ − t1)
3( 1

3 − 1
k+1 ))

k − 2

)}

+ηAγ

[(
(a + ϵ(T − t1)− b

(T2 − t2
1)

2
− αp(T − t1)

)

−C1α

(
t1T − T2

2
−

t2
1
2

)]
+ C2(1 − η)Aγα(T − t1)

]
(28)

Differentiating again, we have,

∂2Π2(A, p, t1, T)
∂p2 = 2Aγα

[
t1

(
−1 +

t1

2τ

)
− η(T − t1)

]
< 0 (29)

Thus, for T < t1 < 2τ, the profit function Π2(A, p, T) is concave and attain the maxima on the
optimal price p∗.

Preposition 1. For a > 0, b > 0, p > 0, Max(δ1 + δ3) < Min(δ2),

δ1 =
Aγ

τ

[
p [b(2t1 − 1) + αp − (a + ϵ)]− (1 + τ − t1)

−k [−ψ1(k − 2)(k − 3)(1 + τ − t1)+

k(k − 1)(1 + τ − t1)
−1ψ2 + ψ3(k − 1)(k − 2)

]
ϕ4

]
δ2 = Ch

[
12ψ1(1 + τ − t1)

2
(

1
4
− 1

k + 1

)
+ 2ψ2

(
1
2
− 1

k + 1

)
− 6ψ3(1 + τ − t1)

(
1
3
− 1

k + 1

)]
δ3 = −Aγη [b − C1((a − αp + ϵ)− b(T − 2t1))]− C2 Aγb(1 − η)

Proof: From theorem (5.2), we have, Max(δ1) < Min(δ2). So, we have added negative quantity
(δ3 < 0) in the RHS, resultant maximum value of δ1 + δ3 is still down then we have,

Max(δ1 + δ3) < Min(δ2)
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Now, dTP(p)
dp = 0 implies a unique value of p using Mathematica software, which is complex in

nature. Clearly, d2TP(p)
dp2 is negative (see figure 2(b))

Theorem 5.4. Objective function Π2(A, p, t1, T) concave for t1 in the interval [0, τ].

Proof: From the equation (26), we may write,

∂Π2

∂t1
=

pAγ

6τ

[
6bt2

1 + 6(a − αp + ϵ)τ − 6t1(a − αp + bτ + ϵ)
]

+
Aγ

τ

[
(3 − k)ψ1(1 + τ − t1)

(2−k) + (1 − k)ψ2(1 + τ − t1)
−k

−(2 − k)ψ3(1 + τ − t1)
(1−k)

]
ϕ4

−Ch
Aγ

τ

[
−4ψ1(1 + τ − t1)

3
(

1
4
− 1

k + 1

)
− 2ψ2(1 + τ − t1)

(
1
2
− 1

k + 1

)
+3ψ3(1 + τ − t1)

2
(

1
3
− 1

k + 1

)]
+Aγη

[
p(−(a − αp + ϵ) + bt1) + C1((a − αp + ϵ)(T − t1)− b(t1T − t2

1))
]

−C2(1 − η)Aγ [bt1 − (a − αp + ϵ)] (30)

Above equation leads to,

∂Π2(A, p, t1, T)
∂t1

= δ1 − δ2 + δ3

where, δ1, δ2, δ3 is given in above preposition. From the preposition 1, ∂Π2(A,p,t1,T)
∂T < 0.

Theorem 5.5. For c2 < η [b(p + c2) + c1D(p, t)], the objective function is concave for T in the interval
[0, τ].
Proof: From the equation (26), we have

∂Π2(A, p, t1, T)
∂T

= ηAγ

[
p [(a − αp + ϵ)− bT] + C1

{
(a − αp + ϵ)(t1 − T)− b

2

(
t2
1 − T2

)}]
−C2(1 − η)Aγ [(a − αp + ϵ)− bT] (31)

or,

∂Π2
2(A, p, t1, T)

∂T2 = Aγη [−bP − C1(a − αp + ϵ + bT)] + C2(1 − η)Aγb (32)

For the given positive values of parameters and c2 < η [b(p + c2) + c1D(p, t)], the objective
function is concave in T.

After obtaining the conditions for optimality of the objective function, we developed an
algorithm to determine the algorithm to get numerical solution.

Algorithm 2. Algorithm to determine the optimal solution without shortage
Input: Demand, Amax, Parameters, Objective function
Output: Optimal value of p∗, T∗, A∗, π∗

Define Module 1 taking argument (µ, σ)

1. Initialize ϵ = f (µ, σ)

2. Return ϵ

Main Body:
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(a) Concavity of the profit function with respect to time
and price without shortages

(b) Concavity of the profit function with respect
to time and price with shortages

Figure 2: Three dimensional concavity of profit function

1. Initialize t1 = 0, T∗ = 0, p∗ = 0, A∗ = 0, ξ∗ = 0, π∗ = −∞

2. for A = 1, 2, ..., Amax

3. Solve Eq. (27), (30) and (31) for p, t1 and T.

4. Solve ∂π1
∂ξ = 0 for ξ.

5. If (T < 2τ) and c2 < η [b(p + c2) + c1D(p, t)] do

6. If [δ1 + δ3]T=τ < [δ2]T=τ do

7. Calculate π1(A, p, T, ξ)

8. If π1(.) > π∗
1 (.)

9. Set t∗1 = t1, T∗ = T, p∗ = p, A∗ = A, ξ∗ = A, π∗ = π1

10. end If

11. end If

12. end If

13. end for

14. Get t∗1 , T∗, p∗, A∗, ξ∗, π∗

After obtaining the algorithms, we have derived numerical results for this formulations given in
the further sections.

6. Empirical Evaluation

A numerical example illustrates the model’s adaptability and efficacy, providing insights into
replenishment time, optimal pricing, preservation costs, and overall profitability. This research
contributes to evolving inventory management strategies, particularly in industries with volatile
demand and deteriorating items.
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Example 1. Example of model without shortage: In the retail store, research investigates an inventory
management model that integrates stochastic demand and advertising techniques. The example incorporates
essential parametric values such as the price-sensitive factor (α) is 0.1, a setup cost (C0) is $520, a
purchasing cost (Cp) is $5, a potential demand (a) is 100 units, a holding cost per unit (Ch) is $1, a
time-sensitive parameter (b) is 0.1, a maximum product lifetime (τ) is 2 unit of time, an advertising
frequency (A) is 1 per advertisement, an advertising impact parameter (γ) is 0.1, an advertisement cost
(G) is $50, a stochastic demand factor (ϵ) is 20, and a preservation cost parameter (λ) is 0.0025.

The model adapts pricing and preservation strategies, resulting in a replenishment time (T) is 0.986282
units of time, an optimal price (p) is $607.44, an optimal preservation cost is $277.259, and an optimal
profit is $16,963.9.

This example illustrates how the model can adapt in the real world, where dynamic strategies are
aligned with market demands and deterioration. It offers valuable insights into inventory management,
demonstrating the model’s effectiveness in addressing challenges and adapting to market dynamics.

Example 2. Example for the model with shortage: The example is formulated precisely to examine
a system that includes shortages. Key parameters are as follows: Price sensitivity (α) is 0.1, setup cost
(C0) is $520, purchasing cost (Cp) is $5, potential demand (a) is 100 units, time-sensitivity parameter
(b) is 0.1, holding cost (Ch) is $1 per unit per unit of time, maximum product lifetime (τ) is 2 unit of
time, advertising frequency (A) is 1 per advertisement, advertisement impact (γ) is 0.1, advertisement
cost (G) at $50 per advertisement, stochastic demand factor (ϵ) is 20, preservation cost impact parameter
(λ) is 0.0025, backlogging fraction (η) is 0.6, shortage cost (c1) is $1, and opportunity cost (c2) is $1.

The numerical outcomes reveal a replenishment time (T) is 1.28626 units of time, an optimal shortage
time (t1) is 1.09332 units, an optimal price (p) is $606.71, an optimal preservation cost is $277.26, and
an optimal profit $20,916.3.

The numerical results show a relationship among these elements, leading to optimal shortage
time, price, preservation cost, and profit. This emphasizes the model’s versatility in addressing
broader challenges, such as unexpected demand fluctuations.

Figure 3: Market dynamics in different scenarios

In both scenarios, the model proves adaptable to various operational conditions, integrating
multiple parameters for optimal decision-making in inventory management. Beyond numerical
outcomes, the discussion provides managerial insights and practical implications.

From a managerial perspective, the model that includes without shortages emphasizes the
importance of adopting forward-looking strategies (refer to Figure 3). It is observed that dynamic
nature of pricing and strategic advertising effectively enhance overall profitability and competi-
tiveness.It reveals that managers can optimize resource allocation, refine pricing strategies, and
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(a) Inventory level and replenishment time (b) Optimal value of advertisement frequency (A)

Figure 4: Graphical representation of inventory level and optimal advertisement level

boost sales efficiently. On the other hand, the example that deals with shortages focuses on
mitigating risks and uncertainties. The model helps managers make informed decisions about
backlogging, shortage, and opportunity costs. This is particularly relevant in real-world scenarios
where unanticipated disruptions can impact inventory levels.

Further investigation considers models with and without shortages and the influence of
preservation costs. The analysis reveals that the optimal replenishment time varies significantly
across different scenarios. When considering preservation costs, the optimal replenishment time
for the model without shortages is approximately 0.986282. This shows that businesses attempt to
balance the need for timely replenishment and the financial implications of preserving inventory.
However, the counterpart with shortages experiences a longer optimal replenishment time of
1.28626. This extension may be due to the complex interaction between shortage mitigation
strategies and the time required to replenish stock, considering stochastic demand and expiration
date-related deterioration.

Moreover, analyzing optimal prices provides valuable insights into the pricing strategies
that optimize profit. Without shortages with preservation, the optimal price is $598.624. This
reveals that businesses can maximize profit under these conditions by setting a slightly lower
price. However, when shortages are introduced into the model, the optimal price increases to
$606.711. This increase in price highlights the difficulty of maintaining a balance between price
and shortage. Businesses may use higher prices to make up for potential profit losses caused by
shortages. The complexity of determining the best pricing strategy becomes more evident when
considering the costs of preserving deteriorating stock levels.

In the scenario with shortages, the model experiences a shortage period, representing a
period during which demand exceeds the available stock. The duration of this shortage period is
unaffected by preservation costs. The model without preservation costs exhibits a less shortage
period of 0.19294 compared to 0.2021 in the model with preservation costs. This indicates the
complex relationship between preservation expenses, reordering time, and periods of shortage.
Therefore, decision-makers need to balance these factors carefully to optimize overall profit.

The findings also emphasize the strategic significance of pricing decisions in managing
perishable inventory. The observed variations in optimal prices highlight the need for businesses
to retailer their pricing strategies based on the specific dynamics of their operational environment.
Higher prices may mitigate profit losses associated with shortages, but the impact on overall
profitability should be carefully assessed. This sensitive understanding of optimal pricing gives
managers actionable insights to navigate the delicate balance between pricing and inventory
management. It also shows that the different advertising frequencies (A = 1, 2, 3, ..., 10) impact on
optimal profit differently (refer to Figure 4(a) and Figure 4(b)). Notably, the highest profit occurs
at A = 4, emphasizing the crucial role of strategic decision-making in advertising frequency for
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businesses aiming to maximize profitability within the given inventory management model. The
rise at A = 4 suggests an optimal balance in allocating resources to advertising efforts. Increasing
advertising frequency may lead to higher costs but declining revenue, while lowering frequency
may result in suboptimal market reach. The finding at A = 4 indicates an optimal spot where the
benefits from increased advertising frequency align with the costs, resulting in the highest profit.
From a managerial perspective, this insight provides actionable recommendations for businesses
to optimize their advertising strategies. Managers can strategically allocate resources, focusing
on the frequency that maximizes profit, aligning with the trend in marketing where data-driven
decisions play a vital role in resource allocation and campaign effectiveness.

Additionally, the result underscores the dynamic nature of advertising strategies. Managers
should continuously evaluate and adjust advertising frequencies based on real-time data and
market conditions. The findings contribute valuable insights to the literature on inventory
management and advertising strategies, guiding practitioners in making informed decisions
impacting the bottom line. The research proposes that businesses can achieve optimal profits
in the given inventory model context by strategically selecting an advertising frequency, with
the peak observed at A = 4. This knowledge empowers managers to fine-tune their advertising
strategies, balance cost and impact, and ultimately enhance overall business performance.

7. ANALYSIS OF UNCERTAINTY

In the proposed model, the uncertainty in demand (represented by ϵ) is intricately linked to
various factors, each of which can be categorized into specific probability distributions. Based
on Consumer behaviour and preferences, it is observe that there is in subject to unpredictable
shifts and societal influences, making a uniform distribution suitable for capturing this diversity.
Due to market dynamics there is fluctuation on economic conditions and currency instability,
align with the characteristics of normal distribution by the central limit theorem, providing a
logical fit for capturing the aggregate impact of these macroeconomic factors. The rapid pace of
technological advances and disruptive innovations reflects the uncertainty inherent in exponential
processes, making the exponential distribution a suitable choice for modelling this source of
variability. Retail and revenue disruptions, regulatory changes, global events, and competitive
actions characterized by various potential outcomes resonate with the triangular distribution,
allowing for a flexible representation of uncertainties that span different magnitudes.

Assumes that F(ϵ) is the distribution function of random variable ϵ, and f (ϵ) is the density
function of ϵ. The presented graph examines the influence of various distributions on a mathe-
matical model representing time-dependent demand (Figure 6). Four distributions—Uniform,
Normal, Exponential, and Triangular are analyzed for their impact on the demand function. Each
subplot illustrates the demand profile with different levels of randomness, providing insights into
the dynamic relationship between time and demand. The graph is a versatile illustration applica-
ble to scenarios ranging from inventory management to supply chain dynamics. Including mean
and standard deviation, annotations offer a comprehensive understanding of the slight variations
introduced by different distributions, contributing to a deeper understanding of time-dependent
demand fluctuations (refer to figure 5).

This study delves into profit maximization in dynamic business models, focusing on the
relationship between external factors and the resulting profit function (refer to figure 4(a)). The
study reveals a profit function sensitive to changes in external factors represented by epsilon. The
objective is to understand how different epsilon distributions, modelled by normal and uniform
distributions, impact the profit function. Numerical simulations reveal distinct profit patterns
for different epsilon distributions. The deterministic case shows a continuous increase in profit,
lacking adaptability to varying external conditions. Introducing uncertainty through normal
distributions with different means and standard deviations reveals varying profit landscapes.
Higher mean values correlate with increased profitability. Uniform distributions introduce a
more comprehensive range of possibilities, with broader and flatter curves suggesting potential
volatility in business performance. The results highlight the sensitivity of the profit function to
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Figure 5: Demand under the influence of various uncertainty factors

changes in external factors, emphasizing the need for adaptive strategies to navigate uncertainties.
This study provides a nuanced perspective on the impact of epsilon distributions on profit
maximization in business models, emphasizing the importance of adaptive strategies to address
external influences. It is graphically illustrate in figure 6.

Figure 6: Optimal profit under the influence of stochastic demand

8. Conclusion and Further Work

This framework provides decision-makers with a robust approach to navigating the challenges of
volatile markets. Through exploring managerial insights and results, this study offers practical
guidance, emphasizing the importance of adaptability in decision-making:

1. The strategy for inventory management emphasizes the need for flexible and data-driven
approaches to decision-making in pricing, advertising, and for managing retail market
scenario. Decision-makers should recognize and adapt to the uncertainties inherent in the
business environment.

2. The stochastic demand factor (ϵ) introduces variability, influencing optimal replenishment
time and pricing. Different epsilon distributions, modelled by normal, exponential, tri-
angular and uniform distributions, show distinct profit patterns. Higher mean values in
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normal distributions correlate with increased profitability, offering valuable insights for
decision-makers.

3. The optimal replenishment time (T) exhibits significant variation between scenarios, shows
the model’s adaptability to different operational conditions.

4. Optimal prices vary based on shortages, emphasizing the delicate balance required to opti-
mize pricing strategies considering both price and shortage considerations. This managerial
insight guides decision-makers in shaping pricing policies for overall profitability.

5. The highest profit occurs at an optimal advertising frequency of A = 4, indicating an optimal
balance in resource allocation to advertising efforts. This result highlights the strategic
importance of aligning advertising frequency with cost-effectiveness, offering actionable
recommendations for businesses aiming to maximize profitability through advertising
strategies. This insight guides decision-makers in making informed choices in deteriorating
items, where preservation costs must be carefully weighed against potential benefits.

6. Continuous evaluation and adjustment of advertising frequencies based on real-time data
emerge as crucial for optimizing advertising strategies. This insight aligns with contem-
porary marketing trends, emphasizing the importance of data-driven decision-making in
resource allocation and campaign effectiveness. By adopting a dynamic approach, managers
should ensure that advertising strategies remain aligned with market conditions.

The future scope outlined in the study suggests promising avenues for further research, ensuring
the continued relevance and applicability of the model in addressing evolving business dynamics.

• Explore incorporating machine learning algorithms to enhance the model’s adaptability.
Machine learning can predict market trends and optimize pricing and advertising strategies,
providing valuable insights for decision-makers in dynamic environments.

• Investigate the sustainability aspects of inventory management. Evaluate the environmental
impact of different inventory strategies, ensuring alignment with corporate sustainability
goals for responsible business practices.

• Examine the influence of real-time data analytics on advertising strategies. Understand
how real-time data shapes decision-making in advertising, particularly in dynamic market
conditions, offering insights for businesses aiming to stay competitive.
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