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Abstract 

Based on the limitations of the Inverse Lomax distribution and exponential distribution as outlined 

in the literature, a new extension of the exponential distribution is introduced in this paper. Some 

statistical properties of the ILOEED such as mean, variance, skewness, quantile function, moment, 

moment generating function, as well as kurtosis were demonstrated. The shapes of the hazard 

function of the proposed distribution suggest that it can be used to fit a dataset with increasing and 

bath-tube shapes. A simulation study for three different cases was also presented. The result of the 

simulation for three different cases (I, II, and III) indicated that ILOEED’s estimates are consistent. 

Lastly, an application to Industry datasets was demonstrated based on the ILOEED. Having 

minimum values of the Goodness-of-fit criteria and Goodness-of-fit statistics, the ILOEED can be 

recommended to fit these three datasets, in preference to other distributions considered in this paper. 

Keywords: Inverse Lomax-G family, Exponentiated Exponential Distribution, 

Weibull Distribution, Heavy Tail Distribution. 

I. Introduction

In their ongoing pursuit of adaptive and flexible statistical models, scientists and researchers have 

been investigating new distributions that may accurately represent a wide range of real-world data 

patterns. In this quest, the proposed distribution shows great promise as a more versatile model for 

a range of phenomena. Interestingly, it leverages the advantages of its parent distributions, the Odd-

Exponentiated and the Inverse Lomax distribution (ILD), to produce a distribution that can describe 

a wide range of datasets, especially those with heavy tails and non-monotone failure rates 

([1],[2],[3]). Extreme occurrences or outliers are more likely to occur in a heavy-tail distribution 

because its tails decay more slowly than those of a normal distribution. This suggests that there is 

more risk or variability in the data. The Pareto II (ILD), Cauchy, and Student’s t-distributions are a 

few instances of heavy-tail distributions. 

Inverse Exponentiated Odd Lomax Exponential distribution was proposed by [4], offering a 

fresh outlook on statistical modeling and analysis. Their research investigates the statistical 

properties of this distribution, contributing to a better comprehension of its practical applicability. 
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A four-parameter Exponentiated Odd Lomax Exponential (EOLE) distribution was proposed by [3], 

combining an exponentiated odd function with Lomax and exponential elements, thereby enhancing 

the distribution’s versatility and providing a more intricate parameterization for modeling. To give 

researchers a wider range of tools for a variety of applications, Inverse Exponentiated Lomax Power 

Series distribution was proposed by [2], which expanded the family of distributions that combines 

Lomax and exponential components. Inverse Lomax distribution has two major drawbacks. These 

are: Limited Flexibility in Shape i.e. ILD has some difficulty adjusting its probability density 

function, especially in the peak and tail areas. This can hinder its ability to precisely model data with 

certain patterns [5]. A potential constraint in modeling hazard rates i.e. while often used to model 

non-monotone hazard rates (failure rates that vary over time), the Inverse Lomax distribution may 

not be able to capture all possible hazard rate shapes that can arise in real-world situations [6]. 

However, exponential distribution has limitations of constant failure rate and memory-less 

property. Hence, the need to study the proposed distribution to remedy some of the drawbacks of 

the ILD and exponential distribution. 

To tackle the challenge of modeling the lifespans of electronic devices, which is essential for 

predicting future failures and achieving energy savings, a reliability model that is based on the 

inverse power law and generalized inverse Weibull distribution [7]. It demonstrates how successful 

the proposed distribution is in influencing the average time to failure of the examined capacitor, as 

opposed to standard models such as the inverse Weibull, using an empirical analysis that focuses 

on the life cycle of a surface-mounted electrolytic capacitor. To analyze COVID-19 death cases in 

Europe and China, the Exponentiated Transformation of Gumbel Type-II (ETGT-II) model [8]. This 

model provides a thorough analysis of statistical features and estimates model parameters using 

maximum likelihood and Bayesian approaches. The ETGT-II model is shown to be efficient through 

simulation analysis. It exhibits a promising adaptation to the COVID-19 death data sets, perhaps 

providing a better fit than other models. The new exponential inverted Topp-Leone (NEITL) 

distribution is presented by [9]. It is an extension of the inverted Topp-Leone distribution with an 

extra shape parameter. Its features, estimation methods, and application to actual datasets in the 

engineering and medical domains are all explored. The generalized log-exponential transformation 

of Gumbel Type-II (GLET-GTII), which was proposed by [10] as a generator for a generalized version 

of the Gumbel type-II model, increases modeling flexibility by adding a new parameter. Quantiles, 

survival function, and reliability are among the statistical attributes that are examined. Maximum 

likelihood and Bayesian approaches are used as parametric estimation methods, and they show 

consistency through Monte Carlo simulations and outperform other models in practical 

implementations, especially when it comes to infectious diseases like COVID-19. Using a new power 

function and a modified Kies generalized transformation, a novel statistical model and discusses its 

theoretical characteristics, including the density function, quantile function, and stochastic ordering 

[11]. The moment exponential distribution is extended by the two-parameter alpha power-

transformed moment exponential (APTME) distribution, which shows excellent fit and performance 

through a variety of estimators and simulation studies. Its practical significance is demonstrated by 

its application to real-world datasets [12]. 

Moreover, the flexible four-parameter Kumaraswamy extended exponential (KwEE) 

distribution is presented by [13]. This model shows that the novel distribution may provide a better 

fit than current models in several COVID-19 spread analysis situations by evaluating COVID-19 

mortality rates in nations such as Italy and the United Kingdom. To represent the dependability 

metrics of a generalized exponential model based on the inverse power law (IPL), was suggested 

using a multilayer ANN with Bayesian regularization by [14]. The outcomes show how well ANNs 

operate as a reliable mathematical tool for evaluating lifetime model reliability, and they are backed 

by a real-world application. Under the generalized type-I progressive hybrid censoring sample (GTI-

PHCS), statistical inference for the Kavya-Manoharan generalized exponential distribution was 
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proposed by [15]. It does this by examining different estimation techniques, such as maximum 

likelihood and Bayesian approaches, and using real-world data analysis and simulations to illustrate 

how well the techniques work. Through simulation studies and application to engineering datasets, 

the half-logistic modified Kies exponential (HLMKEx) distribution as a flexible three-parameter 

model for modeling real-world data was presented [16]. It provides detailed mathematical features, 

such as density function forms and estimation methods, and shows its superior fit over competing 

distributions. Generalized exponentiated unit Gompertz (GEUG), a unique four-parametric model, 

was introduced by [17] to represent clinical trial data of patients with arthritis. By adding new tuning 

factors to the unit Gompertz (UG) model, the GEUG model aims to improve the estimate of 

distribution parameters, hence increasing the model’s adaptability.  

Motivation: The inability of Inverse Lomax distribution and exponential distribution to 

adequately capture some intricate data patterns led to the development of the proposed distribution. 

To introduce a more adaptable model, that expands on the advantages of its parent distributions; 

the Odd-Exponentiated and the Inverse Lomax. Key features: More flexibility in defining its density 

and hazard functions, Non-monotone hazard rates capable of simulating phenomena with 

fluctuating risk characteristics over time, as well as heavy tails that capture extremes and outliers 

well. In this article, a new extension of Exponential distribution is introduced. The proposed 

distribution is formulated based on the Inverse Lomax Odd Exponentiated-G family of distributions. 

The most important feature of the proposed distribution, with two shape parameters, a scale, and 

rate parameters represents its ability to provide different density shapes. This means that the 

proposed distribution can fit various datasets adequately. The proposed distribution has the 

following desirable properties. (i) The probability density function (pdf) of the ILOEED proposed 

distribution has a simple closed form. Then, ILOEED can be used for modeling and analyzing real-

life data in Industries; (ii) The shape parameters of the proposed distribution make it very flexible 

to exhibit increasing and bath-tube failure rate shapes; (iii) Additionally, the density of the proposed 

distribution can also provide more flexible shapes. The paper is organized into six sections. The 

proposed distribution is defined in Section 2. The Statistical properties of the proposed distribution 

are presented in section 3. The estimation of the parameters of the proposed distribution using the 

method of Maximum Likelihood Estimates (MLEs) is introduced in Section 4. In Section 5, a 

simulation study based on the properties of the MLEs of the proposed distribution is presented. 

Applications of the proposed distribution to industry datasets are presented In Section 6. Section 7 

concludes the paper. 

The Inverse Lomax-Odd Exponentiated G (IL-OEG) family was proposed by [1] based on the 

T-X generator of [18].The cumulative density function (CDF) and probability density function (PDF)

of IL-OEG are given as
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Where Δ is a vector of parameter(s) for the baseline distribution, ( ; ) 1 ( ; )G x G x Δ Δ . Based on 

equations (1) and (2), Exponential distribution is considered to be the baseline distribution. So, the 

G(x; ∆) is equivalent to an exponential density. 
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II. Inverse Lomax Odd Exponentiated Exponential distribution (ILOEED)

The exponential distribution is the probability distribution of the time between events in a Poisson 

point process, that is, a process in which events occur continuously and independently at a constant 

average rate. It is a subset of the gamma distribution. The CDF and PDF of the exponential 

distribution are presented in equations (3) and (4). 

( ; ) 1 , , 0xG x e x           (3) 

And 

( ; , 0;) xg x e x    (4) 

Then, the CDF and PDF of the ILOEED can be given as: 
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Where   is the rate,   is the scale, and   and   are the shape parameters, respectively. Having 

this combination of parameters, we hope that ILOEED will fit datasets of different shapes. The 

reliability, hazard, and cumulative hazard functions of the ILOEED are presented in equations (7), 

(8), and (9). 
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Figure 1: PDF and CDF plots of ILOEED at various parameter values 
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Figure (1) shows the various shapes of the ILOEED’s PDF. This includes skewed and 

symmetry. Figure (1) also indicates the various shapes that the ILOEED can take which 

include constant, Bathtub, and monotone-increasing hazard shapes.  

III. The Statistical Properties of the ILOEED

I. The quantile function of the ILOEED

The quantile function of ILOEED can be derived by inverting the CDF of the ILOEED 

given in equation (5) as follows: 
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and U is uniformly distributed between 0 and 1. 

The median of the ILOEED family can be derived by setting U=0.5 in equation (10). 

II. The moments of the ILOEED

Let X be a random variable that follows ILOEED with parameters  , , ,    , then the 
thC
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derived by setting c=1 in equation (12). Moreover, the second moment can also be derived by 

setting c=2, and then using the relation 
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III. The Characteristic and Moment Generating Functions of the ILOEED

The characteristic function of the ILOEED can be given as 
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And the moment generating function of the ILOEED can be given as 
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Table 1: Mean, Variance, Skewness, and Kurtosis of ILOEED at various parameter values 

Parameter E(X) Var(X) SK(X) KUR(X) 

0.5       1.0694 6.6518 4.1394 26.2247 

1, 0.5, 1, 0.5       0.9794 2.8142 3.325 14.6679 

1.5, 0.5, 1.5, 0.5       0.9061 1.6187 2.4044 10.900 

2, 0.5, 2, 0.5       0.8449 1.0637 2.0973 9.0716 

2.5, 0.5, 2.5, 0.5       0.7927 0.7549 1.8992 8.0158 

3, 0.5, 3, 0.5       0.7476 0.5639 1.7499 7.3406 

3.5, 0.5, 3.5, 0.5       0.7081 0.4372 1.6408 6.8795 

4, 0.5, 4, 0.5       0.6320 0.3486 1.5570 6.5505 

Table (1) presents some basic statistics based on the moments of the ILOEED at varying parameter 

values. It’s evident from the table that as the shape parameters increase, all the values of the statistics 

decrease. The skewness is positive and the tails tend towards the right. Positive kurtosis also indicates 

the tails are heavy. 

IV. Maximum Likelihood Estimates (MLE)

In this section, we used the maximum likelihood method to estimate the parameters of the ILOEED. 

Let 1 2 3 4, , , ,..., nx x x x x be a random sample independently drawn from ILOEED family. Then, the 

log-likelihood function  , , ,L      of equation (6) is given as
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Taking the partial derivatives of equation (15) with respect to , ,  , and  , yields: 
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The MLEs of the ,  ,  , and  can be determine by solving the following non-linear equations 

(16), (17), (18), and (19) with respect to each parameter. 

V. The Simulation Studies of the ILOEED

Here, we highlighted five (5) steps on how to do a Monte Carlo simulation study as follows: 

Step 1: Clearly state the pseudo-population that can be used in generating random samples usually 

by writing code in a specific method. In this study, the pseudo-population is the quantile function of 

ILOEED given in equation (10).  

Step 2: Sample from the population of interest (depending on your objective).  

Step 3: Estimate the parameter of interest from the sample and keep it in a vector. 

Step 4: Repeat the previous steps i.e 2 and 3 n-times (n is the number of trials). 

Step 5: Create a relative frequency distribution of resulting values that is a Monte Carlo 

approximation of the distribution of samples under the conditions defined by the pseudo-population 

and the procedures of sampling. Based on the above procedure, we carry out a simulation studies as 

explained below: 

i). For known parameter values i.e ( , , , )T     , we simulated a random sample of size n from 

the ILOEED using equation (10). 

ii). We then estimated the parameters of the ILOEED by the method of maximum likelihood. iii). 

Perform 1,000 replications of steps i through ii. 

iv). For each of the four (4) parameters of the ILOEED, we compute the mean, bias, and Root mean 

squared error (RMSE) from the 1,000 parameter estimates. The statistics are given by 

1,000 1,000 1,000
2

1 1 1

1 1 1ˆ ˆ ˆ, ( ) ( ), ( ) ( )
1,000 1,000 1,000

i i i

i i i

Bias RMSE
  

             (20)
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Where ˆ ˆˆ ˆ( , , , )i      is the MLE for each iteration (n=10, 20, 30, 50, 70, 90, 150, 170). Table (2) 

reports Case I. R  software by [19] was used for the simulation. 123 was set as the seed for 

reproducibility. Three cases were considered for the simulation. Case I:(   =  0.3,   =  1,   =  0.9 

and   =  0.4), Case II:(  =  0.6,   =  0.5,   =  0.9 and   =  0.5), and Case III: ( =  2,   =  5,   =  

0.5 and   =  0.3). Tables (3) and (4) are for Case II and Case III, respectively. 

Table 2: Simulation Results for Case I 

N Estimates Bias RMSE n Estimates Bias RMSE 

10 0.4219 0.1219 0.2651 70 0.3335 0.0335 0.1254 

1.1481 0.1481 0.4772 1.0131 0.0131 0.1942 

1.0841 0.1841 0.4819 0.9849 0.0849 0.305 

0.5721 0.1721 0.5426 0.4487 0.0487 0.2497 

20 0.3735 0.0735 0.2062 90 0.3275 0.0275 0.1124 

1.0835 0.0835 0.348 1.0048 0.0048 0.1701 

1.0434 0.1434 0.4297 0.9808 0.0808 0.2909 

0.5046 0.1046 0.4076 0.4373 0.3730 0.2225 

30 0.3540 0.0540 0.1713 150 0.3204 0.0204 0.0853 

1.0533 0.0533 0.2797 0.0998 -0.0021 0.1396 

1.0039 0.1039 0.3742 0.9600 0.0600 0.2393 

0.4951 0.0951 0.3606 0.4293 0.0293 0.1763 

50 0.3378 0.0378 0.1405 170 0.3174 0.0174 0.0823 

1.0324 0.0324 0.2324 0.9969 -0.0031 0.1315 

0.9905 0.0905 0.3365 0.9549 0.0549 0.2261 

0.4550 0.0550 0.2725 0.4219 0.0219 0.1635 

Table 3: Simulation Results for Case II 

n Estimates Bias RMSE N Estimates Bias RMSE 

10 0.7954 0.1954 0.4988 70 0.6469 0.0469 0.2290 

0.6110 0.1110 0.3080 0.5111 0.0111 0.1061 

1.0250 0.1250 0.4286 0.9809 0.0809 0.2904 

0.6217 0.1217 0.5800 0.5105 0.0105 0.2252 

20 0.7301 0.1301 0.3991 90 0.6320 0.0320 0.1907 

0.5496 0.0496 0.1884 0.5084 0.0084 0.0931 

1.0232 0.1232 0.3936 0.9665 0.0665 0.2571 

0.5751 0.0751 0.4643 0.5096 0.0096 0.2034 

30 0.7013 0.1013 0.3505 150 0.6243 0.0243 0.1497 

0.5289 0.0289 0.1521 0.5032 0.0032 0.0724 

0.9932 0.0932 0.3403 0.9512 0.0512 0.2258 

0.5607 0.0607 0.3573 0.5070 0.0070 0.1680 

50 0.6588 0.0588 0.2572 170 0.6192 0.0192 0.1462 

0.5177 0.0177 0.1177 0.5028 0.0028 0.0718 

0.9869 0.0869 0.3146 0.9469 0.0469 0.2102 

0.5268 0.0268 0.2862 0.5025 0.0025 0.1513 
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´ 

´ 

Table 4: Simulation Results for Case III 

n Estimates Bias RMSE N Estimates Bias RMSE 

10 2.2708 0.2708 0.5049 70 2.1298 0.1298 0.2559 

5.4425 0.4425 1.7522 5.0473 0.0473 0.8753 

0.7649 0.2649 0.6554 0.5417 0.0417 0.1907 

0.5027 0.2027 0.4227 0.4346 0.1346 0.2376 

20 2.2121 0.2121 0.3836 90 2.1104 0.1104 0.2116 

5.2441 0.2441 1.3917 5.0473 0.0473 0.7814 

0.6323 0.1323 0.3960 0.5322 0.0322 0.1673 

0.4837 0.1837 0.3432 0.4188 0.1188 0.2100 

30 2.1779 0.1779 0.3433 150 2.0906 0.0906 0.1679 

5.2282 0.2282 1.2953 5.0259 0.0259 0.6080 

0.5810 0.0810 0.3174 0.5159 0.0159 0.1181 

0.4822 0.1822 0.3395 0.4053 0.1053 0.1776 

50 2.1505 0.1505 0.2937 170 2.0785 0.0785 0.1473 

5.1003 0.1003 1.0516 5.0160 0.0160 0.5512 

0.5593 0.0593 0.2506 0.5135 0.0135 0.1033 

0.4484 0.1484 0.2640 0.3933 0.0933 0.1581 

Tables (2), (3), and (4) presents the simulation results. As the value of the sample size (n) increases, 

the simulation results of the ILOEED show: 

• Stability of the MLES,

• The bias of the MLEs approach zero, and

• Decrease in the RMSEs of the MLEs.

VI. Applications of the ILOEED to Industry Datasets

Odd Exponentiated Inverse Lomax Distribution (ILOEED) was fitted to three datasets. This 

includes datasets with increasing and bathtub hazard shapes. The Goodness-of-fit criteria used are 

the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). A  statistical 

metric called the Akaike Information Criterion (AIC) by [20] was employed in the selection of 

models. AIC  offers a quantitative method for weighing a model’s complexity concerning it’s 

goodness of fit, intending to choose the model that most accurately describes the data while preventing 

overfitting. Bayesian Information Criterion (BIC), a statistical metric for model selection, was 

developed by [21]. Similar to AIC, BIC takes a Bayesian approach to balancing model fit and 

complexity. Moreover, three Goodness-of-fir statistics were used. These are the Kolmogorov-

Smirnov (K-s), Anderson-Darling (A-D), and Cramer-Von Mises (C-vM). By comparing the 

cumulative distribution functions (PDFs) of two datasets, the Kolmogorov-Smirnov test determines 

whether they have the same continuous distribution. It is a widely applicable test that helps to 

compare theoretical and empirical distributions and is especially helpful when parametric 

assumptions are not met. The A-D test is useful for determining fit, especially in situations with 

extreme values or interesting tail behavior. It does this by calculating the goodness-of-fit between the 

sample’s empirical distribution function and the specified distribution’s cumulative distribution 

function. This test is sensitive to deviations in the distribution’s tails. The C-vM test, named for 
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Carl von Mises and Harald Cramer, measures the difference between the sample’s empirical 

distribution function and the specified distribution’s cumulative distribution function to determine 

whether the sample fits the distribution. This test is favored in some circumstances because it is easy 

to compute and provides a good measure of goodness-of-fit. Finally, The negative log-likelihood (-

ll), which is frequently minimized in maximum likelihood estimation, measures how well a model 

fits observed data by esti-mating the probability of observing the data given the model parameters. It 

is favored for its stability and ease of use in parameter estimation and is essential to many different 

disciplines, including biology, econometrics, and machine learning. Fitdistrplus package by [22] in 

R  was used in fitting the three datasets in this section. 

I. Application to the Breaking Stress of Carbon Fibres Dataset

These data as reported by the [23], represent the breaking stress of carbon fibres of 50mm length in 

Gpa. The data is symmetry and has an increasing hazard shape. The dataset is as follows: 

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 

2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 

2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 

3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90. 

ILOEED was fitted alongside the Inverse Exponentiated Odd Lomax Exponential Distribution 

(IEOLED) by [4], Alpa Power Exponential Distribution (APED) by [24], as well as the 

Exponential Distribution (ED). 

Table 5: MLEs and Goodness-of-fit Criteria for the fitted ILOEED and other comparators for the comparators 

for the Breaking Strengths of Carbon Fibres Dataset 

Distributions Estimates Standard Error -ll AIC BIC 

ILOEED  , , ,    0.6586 1.3019 84.6124 177.2247 185.9833 

3.4545 5.7285 

0.4797 0.3904 

1047.5537 4727.8614 

IEOLED  , , ,    0.0854 0.0274 86.1725 180.3251 189.1037 

3.369 0.2963 

1.03E+07 1.67E+04 

1.69E+12 2.37E+04 

APED  ,  2.99E+05 1.19E+04 92.3964 188.7927 193.172 

1.10E+00 5.46E-02 

ED   3.63E-01 4.46E-02 132.9944 267.9887 270.1784 

Table (5) presents the MLEs, log-likelihoods, AICs, and BICs of the ILOEED and others. The Table 

indicates that ILOEED is the best with minimum values of AIC and BIC. Furthermore, Table (6) 

indicated that the ILOEED fitted the data well with small values of the Goodness-of-fit statistics. 

These are the K-S, C-vM, and A-D. 
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Table 6: The Goodness-of-fit statistics of the ILOEED and others for the Breaking Strengths of Carbon 

Fibres Dataset 

Distributions K-S C-vM A-D

ILOEED 0.0565 0.033 0.2298 

IEOLED 0.085 0.0884 0.5055 

APED 0.1353 0.2826 1.6089 

ED 0.3581 2.871 14.0343 

Figure 3: The TTT-Plot for the Carbon Fibre Dataset 

The Total Time on Test (TTT) plot for the Carbon Fibre Dataset indicates an increasing hazard 

rate (concave shape), as seen in Figure (3). 

Figure 4: The Fitted PDFs and CDFs of the ILOEED and others for the Carbon Fibre Dataset 
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Figure 5: The Fitted PDFs and CDFs of the ILOEED and others for the Carbon Fibre Dataset 

Figures (4) and (5) indicates that the Carbon Fibre data is symmetrical. ILOEED fitted the data 

better compared with the other comparators. 

II. Application to the Strengths Dataset

The following dataset reported by [25], is the Strengths reading in GPa of individual carbon fibres 

that were put to stress at 20mm gauges and the values are: 

1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 

1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821,1.848, 1.880, 1.954, 

2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585. 

Table 7: MLEs and Goodness-of-fit Criteria for the fitted ILOEED and other comparators for the comparators 

for the Strengths Dataset 

Distributions Estimates Standard Error -ll AIC BIC 

ILOEED  , , ,    0.7639 1.2163 86.0082 180.0163 188.775 

3.1315 4.4416 

0.4570 0.3044 

1943.9353 5787.6972 

IEOLED  , , ,    0.1017 0.0311 88.2736 184.5472 193.3058 

3.3417 0.2939 

786928.5 12792.55 

6.4E+10 1.79E+04 

APED  ,  59738.7189 17013.25 95.0118 194.0236 198.4029 

1.0525 0.0556 

ED   0.5642 0.0881 96.0231 195.0986 197.0178 

Table (7) presents the MLEs, log-likelihoods, AICs, and BICs of the ILOEED and others. The 
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Table indicates that ILOEED is the best with minimum values of AIC and BIC. Furthermore, 

Table (8) indicated that the ILOEED fitted the data well with small values of the Goodness-of-fit 

statistics.  

Table 8: The Goodness-of-fit statistics of the ILOEED and others for the Strengths Dataset 

Distributions K-S C-vM A-D

ILOEED 0.0581 0.046 0.2382 

IEOLED 0.0876 0.0949 0.6043 

APED 0.1461 0.3327 1.9048 

ED 0.3447 2.7639 13.5301 

Figure 6: The TTT-Plot for the Strengths Dataset 

The Total Time on Test (TTT) plot for the Strengths Dataset indicates an increasing hazard rate 

(concave shape), as seen in Figure (6). 

Figure 7: The Fitted CDFs of the ILOEED and others for the Strengths Dataset 
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Figure 8: The Fitted PDFs of the ILOEED and others for the Strengths Dataset 

Figures (7) and (8) indicates that the Strengths data is symmetry. ILOEED fitted the data well 

compared with the other comparators. 

III. Application to the Times to Failure Dataset

This dataset has a Bathtub-shape hazard rate as reported by [26]. The data is about the Times to 

Failure of 50 Devices that were on life test at time 0. The dataset is as follows: 

0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 1, 1, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 

67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. 

Table 9: MLEs and Goodness-of-fit Criteria for the fitted ILOEED and other comparators for the comparators 

for the Times to Failure Dataset 

Distributions Estimates Standard Error -ll AIC BIC 

ILOEED  , , ,    0.1025 0.0478 234.3902 476.7803 484.5076 

0.3363 0.2143 

1.4327 1.7004 

2.3317 4.4526 

IEOLED  , , ,    0.1104 0.2196 243.9899 495.9799 503.7072 

0.8589 0.1104 

2968.220 5982.6273 

490198 1.4053 

APED  ,  1.9690 1.4053 244.2936 492.5873 496.4509 

0.0259 0.0048 

ED   0.0224 0.0031 244.7001 491.4002 493.3321 

Table (9) presents the MLEs, log-likelihoods, AICs, and BICs of the ILOEED and others. The Table 

indicates that ILOEED is the best with minimum values of AIC and BIC. Furthermore, Table (10) 

indicated that the ILOEED fitted the data well with small values of the Goodness-of-fit statistics.  
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Table 10: The Goodness-of-fit statistics of the ILOEED and others for the tomes to Failure 

Dataset 

Distributions K-S C-vM A-D

ILOEED 0.1503 0.2817 1.9053 

IEOLED 0.2012 0.5934 3.8944 

APED 0.1799 0.5331 4.7647 

ED 0.1904 0.5727 4.5609 

Figure 9: The TTT-Plot for the Times to Failures Dataset 

The Total Time on Test (TTT) plot for the Fatigue Fracture Dataset indicates a decreasing and 

then increasing hazard rate (Bath-tub shape), as seen in Figure (9). 

Figure 11: The Fitted PDFs of the ILOEED and others for the Times to Failure Dataset 
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Figure 11: The Fitted CDFs of the ILOEED and others for the Times to Failure Dataset 

Figures (10) and (11) indicates that the Times to Failure data is skewed to the right. ILOEED 

fitted the data well compared with the other comparators. 

VII. Conclusion
In this research, we suggest and investigate a novel probability distribution that is a combination of 

the Inverse Lomax and exponential distributions, combining the properties of the two. This merger is 

required if the data in issue combines both the Inverse Lomax and the exponential distributions’ 

features described in Section 1. We looked into some of its statistical properties, such as moments, 

the moment generating function, the characteristic function, and the quantile function. The parameters 

were determined using the maximum likelihood technique. According to the simulation studies, as 

the sample size grows, the estimations of the Biases and RMSEs approach zero, indicating that the 

estimates are more accurate. Three cases of parameter combination were considered for the simulation 

studies. The estimates were stable. Exemplifications of real-world datasets demonstrate the 

ILOEED’s significance. For the three datasets used, the proposed distribution is the best with 

minimum values of the Goodness-of-fit criteria and Goodness-of-fit statistics. This means ILOEED 

can be used to fit datasets with increasing and bath-tube hazard rates. Based on these facts, we hope 

that the ILOEED will be preferred above the other models considered in this study. Only datasets 

from the industry were considered to fit the proposed distribution. We suggest that other areas should 

be explored in terms of the application of the proposed distribution. Also, other methods of estimation 

can be considered in further studies. 
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