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Abstract

The study addresses the challenges of estimating the population mean in two-stage cluster
sampling, where there is an equal chance of random non-response at the first-stage unit. The
researchers propose some regression-type imputation schemes and regression-type estimators that
incorporate measurement error parameters for both the study and supplementary variables. The
properties of the proposed estimators were derived and numerically compared using a simulated
sample population. The proposed estimators outperformed the existing estimators consider in the
study. The researchers conclude that their proposed methodology can be practically applied, using
the actual responses of the respondents and including the measurement error parameters to estimate
the finite population mean.

Keywords: First Stage Unit,Regression-type imputation scheme,Regression-type
estimators,Random Non-Response

I. Introduction

In field surveys frequently indicate that it is not always possible to obtain a complete list of
everyone who is a member of the research population, indicating that selecting a simple random
sample is difficult. Cluster sampling can be used to collect data in this scenario because it is
usually less expensive and does not require a list of all observations in the population [1].

Clusters are produced in cluster sampling by dividing the survey area into smaller sub-areas. Then
using simple random sampling, some of these areas are chosen, and all elements of the chosen
clusters are counted.

Assuming we are interested in the academic performance of all 400 level students in a given
city. Because there is no sampling frame for such units, obtaining a complete list of everyone in the
research population is extremely difficult. However, a list of university each student attends
should be available. In these cases it is recommended to select a simple random sample of 400 level
students from each university. The technique used in this study is two-stage cluster sampling. In
cluster sampling, better precision is achieved by first selecting a cluster and then enumerating a
specific number of elements from each cluster. Two-stage cluster sampling refers to the process of
first picking clusters, which are the sampling units in the first stage, and then selecting a
predetermined number of elements from each selected cluster, which are the sampling units in the
second stage. The clusters that constitute the sampling units in the first stage are referred to as First
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Stage Units (FSUs) or Primary Stage Units. The elements inside these clusters that form the

sampling units in the second stage are referred to as Second Stage Units (SSUs).The key advantage
of this two-stage cluster sampling approach is that it can provide better precision in the estimates
compared to simpler random sampling methods.

In a sample survey, it is usually assumed that all information is obtained from the study
population's unit and that the observed variables are obtained without error. Such an assumption
is not always met because researchers face the issues of non-response and measurement error.
Most human population surveys face the problem of non-response, where some units of the study
population fail to provide the requested information for various reasons, such as refusal, absence,
lack of interest, or adherence to ethical standards. This non-response causes issues during data
collection, calculation, and estimation. The problem of non-response in estimating the finite
population mean was first address by [2]. The typical approach is to return to the field and collect
the missing values through a call-back method, but this requires additional resources like time,
people, and money. Three concepts related to non-response: Missing at Random (MAR), Observed
at Random (OAR), and Parameterized Distribution (PD), were discussed by [3]. According to [3],
data are MAR when the probability of missing data does not depend on the value of the
unobserved data. Missing completely at random (MCAR) and missing at random (MAR) was
distinguished by [4]. Various imputation schemes have been used over time to address the
problem of estimating unknown parameters in the presence of missing values in sample surveys.
Imputation involves filling in missing values with specific substitutes so that standard data
analysis methods can be applied. The regression imputation method is used to replace missing
value with a linear function. The approach also predicts missing values using regression models
using the other variables, and the fitted values are entered into the model. It is assumed that the
value of one variable varies linearly with other variables. Several researchers, including [5-14], and
many others have proposed imputation methods to handle missing data. However, drawing
simple random samples is impractical without a full list of every unit in the population. As a
result, the imputation schemes and their estimators suggested by the previous literature are not
applicable when the complete list of all population units is not available (as is the case in non-
response). Cluster sampling is a common sampling method when there is no complete list of all
population units in a survey. Hence the adoption of two-stage cluster sampling method used in
this study.

In addition to non-response, survey researchers face the issue of measurement error (ME).
Several survey researchers work under the assumption that the information they acquire from
respondents is correct, and some of the estimator attributes (biases and mean square errors) are
derived from this assumption. The assumption that the observed data accurately represents the
true values is not always correct, as researchers often face the problem of measurement error.
Measurement error refers to the discrepancy between the observed values gathered from
respondents and the real, underlying values. In other words, the observed data may not perfectly
reflect the true information, and there is an element of error or inaccuracy introduced during the
data collection process. This measurement error can be problematic and needs to be accounted for
in the analysis, as relying solely on the observed data may lead to biased or inaccurate results.
Let’s assume we want to collect information on the cumulative grade point average (CGPA) of
some students; some may report a CGPA that is lower or higher than their real CGPA. As a result,
the observed value remains erroneous, because the students did not provide their real CGPA.
When the measurement error is insignificant, the inferences drawn on the observed value may be
correct; nevertheless, when the measurement is not insignificantly small, the inferences taken on
the observed value may have some unanticipated and unpleasant implications.

Several researchers have examined the issue of measurement error separately in their work,
including [15-24].
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Typically, non-response and ME are investigated separately using known supplementary
variables. In reality, survey sampling results to simultaneous measurement errors and non-
response. However, in this research, we will study both non-response and measurement errors.

II. Methods
2. Construction of sample structure

Suppose U is a finite population be divided into N FSU represented by (Ul,Uz,---U N) in such a
way that the quantity of SSU in every first stage unit is M . Assume y,, x,, and x,, be the actual

values for the character under studyY, first supplementary variable X, and second

X be the observed

supplementary variable X,, respectively. Also, assume thaty, . , ¥, X,

values for Y ,X,, X, on the j”’ second stage units ( j=1,2,.--M )in the 7" first stage units

(1’ =1,2,---N ) LetU. Vl./. and W,-,- be the ME parameters associated with the study variable, first

/4
supplementary variable, and second supplementary variable respectively. The MEs associated
with these variables are thus defined as:
The ME associated with the character under study be

— 2
U=V~ UIJ'DN(O'GU) @
The ME associated with the first supplementary variable be
— 2
Vi/’ _Xlij_Xlij(e)'I/ijD N(O'O—V) @)

The ME associated with the second supplementary variable be
W, =X, =X, W, N(0,07 ) 3)

i 2ie)’ Vi
However, in this research work, we take into account a scenario in which the information on
the first supplementary variable X ,is not known at the level of first stage unit. Hence, information

on the first supplementary variable x, can be gathered using the following strategy:
STRATEGY: At the level of first stage units, information on the first supplementary variable x, is

gathered, and a sample of the first stage unit is chosen using the SRSWOR procedure.
Moreover, the above-mentioned strategy will be discussed under clusters with equal chance of
random non-response which is detailed below.

2.1. Clusters with equal chance of random non-response
2.1.1. Strategy: When supplementary information is gathered at Level of First
Stage Unit

We take into account a situation where the population mean X, _of the first supplementary variable
x, is unknown at the level of first stage unit, so we used a two-phase or double sampling strategy
to furnish the estimate. However, information on the second supplementary variable x,is known
for every unit of the population. In order to estimate the population mean ofY, a first phase
sample S”,(Sn, cU ) of size n'first stage unit is taken out of N FSU from the population using
SRSWOR method followed by a second phase sample §, of size n FSU (11 < n') taken based on the

subsequent two cases by using the SRSWOR technique to observe the character under study Y .
Case A: To create a§|, a subsample of S (5‘1 c Sn.) is taken.

Case B: In this case, S| is drawn independently of S ..

Furthermore, in order to estimate the population mean ofY, a second stage sample S, is
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obtained by selecting a portion of m second stage unit from M second stage unit for every one of
the n chosen first stage unitin §, utilizing SRSWOR scheme.

At the second stage, it is assumed that the study variable y and the first supplementary variable
x, have random failure to respond, but the sampled unit has full response for the second
supplementary variable x, . For such random non-response conditions, we consider the following

probability model shown in section (2.1.1.1).
2.1.1.1. Probability of Non-Response Model

Since, we assume the occurrence of random non-response conditions on the study variable y and
the first supplementary variable x, from the second stage sample; therefore, we are going to

investigate random non-response conditions from the second stage sampleS,. Let

r{r=0,1,~--,(m—2)} represents the number of second stage sampling units that did not respond.

Accordingly, we write 4 and A4’ to represent the collection of respondent unit and non-respondent
unit, respectively. The observations of the corresponding variables in which random non-response
occurs could be obtained from the rest of the (m—r) unit of each of the n first stage unit of the

second stage sample (SSS).
We further suppose that if p represents the probability of random failure to respond among

(m—Z) possible failure to respond cases, and then 7 follows the probability distribution shown in
equation (4):

m—r (.

P(r)= C.p'q"""; I‘=0,1,-~<m—2) (4)

mq+2p
For example, see the work of [25-27], where g=1-pand “"?C represent the overall possible
methods to provide r failure to respond from (m—Z) total non-response.

Henceforth, the following notations will be used:

Y =—ZZY ., Population average of the study variable y .

11/1

ZZX , Population average of the first supplementary variable x, .

11/1

_ N M
X, = N ZZX , Population average of the second supplementary variable x,
j=1

i=1

Y,(e) Z Y ey » Sample average of the character under study on "FSUInS,.

) Lz Y ey » Sample mean of y based on the respondent region of "FSUInS,.
j=1

yi(m—r)(e) = m—r

1 m
X e = ;le Licey » Sample average of the first supplementary variable on i"FSUInS,.

: 1 &
Z X, (e, - Sample mean of x, based on the respondent region of "FSUInS,.

=

Xll(m r)(e)

%

1& " .
X :EZXZI‘/(«?) , Sample average of x,on /“FSUinS,.
j=1

ok

T rimre :%;7:@ , Sample average of the n FSU of the character under study.
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ok

Xln(m—r)(e)

=lz )?Il.(e) , Sample average of the n FSU of the first variable.
i

*ok

lZ)?;.(E) , Sample average of the n FSU of the second supplementary variable.

X2nm(e) = n

C, = )?—XZ , Coefficient of variation of the second supplementary variable.

X,

2.

S, , Standard deviation of the second supplementary variable.

B, ( X, ) , Population coefficient of skewness of the second supplementary variable.

B, ( X, ) , Population coefficient of skewness of the second supplementary variable.

2.1.1.2 Proposed Imputation Schemes and Estimators

We assumed that the second supplementary variable was generally accessible all through the
population U/ . Inspired by the imputation schemes given by [28], we propose the following
regression-type imputation schemes based on responding and non-responding units of the second
stage sample S, to estimate population parameter under study ¥ as:

Y icey if jedA
—_— ) +b s __
¥y =4 Lt o ZX”M@RA X, +B,) if jed ;(=12..m (5)
A Xan(e) +Bx e " '

where A and B _are available functions of supplementary variable like coefficient of skewness,

kurtosis, variation, standard deviation, bﬂZ = ZI: Yo Z} Xoice) ,b,(l,(z(e)z ZA: Xiice) g Xyiice) *
JeA, JeA, JeA, JeA.

Remark 1: Note that A #B_and 4 #0

Under this approach, we derived the sample means of y on the ;/”first stage units in S, denoted

by }7;(9) as

Ty = Zn {ZKN Zﬁf} (6)
jeA /eA

r | _ r yi(m—r)(e)-l_b X, (€) (yﬂ'\ an(e))
Fiey = Zy,,@ [ _;]}’;(m_,)(e) +; ) Xy 5 (AXZX +B, ) (7)

2nm(e)
In §,, the mean of n first stage unit of y is now:

r y11(1)7—r)(e)-|_byx (e) ()?ZIT-I?Zmn(e)) =
n m- r (e) Zyl(e) [1 - m]yn(m—r)(e) +; A X +5B (AXZ XZ!T + BXZ ) (8)

2mn(e)

Likewise, for each unit in the second stage
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Koy’ je4,
1‘_,' —r e+bxxe X Xnme > ;
Xlij(e) — 1i(m-r)(e) ( )( 2nm( ))(AX X2m+BX )’ ]EA: ; (1 =1, 2,___’11) (9)
A Xan(e) + sz : :

Under this approach, we derived the sample means of x,, on the /”first stage units in S, denoted

by X,
1(9)
— 1& 1
X11'(E) :E;X“j( ) ml:/zA 11/ +/§ X11/ } (10)
r|_ r )71,.(,,,_,)(6.)4'17,(1,(2(6) ()?2"_)?2"'"(@))/ X
11(9) ZXll](E) [ _;JXli(m—r)(e) +E AX )?an(e) N ] \AXZXZ“ +Bx2 ) (11)

In §,, the mean of n first stage unit of Xl(e) is now:

-X.

r |— r Xln(m—r)(e)+b x,%,(€) (1‘_,2 _2mn(e)){ >
(e) z 11(9) [ __]X 1n(m-r)(e) + A Xz.. +BX1) (12)

m A X, +B e
mn(e) X,

Hence the proposed estimator denoted by 7 under the above proposed imputation scheme is

obtained as:

* ke

T = yn(m—r)(e)

+ b(e) ()?111'M(e) _Xln(m—r)(e)) (13)
Where b(*e) is a suitable constant chosen to minimize the mean square error of the proposed

estimator 7.
2.1.1.3 Properties of the Proposed Estimators

Since 7" is regression-type estimator, it is biased for ¥ the bias and mean square of 7 up to the first

order of approximations are derived under large sample approximations (ignoring f.p.c) using the
following assumptions:

P ot =T (18 ) T = B (18 ) B =T (10 ) Fong =, (148

Such thatE(Al.):Oand |A,-| <1 forall /1=0,1,2,3.

Express (r* ) in terms of errors AO(E) , Al(e) , AZ(E) and AS(E) .

T, =f {1+A ofe) —é(g +1) ) é(,g; +9, +1)A§(e) _(‘9)( +1)Ao(e)A3(f) * (14)
{( ) [1 +A ;(9}( + 1)A3(E) +i(9j +9 + 1)A§(e) —é(&x +1)A1(6)A3(6)H
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-7 = ’E{Ao(e) g G G LA O 1)A°(9)A3(5')}+

. r "o o (1)
b(E)Xm{AZ(e) Ayt E(gx + 1)A3(€) _E(‘g" +9, + 1)A3(e) n ;(,9)( n 1)A1(E)A3(e)
A X,
Where, 5=\ 0% 5
+
X, 2 X,

We have separately derived the bias and mean square error of the estimator 7~ for Cases A
and B of the two-phase sampling structure defined in Section 2, and these are presented below.
Case A: To create a§,, a subsample of S , (51 c Sn,)is taken.

To obtain the expressions for the bias and mean square error in this situation, we will consider the
following expected values of the sample statistics.

i SPes? 1 5P+SE SISt 1 S1+S]
E(A ) — u +— — E(A ) — 4= 3 L ,
() q’nN le n(pm,r le () ¢nN /‘,12JJ H¢m,1 /lel
, St+8? , SIS 1 SL+S)
E(A ) Py —= ’E(ASE ):(P,,N = R 2 =
) X5 ) X, n Xzi
S+ 1 _yx +S S;X +S
E(A e A e )_(011 v _¢mr == E(A A ) ¢11 - 4
) le) g Yme n YlejJ (e)2te) Y Yqum
S +S., 1 st+"UW S§*+S8? ,
E(Ay J=0, 2, (8,8, J=0,0 ~E(a3, )
(e) 7 3(e) Y X, n"™ oYX, 1(e) " 2e) 4 X2 2(e)

5* 1 = * *
E(A, A S Mg St T UB(AA =, e
( e ()) % X a" X x ( 3(e)) P

10 2 1"~ 2 XlﬂﬂXzT\
For simplicity we let

(16)

The following notations and expectation will be use under this strategy, when measurement error
is not taking into account.

5*2 1 52 P 5?2 s

o1 S N
E(Aé) ¢nN YZ ;(/’m,y};, E(Az) (pn,N/‘_/—lzm-l—;q)m’rA_/—lzT‘, E(A;):wnw/‘_/_lzﬂﬁ
5*2 1 52 S;Xl 1 _yxl ~ 5;{1
H(8) o T v oz B oo R B0

S 1 . S,
E(A0A3)=(pn,/v )7‘)/;72 +;¢m.M )7;72 ! E(AlAZ)_¢n',N /‘721 =E(A§)'

= 2m M~ 20 1M
s 1 S s
E(A A nh 4 MR E(AA)) =@, =12
( 1 3) ¢nN XUJXM mMX X ( 2 3) (Dn,N MUXZ\L

Similarly, for simplicity we let

§O=E(A§) ¢ =E(A )42 E(a2)=E AlAz),§3=E(A§), £, =E(An,),
§S:E(AOA )g E( . 3), ¢ =E(AA,), ¢, =F AA) (17)
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T T e L L
i ZW;Y:H ymzﬁ;y” 1‘”‘=W,-Z:1: v 1”_MIZ:1: Y 2”=W,Z:1:X2” “ ZM/Z::XM,
1 & = 1 1 l
S =W h) 5= 52085, =gl )
2 1 Y= v ’ c2 1 2 2 1 N ’
5,(1 =—_1;(X11 _Xm) ’le =ﬁ; x,; " xy, _—1;( 1j 1”)
2 1 &, - ’ , 1& . 2 1 v
Sty R ) SE =St 8L = g 2y~ K
1 &, ., _ _ 1 & 1 &
S, z—_Z(ym_ (&, - X, S = 25y S z—_z(yu '3‘)(X1'/ 1")
1= N3 1/:1

c_ 1 e Sve pae 1 1 5 e X
lexz :m;(XliL_Xll)(XZIL_XZl)’ lexz :ﬁ;‘gxlle’sxlxzi = M—l;(X“/ _Xm)(le'j _qu)

1 & _ z 1 1 _
Suz :m;(l]u_yl) , SUZ __;Sj 55 —M—1 /:1( /A m)
1 oa_ 1 1 & _ 2
0 s )
1 &, _ 1 1 & .
S = 2 W) 5= S S =S )
i=1 =1 /A

1 N _ _ — — 1 N 1 M = YV 4
Syw:—_l,zﬂ:(Vu_ uu)(wu_wu) S :W,Z:;‘ S, = _1;('/0_ IJ)(WU_ 'U)
1 N _ 1 N 1 M _ _ N 1 N 1 M _
D AR ﬁ;{m;(n —yf)z}' St = w270 S = {;—_@(% o )2}
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11 N B N A S
L B v e BV mqg+2p M
Taking expectation on both sides of (15) and applying the results of (16) we obtain the bias of 7~ as:
~ r 2 v v v *
B<T1 ), - ;|:(L9X + ‘9)( + 1)(’% - b(e)X1m)§3(e) _(‘9)( + 1)(YT _b(e)Xlrr)(ge(e) - g7(e) ):l (18)

The mean square error (MSE) of 7 is obtained by taking expectation and square on both sides of
(15) and applying the results of (16)

2
MSE(), =P+ {90 1) o2 (00 1)
_ 2
Zb* YXl %(SX +1)2 6:3(9) + é"t(e) 745(9) 7;(‘9)( + 1)(4’6(9) +§7(e) 7;8(9) ):| +
2
b(e)Xf |:§1(E) 74?2(‘9) +#(‘9X + 1)2 éVs(e) 72%(‘9)( + 1)(57(9) 74’8@) )}

(19)

To obtain expression for that minimize MSE (r*)l , differentiate (19) partially with respect to b(*e)

and equate the result to zero.

Z(;;z(‘gx + 1)2 '/;3(5-) + 4’4(5-) - §5(e) - i(gx + 1)(‘:6(5-) + é:’7(6') - 418(6') )j (20)

(e)opt — 2

)?1]{4’1(9) Coer T . (‘9 +1) Cacer ~ r(‘gx+1)(§7(e>_§8<e))

Substituting the value of b* () 1N (19), gives the minimum value of MSE (r* )/ as:

MSEmm< ) YZ 4'0@) r_ , +1) (;3() r(‘9x+1)§6(e) -

(21)
opr(e)YXT 2 '9x+ Caer T €aer ~ sy (‘9X+1)(§6(e)+ 7(e>_§8<e))}+

m
bo;t(e)/\,l2 |: 1e) Z(e) ('9 + 1) §3(e) 72;<19X + 1)(4’7(9) 74/8(6‘) ):|

The mean square error without measurement error is given by:
= r’ 2 r
MSE, (r ), =72 {go +—(9, +1) ¢, —2;(9)( +1)¢, |-
oo | TP 2 r 22
28, VX, m—(9 +1) ¢, +¢, —gs—;(sxn)(gﬁ;—gg)} (22)

2

V2 r
i {5 B anks ‘2;(%“)(4—@)}

where,

rk 2 r
o y{mz(sx +1) G+ =G (S +1)(6+ ¢ ¢ )J 23

- r? 2 r
Xm (41 _é’z + m? (‘9)( +1) 413 _2;(‘9)( +1)(§7 _é/s )j

Case B: In this case, S, is drawn independently of S ..

E(AO(E)AZ(E)) = E(Al(e)Az(e) ) = E(Az(e)Aa(E)) =0, and other expectation are the same as stated in Case

A.

Following the procedure used in Case A, we have obtained the minimum mean square error of 7~
as:
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. —, r? 2 r
MSE, .., (T ),, =V S (% +1) &, 72;(‘9)( +1) <o |~

L 2 (24)
2b,,. Y X, ;2 (‘9X + 1)2 S H e _%(‘9){ + 1)(§6<e) e )} *
_ 2
Doy X . {gue) T &2 +%(‘9x + 1)2 ) _2%(‘9)( + 1)47(.9)
Where,
—( r? 2 r
4 (z(‘gx 1) oy + = (S 1)(46@) + S )j
m - (25)

2

opt(e) =
r 2 r
X.. (gue) o0 +E(‘9X +1) Cxo) _2;<‘9X +1)§7(9)j

The mean square error without measurement error is given by:
= r? 2 r
ME, (1), =T 6+ 0,01 6y -2, +1)c, |-
¥ = = r2 2 r 26
28, VX, | (8 +1) €+ &, ——(8, +1 (§6+§7)}r (26)
2

Where,
f[rzz(‘gx +1)2 g3t+e, _L<‘9X +1)(§6 +&, )J
= ; - @7
%o Do 1) 6 2 (s, )6
m m

2.1.1.4 Efficiency comparison

To evaluate the efficiency of the proposed estimators, we compare them with the usual mean per
unit estimator without supplementary information and with the [29] estimators of the population
mean in a two-stage cluster sampling scheme, using the strategy discussed in Section 2.1.1.

. . * . . . .
The mean per unit estimator 7, and its variance in the presence of measurement error are given

by:

*

TO :ynm(e) (28)
v(c)=p,, (52452, )+ 52 +82 29
(TO ) - (pn,N b + b(l/) +;¢m,M w + W(U) ( )
The mean per unit estimator 7, and its variance in the absence of measurement error are given by:
z-0 = »'[711111 (30)
1
V(5)= 0,055+ 0. (1)

The following estimators of population and their mean square error under case A and case B in the
absence of measurement error were proposed by [29].

TMSB = ‘?Z(m—r)(e) + B()?ln'M(e) - A_,1*11(m—r)(e)) (32)
The MSE (r sw ) , for both Case A and Case B are given by:

Case A
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MSEmin (TMSB) (40 +— 43 §6j_230ptf/\_,1~ (%53 _%gs +%§3 _%47 _gs +§4J+

3o (1 33
Bothl ( é/ +§ §2+§8 4/7] ( )
Where,
=(1 1 1 1
Y"7377 6 T 5687567 5+§4j
B, = [4§ 200 ot T2 (34)
i(ig+g—g+g—;J
Case B
72 1 1 1 1
MSE‘“‘“(TMSE)]/ =Y g +_§ _4, ZBwptYX 4§ _Ege _E§7+§4 +
Blzopt 1( é/ +é’ +é’ é’j (35)
Where,
=(1 1 1
P(ia-3-16+a)
(36)

opt -

i{ig+a+g—;]

To compare it with our proposed estimator in the presence of measurement, we include the
contribution of measurement error parameters in the [29] estimators.

The mean square error, accounting for measurement error, for both Case A and Case B, is as
follows:
Case A

— 1 1
MSE,  \Tyss | = Y-»Z §0(e) +_é,3(e) - ge(e) Zglapt(e)YX §3(e) -
! 4

Bopt(e) 1- [ 43(9) +§1(e) é/Z(e) +§8(e) 47(9)

1 1 1

E‘:e(e) + Eé/S(e) - 56:7@) - 4,5(9) + 4,4(5) J +

(37)
where,
—(1 1 1 1
Y” [4;3(6) _Egﬁ(e) +E§8(e) _E§7(E) _§5(e) +§4(e)j
Borope = (1 (38)
X1-» (4 gs(e) + gl(e) - 42(9) + gs(e) - §7(e)j
Case B
= 1 == (1 1 1
MSE.,, ( Cuss )// =Y’ [§0(e) +_§3(e) - é’é(e)j—ZBupt(e)YX - (Z@(e) _Egé(e) _Egm) + Q(e)jJr
1
Bozpt(e)Xlz 4§3(e) + 1(e) _§2(e) _4,7(5-)
(39)
Where,
=(1 1 1
Y. [ng) _54’5(9) _557(9) + 4’4<L=)J (40)

(e)opt =

= 1
X1 (Z Sty TS0y T S2e) TS0 j
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To demonstrate the performance of our suggested estimators, we compared their percentage

relative efficiency (PRE) to the traditional mean per unit estimator, which is based on the normal
two-stage design technique without supplementary information, as well as [29] estimators. The
empirical study was carried out employing simulated population data sets.

The PRE of an estimator 7 relative to the natural mean per unit estimator 7, is defined as:

(=)

HRE= MSE,, (")

x100 (41)

I11. Results

3.1. Study Using Artificially Generated Population

An important aspect of simulation is that one builds a simulation model to replicate the actual
system. Simulation allows comparison of analytical techniques and helps in concluding whether a
newly developed technique is better than the existing ones. Motivated by [6], [30], and [29], who
used artificial population generation techniques.

3.1.1. Simulation Results

This simulation exercise consists of the following steps:
Six independent variables (normally distributed) are simulated (a total of N times M)

2. The simulated data is then split into M distinct clusters each of size N . The variables Y,
X, and X, are constructed following the relationship defined in the work of [29] only that
here, the error component is added.

3. A random sample of m (or m' thenm) clusters is selected out of the M total clusters.
This is called the first sample units (fsu).

4. A random sample of 1 (or n' then nn) units are sampled from each of m selected clusters.
This is called the second sample units (ssu).

5. All the different estimators of the Mean Square Error are calculated based on the observed
data and compared.

6. Steps 3 to 5 are repeated a hundred times for each specific case and the estimates of Mean

Square Error are all saved in arrays after which the means are calculated and compared.
3.2. Numerical Illustration using Artificial Population

Population 1
Y=u, +o, (pxly xpop[,2J+ ll—pjly xpop[,l})+U, X, =u, +o, xpop[,2]+V

X,=n, +o, (pxlx2 ><pop[,2]+‘[1—pf(lx2 pop[,l])H/V,
UnnN(03),yon(08), win(012), p, =07, p, =06, o, =5, o} =12, o, =9, u, =20,
u, =50, u, =40, N=10, M =10, n'=9, n=5, m=7.
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Table 1: Percentage Relative Efficiency (PRE) of Estimators in the Presence of Measurement Error, under Case A.

Estimators Auxiliary parameter P=0.05 P=0.1 P=0.15 P=0.2
q=0.95 q=0.9 7=0.85 7=0.8

7, Not applicable 100.00 100.00 100.00 100.00
Toon Not applicable 199.88 192.13 184.52 177.02
7, A =1B = 201.78 194.51 186.67 178.33
T, A =1B =B(x,) 201.78 19451 186.66 178.32
- sz = 1,/5’){2 =B, (Xz) 201.77 194.5 186.67 178.34
T, A =1B_=C, 201.78 194.51 186.67 178.33
T, A =1B =5, 201.76 194.5 186.69 178.41
T, A, :Bl(XZ),sz = Bz(Xz) 201.79 194.52 186.68 178.33
7, 4, =B, (Xz ),BX2 =C, 201.78 194.51 186.67 178.33
7, A =B (XZ )'BXZ =S, 201.68 194.09 186.05 177.58
T, A :Bz(Xz)'BXZ =B, (Xz) 201.78 194.51 186.66 178.32
T, A =B, (XZ ),BX2 =C, 201.78 194.51 186.67 178.33
T, A =B, (XZ ),/};’X2 =S, 201.77  194.51 186.69 178.38
T, A =C, B =B (X2> 201.77 19448 186.62 178.24
T, A =C, B =B, (X2> 201.70 194.44 186.72 178.59
T, A =C, B =5, 201.60 194.40 186.88 179.10
T, A =S,,B =B (Xz) 201.78 194.51 186.67 178.33
7, A =S,.,B =B, (Xz) 201.78 194.51 186.67 178.33
T, A =58 =C, 201.78 194.51 186.67 178.33

N

749



I. Abubakar, A. Yahaya, J. Garba and Y. Aliyu

REGRESSION-TYPE IMPUTATION

RT&A, No 4(80)
Volume 19, December, 2024

Table 2: Percentage Relative Efficiency (PRE) of Estimators in the Presence of Measurement Error, under Case B.

Estimators Auxiliary parameter P=0.05 P=0.1 P=0.15 P=0.2
q=0.95 q=0.9 q=0.85 q=0.8
T* Not applicable 100.00 100.00 100.00 100.00
0
T Not applicable 214.13 206.07 198.13 190.28
MSB

z—: A =1,B =0 217.60 209.49 200.87 191.83
z A =1,B, :31<X1) 217.60 209.49 200.87 191.83
7 A =1,B :32<X2) 217.60  209.49 200.88 191.85
7 A =1,B_=C, 217.60  209.49 200.87 191.83
. A =1,B_=5, 217.60  209.50 200.92 191.94
7 A :31(X2),3X = BZ<X2) 217.63  209.53 200.91 191.85
. A :Bl(XZ)'Bx =C, 217.60  209.50 200.87 191.83
T; A =B, (XZ )‘BX =5, 217.64 209.42 200.49 191.14
7, A =B, (Xz)'BX =B, (Xz) 217.60  209.49 200.87 191.83
TIo A, =B, (Xz ),BX =C, 217.60 209.49 200.87 191.83
T, A = BZ(XZ),BX =S, 217.60 209.50 200.90 191.89
7, A =C,,B, :5’1()(2) 217.61 209.50 200.85 191.78
7; A =C,,B_=B, (XZ> 217.56 209.50 201.03 192.21
z, A =C,,B =5, 21751 209.56 201.33 192.87
1-1*5 A}{2 = SXz ’BXz =B, (Xz) 217.60 209.49 200.87 191.83
1-1*6 A}{2 = SXz ’BXz =B, (Xz) 217.60 209.49 200.87 191.83
r 217.60 209.49 200.87 191.83

AN
[
“
[s]
"
NX(\
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Table 3: Percentage Relative Efficiency (PRE) of Estimators in the Absence of Measurement Error, under Case A.

Estimators Auxiliary parameter P=0.05 P=0.1 P=0.15 P=0.2
g=0.95 g=0.9 q=0.85 q=0.8

7, Not applicable 100.00  100.00 100 100
s Not applicable 226.48 217.5 208.73 200.14
7, 4, =1B =0 229.00 22021 211.02 201.47
z, 4, =18, =B (X,) 229.00  220.21 211.02 201.47
z, A, =1B, =B,(X,) 229.00 22021 211.03 201.49
T, 4, =1B, =C, 229.00  220.21 211.02 201.47
7 4, =1B, =5, 228.99  220.22 211.06 201.56
7, A, =B, ( XZ), B, =B, ( Xz) 229.01  220.23 211.04 201.48
z, A, =B, ( X, ) B, =C, 229.00  220.22 211.02 201.47
7, sz =B, (Xz)'sz :5Xz 228.90 219.73 210.29 200.6
7, 4, =B,(x,).B, =B X,) 229.00 22021 211.02 201.47
Ty 4, =B(x,).B, =C, 229.00 22021 211.02 201.47
7, 4, =B(X,).B, =5, 229.00  220.22 211.05 201.53
7, A, =C, B, =B(X,) 22898  220.18 210.96 201.39
T, A, =C, B, =B,(X,) 22896  220.20 211.13 201.76
7, 4, =C, B, =5, 22893  220.27 211.41 202.38
7. A, =S, B =B(X,) 229.00  220.21 211.02 201.47
T, A, =S, B =B,(X,) 229.00  220.21 211.02 201.47
T A =S, B =C 229.00 22021 211.02 201.47

X.
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Table 4: Percentage Relative Efficiency (PRE) of Estimators in the Absence of Measurement Error, under Case B.

Estimators Auxiliary parameter P=0.05 P=0.1 P=0.15 P=0.2
7=0.95 q=0.9 7=0.85 q=0.8

7, Not applicable 100.00  100.00 100.00 100.00
Tyes Not applicable 24219 23293 223.84 214.91
7, 4, =1B =0 246.09  236.61 226.72 216.51
7, A =1B, =B, (x,) 246.09  236.61 226.72 216.51
7, A =1B, =B, (x,) 246.08  236.62 226.74 216.54
T, 4, =LB, =C, 246.09  236.61 226.72 216.51
7 4, =LB =5, 246.08  236.63 226.78 216.63
7, A4, =B, ( Xz)' B, =B, ( Xz) 246.11  236.65 226.77 216.54
z, 4, =B, ( X, ) B, =C, 246.09  236.61 226.73 216.51
7, A, =B, (x,), B, =S, 246.77  237.29 227.05 216.41
7, 4, =B, ( Xz)' B, =B, ( Xz) 246.09  236.61 226.72 216.51
T, A, =B, (X,), B, =C, 246.09  236.61 226.72 216.51
7, A4, =B, (X,), B, =S, 246.09  236.63 226.76 216.57
7, 4, =C,.B =B, ( X,) 24610  236.62 226.71 216.47
T, A, =C, B =B, (x,) 246.07  236.66 226.93 216.94
T, 4, =C, B =5, 246.07  236.80 227.32 217.68
T, A, =S, .B =B, (x,) 246.09  236.61 226.72 216.51
T, A =S, .B =B, (x,) 246.09  236.61 226.73 216.51
7, A =S, ,B =C, 246.09  236.61 226.72 216.51

IV. Discussion

From table 1, table 2, table 3 and table 4, it can be observed that our proposed estimator, which
utilizes the second supplementary variable parameter, is more efficient, with higher percentage

relative efficiencies (PREs) than the usual mean per unit estimator without supplementary

information and the [29] estimator in both cases scenario for all choices of probabilities. Therefore,
it can be concluded that our proposed methodology can be practically applied, utilizing the actual
responses of the respondents and including the measurement error parameters in estimating the
finite population mean.
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