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Abstract 

This study explores the stress-strength reliability model (P) for Generalized Inverse Weibull (GIW) 

distribution through transformation techniques. We compare two sampling methods: ranked set sampling 

(RSS) and simple random sampling (SRS), where stress and strength are two independent random 

variables from the GIW distribution respectively. RSS, is used for estimating stress-strength model, as 

this technique of sampling is more efficient alternative of SRS for obtaining the more informative sample. 

In this article, the maximum likelihood estimator (MLE) for stress-strength model is obtained through 

transforming technique. MLE estimates of stress-strength obtained through Ranked set sampling (RSS) 

methods are evaluated against corresponding estimates derived from simple random sampling (SRS) to 

understand their relative effectiveness and accuracy. The statistical estimators derived from Ranked Set 

Sampling (RSS) methodology exhibit superior efficiency relative to their Simple Random Sampling (SRS) 

counterparts. The empirical utility of RSS-based estimation procedures is subsequently validated through 

application to real datasets. 

Keywords: Stress-strength reliability, simple random sampling, ranked set sampling, 
generalized inverse Weibull distribution, maximum likelihood estimation. 

1. Introduction

The stress-strength model is a fundamental concept in reliability engineering and statistics. It is used to 
assess the probability of failure or success in a system subject to the random variations in stress and 
strength. This model is employed by many researchers in various fields, including engineering, 
materials science, quality control, and finance etc. The probability that a system’s random stress Y is less 
than its random strength X is represented by = 𝑃𝑟(𝑌 < 𝑋)  in the context of stress-strength model. In 
other words, it calculates the probability of failure in the stress-strength model. The system failure occurs 
when the stress exceeds the strength. Recently, the problem of stress-strength model is evaluated by an 
alternative approach of sampling proposed by Mclntyre [1] The pioneering investigations of Birnbaum 
[2] and Birnbaum and McCarty [3] represent the initial academic exploration of this fundamental
problem. Church and Harris [4] were the first to use the phrase "stress-strength". Since then, a sizable
amount of work has been completed from both a parametric and non-parametric perspective. For earlier
bibliography one may refers to, Chaturvedi and Kumar [5], Kotz et al. [6], Kundu and Gupta [7][8],
Raqab and Kundu [9], Kundu and Raqab [10], Krishnamoorthy et al. [11], Hassan [12], Wang et al. [13],
Kayal et al. [14], Kumar and Chaturvedi [15]. In the above referred studies the estimation for the
considered model is based on SRS.

RT&A, No 1 (82) 
Volume 20, March 2025 

67

mailto:rahul.shukla.stats@gmail.com


S Kumar, B Meena, R Shukla, SP Singh   
STRESS-STRENGTH MODELLING WITH RSS 

The circumstances in which it is challenging to take the actual measurement for sample units 
(costly, destructive, time consuming), the RSS strategy can be used in under these circumstances which 
maintains the accuracy of our statistical judgements and reduces the sample size. Akgul and Senoglu 
[16] obtained the point estimators of stress-strength model when the stress and the strength  both are
independent Weibull random variables with common shape and different scale parameters based on
RSS by using maximum likelihood (ML) and modified ML methodologies, Hassan et al. [17] used RSS
for point and interval estimators of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) based on Gompertz distribution and MLES are
compared by using MC simulation techniques. Hossein et al. [18] consider the RSS to estimate the
parameters  exponentiated pareto distribution and conclude that the estimator based on the ranked set
sample have far better efficiency than the simple random sample at the same sample size. Akgul and
Senoglu [19] constructed the asymptotic confidence interval for ‘P’ and obtained point and interval
estimators for 𝑃 = 𝑃𝑟(𝑌 < 𝑋) based on RSS, in addition the BCI for ‘P’ is constructed based on two
distinct resampling methods.

  In this paper we consider the point estimation of ‘P’ the stress-strength model, when the random 
stress and strength are two independent GIW random variables with different shape and scale 
parameters. A quick summary of the GIW distribution is given in section 2 and the point estimation of 
P using the maximum likelihood (ML) approach based on SRS is given in section 3. A brief explanation 
of RSS and its application in the point estimation  is given in section 4. Monte Carlo simulation study is 
carried out in section 5 and a real life data study is performed for this model in section 6. Section 7 gives 
the concluding remarks for this study. 

2. Preliminary

The GIW distribution is a continuous probability distribution which is proposed by de. Gosmao et al. 
[20]. It is an extended form of the Inverse Weibull distribution, introducing additional shape parameters 
to provide more flexibility in modelling. GIW has many applications in reliability, particularly in 
modelling the degradation of mechanical components such as pistons and crankshafts of diesel engines, 
as well as the breakdown of insulating fluid and in biological studies, where it is used to model a variety 
of failure characteristics such as infant mortality, useful life, and wear-out periods. Figure 1 and Figure 
2 are showing the behaviour of probability density function and hazard rate function of GIW distribution 
respectively. The probability density function is positively skewed and the hazard rate function which 
is also known as failure rate function, during the initial phase, the hazard rate increases, indicating that 
the conditional probability of failure grows over time. This might represent a period where stress 
accumulation or wear-out effects dominate. However, after reaching a peak, the hazard rate begins to 
decrease, suggesting that units that have survived beyond a certain point have demonstrated their 
resilience and are less likely to fail immediately. This pattern can be observed in various real-world 
phenomena, such as certain mechanical systems or biological processes. 

The probability density function (pdf) and cumulative distribution function (cdf) of GIW 
distribution are given respectively as 

𝑓( 𝑥, 𝛼 𝛽, 𝛾 ) =  𝛾𝛽𝛼𝛽𝑥−(𝛽+1)
exp [−𝛾 (

𝛼

𝑥
)

𝛽

]  ; x, α, β, γ > 0  (2.1) 

𝐹(𝑋) =   exp [−𝛾 (
𝛼

𝑥
)

𝛽

]  ; x, α, β, γ > 0  (2.2) 

Hazard rate equation of GIW distribution given as follows- 

ℎ(𝑡) = 𝛾𝛽𝛼𝛽𝑡−(𝛽−1)𝑒𝑥𝑝 (−𝛾 (
𝛼

𝑡
)

𝛽

) [1 − 𝑒𝑥𝑝 (−𝛾 (
𝛼

𝑡
)

𝛽

)]
−1

; t, α, β, γ > 0     (2.3) 
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(a) For fixed α = 1.6 and γ = 0.6 (a) For fixed α = 2.7 and γ = 1.9

(b) For fixed β = 2 and γ = 0.6 (b) For fixed β = 1.4 and γ = 0.8

(c) For fixed α = 1.6 and β = 2 (c) For fixed α = 1.5 and β = 1.9

Figure 1: Behaviour of pdf Figure 2: Behaviour of Hazard rate 

3. Point Estimator for 𝑃 = 𝑃𝑟(𝑌 < 𝑋) based on SRS

The pdf of GIW distribution is given by 

𝑓( 𝑥, 𝛼 𝛽, 𝛾 ) =  𝛾𝛽𝛼𝛽𝑥−(𝛽+1)
exp [−𝛾 (

𝛼

𝑥
)

𝛽

]  ; x, α, β, γ > 0   (3.1) 
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Let the rv’s X and Y follow the GIW distribution given at (3.1) with the parameters (𝛼, 𝛽, 𝛾) and 
(𝜃, 𝜇, 𝜒). 
Theorem 3.1: The MLE of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) is given by 

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

𝑇̅𝑌

(𝑇̅𝑋 +  𝑇̅𝑌)

𝑤ℎ𝑒𝑟𝑒 𝛷̅ =  
1

𝑛1

∑ 𝑥𝑖
−𝛽

𝑛1

𝑖=1

= 𝑇̅𝑋 (𝑠𝑎𝑦), 𝑎𝑛𝑑 𝜉̅ =  
1

𝑛2

∑ 𝑦𝑖
−𝜇 = 𝑇̅𝑌

𝑛2

𝑖=1

(say) 

Proof: Let us consider the transformation 𝑥−𝛽 = Φ in (3.1), we get 
𝑓(Φ|𝜆)  =  λ𝑒𝑥𝑝[−λΦ]  ; Φ, λ  > 0                                                                                                                       (3.2) 
which is exponential distribution with parameter λ, where λ =  𝛾𝛼𝛽  
Let us considered Φ and ξ be two independent rv’s which follows exponential distribution with 
parameters 𝜆1 and 𝜆2 respectively, where 𝑥−𝛽 = Φ and 𝑦−𝜇 = ξ
Thus for 
 𝑃 = 𝑃𝑟(ξ < Φ) 

𝑃 = ∫ ∫ 𝑓(Φ|𝜆1)𝑑Φ𝑓(ξ|𝜆2)𝑑ξ
 ξ 

Φ=0

∞

0

 

𝑃 =
𝜆1

(𝜆1+ 𝜆2 )
 (3.3)  

If Φ1, Φ2, … , Φ𝑛1
 𝑎𝑛𝑑   ξ 1,  ξ 2, … ,  ξ 𝑛2

 are two independent random samples of size 𝑛1 𝑎𝑛𝑑 𝑛2 from the 
pdf’s 𝑓(Φ|𝜆1) and 𝑓(ξ|𝜆2) respectively then the joint pdf is given by 

𝑓(Φ, ξ |𝜆1, 𝜆2)  =   λ1
𝑛1 λ2

𝑛2𝑒𝑥𝑝[−𝑛1 λ1Φ̅ − 𝑛2 λ2ξ̅]    (3.4) 

Taking likelihood function of (3.4) and derivatives w.r.to  𝜆1 𝑎𝑛𝑑 𝜆2 and equating to zero, we get MLES 
of 𝜆1 𝑎𝑛𝑑 𝜆2 respectively i.e. 

λ1= 
1

𝛷̅
   and λ2 =  

1

𝜉̅

The reliability function of P is 

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

𝜉̅

(𝛷̅+ 𝜉̅ )
 (3.5) 

The equation (3.5) can be written as 

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

𝑇̅𝑌

(𝑇̅𝑋 +  𝑇̅𝑌)

4. Point Estimator for P = 𝑃𝑟(𝑌 < 𝑋) based on RSS

In this section, we derive the ML estimator of P based on RSS. We first discuss about RSS, RSS is a 
specialized statistical sampling method designed to improve the efficiency and accuracy of estimating 
population parameters, particularly when dealing with populations that are highly heterogeneous or 
contain outliers. This sampling technique was introduced as an alternative to traditional sampling 
methods, such as SRS, in order to tackle the challenges posed by extreme values or skewed distributions 
in the population. A significant increase in precision can occasionally be obtained by using RSS as an 
alternative to SRS. In a work by G. A. McIntyre, it was first suggested in relation to evaluating herbage 
productivity. RSS procedures are given below: 

I. Consider random sample 𝑥1,  𝑥2 , … , 𝑥𝑚  by SRS each of size m.
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II. To obtain k observations from a population
III. Then, rank order them according to a pre-defined attribute.
IV. The unit that is judged the smallest is included in your ranked set sample.
V. This first unit is called the first judgement order statistics and denoted by X[1].

VI. Then we repeat the same process k time, there for the sample size is obtained as 𝑛 = 𝑘𝑚.
VII. For better understanding this entire process, see the following table:

Cycle 1 X[1]1 X[2]1 X[3]1 ... X[k]1 

Cycle 2 X[1]2 X[2]2 X[3]2 ... X[k]2 

...
 ...

 

...
 

...
 

...
 ...
 

Cycle m X[1]m X[2]m X[3]m ... X[k]m 

4.1 The maximum likelihood estimator of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) 

Let 𝑥𝑖𝑗 ; 𝑖 = 1,2, … , 𝑚1 and 𝑗 = 1,2, … , 𝑟1  denote the raked set sample of size 𝑛1 = 𝑟1𝑚1 from GIW 
distribution with parameter (𝛼, 𝛽, 𝛾) where 𝑚1  is the set size and 𝑟1 is the number of cycles and  𝑦𝑘𝑙 ; 𝑘 =

1, 2, … , 𝑚2 and 𝑙 = 1, 2, … , 𝑟2   denote the ranked set sample of size 𝑛2 = 𝑟2𝑚2 from GIW distribution with 
parameter (𝜃, 𝜇, 𝜒) where 𝑚2 is the set size and 𝑟2 is the number of cycles. Then the pdf of 𝑥𝑖𝑗  and  𝑦𝑘𝑙  

𝑓 𝑖(𝑥𝑖𝑗) =  
𝑚1 !

(𝑖 − 1 ) ! (𝑚1 − 𝑖 ) !
[𝐹(𝑥𝑖𝑗  )]𝑖−1[1 − 𝐹(𝑥𝑖𝑗)]𝑚1−𝑖  𝑓(𝑥𝑖𝑗)

𝑓 𝑘(𝑦𝑘𝑙) =  
𝑚2 !

(𝑘 − 1 ) ! (𝑚2 − 𝑘 )! 
[𝐹( 𝑦𝑘𝑙)]𝑘−1[1 − 𝐹(𝑦𝑘𝑙)]𝑚2−𝑘  𝑓(𝑦𝑘𝑙)

Then the likelihood function based on RSS is given by 

𝐿 =   ∏ ∏ 𝑓𝑖 (𝑥𝑖𝑗) ∏ ∏ 𝑔𝑘 (𝑦𝑘𝑙)

𝑚2

𝑙=1

𝑟2

𝑘=1

𝑚1

𝑗=1

𝑟1

𝑖=1

 

=  ∏ (∏
𝑚1!  (𝜆1 exp(−𝜆1𝛷𝑖𝑗))

(𝑖 − 1)! (𝑚1 − 𝑖)!

𝑚1

𝑗=1

exp(−𝜆1𝛷𝑖𝑗))

𝑖−1𝑟1

𝑖=1

(−exp(−𝜆1𝛷𝑖𝑗))
𝑚1−𝑖+1

∏ (∏
𝑚2! (𝜆2 exp(−𝜆2𝜉𝑘𝑙))

(𝑘 − 1)! (𝑚2 − 𝑘)!
exp(−𝜆2𝜉𝑘𝑙)

𝑚2

𝑙=1

)

𝑘−1

[−exp(−𝜆2𝜉𝑘𝑙)]𝑚2−𝑘+1

𝑟2

𝑘=1

𝐿 = 𝑊𝜆𝑛1𝜆𝑛2 ∏ (∏ exp (−𝜆1𝛷𝑖𝑗)

𝑚1

𝑗=1

)

𝑖−1𝑟1

𝑖=1

[− exp(−𝜆1𝛷𝑖𝑗)]
𝑚1−𝑖+1

exp(−𝜆1𝛷𝑖𝑗)

∏ (∏ exp (−𝜆2𝜉𝑘𝑙)

𝑚2

𝑙=1

)

𝑘−1𝑟2

𝑘=1

[1 − exp(−𝜆2𝜉𝑘𝑙)]𝑚2−𝑘+1 exp(−𝜆2𝜉𝑘𝑙)

 (4.1) 
where 

𝑊 =  ∏ ∏
𝑚1

(𝑖 − 1)! (𝑚1 − 𝑖)!

𝑚1

𝑗=1

𝑟1

𝑖=1

∏ ∏
𝑚2

(𝑘 − 1)! (𝑚2 − 𝑘)!

𝑚2

𝑙=1

𝑟2

𝑘=1

Taking log 

RT&A, No 1 (82) 
Volume 20, March 2025 

71



S Kumar, B Meena, R Shukla, SP Singh   
STRESS-STRENGTH MODELLING WITH RSS 

𝑙𝑜𝑔 𝐿 = 𝑙𝑜𝑔 𝑊 + 𝑛1𝑙𝑜𝑔𝜆1 + 𝑛2𝑙𝑜𝑔𝜆2 + ∑ ∑(𝑖 − 1)

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑙𝑜𝑔 [𝑒𝑥𝑝(−𝜆1𝛷𝑖𝑗) −  𝜆1 ∑ ∑ 𝛷𝑖𝑗

𝑚1

𝑗=1

𝑟1

𝑖=1

+ 𝜆1 ∑ ∑(𝑚1

𝑚1

𝑗=1

− 𝑖 + 1)𝛷𝑖𝑗 − 𝜆2 ∑ ∑ 𝜉𝑘𝑙

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑟1

𝑖=1

+ ∑ ∑(𝑘 − 1)

𝑚2

𝑙=1

𝑟2

𝑘=1

𝑙𝑜𝑔 [𝑒𝑥𝑝(−𝜆2𝜉𝑘𝑙)

+ 𝜆2 ∑ ∑(𝑚2

𝑚2

𝑙=1

− 𝑘 + 1)𝜉𝑘𝑙

𝑟2

𝑘=1

𝜕𝑙𝑜𝑔𝐿

𝜕𝜆1

= 0 

Then, 

𝑛1

𝜆1

− ∑ ∑
(𝑖 − 1) exp(−𝜆1𝛷𝑖𝑗) 𝛷𝑖𝑗

exp(−𝜆1𝛷𝑖𝑗)

𝑚1

𝑗=1

𝑟1

𝑖=1

− ∑ ∑ 𝛷𝑖𝑗

𝑚1

𝑗=1

𝑟1

𝑖=1

+ ∑ ∑(𝑚1

𝑚1

𝑗=1

− 𝑖 + 1)𝛷𝑖𝑗

𝑟1

𝑖=1

 (4.2) 
𝜕𝑙𝑜𝑔𝐿

𝜕𝜆2

= 0 

Then, 

𝑛2

𝜆2

− ∑ ∑
(𝑘 − 1) exp(−𝜆2𝜉𝑘𝑙) 𝜉𝑘𝑙

exp(−𝜆2𝜉𝑘𝑙)

𝑚2

𝑙=1

𝑟2

𝑘=1

− ∑ ∑ 𝛷𝑖𝑗

𝑚2

𝑙=1

𝑟2

𝑘=1

+ ∑ ∑(𝑚1

𝑚2

𝑙=1

− 𝑘 + 1)𝜉𝑘𝑙

𝑟2

𝑘=1

(4.3) 
Using a numerical method, we ascertain the values of the ML estimators for λ1 and λ2 based on RSS 
shown by 𝜆1𝑅𝑆𝑆

𝑀𝐿 and 𝜆2𝑅𝑆𝑆
𝑀𝐿  and using the invariance property of the ML estimator, we get the maximum 

of reliability parameter P based on RSS as 

𝑃𝑅𝑆𝑆
𝑀𝐿 =

𝜆1𝑅𝑆𝑆
𝑀𝐿

𝜆1𝑅𝑆𝑆
𝑀𝐿 +𝜆2𝑅𝑆𝑆

𝑀𝐿  (4.4) 

where, λ1= 
1

𝛷̅
   and λ2 =  

1

𝜉̅

𝑃𝑅𝑆𝑆
𝑀𝐿 =

𝜉𝑅̅𝑆𝑆
𝑀𝐿

𝛷̅𝑅𝑆𝑆
𝑀𝐿 + 𝜉𝑅̅𝑆𝑆

𝑀𝐿

where, 

𝛷̅𝑅𝑆𝑆
𝑀𝐿 =  

1

𝑛1

∑ 𝑥𝑖
−𝛽

𝑛1

𝑖=1

= 𝑇̅𝑥,𝑅𝑆 𝑆   𝑎𝑛𝑑     𝜉𝑅̅𝑆𝑆
𝑀𝐿 =

1

𝑛2

∑ 𝑦𝑖
−𝜇 = 𝑇̅𝑦,𝑅𝑆𝑆

𝑛2

𝑖=1

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

𝑇̅𝑦,𝑅𝑆𝑆

(𝑇̅𝑥,𝑅𝑆𝑆 +  𝑇̅𝑦,𝑅𝑆𝑆)

5. Simulation Study

This section contains the simulation study that compares our suggested reliability estimator P based on 
RSS with the conventional reliability estimator of P based on SRS using the provided MSE and Bias 
values, 𝐵𝑖𝑎𝑠(𝑃̂) = 𝐸(𝑃̂ − 𝑃)  and  𝑀𝑆𝐸(𝑃) = 𝐸(𝑃̂ − 𝑃)2,  respectively. The relative efficiency of the 
estimator of P is calculated as =  

𝑀𝑆𝐸(𝑃𝑀𝐿𝐸,𝑆𝑅𝑆)

𝑀𝑆𝐸(𝑃𝑀𝐿𝐸,𝑅𝑆𝑆)
 . If the value of relative efficiency is greater than one, it

signifies that 𝑃̅𝑆𝑅𝑆 is more efficient than the 𝑃̅𝑅𝑆𝑆. Using the R programming language, all calculations 
were carried out. The following steps are used to explain the simulation study. 
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1. Generate 1000 simple random sample of 𝑥1, … , 𝑥𝑛1
 and 𝑦1, … , 𝑦𝑛2

 from Generalize Inverse Weibull
distribution with the sample sizes (𝑛1, 𝑛2).
2. Generate 1000 random sample 𝑥11, … , 𝑥𝑚1𝑟1

 and 𝑦11, … , 𝑦𝑚2𝑟2
 from Generalize inverse Weibull

distribution with set sizes 𝑚1 =  𝑚2 = 3, 4, 5 in case of number of cycles 𝑟1 = 𝑟2 = 5 and when 𝑟1 = 𝑟2 =

10 then set size 𝑚1 =  𝑚2 = 2, 3, 4.
3. Initially the parameter for X ~ GIW (α, β, γ) distribution are taken as α = 2, β = 0.1, γ = 0.6 and Y ~ GIW
(𝜃, 𝜇, 𝜒), 𝜃 = 3, µ= 0.2, χ = 0.5. After that we vary α = 2.5, 4 and 𝜃 = 3.5, 5 respectively and other parameters
are fixed.
4. The MSEs relative efficiency and biased are calculated.

Table1: Biases, MSES and RE of P under SRS and RSS when β = 0.1, γ = 0.6 and μ= 0.2, χ = 0.5 and  𝑟1=𝑟2= 5, 10

SRS RSS 

𝒓𝟏= 𝒓𝟐=  5 

(𝑛1,𝑛2) (𝑚1,𝑚2) 𝑃𝑇𝑟𝑢𝑒 𝑃̂𝑆𝑅𝑆 Bias MSE 𝑃̂𝑅𝑆𝑆 Bias MSE RE 

α=2,  𝜃=3 (15,15) (3,3) 0.50797 0.51985 0.01187 0.000185 0.51981 0.01183 0.000165 1.12343 

(15,20) (3,4) 0.51953 0.01156 0.000172 0.51989 0.01191 0.000161 1.07190 

(20,20) (4,4) 0.51964 0.01167 0.000169 0.51966 0.01168 0.000152 1.11753 

(20,25) (4,5) 0.51965 0.01167 0.000165 0.51987 0.01189 0.000153 1.08270 

(25,25) (5,5) 0.51960 0.01163 0.000163 0.51996 0.01198 0.000154 1.06218 

α=2.5,  𝜃=3.5 (15,15) (3,3) 0.50584 0.51947 0.01362 0.000218 0.51995 0.01410 0.000215 1.01260 

(15,20) (3,4) 0.51946 0.01361 0.000212 0.51993 0.01408 0.000212 1.00436 

(20,20) (4,4) 0.51956 0.01371 0.000212 0.51965 0.01380 0.000201 1.05510 

(20,25) (4,5) 0.51956 0.01371 0.000209 0.51971 0.01386 0.000200 1.04142 

(25,25) (5,5) 0.51952 0.01367 0.000207 0.51982 0.01397 0.000202 1.02271 

α=4,  𝜃=5 (15,15) (3,3) 0.49976 0.51995 0.02018 0.000421 0.51995 0.02019 0.000416 1.01253 

(15,20) (3,4) 0.51994 0.02017 0.000418 0.51993 0.02017 0.000413 1.01343 

(20,20) (4,4) 0.51992 0.02015 0.000417 0.51998 0.02021 0.000414 1.00835 

(20,25) (4,5) 0.51992 0.02015 0.000416 0.51991 0.02014 0.000410 1.01551 

(25,25) (5,5) 0.51991 0.02014 0.000415 0.51998 0.02022 0.000412 1.00549 

𝒓𝟏= 𝒓𝟐=  10 

(𝑛1,𝑛2) (𝑚1,𝑚2) 𝑃𝑇𝑟𝑢𝑒 𝑃̂𝑆𝑅𝑆 Bias MSE 𝑃̂𝑅𝑆𝑆 Bias MSE RE 

α=2,  𝜃=3 (20,20) (2,2) 0.50797 0.51986 0.01189 0.000175 0.51953 0.01155 0.000154 1.13637 

(20,30) (2,3) 0.51984 0.01186 0.000167 0.51984 0.01186 0.000156 1.07116 

(30,30) (3,3) 0.51984 0.01186 0.000163 0.51975 0.01177 0.000150 1.08497 

(30,40) (3,4) 0.51983 0.01186 0.000159 0.51980 0.01182 0.000149 1.06985 

(40,40) (4,4) 0.51970 0.01172 0.000153 0.51992 0.01194 0.000150 1.02107 

α=2.5,  𝜃=3.5 (20,20) (2,2) 0.50584 0.51974 0.01389 0.000217 0.51947 0.01362 0.00020 1.08420 

(20,30) (2,3) 0.51972 0.01387 0.000211 0.51972 0.01387 0.000203 1.03920 

(30,30) (3,3) 0.51972 0.01387 0.000208 0.51964 0.01379 0.000199 1.04873 

(30,40) (3,4) 0.51971 0.01386 0.000205 0.51969 0.01384 0.000198 1.03801 

(40,40) (4,4) 0.51960 0.01375 0.000201 0.51978 0.01394 0.000200 1.00415 

α=4,  𝜃=5 (20,20) (2,2) 0.49976 0.51992 0.02015 0.000417 0.51997 0.02020 0.000416 1.00415 

(20,30) (2,3) 0.51990 0.02013 0.000414 0.51989 0.02013 0.000410 1.00944 

(30,30) (3,3) 0.51990 0.02013 0.000413 0.51984 0.02007 0.000407 1.01444 

(30,40) (3,4) 0.51989 0.02013 0.000411 0.51987 0.02011 0.000407 1.00961 
(40,40) (4,4) 0.51982 0.02005 0.000408 0.51994 0.02018 0.000392 1.04033 
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The data presented in Table 1 consistently demonstrates that the relative efficiency exceeds unity, 
indicating the superior performance of ranked set sampling over simple random sampling in stress-
strength reliability estimation. 

6. Real data application

In order to confirm the results from earlier portions of the paper, we looked at two actual datasets in this 
section. We use two real-life data sets proposed by Efron B. [21]. The dataset includes patients from two 
groups who have head and neck cancer diseases. The survival times of 58 patients with radiotherapy-
treated head and neck cancer are shown in the first dataset, whereas the survival times of 45 patients 
receiving chemotherapy plus radiation treatment are shown in the second dataset. In the context of 
stress–strength reliability, Yadav et al.  [22] analysed these datasets and they showed that the Inverse 
Weibull distribution could be used to model these datasets. These datasets can also be useful in the case 
of generalized Weibull distribution. The first dataset of 58 patient is used for the strength variable X and 
the second dataset of 45 patients is used for stress variable Y in the stress-strength model 𝑃 = 𝑃𝑟(𝑌 < 𝑋). 
The datasets are as follows: 

First data set of 58 patients 

6.53 7 10.42 14.48 16.1 22.7 34 41.55 

42 45.28 49.4 53.62 63 64 83 84 

91 108 112 129 133 133 139 140 

140 146 149 154 157 160 160 165 

146 149 154 157 160 160 165 173 

176 218 225 241 248 273 277 297 

405 417 420 440 523 583 594 1101 

1146 1417 

Second data set of 45 patients 

12.2 23.56 23.74 25.87 31.98 37 41.35 47.38 

55.46 58.36 63.47 68.46 78.26 74.47 81 43 

84 92 94 110 112 119 127 130 

133 140 146 155 159 173 179 194 

195 209 249 281 319 339 432 469 

519 633 725 817 1776 

The first dataset of 58 patient is used for the strength variable X ~ GIW (α, β, γ) and the second dataset 
of 45 patients is used for stress variable Y ~ GIW (θ, µ, χ) in the stress-strength model 𝑃 = 𝑃𝑟(𝑌 < 𝑋). By 
using the iteration method in R software, the MLES of α, β, γ and θ, µ, 𝜒 is comes out as  𝛼̂ = 2.9057, 
 𝛽̂ =  0.7859, 𝛾 = 12.3257 and 𝜃̂ = 6.8548, 𝜇̂ = 1.0248, 𝜒̂ = 11.5366. Now if we take these MLEs values 
of the parameters as the true value for these datasets then the stress-strength model 𝑃 = 𝑃𝑟(𝑌 < 𝑋) from 
the Eq. (3.3) is P = 0.25574 

RT&A, No 1 (82) 
Volume 20, March 2025 

74



S Kumar, B Meena, R Shukla, SP Singh   
STRESS-STRENGTH MODELLING WITH RSS 

Figure 3: The PDF, CDF and P-P Plots of the GIW distribution for First dataset 

Figure 4: The PDF, CDF and P-P Plots of the GIW distribution for First dataset 

Prior to delving into the core of our investigation, it is imperative to conduct a thorough examination of 
the salient characteristics of our dataset. To validate the robustness of our results, we employ a rigorous 
statistical methodology: the Kolmogorov-Smirnov (K-S) test, complemented by its associated P-value 
(P-V). This approach facilitates the quantification of the concordance between our empirical 
observations and theoretical expectations. 
Our analysis yields promising results. For the initial dataset, we obtain a K-S distance of 0.31547 and a 
corresponding P-V of 0.42560. The secondary dataset exhibits comparable outcomes, with a K-S distance 
of 0.08889 and a P-V of 0.99520. These metrics provide substantial evidence supporting the close 
alignment of our model with the observed data. 
To enhance comprehension and provide visual context, we have generated a series of graphical 
representations. These illustrations, presented in Figures 3 and 4, offer a comprehensive visualization of 
our statistical findings. They encompass probability-probability (PP) plots, as well as depictions of the 
estimated probability density function (PDF) and cumulative distribution function (CDF) for both 
datasets. These visual aids serve to corroborate and elucidate the numerical results of our analysis, 
thereby facilitating a more profound understanding of the data's underlying characteristics. 
Now we draw 10 samples random sample of size 10 from each dataset and calculate the term 𝑇̅𝑥 and 𝑇̅𝑦 
for each sample respectively. The simple random samples from each dataset are shown in Table 2 and 
Table 3, respectively. 
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Table 2: Simple random samples from Data set 1 

𝑇̅𝑥

Sample 1 157 176 63 129 7 53.62 140 149 218 225 0.04257 
Sample 2 241 154 218 140 63 10.42 277 173 165 154 0.03312 
Sample 3 157 149 49.4 440 165 154 140 34 273 22.7 0.03118 
Sample 4 149 63 165 139 45.28 49.4 42 41.55 10.42 22.7 0.05443 
Sample 5 157 112 14.48 173 440 218 160 139 417 140 0.02745 
Sample 6 218 225 146 149 42 1417 176 7 297 53.62 0.04135 
Sample 7 165 157 133 63 173 420 45.28 112 176 583 0.02213 
Sample 8 225 140 165 277 149 14.48 91 129 108 157 0.03016 
Sample 9 157 64 157 63 154 146 165 241 16.1 133 0.03187 

Sample 10 140 22.7 417 176 139 149 146 41.55 583 241 0.02662 

Table 3: Simple random samples from Data set 2 

𝑇̅𝑦

Sample 1 1776 119 74.47 725 81 37 469 43 63.47 58.36 0.01097 

Sample 2 110 209 130 281 37 63.47 74.47 173 112 319 0.00889 
Sample 3 173 55.46 37 68.46 63.47 281 319 25.87 31.98 195 0.01481 
Sample 4 339 74.47 37 112 63.47 81 25.87 31.98 209 110 0.01492 
Sample 5 249 281 173 47.38 81 633 37 23.56 74.47 140 0.01256 
Sample 6 469 633 519 127 25.87 78.26 84 173 339 37 0.01019 

Sample 7 1776 94 817 23.56 469 130 43 146 173 68.46 0.01044 
Sample 8 127 110 78.26 249 209 41.35 94 43 432 155 0.00947 
Sample 9 110 159 23.74 194 31.98 633 1776 155 112 179 0.01061 

Sample 10 432 130 119 339 58.36 127 469 37 146 55.46 0.00902 

In the next step, we draw 10 ranked set samples of size 10 from both the Data sets. To draw the ranked 
set sample of size n = 10, we take the set size m = 5 and run r = 2 cycles. 

Table 4 : Ranked set samples from Data set 1 
𝑇̅𝑥

Sample1 7 112 157 165 405 10.42 108 139 160 225 0.05240 

Sample 2 139 225 297 165 583 10.42 64 417 112 440 0.03091 

Sample 3 7 165 165 160 173 112 63 49.4 146 160 0.04368 

Sample 4 42 63 176 160 149 6.53 133 154 133 277 0.04495 

Sample 5 22.7 7 165 405 1417 91 112 154 218 1417 0.04232 

Sample 6 91 64 146 160 1101 112 108 157 154 1101 0.02010 

Sample 7 84 139 405 149 1146 108 154 165 218 157 0.01795 

Sample 8 6.53 140 64 165 594 140 133 84 420 241 0.04069 

Sample 9 16.1 149 160 154 154 45.28 16.1 146 139 277 0.04040 

Sample 10 10.42 45.28 160 225 594 6.53 149 149 277 417 0.05364 
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Table 5: Ranked set samples from Data set 2 

𝑇̅𝑦

Sample 1 43 55.46 195 319 249 23.56 41.35 155 130 173 0.01271 

Sample 2 25.87 94 58.36 159 469 63.47 68.46 146 194 817 0.01070 

Sample 3 12.2 63.47 173 146 469 41.35 155 112 155 633 0.01469 

Sample 4 63.47 112 119 339 249 25.87 84 81 81 725 0.01053 

Sample 5 47.38 55.46 195 249 817 41.35 92 155 281 1776 0.00855 

Sample 6 12.2 37 119 155 817 23.74 37 194 432 519 0.01877 

Sample 7 74.47 140 63.47 173 519 55.46 55.46 319 74.47 432 0.00887 

Sample 8 23.56 119 78.26 195 725 23.56 130 133 281 519 0.01213 

Sample 9 37 94 194 195 469 31.98 41.35 173 155 249 0.01100 

Sample 10 37 112 68.46 179 319 81 58.36 339 94 817 0.00930 

To get 10 samples of size 10, we totally run 20 cycles. Each two subsequent cycles constitute one sample 
of size 10. The 20 cycles we performed to get the 10 ranked samples from population X and displayed in 
Table 4. Similarly, the 20 cycles from population Y are drawn and the 10 ranked set samples are shown 
in Table 5. 

Table 6: Bias, MSE and Relative efficiency of stress-strength model P in case of SRS and RSS 
SRS RSS 

𝑇̅𝑥 𝑇̅𝑦 𝑃̂𝑆𝑅𝑆 Bias MSE 𝑇̅𝑥 𝑇̅𝑦 𝑃̂𝑅𝑆𝑆 Bias MSE RE 
(%) 

Sample 1 0.04257 0.01097 0.25278 -0.00295 0.052 0.05240 0.01271 0.23154 -0.0242 0.00872 5.92 
Sample 2 0.03312 0.00889 0.03091 0.01070 
Sample 3 0.03118 0.01481 0.04368 0.01469 
Sample 4 0.05443 0.01492 0.04495 0.01053 
Sample 5 0.02745 0.01256 0.04232 0.00855 
Sample 6 0.04135 0.01019 0.02010 0.01877 
Sample 7 0.02213 0.01044 0.01795 0.00887 
Sample 8 0.03016 0.00947 0.04069 0.01213 
Sample 9 0.03187 0.01061 0.04040 0.01100 
Sample10 0.02662 0.00902 0.05364 0.00930 

Based on Table 6, it can be inferred that the MSE of stress-strength model P under RSS conditions is 
lower than that of stress-strength model P under SRS circumstances. 5.92% of RSS is relative to SRS, or 
relative efficiency. Thus, in real-world scenarios, RSS techniques yield better outcomes than SRS 
strategies. 

7. Conclusions

This work addresses the challenge of estimating the reliability function  𝑃 = 𝑃𝑟(𝑌 < 𝑋), where X and Y 
are the independent random strength and stress variables from GIW distribution. The MLE of P is 
derived for SRS and RSS. Monte Carlo simulation study is performed to compare between point 
estimators of P in both cases SRS and RSS. The MLE of P based on RSS is more efficient results than the 
MLE of P based on the SRS. We further validate the advantages of RSS through an analysis of real-life 
data. Future research we shall explore the application of various type of ranked set sampling techniques 
in estimating the reliability models. 
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