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Abstract

We proposed a new model called the Alpha Power Transformed Weibull-Lomax (APTWL) distribution
which extends the Weibull Lomax distribution and have an increasing, decreasing and bathtub shapes
for the hazard rate function. Various structural properties of the new distribution are derived including
moments, probability weighted moments, generating and quantile function. The Renyi and q entropies
are also obtained. Statistical inference is presented for the APTWL distribution using the method of
maximum likelihood estimation to estimate the parameters of proposed distribution. The potentiality of
the new model is illustrated by means of three real life datasets. The results of the analysis of the datasets
show the superiority of APTWL distribution over some compared distributions.

Keywords: Alpha power transformation, Hazard function, Likelihood estimation, Lomax distri-
bution, Weibull Lomax distribution

1. Introduction

The Lomax distribution also known as the Pareto Type II distribution is a continuous distribution
that is used to model extreme events that follow a power law distribution. It is named after
K.S Lomax [12] who first introduced. It is a heavy tailed distribution. That is, the extreme
events are more likely to occur in other distributions like the normal distribution. It is often
used to model phenomena like city sizes, earthquake magnitudes and financial returns. The
Lomax distributions has applications in various fields including income and wealth inequality,
acturial science, biological and medical sciences, engineering, longevity and reliability modeling,
economics, insurance and geology. Overall, the Lomax distribution is a useful tool for modeling
and analyzing extreme events.

Various authors extend the classical distributions to make them applicable in various fields.
For example, Marshall-Olkin Extended Lomax (MOEL) was introduced by Ghitany et al. [7],
Exponentiated Lomax (EL) was studied by Abdul-Moniem and Abdel-Hameed [1], Beta Lomax
(BL) was examined by Lemonte and Cordeiro [11], Gamma Lomax (GL) was presented by Cordeiro
et al. [4], Power Lomax (PL) was studied by Rady et al. [17] and Weibull Power Lomax(WPL)
distribution was introduced by Hussain et al. [8]. The Weibull Lomax (WL) distribution was
recently introduced and its mathematical and statistical features were examined by Tahir et al.
[19].

Weibull-Lomax(WL) distribution which is introduced by Tahir et al [19] which extends the
Lomax distribution has increasing and decreasing shapes for the hazard rate function. It has wider
application in areas such as engineering, survival and lifetime data, hydrology and economics
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(income inequality).
The cdf of WL distribution is given by,

F(x) = 1 − exp

{
−α

{[
1 +

(
x
β

)]α

− 1
}b
}
· (1)

The pdf of WL distribution is given by,

f (x) =
abα

β
[1 +

x
β
]bα−1

{
1 − [1 +

x
β
]−α

}b−1
exp

{
−α([1 +

x
β
]−α − 1)b

}
· (2)

where x > 0; a > 0 and b > 0 are two parameters.
We are motivated to do this work for developing distribution which follow increasing, decreas-

ing and constant failure rates. The main aim of this study is to provide another extension of the
Weibull Lomax distribution introduced by Tahir et al.[19] using the Alpha power transformation
defined by Mahdavi and Kundu [13].

Mahdavi and Kundu [13] proposed a new class of distributions called the Alpha Power
Transformation (APT) family. It is introduced to analyse lifetime data obtained from systems that
exhibit variety of monotonic and non-monotonic failure patterns.
The cdf of the APT family is defined by,

FAPT(x) =
αG(x) − 1

α − 1
, i f α > 0, α ̸= 1 (3)

= G(x), i f α = 1·

The corresponding pdf of APT family is,

fAPT(x) =
log α

α − 1
α

G(x)
g(x), i f α > 0, α ̸= 1 (4)

= g(x), i f α = 1·

2. Alpha Power Transformed Weibull Lomax Distribution

2.1. Probability Density Function (pdf) and Cumulative Distribution Function
(cdf)

The Alpha Power Transformed Weibull Lomax (APTWL) distribution is obtained by using
Weibull Lomax distribution as baseline distribution in alpha power transformation which is
proposed by Mahdavi and Kundu [13]. Inserting equation (1) in (3), we get the five parameter
APTWL cdf which is given by,

F(x) =
α

1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}
− 1

α − 1
· (5)

And the corresponding pdf is obtained by inserting (2) in (4) and is given by,

f (x) =
log α

α − 1
abθ

β

(
1 +

x
β

)bθ−1
{

1 −
(

1 +
x
β

)−θ
}b−1

exp

−a

{[
1 +

(
x
β

)]θ

− 1

}b


α
1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}
· (6)

where x > 0; α > 0 is the additional shape parameter.
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Figure 1 and Figure 2 provides plots of the pdf for some selected values of parameters. It is clear
from the graph that the APTWL densities appears to be right Skewed and flexible heavy tailed
distribution.

Figure 1: pdf plot for α = 0.5, β = 0.75, θ = 0.5

Figure 2: pdf plot for α = 3, β = 5, θ = 4

2.2. Quantile Function

Quantile functions are used in statistical analysis to summarize distributions and are essential
in constructing box plots, quantile-quantile plots and in statistical methods (Mood et.al.) [16].
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Quantile Function can be obtained by taking the inverse of the cumulative distribution function
of a distribution. For q ∈ (0, 1) ,the quantile function of x is obtained by,

xq = β


([

− 1
α

log
{

1 −
{
(log α)−1 log [q(α − 1) + 1]

}}] 1
b
+ 1

) 1
θ

− 1

 · (7)

The root of equation (7) which is xq, gives the unique solution for every value of q ∈ (0, 1)
for a particular combination of parameter values of (α,β,θ,a,b). If q = 0.5, the median of APTWL
distribution denoted by x0.5 can be obtained from equation (7) with its expression given as

x0.5 = β


([

− 1
α

log
{

1 −
{
(log α)−1 log [0.5 (α − 1) + 1]

}}] 1
b
+ 1

) 1
θ

− 1

 · (8)

2.3. Reliability Function

The reliability function is a fundamental concept in reliability engineering used to model
and analyze the longevity and performance of systems and components over time. It is crucial
for determining maintenance schedules, warranty analysis, and risk assessment(Elsayed) [6].
Reliability function can be obtained from,

R(x) = 1 − F(x)

= (α − 1)−1

α − α
1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
} · (9)

2.4. Hazard Function

The hazard function provides insights into the risk of failure at any given time point which
helps to understand the dynamics of the failure process. It is a crucial concept in survival analysis
and reliability engineering (Kalbfleisch and Prentice) [9]. The hazard function is the probability of
failure in an infinitely small time period between x and x + dx given that the subject has survived
up to time x. The hazard function is defined by,

h(x) =
f (x)
R(x)

=

log α
α−1

abθ
β

(
1 + x

β

)bθ−1
{
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(

1 + x
β

)−θ
}b−1

exp

{
−a
{[

1 +
(

x
β

)]θ
− 1
}b
}

(α − 1)−1
α

1−exp

{
−a
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(

x
β

)]θ
−1
}b
}

α − α
1−exp

{
−a
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x
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}b
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
· (10)

Figure 3 and Figure 4 shows that hazard rate shapes can take different shapes such as constant,
increasing and decreasing shape.
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Figure 3: hrf plot for α = 1.5, β = 1.5, θ = 1.5

Figure 4: hrf plot for α = 3, β = 0.5, θ = 1.5

3. Properties

3.1. Moments

Moments are applied in various statistical methods including parameter estimation, hypothesis
testing and in the method of moments for deriving estimators (DeGroot and Schervish) [5].
The rth moment of a random variable X is obtained as follows,

µ
′
r = E[Xr]
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µ
′
r =

∫ ∞
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Using the power series expansion αk = ∑∞
j=0

(logα)j

j! kj in equation (11) and then applying binomial

expansion (1 − z)β = ∑∞
i=0(−1)i (β

i ) zi we get,

µ
′
r =

∞

∑
i,j,k=0

(−1)i+1 ak(ij+1)+2 bθ (log α)j+1

i! k! (j − 1)! β(α − 1)

∫ ∞

0
xr

[(
1 +

x
β

)−θ
]− 1

θ −b−bk(ij+1)

[
1 −

(
1 +

x
β

)−θ
](b−1)+bk(ij+1)

·

Put y =
(

1 + x
β

)−θ
and then integrating we get,

µ
′
r =

r

∑
m=0

∞

∑
i,j,k=0

(−1)i+m+1 ak(ij+1)+2 βr b(log α)j+1( r
m)

i! k! (j − 1)! (α − 1)

B(
1
θ
(m − r)− b − bk(ij + 1), b + bk(ij + 1))· (12)

3.2. Moment Generating Function

The moment generating function(mgf) of a random variable X is defined by Mx(t) = E
[
etx],

for values of t in some neighborhood of zero for which this expectation exists (DeGroot and
Schervish) [5]. It is an alternate method for analyzing results instead of working directly with
the pdf and cdf of a random variable X. We obtain the moment generating function of a random
variable X of the APTWL distribution as,

MX(t) =
∞

∑
r=0

tr

r!
µ
′
r

=
r

∑
m=0

∞

∑
i,j,k,r=0

(−1)i+m+1 ak(ij+1)+2 βr−1 trb(log )j+1( r
m)

i! k! r! (j − 1)!(α − 1)

B(
1
θ
(m − r)− b − bk(ij + 1), b + bk(ij + 1))· (13)

3.3. Probability Weighted Moments

Probability Weighted Moments (PWMs) are a set of statistical measures used to summarize the
probability distribution of a random variable. It is used to derive estimators of the parameters
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and quantiles of generalized distributions. The (h,s)th PWM of X is given by,

ρh,s = E
[

Xh F(x)s
]

=
∫ ∞

0
xh log α
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·
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Using the power series expansion and binomial expansion in equation (14), we get,

ρh,s =
s

∑
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∞
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Put y =
(

1 + x
β

)−θ
and then integrating, we get,
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s

∑
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∞

∑
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)
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3.4. Renyi Entropy and q Entropy

The Renyi and q entropies are two important measures in information theory for examining
the unpredictability associated with random variables that follow a lifetime distribution. The
entropy of a random variable X is a measure of the uncertain variation.
The Renyi entropy is defined by,

δR(ω) = (1 − ω)−1 log
[∫ ∞

0
( f (x))ω dx

]
·

By applying the binomial expansion and exponential expansion in the pdf, we get,

δR(ω) = (1 − ω)−1 log

[
aω

(
bθlog α

β(α − 1)

)ω ∞
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(

j
i

)
jk
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∫ ∞

0
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β
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(
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x
β
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}ω(b−1) {(
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x
β

)
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}bk

dx·

Put y =
(

1 + x
β

)−θ
and then integrating, we get,

δR(ω) = (1 − ω)−1 log

[
aω+k β1−ω θω−1

(
b log α
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)ω ∞
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)
· (16)
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The q entropy Hq( f ) is defined by,

Hq( f ) =
1

q − 1
log
[
1 − Iq( f )

]
where Iq( f ) =

∫
R

f q(x)dx·

Hq( f ) =
1

q − 1
log

[
1 − aq+k β1−q θq−1

(
b log α

α − 1

)q ∞

∑
i,j,k=0

(−1)i+k
(

j
i

)
jk (q log α)j

j! k!

B
(

1
θ
(q − 1)− b(q + k) , 1 + bk + q(b − 1)

)
· (17)

3.5. Order Statistics

In a random sample of size n drawn from the APTWL distribution, we estimate the density of
the ith order statistic Xi:n, say fi:n(x). We have (for i = 1,...,n),

fi:n(x) =
1

B(i, n − i + 1)
Fi−1(x) [1 − F(x)]n−i f (x) (18)

Now we can write,

F(x)i+j−1 =
1

(α − 1)i+j−1

α

{
1−exp

{
−a
[(

1+ x
β

)θ
−1
]b
}}

− 1


i+j−1

(19)

Using the binomial expansion (1 − z)β = ∑∞
i=0(−1)i (β

i ) zi in equation (18) and then applying

power series expansion αk = ∑∞
j=0

(logα)j

j! kj we get,

F(x)i+j−1 =
1

(α − 1)i+j−1 (−1)i+j+k−1
∞

∑
m,k=0

(
i + j − 1

k

)
(log α)m
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∞

∑
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(−1)t
(

m
t

)

exp

−at

{(
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x
β

)θ

− 1

}b
 (20)

Substituting equation (20) in equation (18), we get,

fi:n(x) =
f (x)

B(i, n − i + 1)
(log α)m km (at)s

m! αi+j−1

n−i

∑
j=0

∞

∑
m,k,t,s=0

(−1)i+j+k+t+s−1
(

n − i
j

) (
i + j − 1

k

)
(

m
t

) {(
1 +

x
β

)θ

− 1

}bs

(21)

4. Estimation

4.1. Maximum Likelihood Estimation

We consider the estimation of the unknown parameters of the APTWL distribution by the
maximum likelihood method. The maximum likelihood approach is the most commonly used
of the several parameter estimating techniques which have been validated in the literature. Let
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x1, x2, x3, ..., xn be a sample of size n from the APTWL distribution. The log likelihood (ll) function
is given by

ll = n log (
log α

α − 1
) + n log a + n log b + n log θ − n log β + (bθ − 1)

n

∑
i=1

log (1 +
x
β
) +

(b − 1)
n

∑
i=1

log
{

1 − (1 +
x
β
)−θ

}
+

n

∑
i=1

{
−a
(

1 +
x
β

)θ

− 1

}b

+

log α
n

∑
i=1

1 − exp

{
−a
(

1 +
x
β

)θ

− 1

}b
 · (22)

Differentiating ll with respect to each parameter a,b,α,β and θ and setting the result equals to
zero, we obtain maximum likelihood estimates (MLEs).

∂ll
∂a

=
n
a
−

n

∑
i=1

[
(1 +

x
β
)θ − 1

]b {
1 + log α e[−a(1+ x

β )−1]b
}
· (23)

∂ll
∂b

=
n
b

+ θ
n

∑
i=1

log(1 +
x
β
) +

n

∑
i=1
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{
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x
β
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}

− a
n

∑
i=1

{
(1 +

x
β
)θ − 1

}b
[

log
{
(1 +

x
β
)θ − 1

}
− log α e−a ∑n

i=1

{
(1+ x

β )
θ−1

}b
]
· (24)

∂ll
∂α

=
n

log α
α−1

1
α

+
n

∑
i=1

[
1 − log α e−a ∑n

i=1

{
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θ−1

}b
]

1
α

=
1
α

[
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log α
+

n
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i=1

(
1 − log α e−a ∑n
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θ−1
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) ]

· (25)

∂ll
∂β

= −n
β
− bθ − 1

β2
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i=1

x(
1 + x

β
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β2
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∑
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−θ−1{
1 −

(
1 + x

β

)−θ
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− abθ

β2

n

∑
i=1

{
−a
(
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β
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− 1
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1 +
x
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{

1 − log
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i=1

exp
(
−a(1 +

x
β
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}
· (26)

∂ll
∂θ

=
n
θ

+ b
n

∑
i=1

log(1 +
x
β
) + b − 1) θ

n

∑
i=1

(1 +
x
β
)θ log

{
(1 +

x
β
)θ

}

− a b
n

∑
i=1

{
(1 +

x
β
)θ − 1

}b−1
(1 +

x
β
)θ log(1 +

x
β
)

[
1 − log α e−a ∑n
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{
(1+ x

β )
θ−1

}b
]
· (27)

Solving equation (23),(24),(25),(26) and (27) by equating to zero, we can find the maximum
likelihood estimates of a,b,α, β and θ.

5. Simulation

In this section a small simulation study to illustrate the efficiency of the ML estimators
of APTWL distribution is given. We generate data from the APTWL distribution using the
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Table 1: Simulation study at a=2 , b=2 ,α = 2, β = 2, θ = 2

n Parameters Means Bias MSE

100

a=2 1.10565 0.89434 0.91377
b=2 2.39277 -0.39277 0.16138
l=2 1.02928 0.97071 0.94228

p =2 1.01551 1.01550 1.00138
t=2 1.29873 0.70126 0.49176

500

a=2 1.75194 0.24805 0.06152
b=2 2.38924 -0.38924 0.15151
l=2 1.21045 0.78954 0.62337

p =2 1.27939 0.72060 0.51926
t=2 1.38891 0.61109 0.47937

2000

a=2 2.17948 0.17948 0.03221
b=2 2.03179 -0.03179 0.00101
l=2 1.23165 0.76834 0.61244

p =2 2.39977 -0.39977 0.15982
t=2 2.35516 -0.35515 0.12613

Table 2: Simulation study at a=0.5 , b=0.5 ,α = 0.5, β = 0.5, θ = 0.5

n Parameters Means Bias MSE

100

a=0.5 0.81558 -0.31558 0.11254
b=0.5 0.60494 -0.10494 0.03801
l=0.5 2.87124 -2.37124 6.35831

p =0.5 0.13112 0.36887 0.13789
t=0.5 0.33607 0.16392 0.03643

500

a=0.5 0.75076 -0.25076 0.07087
b=0.5 0.55669 -0.05669 0.00539
l=0.5 2.49185 -1.99184 4.46373
p=0.5 0.14258 0.35741 0.13791
t=0.5 0.38565 0.11435 0.01722

2000

a=0.5 0.63824 -0.13824 0.04047
b=0.5 0.48755 0.01244 0.00071
l=0.5 2.42174 -1.92174 4.08359

p =0.5 0.24247 0.25752 0.08332
t=0.5 0.40056 0.09943 0.01081

quantile function given in Eq.(7).The behaviour of the parameters of the APTWL distribution
was investigated by conducting simulation studies with the aid of R software. Data sets were
generated from the APTWL distribution with a replication number m = 1000; random samples
of sizes n = 100, 500 and 2000 were further selected. The simulation was conducted for two
different cases using varying true parameter values. The selected true parameter values are
a = 2, b = 2, α = 2, β = 2, θ = 2 and a = 0.5, b = 0.5, α = 0.5, β = 0.5, θ = 0.5 for the first and
second cases respectively.

It can be understood from the table 1 and table 2 that mean square error (MSE) reduces for all
the selected parameter values as the sample size increases. Also bias reduces as the sample size
increases. Hence as sample size increases, the estimates tend towards the true parameter values.

6. Applications

In this study, three lifetime datasets are fitted to demonstrate the adaptability and usefulness
of the APTWL distribution. We have fitted the APTWL distribution to the dataset using MLE and
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compared the proposed APTWL distribution with Weibull Lomax distribution(WL), Exponenti-
ated Lomax distribution(EL), Gamma Lomax distribution(GL), Power Lomax distribution(PL)
and Weibull Power Lomax distribution(WPL). The Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) are the goodness of fit statistics that were employed to
compare the performances. AIC and BIC are computed as follows:

AIC = -2ll + 2k
BIC = -2ll + k log (n),

where ll is the log likelihood function, k is the parameter number and n is the sample size. We use
optim package in R to estimate parameters. Smaller values of the AIC and BIC statistics indicates
better model fittings.

6.1. First data set: Strengths of 1.5 cm glass fibres

The glass fibres data set analyzed by Smith and Naylor [18] was used for this comparison. The
data set originate from 63 observations of strengths of 1.5cm glass fibres primitively obtained by
workers at the UK National Physical Laboratory as reported by Bourguignon et al.[2]. The data
set is presented below:
0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42,
1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61,
1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81,
1.82, 1.84, 1.84, 2.00, 2.01, 2.24.

The parameter estimates values are shown in Table 3 and the performances of the APTWL
distribution with the other competing distributions are shown in Table 4.

Table 3: MLE for the strengths of 1.5 cm glass fibres

Distribution M.L.ESTIMATES
α β a b λ

APTWL 12.7181 2.7532 0.0147 2.1803 4.9414
WL 5.956 6.0375 0.17 3.5281 -
EL 0.0355 74.871 0.0355 - -
GL 18304.4 20.9077 1312.05 - -
PL 4.5151 16.196 - - 77.3271
WPL 62.1361 0.8587 0.019 1.65 63.7374

Table 4: AIC and BIC measures

Distribution -2loglik AIC BIC
APTWL -26.0325 36.03849 46.75417
WL -30.6798 38.6798 47.2524
EL -31.95475 69.9095 76.33891
GL -24.5296 55.05919 61.4886
PL -32.775 38.6151 39.0218
WPL -35.1032 36.48121 47.19688

Table 4 compare the APTWL model with the WL, EL, GL, PL and WPL models. We note
that the APTWL model gives the lowest values for the AIC and BIC values among all fitted
models. So, the APTWL model could be chosen as the best model.

Figure 5 shows the histogram of the data and the estimated pdfs for the fitted models. It
is obvious that the APTWL distribution fits the histogram better than the other distributions
suggesting that it might be the best model for the given set of data.
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Figure 5: Estimated pdfs for the first data set

6.2. Second data set: Remission times of bladder cancer patients

We consider a dataset corresponding to remission times (in months) of a random sample of 128
bladder cancer patients given in Lee and Wang [10]. The observations are as follows:
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57,
5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28,
9.74, 14.76, 6.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83,
34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01,
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62,
7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76,
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07,
3.36, 6.93, 8.65, 12.63, 22.69.

For data set 2, the parameter estimates values are shown in Table 5 and further discrepancy
criteria for the competing distributions are shown in Table 6.

Table 5: MLE for the remission times of 128 bladder cancer patients

Distribution
M.L.ESTIMATES

α β a b λ

APTWL 8.35054 5.78478 87.7104 1.22317 0.04308
WL 0.25661 1.57945 2.42151 1.86389 -
EL 4.5857 24.7414 1.5862 - -
GL 4.754 20.581 1.5858 - -
PL 2.07012 1.4276 - - 34.8626
WPL 62.1361 0.8587 0.0190 1.6500 63.7374
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Table 6: AIC and BIC measures

Distribution -2loglik AIC BIC
APTWL -406.8466 817.6932 823.3972
WL -410.811 829.622 841.03
EL -407.5037 821.0074 829.5635
GL -407.5165 821.0331 829.5891
PL -409.74 825.48 834.036
WPL -407.0033 824.0066 838.2667

The APTWL model is compared with the WL, EL, GL, PL and WPL models in Table 6. It is
evident that out of all the fitted models, the APTWL model provides the lowest values for the
AIC and BIC values. Thus the APTWL model may be selected as the optimal model.

The histogram of the data and the estimated pdfs for the fitted models are displayed in Figure
6. It is clear from Figure 6 that the APTWL distribution provides a better fit to the histogram and
therefore could be chosen as the best model for the data set.

Figure 6: Estimated pdfs for the second data set

6.3. Third data set: Breaking stress of carbon fibers

For the third data set, we consider the uncensored data which consist of 100 observations on
breaking stress of carbon fibers (in Gba) from Nichols et al. [15]. The data are:
3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9,
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56,
3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68,
1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,
1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89,
2.88, 2.82, 2.05, 3.65.

For data set 3, the parameter estimates values are shown in Table 7 and further discrepancy
criteria for the competing distributions are shown in Table 8.
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Table 7: MLE for the breaking stress of carbon fibers (in Gba)

Distribution
M.L.ESTIMATES

α β a b λ

APTWL 4.7392 0.1325 2.1899 5.4454 0.2104
WL 0.15361 2.57945 4.46252 0.56295 -
EL 8.9648 8.2838 14.2225 - -
GL 1.6499 6.1510 6.9435 - -
PL 1.6240 3.1692 - - 29.4556
WPL 0.6134 1.4387 1.2636 2.2953 2.5218

Table 8: AIC and BIC measures

Distribution -2loglik AIC BIC
APTWL “141.1817 292.3634 305.3892
WL -143.1656 294.7656 306.1296
EL -146.652 300.7922 308.6077
GL -143.6743 293.3486 301.1642
PL -144.0012 296.914 304.7295
WPL -141.3484 292.6968 305.7226

Figure 7: Estimated pdfs for the third data set

Table 8 compares the APTWL model with the WL, EL, GL, PL, and WPL models. It is clear
that the APTWL model provides the lowest values for the AIC and BIC values among all the
fitted models. As a result, the APTWL model might be chosen as the best one.

The histogram of the data and the estimated pdfs for the fitted models are displayed in Figure
7. Figures 7 affirm the results of the analysis that the APTWL distribution is more suitable for the
data than the other competing distributions.
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7. Conclusion

In this paper we introduced a new model called the Alpha Power Transformed Weibull-Lomax
(APTWL) distribution which has bathtub, decreasing, and increasing shapes for the hazard rate
function. We derived the structural characteristics of the new distribution including moments,
probability weighted moments, generating function and quantile function. Additionally, the
Renyi and q entropies are obtained. The APTWL distribution is statistically inferred with the
parameters estimated by maximum likelihood estimation. We use three real life datasets for
analysing the new model. The new model provides consistently a better fit than the other models
namely Weibull Lomax (WL) distribution, Exponentiated Lomax (EL) distribution, Gamma Lomax
(GL) distribution, Power Lomax (PL) distribution and Weibull Power Lomax (WPL) distribution.
The proposed model will attract wider application in areas such as engineering, survival and
lifetime data, economics (income inequality) and others.
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