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Abstract 

     Modern machines and equipment’s have a complex mechatronic structure consisting of 

various components, and their reliability depends on a large number of random factors that arise 

during design, production and operation, which are often impossible to predict. Each element of the 

modern machines is characterized by different performance criteria and corresponding failures. 

Various statistical models of failure distribution are widely used to quantify the reliability of machines 

and devices. The choice of a statistical model and its parameters is important for a proper assessment 

of reliability. The chosen statistical model should reflect the actual distribution of failures fairly 

correctly. In presented article is proposed a new failure distribution for reliability prediction of 

mechatronic components of modern machines and human-machine systems. A large number of 

sudden failures of modern complex technical facilities containing electronic and mechatronic 

structural elements seriously affect its λ-characteristic.  

      Various studies have already shown that the failure behavior of complex systems cannot always 

be characterized by the "bathtub curve". This is especially true for modern complex machines, which, 

among other things, consist of numerous electronic components for which no wear and fatigue 

failures are assumed. For this reason, an alternative service life distribution for the description failure 

behavior of modern mechatronic components and human-machine systems is proposed. This is about 

the failure curves, which are initially characterized by a low or high failure rate and then tend to a 

constant failure rate.  

      To determine the reliability indexes are provided analytical formulas. Methods for estimating the 

parameters of this distribution are presented based on failure statistic. To determine distribution 

parameters, statistical data on failures of the technical system are sufficient only in the first period of 

its operation. This is one of the main advantages of the presented distribution. On the example of 

practical cases, the hypothesis of compliance of the proposed theoretical distribution to the actual 

statistical data on failures of various mechatronic systems and human-machine system was tested. 

Keywords: failure distribution, reliability indexes, failure rate, mechatronic 
components, human-machine system  

I. Introduction

Modern machines and equipments have a complex mechatronic structure consisting of various 
components, and their reliability depends on a large number of random factors that arise during 
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design, production and operation, which are often impossible to predict. Each element of the modern 
machines is characterized by different performance criteria and corresponding failures. Various 
statistical models of failure distribution are widely used to quantify the reliability of machines and 
devices. The choice of a statistical model and its parameters is important for a proper assessment of 
reliability. The chosen statistical model should reflect the actual distribution of failures fairly 
correctly. Currently, dozens of different statistical models are used to assess the reliability of 
machines and their structural elements [1-6]. Each of the existing distribution has certain advantages 
and disadvantages. When choosing a statistical failure model for any technical system, it is necessary 
to take into account the operating conditions, the type and nature of failures, the design features of 
the unit, and other factors.  [1] it was proposed to use the Weibul distribution to assess the reliability 
of transmission mechanisms. However, the need for different price perception of the Weibul 
distribution parameters at different stages of operation creates certain difficulties in calculations.  
      The conducted research shows that the laws of dependence of failure rate on time in modern 
mechatronic systems and human-machine systems depend on many factors. A large number of 
sudden failures of modern complex technical facilities containing electronic and mechatronic 
structural elements seriously affect its λ-characteristic. 

II. Problem statement

The investigations show that the failure behavior according to Table 1, which are characteristic of 
complex machines and mechatronic components, occur most frequently in today's mechanical 
engineering [7]. Therefore, the description of these failure behavior by statistical distributions is of 
interest. The failure behavior according to the pattern "B" can of course be well described with the 
exponential distribution. The other two failure behavior, can in principle be described with the 
Weibull distribution, but with different parameters for the two ranges [1].  

Table 1: Failure behavior for random failures 

Failure behavior Overall 
Characteristic 

Ra
nd

om
 fa

ilu
re

s 

A 

complex 
machines with 
high-stress tests 
after 
commissioning 

B 

Well-designed 
complex 
machines 

C 

Electronic 
components and 
complex 
components after 
repair 

      For this reason, an alternative service life distribution for the description of the three above-
mentioned failure behavior types of modern mechatronic components and human-machine systems 
is proposed in the present work. The failure rate is described in the following form: 
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𝜆(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽𝑡],       (1) 
where λ - the failure rate in the range of random failures; α - the shape parameter characterizes the 
value of the failure rate at the beginning of the first range: 

𝛼 =
𝜆0

𝜆
.            (2) 

The parameter β describes the duration of the characteristic early failure time tf (Fig.1). It has been 
determined by calculations that by α=2 and λ=0,25 results β≈4/tf. As follows from the figure, by α=1 
results in exponential distribution that determines the failure behavior according to the pattern "B" 
(Tab. 1) describes. With the presented distribution, the failure behavior according to the patterns "A" 
(for 0<α<1) and "C" (for α>1) can be described very well. 
      If, in the case of a failure behavior, the failures begin only from a point in time t0, such a course 
can be described with a corresponding four-parameter distribution (Fig. 2). For the failure rate in 
this case, the following applies 

 𝜆(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽(𝑡−𝑡0)].            (3) 

Figure 1: Course of the failure rate in the three-parameter distribution 

Figure 2: Course of the failure rate in the four-parameter distribution 

III. Analytical determination of the remaining failure functions

By integration according to [1], the analytical formulas for the remaining failure functions of the 
three-parameter and four-parameter distribution (survival probability R (t), failure probability F (t) 
and density function f (t)) can be determined. Table 2 provides formulas for determining the failure 
functions of a three-parameter distribution. 
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Table 2: Analytical formulas for the failure functions of the three-parameter distribution 
Fa

ilu
re

 fu
nc

tio
ns

 

Failure rate   𝜆(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽𝑡] 

Survival 
probability 𝑅(𝑡) = exp(−∫𝜆(𝑡)𝑑𝑡

𝑡

0

) = exp [
𝜆

𝛽
(𝛼 − 1)(𝑒−𝛽𝑡 − 1) − 𝜆𝑡] 

Failure 
probability 

𝐹(𝑡) = 1 − 𝑅(𝑡) = 1 − exp [
𝜆

𝛽
(𝛼 − 1)(𝑒−𝛽𝑡 − 1) − 𝜆𝑡] 

Failure density 
function 

𝑓(𝑡) = 𝜆(𝑡) ⋅ 𝑅(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽𝑡] ⋅ exp [
𝜆

𝛽
(𝛼 − 1)(𝑒−𝛽𝑡 − 1) − 𝜆𝑡] 

     In Figure 3, the graphical curves of the distribution failure functions (survival probability R(t) and 
failure density function f(t)) for different shape parameters α are shown. As can be seen from the 
figure, different density functions can be generated with the presented lifetime distribution in 
contrast to the exponential distribution. Depending on the shape parameter α, the density function 
changes significantly. For α≥1, there is a decreasing density function, as with the exponential 
distribution. For α<1, the density function for decreasing α-values starts at lower failure densities, 
then reaches a steep maximum and finally falls flat.  
      Other statistical measures of the present distribution (mathematical expectation, variance, etc.) 
can only be calculated using numerical methods, since the resulting integral expressions cannot be 
solved analytically. A significant advantage of the illustrated distribution is that the parameters of 
the distribution can be determined by an incomplete test during the period of early failures. In this 
way, the testing effort of lifetime tests can be significantly reduced.  

Figure 3: Distribution failure functions 
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IV. Determination of the distribution parameters

The parameters of the distribution can be determined by lifetime tests or failure statistics for an order 
statistics for m test specimens of the size n. For the test specimens i under consideration of the size 
n, let the failure times, ordered according to their size be t1,i, t2,i, t3,i, ..., tk,i.... A value of the failure rate 
corresponds to each failure times. According to the definition of the failure rate, these can be 
determined in the following form[1]: 

   𝜆1,𝑖 =
1

𝑛⋅𝑡1,𝑖
,     𝜆2,𝑖 =

1

(𝑛−1)(𝑡2,𝑖−𝑡1,𝑖)
,..., 𝜆𝑘,𝑖 =

1

(𝑛−𝑘+1)(𝑡𝑘,𝑖−𝑡𝑘−1,𝑖)
,...        (4) 

For the entire order statistics, the average values of the failure times and failure rates can be 
determined according to the respective rank to: 

𝑡1 =
1

𝑚
∑ 𝑡1,𝑖

𝑚

𝑖=1
,  𝑡2 =

1

𝑚
∑ 𝑡2,𝑖

𝑚

𝑖=1
, ..., 𝑡𝑘 =

1

𝑚
∑ 𝑡𝑘,𝑖

𝑚

𝑖=1
,...      (5) 

𝜆1 =
1

𝑚
∑ 𝜆1,𝑖

𝑚

𝑖=1
,  𝜆2 =

1

𝑚
∑ 𝜆2,𝑖

𝑚

𝑖=1
,..., 𝜆𝑘 =

1

𝑚
∑ 𝜆𝑘,𝑖

𝑚

𝑖=1
 ,...         (6) 

      By entering the obtained pairs of values in the graph (Fig. 4), it is possible to assess in a first  
approximation whether the investigated failure behavior corresponds to the present distribution. 
The failure times tf is called the characteristic early failure time when the difference λ (tf) -λ (tf+1) is 
very small. Thus, we can approximately assume that the parameter λ≈λ(tf+1), and the failure rate 
tends to this value. The shape parameter α can be determined approximately in the following form: 

𝛼 =
𝜆0

𝜆
≈

𝜆(𝑡1)

𝜆(𝑡𝑓+1)
.  (7) 

In this case, it is assumed that the value of the failure rate at the beginning of the first range λ0 is 
equal to λ (t1). 

Figure 4: The graph for determining the distribution parameters 

      For the determination of the parameter β, formula (1) for the failure time t = tf is represented in 
the form: 

𝜆(𝑡𝑓) − 𝜆 = 𝜆(𝛼 − 1)𝑒−𝛽⋅𝑡𝑓 . (8)
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By logarithmizing, one obtains: 

 ln[𝜆(𝑡𝑓) − 𝜆] = ln[𝜆(𝛼 − 1)] − 𝛽 ⋅ 𝑡𝑓 .            (9) 

It follows from this 

𝛽 =
1

𝑡𝑓
ln

𝜆(𝛼−1)

𝜆(𝑡𝑓)−𝜆
.  (10) 

      Suppose that for α >1, the condition λ(tf)-λ=e-4·λ≈0,018 λ pays off at the time tf. Then, based on 
the expression (10), we get: 

𝛽 =
1

𝑡𝑓
(4 + ln(𝛼 − 1)).            (11) 

 By analogy, one can write for the case α < 1: 

𝛽 =
1

𝑡𝑓
(4 + ln(1 − 𝛼)).  (12) 

     The parameters of the distribution can also be determined by three pairs of values (tL,λL), (tM,λM), 
(tN,λN) (Figure 5). For this, the following system of equations must be solved: 

 {
𝜆[1 + (𝛼 − 1)𝑒−𝛽⋅𝑡𝐿] = 𝜆𝐿

𝜆[1 + (𝛼 − 1)𝑒−𝛽⋅𝑡𝑀] = 𝜆𝑀

𝜆[1 + (𝛼 − 1)𝑒−𝛽⋅𝑡𝑁] = 𝜆𝑁

     (13) 

Figure 5: Determination of distribution parameters based on three test results 

V. Application and evaluation

In order to evaluate the possibility of applying the proposed distribution, it is necessary to consider 
some practical cases.  
      In [8], the results of tests for the service lifetime of submersible electric motors of oil field 
equipment PED-32 and PED-45 were presented. The sample size was n=197 failures during 1548 
days of testing.  The class number was determined by the formula of Sturgess and after rounding it 
was taken K=8. Thus, the class length was taken h=193,5 days. Statistical data on failures were 
presented in Table 3. As can be seen from the table, the actual values of failure rates correspond to 
the case “A” of the proposed distribution (Tab. 1), since in the first period these values gradually 
increase, and then remain almost constant during normal operation. Only in the last period, the 
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failure rate increases sharply. This is due to the fact that by the end of the test period, the number of 
serviceable electric motors remains very small. This has little effect on the reliability of the electric 
motors in question during the first period and normal operation. Therefore, this difference can be 
ignored. 
      Based on the calculations of the distribution parameters using the formulas (7) and (12), the 
following results were obtained:  λ=0,003 day-1; α=0,3; β=0,012 day-1.  
      Figure 5 shows a histogram of the failure rate of a submersible electric motor of oilfield 
equipment based on test results and a curve of changes in the values of this parameter according to 
the present distribution. 
      The test of the hypothesis about the conformity of the present theoretical distribution to the actual 
statistical data on failures was carried out according to the χ2-Pearson criteria. According to [9], the 
measure of the discrepancy between the theoretical and empirical probability density functions can 
be determined by the expression below: 

   𝜒2 = ∑
(𝑛𝑖−𝑛𝑝𝑖)

2

𝑛𝑝𝑖
.8

𝑖=1         (14) 

Here pi is the theoretical probability of a random variable falling into each of the intervales. 

Table 3: Statistical data on failures of submersible electric motors 

N-r of
classes

Lifetime 
intervals, in 

days 

Number of 
failures, ni 

Number of operable 
motors in the middle of 

the interval, Ni 

Actual survival 
probability 

Ri=Ni/N 

Actual failure rate 
𝜆𝑖 =

𝑛𝑖
𝑁𝑖 ∙ ∆𝑡

1 

2 

3 

4 

5 

6 

7 

8 

0 – 193,5 

193,5- 387 

387- 580,5

580,5- 774 

774- 967,5

967,5- 1161 

1161- 1354,5 

1354,5- 1548 

58 

62 

34 

17 

12 

6 

4 

4 

168 

108 

60 

34 

20 

11 

6 

2 

0,85 

0,55 

0,31 

0,17 

0,1 

0,06 

0,03 

0,01 

0,0018 

0,003 

0,003 

0,0026 

0,0031 

0,0028 

0,0034 

0,01 

Total 197 

Figure 6: Histogram of the failure rate of the submersible electric motor according  to the 

test results and the curve of the values change according to the proposed distribution. 
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      The results of calculation based on the χ2-Pearson test were presented in Table 4. The critical value 
χα2 for the significance level α=0,80 and degrees of freedom m=K-1=8-1=7 is χα2=3,82 [9]. Since the 
calculated χ2=3,18 is less than χα2 at a high level of significance, we can safety conclude that the 
proposed distribution is well suited for describing the actual distribution of failures of the tested 
submersible electric motors of oilfield equipment.  

Table 4: The results of calculation based on the χ2 test for the summersible electric motors 

Nr. 
Lifetime, 

t, days 
Theoretical 

survival 
probability, R(t) 

Theoretical 
failure frequency 

pi=R(ti-1)-R(ti) 

Number 
of failures, 

ni 

(𝑛𝑖 − 𝑛 ∙ 𝑝𝑖)
2

𝑛 ∙ 𝑝𝑖

1 
2 
3 
4 
5 
6 
7 
8 
9 

0 
193,5 
387 

580,5 
774 

967,5 
1161 

1354,5 
1548 

1,0 
0,655 
0,372 
0,209 
0,117 
0,065 
0,037 
0,02 

0,005 

0,345 
0,283 
0,163 
0,092 
0,052 
0,028 
0,017 
0,015 

58 
62 
34 
17 
12 
6 
4 
4 

1,461 
0,70 

0,111 
0,070 
0,301 
0,042 
0,126 
0,369 

Total n=197 3,18 

      The following case from practice for the application of the present distribution realates to traffic-
related mortality. Statistical data on traffic-related mortality in Germany in 2002 show the 
dependency of the human failure rate on age as shown in Figure 7 [10]. Since the right to drive a car 
is allowed from the age 18, here you can take t0=18 year.  
      As can be seen from Figure 7, the traffic-related mortality at t=t0=18 year, is equal to λ0=0,00032 
dead/(year·person). Over time, due to increased experience of drivers, the mortality decreases and 
takes a constant minimum value – λ=0,000052 dead/(year·person). The parameter α is determined 
based on the formula (7): α=6,15.  For α >1, from the condition λ(tf)-λ=e-4·λ≈0,018 λ pays the time tf. 
Since λ(tf)≈1,018 λ=0,000053 dead/(year·person), according to the graph in Fig. 7, we get tf≈33 year. 
      Using the formula (12), the following value for β was obtained:  β=0,171 day-1. 

Figure 7: Traffic-related mortality in Germany in 2002 

     After determining all distribution parameters, it is possible to calculate other indexes of reliability 
of a man-machine system using present distribution. A graph of the human survival probability for 
this case is presented in Figure 8. 
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Figure 8: Traffic-related human survival probability on age 

VI. Conclusions

The presented new theoretical distribution can be applied to describe the failures of various modern 
mechatronic components and human-machine systems. Using the presented distribution, reliability 
prediction in many cases can produce more effective results. This model can also be applied to assess 
the reliability of the human-machine system. To determine distribution parameters, statistical data 
on failures of the technical system are sufficient only in the first period of its operation. This is one 
of the main advantages of the presented distribution. Using the example of practical cases, a 
hypothesis was tested on the conformity of the present distribution to the actual statistical data on 
failures of various technical systems. Based on the obtained positive results, we can conclude that 
the proposed distribution can be successfully applied to describe the actual distribution of failures 
and assess the reliability of various modern mechatronic machines and human-machine system. 
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