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Abstract 

This study proposes a new family of distributions. A study is done on some of its basic characteristics, 

such as quantile, skewness, kurtosis, hazard rate function, moments, mean deviations, availability and 

reliability function of successive linear and circular systems, mean time to failure, mean time between 

failure, and availability, Bonferroni and Lorenz curves, and entropies. Two unique models of the new 

family are studied in depth once the general class is introduced. The special basis models have been 

taken from the exponential and Fréchet distributions. The parameters of the model are estimated using 

maximum likelihood techniques. There is a thorough analysis of percentage points. Three unique real 

data sets are used to demonstrate the significance of the new family. A comparison is drawn between 

the suggested distribution family and well-known two-, three-, and four-parameter components. To 

model actual data, it can be used as an alternative model to various lifetime distributions found in the 

statistical literature. 

Keywords: G-family, Exponentiated model, percentage points, real-life data. 

I. Introduction

There are many attempts have been made to introduce new classes in the statistical literature. Several 
classes have been suggested in the statistical literature by adding one or more factors to construct new 
distributions. There has been growing interest in introducing and developing more flexible 
distributions like  

Table 1: Research contributions by various authors 

Contribution Author(s) Year of 
Published 

Weibull-G Bourguignon et. al. [7] 2014 
beta Marshall-Olkin family Alizadeh et. al. [2] 2015 
type I half-logistic family Cordeiro et.al. [9] 2016 
The Poisson-G Hamed & Ibrahim [16] 2017 
The generalized transmuted-G Nofal et.al. [23] 2017 
odd flexible Weibull-H El-Morshedy & Eliwa [13] 2019 
odd log-logistic Lindley-G Alizadeh et. al. [3] 2020 
Exponentiated odd Chen-G Eliwa et.al. [12] 2020 
Kumaraswamy Poisson-G Chakraborty et.al. [8] 2022 
Triangle-G Rahman, H. [25] 2024 
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The pdf and cdf of the Po-G family of distribution are 

𝑓𝑃𝑜−𝐺(𝑥, 𝜃, 𝜉) =
𝜃𝑔(𝑥,𝜉)

𝑒𝜃−1
exp[𝜃𝐺(𝑥, 𝜉)].      (1.1) 

𝐹𝑃𝑜−𝐺(𝑥, 𝜃, 𝜉) =
exp[𝜃𝐺(𝑥,𝜉)]−1

𝑒𝜃−1
.      (1.2) 

Where 𝑔(𝑥, 𝜉) and 𝐺(𝑥, 𝜉) are the baseline pdf and cdf depending on a parameter vector𝜉and 𝜃 > 0 is 
a shape parameter. Suppose x is a non-negative random variable that follows an Exponentiated 
distribution with the following pdf and cdf𝑓(𝑥)  and  𝐹(𝑥) respectively. 

   𝑔𝜆(𝑥) = 𝜆[𝐹(𝑥)]𝜆−1𝑓(𝑥).      (1.3) 
   𝐺𝜆(𝑥) = [𝐹(𝑥)]𝜆.      (1.4) 

The main goal of this study is to introduce and investigate a generalized family of probability 
distributions for data modelling with a limited number of parameters but a high degree of flexibility. 
The remainder of the essay is broken out as follows. We develop a very helpful form for the ExPo-G 
density function in Section 2. The quantile function (qf), moment generating function (mgf), entropies, 
and ordinary and incomplete moments are just a few of the general mathematical aspects of the 
proposed family that are included in Section 3. Section 3 investigates the maximum likelihood estimate 
of the model parameters. In Section 4, two unique models of this family are provided, along with some 
plots of their pdfs and hrfs. The results of the proposed models' percentage points are discussed in 
Section 5. Three applications to actual data sets are made in Section 6 to demonstrate the applicability 
of two unique models of the proposed family. In Section 7, some last observations are offered. 

II. Exponentiated Poisson-G family of Distribution

Let us suppose a random variable 𝑇 ∈ (𝑎, 𝑏) for −∞ ≤ 𝑎 < 𝑏 < ∞ having a probability density function 
(pdf) and 𝑊[𝐹(𝑥)]be a function of a cumulative distribution function of the random variable X which 
satisfies some statistical conditions such as𝑊[𝐹(𝑥)] ∈ (𝑎, 𝑏), 𝑊[𝐹(𝑥)] is differentiable and 
monotonically non-decreasing and 𝑊[𝐹(𝑥)] → 𝑎 as 𝑥 → −∞ and 𝑊[𝐹(𝑥)] → 𝑏as x → . 
Alzaatreh et al. (2013) defined the T-X family cdf by 

𝐺(𝑥) = ∫ 𝑦(𝑡)𝑑𝑡 = 𝑌{𝑊[𝐹(𝑥)]}
𝑊[𝐹(𝑥)]

𝑎
. 

Where 𝑊[𝐹(𝑥)] satisfied all the conditions. The corresponding pdf of the T-X family of distribution is 
𝑔(𝑥) = {

𝑑

𝑑𝑥
𝑊[𝐹(𝑥)]} 𝑦{𝑊[𝐹(𝑥)]}.

The distribution function of the Expo-G family of distribution is obtained by substituting (1.1) and 
(1.2) in (1.3) and (1.4). Thus, the pdf and cdf of the ExPo-G family of distribution are presented as 

       𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = 𝜃𝜆
1

(𝑒𝜃−1)
𝜆 𝑔(𝑥, 𝜉)exp[𝜃𝐺(𝑥, 𝜉)][exp(𝜃𝐺(𝑥, 𝜉)) − 1]

𝜆−1.         (2.1) 

𝐹𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = [
𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))−1

𝑒𝜃−1
]

𝜆

.         (2.2) 

Where 𝑔(𝑥, 𝜃, 𝜆, 𝜉)and𝐺(𝑥, 𝜃, 𝜆, 𝜉) are the baseline pdf and cdf depending on a parameter vector 𝜉and 
(𝜃, 𝜆) > 0 are shape parameters. Let us denote a random variable 𝑋 having a density function (2.1). 
The reliability function (rf), hazard rate function (hrf), and cumulative hazard rate function (chrf) of 
X  are, respectively, given by 

𝑅𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = [
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆

.          (2.3) 

ℎ𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) =
𝜃𝜆𝑔(𝑥,𝜉) 𝑒𝑥𝑝[𝜃𝐺(𝑥,𝜉)][𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))−1]

𝜆−1

(𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉)))
𝜆 .         (2.4) 

𝐻𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = − 𝑙𝑛 [
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆

.         (2.5) 
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III. Statistical Properties

I. Quantile function, Median, Bowley skewness and Moors kurtosis

Let us consider 𝑢~𝑈(0,1), the 𝑢𝑡ℎ quantile function of ExPo-G is defined as 𝑄(𝑢) the solution of 
𝐺(𝑄(𝑢)) = 𝑢; 𝑄(𝑢) > 0. The simplest form can be defined as 

𝑄(𝑢) = 𝐺−1 [
1

𝜃
𝑙𝑜𝑔 {1 + 𝑢

1

𝜆(𝑒𝜃 − 1)}].                   (3.1) 
where 𝐺−1 represents the baseline quantile function. The median of the ExPo-G family can be obtained 
by setting 𝑢 = 0.5. Studying the influence of the shape factors on the skewness and kurtosis using 

(3.1). The Bowley skewness and Moors kurtosis can be formulated as   𝐵 =
𝑄(

3

4
)+𝑄(

1

4
)−2𝑄(

1

2
)

𝑄(
3

4
)−𝑄(

1

4
)

  and 

𝑀 =
𝑄(

3

8
)−𝑄(

1

8
)+𝑄(

7

8
)−𝑄(

5

8
)

𝑄(
6

8
)−𝑄(

2

8
)

. 

II. Ordinary and Incomplete moments, Moment generating Function and Mean
Deviation

Let us consider a non-negative random variable𝑋~𝐸𝑥𝑃𝑜 − 𝐺, then the 𝑟𝑡ℎ moment of 𝑋 is defined as 
𝜇𝑟
′ and is written as  

   𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉)

∞

0
.         (3.2) 

Using the power series and the generalized binomial expansion, (2.1) can be developed as an infinite 
mixture of exponential-G (Exp−G) family as 

   𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) =
1

(𝑒𝜃−1)
𝜆 ∑ ∑

𝜆𝑗+1𝜃𝑘+1

(𝑗+1)!(𝑘+1)!

∞
𝑘=0

∞
𝑗=0 ℎ𝑗𝑘+1(𝑥). 

       𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 ℎ𝑗𝑘+1(𝑥).          (3.3) 

Where ℎ𝑗𝑘+1(𝑥) is the Ex-G family of distribution with power parameter 𝑗𝑘 + 1 and 

𝛺𝑗𝑘 =
𝜆𝑗+1𝜃𝑘+1

(𝑒𝜃−1)
𝜆

(𝑗+1)!(𝑘+1)!
. 

The 𝑟𝑡ℎ moment can be obtained by using (3.3) and is given by 
        𝜇𝑟

′ = 𝐸(𝑋𝑟) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 𝐸 (𝑍𝑟

𝑗𝑘+1(𝑥)).     (3.4) 
𝑍𝑗𝑘+1(𝑥) is the Ex-G family of distribution with power parameter 𝑗𝑘 + 1. 
The mean can be obtained by setting 𝑟 = 1 in (3.4). The 𝑖𝑡ℎ incomplete moment is defined as 𝐼(𝑥, 𝜃, 𝜆, 𝜉) 
and is given by 

𝐼(𝑥, 𝜃, 𝜆, 𝜉) = ∫ 𝑥𝑖𝑓(𝑥, 𝜃, 𝜆, 𝜉)
𝑡

−∞
𝑑𝑥. 

Using equation (3.3), we get 
  𝐼(𝑥, 𝜃, 𝜆, 𝜉) = ∑ ∑ 𝛺𝑗𝑘

∞
𝑘=0

∞
𝑗=0 ∫ 𝑥𝑖ℎ𝑗𝑘+1(𝑥)

𝑡

−∞
𝑑𝑥.         (3.5) 

The moment generating function is defined as ( )XM t and given by 

 𝑀𝑋(𝑡) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 𝑀𝑗𝑘+1(𝑡);    𝑀𝑗𝑘+1(𝑡) is the mgf of ℎ𝑗𝑘+1(𝑥). 

For a random variable ~X ExPo G− , the mean deviations about the mean and median can be written 
as follows 

𝜀1 = ∫ |𝑥 − 𝜇1
′ |

∞

0
𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉)𝑑𝑥 = 2𝜇1

′ 𝐹(𝜇1
′ ) − 2𝐼(1)(𝜇1

′ ) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 𝐻𝑗𝑘+1(𝑥). 

where ( )1jkH x+
is the first incomplete moment of Ex-G family. 

𝜀2 = ∫ |𝑥 − 𝑄(0.5)|
∞

0
𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉)𝑑𝑥 = 𝜇1

′ − 2𝐼(1)(𝑄(0.5)). 

III. Reliability function for parallel and series systems

Suppose for 𝑛 ∗ independent components, each component has the ExPo-G family, the reliability of 
the parallel system (P) is given by 
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𝑅𝑝(𝑥, 𝜃, 𝜆, 𝜉) = [
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆𝑛∗

. 

The reliability of the series system (S) is given by 

𝑅𝑠(𝑥, 𝜃, 𝜆, 𝜉) = [[
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆

]

𝑛∗

. 

IV. Mean time to failure (MTTF), mean time between failure (MTBF) and availability
(AvB)

If the MTBF is given as 
𝑀𝑇𝐵𝐹 =

−𝑥

𝑙𝑛(1−𝐺(𝑥,𝜃1,𝜆1,𝜉1))
;  𝑥 > 0. 

If 𝑋~𝐸𝑥𝑃𝑜 − 𝐺(𝜃2, 𝜆2, 𝜉2) then the MTTF is given as 
𝑀𝑇𝑇𝐹 = 𝐸(𝑋) = 𝜇1

′ |(𝜃2, 𝜆2, 𝜉2);  𝑥 > 0. 

The AvB is consider the probability that the component is successful at time x , i.e. 
𝐴𝑣𝐵 = 𝑀𝑇𝑇𝐹/𝑀𝑇𝐵𝐹 = −𝜇1

′ |(𝜃2, 𝜆2, 𝜉2)
𝑙𝑛(1−𝐺(𝑥,𝜃1,𝜆1,𝜉1))

𝑥
.

V. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves defined for a given probability 𝜋 is given by 
𝐵(𝜋) = 𝐼1(𝑞)/𝜋𝜇1

′  and 𝐿(𝜋) = 𝐼1(𝑞)/𝜇1
′ . 

Where 𝑞 = 𝑄(𝜋)is the quantile function of 𝑋at 𝜋. 

VI. Entropies

The Rényi entropy of a random variable 𝑋 represents a measure of variation of the uncertainty. The 
Rényi entropy is defined by 

ϒ𝛾(𝑥) =
1

1−𝛾
𝑙𝑜𝑔 ∫ 𝑔(𝑥)𝛾∞

−∞
𝑑𝑥;  0 < 𝛾 < 1. (3.6) 

Using equation (3.3) in (3.6), we get 
ϒ𝛾(𝑥) =

1

1−𝛾
𝑙𝑜𝑔[∑ ∑ 𝛹𝑗𝑘

∞
𝑘=0

∞
𝑗=0 ∫ ℎ𝑗𝑘+1(𝑥)𝑑𝑥

∞

−∞
]; 0 < 𝛾 < 1. 

Where 𝛹𝑗𝑘 =
(𝜆𝛾)𝑗(𝜃𝛾)𝑘

(𝑒𝜃−1)
𝜆𝛾

(𝑗+1)!(𝑘+1)!
. 

The Tsalli’s Entropy is denoted by 𝛵𝛾(𝑥)and given by 
𝛵𝛾(𝑥) =

1

1−𝛾
𝑙𝑜𝑔[1 − {∑ ∑ 𝛹𝑗𝑘

∞
𝑘=0

∞
𝑗=0 ∫ ℎ𝑗𝑘+1(𝑥)𝑑𝑥

∞

−∞
}]; 0 < 𝛾 < 1. 

VII. Parameter Estimation

Here, we determine the Maximum Likelihood Estimation method to estimate the parameters of the 
new family of distributions from complete samples only. Let 𝑋1, … , 𝑋𝑛be a random sample from the 
ExPo-G family with parameters (𝜃, 𝜆, 𝜉). Let (𝜃, 𝜆, 𝜉𝛵)𝛵be the (𝑝 × 1) parameter vector. Then, the log-
likelihood function for 𝛩, say 𝑙 = 𝑙(𝛩), is given by  

𝑛 𝑙𝑜𝑔 𝜃 + 𝑛 𝑙𝑜𝑔 𝜆 − 𝑛𝜆 𝑙𝑜𝑔(𝑒𝑥𝑝(𝜃) − 1)−(𝜆+1) + ∑ 𝑙𝑜𝑔 𝑔 (𝑥𝑖; 𝜃, 𝜆, 𝜉)

𝑛

𝑖=1

+𝜃 ∑ 𝐺(𝑥𝑖; 𝜃, 𝜆, 𝜉) + [𝜃 ∑ 𝐺(𝑥𝑖; 𝜃, 𝜆, 𝜉)𝑛
𝑖=1 − 1]𝜆−1𝑛

𝑖=1 .         (3.7) 
Equation (3.7) can be maximized either directly by using the R (optimum function Ox program (sub-
routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by differentiating (3.7). 
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The score vector components, say 𝑈(𝛩) =
𝜕𝑙

𝜕𝛩
= (

𝜕𝑙

𝜕𝜃
,

𝜕𝑙

𝜕𝜆
,

𝜕𝑙

𝜕𝜉
)

𝛵

= (𝑈𝜃, 𝑈𝜆, 𝑈𝜉)
𝛵. Setting the nonlinear

system of equations 𝑈(𝛩) = 0and solving them simultaneously yields the MLE 𝛩̂ = (𝜃̂, 𝜆̂, 𝜉) of 𝛩 =

(𝜃, 𝜆, 𝜉) . These equations cannot be solved analytically and statistical software can be used to solve 
them numerically using iterative methods such as the Newton-Raphson type algorithms. For interval 
estimation of the parameters, we obtain the 𝑝 × 𝑝 observed information matrix 𝐽(𝛩) = {

𝜕3𝑙

𝜕𝜃𝜕𝜆𝜕𝜉
} , whose 

elements can be computed numerically. Under standard regularity conditions when 𝑛 → ∞, the 
distribution of 𝛩̂ can be approximated by a multivariate normal 𝑁𝑝 (0, 𝐽(𝛩̂)

−1
)distribution to obtain

confidence intervals for the parameters. 

IV. Special ExPo-G models

I. The ExPo-Exponential distribution

Let us consider the pdf and cdf of Exponential distribution with positive parameter 𝛼. Then the pdf 
and cdfof ExPo-Exponential (ExPo-E) distribution is given by 
𝑓𝐸𝑥𝑃𝑜−𝐸(𝑥, 𝜃, 𝜆, 𝛼) =

𝛼𝜃𝜆

(𝑒𝜃−1)
𝜆 𝑒−𝛼𝑥 𝑒𝑥𝑝[𝜃(1 − 𝑒−𝛼𝑥)] [𝑒𝑥𝑝(𝜃(1 − 𝑒−𝛼𝑥)) − 1]

𝜆−1.         (4.1) 

𝐹𝐸𝑥𝑃𝑜−𝐸(𝑥, 𝜃, 𝜆, 𝛼) = [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛼𝑥)−1

𝑒𝜃−1
]

𝜆

.  (4.2) 
The reliability function is given by 

𝑅𝐸𝑥𝑃𝑜−𝐸(𝑥, 𝜃, 𝜆, 𝛼) = 1 − [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛼𝑥)−1

𝑒𝜃−1
]

𝜆

.         (4.3) 

 Figure 1: pdf, cdf, reliability and hrfplots of ExPo-E distribution 

Figure 1 showing the various shapes of the functions with the fluctuation of parameters values. The 
flexibility of fitting different datasets of the proposed distribution from the increasing or unimodal-
bathtub shape of hrf function. 
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II. The Expo-Frechet (ExPo-Fr) distribution

Let us consider the pdf and cdf of Frechet distribution with positive parameter 𝛼and 𝛽. Then the pdf, 
cdfand reliability function of ExPo-Frechet (ExPo-Fr) distribution is given by 

𝑓𝐸𝑥𝑃𝑜−𝐹𝑟(𝑥, 𝜃, 𝜆, 𝛼, 𝛽) =
𝛼𝛽𝜃𝜆

(𝑒𝜃−1)
𝜆 𝑥−(𝛼+1)𝑒−𝛽𝑥−𝛼 𝑒𝑥𝑝[𝜃(𝑒−𝛽𝑥−𝛼)] [𝑒𝑥𝑝 (𝜃(𝑒−𝛽𝑥−𝛼)) − 1]

𝜆−1

.    (4.4) 

𝐹𝐸𝑥𝑃𝑜−𝐹𝑟(𝑥, 𝜃, 𝜆, 𝛼, 𝛽) = [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛽𝑥−𝛼)−1

𝑒𝜃−1
]

𝜆

.  (4.5) 

𝑅𝐸𝑥𝑃𝑜−𝐹𝑟(𝑥, 𝜃, 𝜆, 𝛼, 𝛽) = 1 − [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛽𝑥−𝛼)−1

𝑒𝜃−1
]

𝜆

.   (4.6) 

Figure 2: pdf, cdf, reliability and hrf plots of ExPo-E distribution 

Figure 2 shows the various shapes of the functions with the fluctuation of parameters values. The 
flexibility of fitting different datasets of the proposed distribution from the increasing shape of hrf 
function. 

V. Percentage Points

A r.v.𝑋 is consider a continuous random variable by expecting random values in the interval (𝑎, 𝑏) i.e., 
𝑎 ≤ 𝑥 ≤ 𝑏or more specifically it can assume any value like integral or fraction between certain limits. 
The number of expecting values are uncertain and infinite and for this reason assigning probability to 
each number is impossible. Therefore, in a continuous probability distribution we assign probabilities 
to intervals and not to individual values. For a given probability distribution, the specific value which 

RT&A, No 1 (82) 
Volume 20, March 2025 

317



Habibah Rahman and Tanusree Deb Roy 
EXPONENTIATED POISSON-G FAMILY OF DISTRIBUTION: SUB-MODELS, 
PROPERTIES, ESTIMATION WITH REAL-LIFE APPLICATION 

a random variable 𝑋 exceeds with a definite probability is called the percentage point of the 
distribution. 
In this part, a discussion of the percentage points of the proposed models ExPo-E and ExPo-Fr has 
been attempted. Percentage points of the proposed distributions has been computed at a number of 
different significance levels for different values of the parameters. The calculations in manual are very 
complicated, so computer programming R has used to calculate the values.  

I. Percentage points of ExPo-E model

Suppose𝑥1, 𝑥2, . . . , 𝑥𝑛are n independent r.v. from ExPo-E with pdf and cdf mentioned in the equation (4.1) and 
(4.2). The 𝑝𝑡ℎpercentile equation of ExPo-Eis represented as 

𝐹𝑥(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑝. 
𝑥 = 𝐹−1(𝑝) = 𝑄(𝑝). 

𝑥 = −
1

𝛼
𝑙𝑜𝑔 [−

1

𝜃
𝑙𝑜𝑔 {𝑝

1

𝜆(𝑒𝜃 − 1)}].    (5.1) 
The percent point function of the ExPo-E does not exist in a simple closed form. The numeric 
computation is not possible in this case. We have used computer programming R to compute the 
different values for different points. Using the equation (5.1), we compute the percentage points of 
ExPo-E for 𝑝 = 0.01,0.05,0.25,0.50,0.75,0.90,0.95,0.99 which has been tabulated in table (2). The 
parameters are varying different the values to compute the p-table in different cases. 

II. Percentage points of ExPo-Fr model

Suppose𝑥1, 𝑥2, . . . , 𝑥𝑛are n independent r.v. from ExPo-Fr with pdf and cdf mentioned in the equation 
(4.4) and (4.5). The 𝑝𝑡ℎpercentile equation of ExPo-Fris represented as 

𝐹𝑥(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑝. 
𝑥 = 𝐹−1(𝑝) = 𝑄(𝑝). 

𝑥 = −
𝛼

𝛽
𝑙𝑜𝑔 [

1

𝜃
𝑙𝑜𝑔 {𝑝

1

𝜆(𝑒𝜃 − 1)} + 1].   (5.2) 

The percent point function of the ExPo-Fr does not exist in a simple closed form. The numeric 
computation is not possible in this case. We have used computer programming R to compute the 
different values for different points. Using the equation (5.2), we compute the percentage points of 
ExPo-E for 𝑝 = 0.01,0.05,0.25,0.50,0.75,0.90,0.95,0.99 which has been tabulated in table (2). The 
parameters are varying different the values to compute the p-table in different cases. 

Table 2: Percentage points of ExPo-E for different values of parameter 

𝒑 0.01 0.05 0.25 0.50 0.75 0.90 0.95 0.99 

𝝀 

0.1 -0.4923 -0.3615 -0.1381 0.0432 0.2311 0.3728 0.4304 0.4825 
0.2 -0.2737 -0.1455 0.0704 0.2410 0.4099 0.5293 0.5753 0.6154 
0.3 -0.1438 -0.0160 0.1987 0.3674 0.5334 0.6496 0.6940 0.7325 
0.4 -0.0490 0.0797 0.2974 0.4704 0.6433 0.7673 0.8155 0.8579 
0.5 0.0274 0.1584 0.3827 0.5655 0.7559 0.9007 0.9600 1.0140 


0.1 -11.005 -10.2102 -8.8709 -7.8134 -6.7661 -6.0257 -5.7406 -5.4920
0.2 -9.6189 -8.8239 -7.4846 -6.4271 -5.3798 -4.6394 -4.3543 -4.1057
0.3 -8.8080 -8.0130 -6.6737 -5.6161 -4.5689 -3.8285 -3.5433 -3.2947
0.4 -8.2326 -7.4376 -6.0983 -5.0408 -3.9936 -3.2531 -2.9680 -2.7194
0.5 -7.7863 -6.9913 -5.6520 -4.5945 -3.5473 -2.8068 -2.5217 -2.2731

0.5, 0.2 = =

3.1, 2.5 = =
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Table 3: Percentage points of ExPo-Fr for different values of parameter 

p 0.01 0.05 0.25 0.50 0.75 0.90 0.95 0.99 


1.0 2.2337 0.5666 -0.2034 -0.4426 -0.5667 -0.6193 -0.6346 -0.6461
1.1 1.2455 0.2368 -0.3608 -0.5593 -0.6644 -0.7093 -0.7224 -0.7323
1.2 0.7541 0.0179 -0.4736 -0.6440 -0.7354 -0.7748 -0.7863 -0.7950
1.3 0.4454 -0.1386 -0.5579 -0.7077 -0.7888 -0.8239 -0.8342 -0.8420
1.4 0.2298 -0.2563 -0.6229 -0.7568 -0.8299 -0.8617 -0.8710 -0.8781
1.5 0.0698 -0.3479 -0.6743 -0.7956 -0.8622 -0.8913 -0.8998 -0.9063
𝜷  

1.0 0.1399 0.1399 -0.0715 -0.0978 -0.1117 -0.1177 -0.1194 -0.1207
1.1 0.1272 0.1271 -0.0650 -0.0889 -0.1015 -0.1069 -0.1086 -0.1097
1.2 0.1166 0.1166 -0.0596 -0.0815 -0.0931 -0.0981 -0.0995 -0.1006
1.3 0.1076 0.1076 -0.0550 -0.0752 -0.0859 -0.0905 -0.0919 -0.0928
1.4 0.0999 0.0999 -0.0510 -0.0699 -0.0798 -0.0841 -0.0853 -0.0862
1.5 0.0933 0.0933 -0.0476 -0.0652 -0.0744 -0.0785 -0.0796 -0.0804

Percentage points of proposed distributions have been presented in Table 2 and 3. For chosen values 
of the parameters, different values of have been obtained at different significant levels using R-
Programme. From the tables of percentage points of these distributions; it is clear that for fixed values 
of 𝑝 = 0.01,0.05,0.25,0.50,0.75,0.90,0.95,0.99 and for fixed positive values of the parameters. From 
Table2, it is observed that percentage points increase as the parameter 𝜆 increases, decreases when the 
parameters 𝛼 and 𝛽 increases; for fixed positive values of other two parameters. From Table 3, it is 
observed that percentage points decreases when the value of parameter 𝛼, 𝛽, 𝜃, 𝜆 increases; for fixed 
positive values of other parameters.  

VI. Data Analysis

This section goes over the empirical significance of using an application to complete real data with the 
ExPo-G model. The competitive distributions' best-fitting capabilities are determined using specific 
analytical metrics. To choose the most suited ones, the values of the Akaike Information Criterion 
(AIC), Hannan-Quinn Information Criterion (HQIC), Corrected Akaike Information Criterion (CAIC), 
and Bayesian Information Criterion (BIC) were employed. Other goodness-of-fit tests, such as the 
Cramer-von Mises (W) distance value test, the Kolmogorov-Smirnov (K-S) statistic with 
accompanying p values, and the loglikelihood function, are also recorded in addition to discriminating 
tests. The AIC, BIC, CAIC, and HQIC values as well as the W and K-S tests are all lowest for the 
optimal model. To compare the competitive distributions, the model with the highest p values for the 
K-S statistics is used. Three data sets have been taken into consideration.
Data Set 1: Bjerkedal (1960) observed and recorded the survival times (in days) of 72 guinea pigs who
were infected with virulent tubercle bacilli.

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 
1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 
1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 
2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55. 

Data sets-1 have considered fitting Expo-E with other some models like exponential (Exp), moment 
exponential (ME), Marshall-Olkin exponential (MO-E), generalized Marshall-Olkin exponential 
(GMO-E), Kumaraswamy exponential (Kw-E), Beta exponential (BE), Marshall-Olkin Kumaraswamy 
exponential (MOKw-E) and Kumaraswamy Marshall-Olkin exponential (KwMO-E) distributions and 
Beta Poisson-Exponential (BP-E). 

1.5, 1, 3.5  = = =

0.2, 1.5, 2.3  = = =
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Data Set 2: Eliwa et al (2022) recorded 101 observations of the fatigue time of 101 6061-T6 aluminium 
coupons cut parallel to the direction of rolling and oscillates at 18 cycles per second (cps). 
5 ,25, 31, 32, 34, 35, 38, 39, 39, 40, 42, 43, 43,43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55,55, 56, 56, 56, 
58, 59, 59, 59, 59, 59, 63, 63, 64,64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68,69, 69, 69, 69, 71, 71, 72, 73,73, 
73, 74, 74, 76,76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81, 83, 83,84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97,98, 
98, 99, 101, 103, 105, 109, 136, 147. 

Data sets 3 have considered fitting Expo-Frdistribution with some competitive models like EoCh Fr, 
odd Chen Fr (OChFr), Type I generalized exponential Fr (TIGEFr), odd flexible Weibull Fr (OFWFr), 
Topp-Leaon Fr (ToLeFr), exponentiated Gompertz Fr (EGoFr), exponentiated transmuted Fr (ETrFr), 
transmuted Fr (TrFr), Gumbel Fr (GuFr), exponentiated Fr (EFr) and Fr. 

Table 4: MLEs and standard errors values for data set 1 

Models ML Estimator 
̂ ̂ ̂ ̂

EXPo-E( , ,   ) 3.100(2.647) 0.210 (0.023) 0.100(0.002) - 
BP-E( , , ,    ) 3.595 (1.031) 1.482(0.516) 0.014(0.010) 0.724(1.590) 

KwMo-E( , , ,    ) 0.373(0.136) 0.299(1.112) 3.478(0.861) 3.306(0.779) 
MOKw-E( , , ,    ) 0.008 (0.002) 0.099 (0.048) 2.716 (1.316) 1.986 (0.784) 

B-E( , ,   ) 0.807(0.696) 1.331(0.855) 3.461(1.003) - 
Kw-E( , ,   ) 3.304(1.106) 1.037(0.764) 1.100(0.614) - 

GMO-E( , ,   ) 47.635 (44.901) 4.465(1.327) 0.179(0.070) - 
MO-E( ,  ) 8.778(3.555) 1.379(0.193) - - 

ME( ) 0.925 (0.077) - - - 
Exp( ) 0.540(0.063) - - - 

Table 5: Log-likelihood, AIC, BIC, CAIC, HQIC, W and KS (p-value) values data set 1 

Models 2L− AIC CAIC BIC HQIC *W K S− p value−

EXPo-E(

, ,   ) 
141.52 147.52 147.87 154.35 151.12 0.17 0.03 1.00 

BP-E(

, , ,    ) 

199.42 205.42 206.02 214.50 209.02 0.08 0.09 0.81 

KwMo-E (

, , ,    ) 

201.82 207.82 208.42 216.94 211.42 0.11 0.08 0.73 

MOKw-E(

, , ,    ) 

203.44 209.44 210.04 218.56 213.04 0.12 0.10 0.44 

B-E( , ,   ) 201.38 207.38 207.73 214.22 210.08 0.15 0.11 0.34 
Kw-E(

, ,   ) 

203.42 209.42 209.77 216.24 212.12 0.11 0.08 0.50 

GMO-E(

, ,   ) 

204.54 210.54 210.89 217.38 213.24 0.16 0.09 0.51 

MO-E( ,  ) 204.36 210.36 210.53 214.92 212.16 0.17 0.10 0.43 
ME( ) 204.4 210.40 210.45 212.68 211.30 0.25 0.14 0.13 
Exp( ) 228.63 234.63 234.68 236.91 235.54 1.25 0.27 0.06 
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Table 6:  MLEs and confidence intervals values for data set 2 

Models ML Estimator 
𝛼̂ 𝛽̂ 𝜆̂ 𝜃̂ 𝛾̂ 

EXPo-Fr( , , ,    ) 0.187(0.019) 0.054(0.005) 0.100 (0.214) 0.100(0.025) - 
EOChFr(

, , , ,     ) 

0.019 0.257 1.822 4.223 11.500 

OChFr( , , ,    ) 49.633 0.629 1.588 444.284 - 
TIGEFr( , , ,    ) 16648.994 74.474 5.057 7.531 - 
OFWFr( , , ,    ) 9.310 0.380 0.736 312.686 - 
ToLeFr( , , ,    ) 35.077 0.783 4.088 59.691 - 

EGoFr( , , , ,     ) 0.013 0.647 1.807 1.158 127.896 
TrFr( , ,   ) 1.00 - 3.980 136.952 - 

GuFr( , , ,    ) 1.968 0.029 0.107 3.457 - 
EFr( , ,   ) - 73.221 5.057 51.679 - 

Fr( ,  ) 5.057 120.782 - - - 

Table 7: Log-likelihood, AIC, BIC, CAIC, HQIC, W and KS (p-value) values for the fatigue time of 101 6061-T6 

aluminium coupons data set 2 

Tables 4,5,6 and 7 represent the MLEs with standard errors of the parameters for all the fitted models 
along with their AIC, BIC, CAIC, HQIC, A, W and KS statistic with p-value from the fitting results of 
the data sets 4,5 and 6 are presented respectively. The proposed model Expo-E is found to be a better 
model on the basis of the lowest value different criteria like AIC, BIC, CAIC, HQIC, W and the highest 
p-value of the KS statistics compared to other introduced models like models Exp, ME, MO-E, GMO-
E, Kw-E, BE, MOKw-E, KwMO-E and BP-E considered data set 1.The proposed model Expo-fr is

Models −𝟐𝑳 𝑨𝑰𝑪 𝑪𝑨𝑰𝑪 𝑩𝑰𝑪 𝑯𝑸𝑰𝑪 𝑾 ∗ 𝑲 − 𝑺 𝒑
− 𝒗𝒂𝒍𝒖𝒆

EXPo-Fr(

, , ,    ) 
753.24 761.24 761.49 771.66 753.96 0.07 0.027 0.98 

EOChFr(

, , , ,     ) 

912.18 920.18 920.43 930.60 912.9 0.08 0.065 0.786 

OChFr( , , ,    ) 912.64 920.64 920.89 931.06 913.36 0.07 0.068 0.732 
TIGEFr( , , ,   

) 

950.38 958.38 958.63 968.80 951.1 0.07 0.133 0.057 

OFWFr( , , ,   

) 

919.38 927.38 927.63 937.80 920.1 0.15 0.090 0.383 

ToLeFr( , , ,   

) 

932.70 940.70 940.95 951.12 933.42 0.18 0.121 0.102 

EGoFr(

, , , ,     ) 

922.60 930.60 930.85 941.02 923.32 0.20 0.107 0.198 

TrFr( , ,   ) 932.82 940.82 941.07 951.24 933.54 0.20 0.120 0.105 
GuFr( , , ,    ) 951.46 959.46 959.71 969.88 952.18 0.25 0.135 0.050 

EFr( , ,   ) 950.36 958.36 958.61 968.78 951.08 0.27 0.133 0.056 
Fr( ,  ) 950.36 958.36 958.61 968.78 951.08 0.27 0.133 0.056 
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found to be a better model on the basis of the lowest value different criteria like AIC, BIC, CAIC, 
HQIC, W and the highest p-value of the KS statistics compared to other introduced models like 
modelsEoCh Fr, odd Chen Fr (OChFr), Type I generalized exponential Fr (TIGEFr), odd flexible 
Weibull Fr (OFWFr), Topp-Leaon Fr (ToLeFr), exponentiated Gompertz Fr (EGoFr), exponentiated 
transmuted Fr (ETrFr), transmuted Fr (TrFr), Gumbel Fr (GuFr), exponentiated Fr (EFr) and Fr 
considered data set 2. 

VII. Conclusion

In this article, we propose and study the family of exponentiated Poisson-G distributions (ExPo-G). 
The main advantage of the ExPo-G family is that practitioners will have a one-parameter class flexible 
enough to adapt to real data in applied fields. It can be a good alternative to other four parameter 
families infected with one, two or three parameters. In some real-world circumstances, nevertheless, 
it might also outperform other kinds of distributions in terms of model fit, albeit this is not always 
assured. Additionally, a thorough explanation of several of its mathematical features is given. We 
demonstrate empirically that the ExPo-G family's unique models can offer a better match than other 
models produced by the aforementioned classes. 
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