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Abstract 

In many applications of multivariate statistical quality control, it is commonly observed that the 

number of quality characteristics exceeds the sample size. This poses significant challenges in 

monitoring high-dimensional data. In such conditions, it is challenging to detect sparse changes 

where an assignable cause leads to the deviation of only a few elements in the covariance matrix. On 

the other hand, the utilization of the multiple dependent state (MDS) sampling technique to 

enhance the sensitivity of control charts has recently attracted the attention of researchers. 

However, to the best of the authors' knowledge, no previous research has been conducted on 

equipping multivariate dispersion control charting methods with the MDS technique under high 

dimensionality. Therefore, this article integrates the adaptive thresholding Lasso statistic with the 

MDS and generalized MDS techniques to track all types of disturbances in the covariance matrix of 

high-dimensional processes, including diagonal, off-diagonal, and joint diagonal/off-diagonal 

deviations. The performance of the proposed control charts will be compared through a numerical 

example under seven out-of-control patterns in terms of three metrics: average, standard deviation, 

and median of run length. The results clearly indicate that the use of both sampling techniques 

significantly improves the run length properties of the adaptive thresholding Lasso chart. 

Keywords: Adaptive thresholding Lasso control chart; High dimensional 
process; Multiple dependent state sampling; Run length; Covariance matrix. 

I. Introduction

In recent years, increasing customer expectations and technological advancements have resulted in 
the development of new production processes that require monitoring numerous quality 
characteristics. In this context, we can mention imaging processes and multi-stage production 
processes. Conventional multivariate control charts lose their sensitivity to process changes as the 
number of quality characteristics under study increases. This challenge becomes more significant 
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when only a limited number of variables are affected by assignable causes [1]. Therefore, in recent 
years, significant efforts have been devoted to monitoring high-dimensional data, where the 
number of quality characteristics exceeds the sample size. One effective strategy for monitoring 
high-dimensional processes involves implementing control charts based on variable selection 
approach. This method involves identifying a small subset of variables that may deviate from their 
nominal value and subsequently conducting the monitoring process using this subset. In this 
connection, Abdella et al. [2] developed a multivariate cumulative sum (MCUSUM) chart using a 
variable selection approach for the quick detection of small mean disturbances in high-dimensional 
process monitoring. Sangahn [3] integrated the deviance residual-based multivariate exponentially 
weighted moving average statistic with a variable selection procedure for Phase II monitoring of 
high-dimensional multistage processes. Zhang et al. [4] proposed a sensitized variable selection-
based control charting method that utilizes a classification algorithm for Phase II monitoring of 
high-dimensional industrial process. 

Although variable selection-based control charts have significant advantages for monitoring 
high-dimensional processes under sparse conditions, they face challenges in identifying suspicious 
variables. The efficacy of this control chart is significantly reduced when the suspicious variables 
are not accurately identified. Specifically, when the shift magnitude in process parameters is small, 
these monitoring schemes lose their effectiveness because they fail to accurately identify all the 
variables responsible for the deviation in the selected set. As one of the most effective alternative 
methods for monitoring the dispersion of high-dimensional processes, the adaptive thresholding 
Lasso control chart has gained significant attention from researchers in recent years. In this 
monitoring procedure, the first step involves calculating the difference matrix through the 
subtraction of the sample covariance from its corresponding target matrix. Then, according to the 
sparsity assumption, only the values of the difference matrix that exceed a certain threshold value 
are taken into consideration. In other words, any elements in the difference matrix that are smaller 
than the threshold value are considered to be equal to zero. Interested readers can refer to 
important references, such as [5], [6], [7], [8], and [9], for more comprehensive details regarding the 
adaptive thresholding LASSO control chart. 

On the other hand, the performance of control charts significantly depends on the sampling 
strategy used to collect process observations. This issue becomes even more crucial in situations 
where any delay in identifying process disturbances, regardless of shift magnitude, results in 
substantial costs for the production system. In this context, researchers have recently been focusing 
on new sampling strategies, such as double sampling, ranked set sampling [10], repetitive 
sampling [11], and multiple dependent state sampling [12], to enhance the power of various 
control charts. Recently, the multiple dependent state (MDS) sampling strategy has been 
successfully utilized to enhance the diagnostic capability of control charts. In this regard, Arshad et 
al. [13] equipped a variability control charting mechanism based on sample variance statistic to 
MDS sampling strategy in order to improve the detection of increased variance shifts. Aiming to 
achieve rapid detection of small mean deviations, Naveed et al. [14] have developed a modified 
version of the exponentially weighted moving average (EWMA) control chart that utilizes MDS 
strategy. Aslam et al. [15] designed an enhanced version of the X  control chart based on the 
generalized multiple dependent state (GMDS) sampling for rapid detection of small mean 
deviations. Rao et al. [16] studied the efficiency of the GMDS sampling technique in improving the 
detectability of the coefficient of variation (CV) control chart. Please refer to [17] and [18] for 
additional information on MDS-based control charts. 

The high dispersion of the quality characteristics under investigation will lead to an increase 
in the production rate of non-conforming products, thereby resulting in an increase in quality loss 
costs. In many manufacturing environments, product fluctuations often increase due to various 
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factors, including changes in raw materials, machinery depreciation, operator mistakes, 
environmental factors, and insufficient calibration of measuring equipment calibration. If these 
factors are not promptly identified and eliminated, the costs imposed on the system due to the 
production of non-conforming products will increase greatly. According to the mentioned cases, 
monitoring the covariance matrix in multivariable production processes is of great importance for 
maintaining product quality in both industrial and service environments. In recent years, 
researchers such as [19] and [20] have dedicated their attention to tracing the deviations of the 
covariance matrix. Most covariance matrix monitoring control charts are commonly designed with 
the assumption that the sample size exceeds the problem dimension or the number of quality 
characteristics. However, this assumption does not hold true in numerous statistical quality control 
applications. Fortunately, there have been recent efforts to monitor the scatter matrix of high-
dimensional data. In this context, Kim et al. [21] developed a covariance matrix monitoring scheme 
based on a ridge penalized likelihood ratio statistic for the identification of general disturbances, 
without the need for sparsity assumption. A monitoring scheme for Phase I monitoring of high-
dimensional variability matrices, utilizing the sparse-leading-eigenvalue statistic was developed 
by [22]. Safikhani et al. [23] employed an additive covariate model to examine how imprecise 
observations affect the effectiveness of the ridge penalized likelihood ratio chart in Phase II 
monitoring of high-dimensional process dispersion. As far as we know, the MDS sampling 
technique has mainly been used in control charts to monitor univariate processes. Therefore, due 
to the appropriate performance of the MDS method in improving the sensitivity of control charts. 
Therefore, this paper aims to utilize the MDS and GMDS sampling methods for Phase II 
monitoring of high-dimensional process dispersion, as they have been shown to improve the 
sensitivity of control charts. Specifically, in this article two adaptive thresholding Lasso-based 
control charting schemes named MDS-ATL and GMDS-ATL are presented to identify the 
covariance matrix disturbances under high-dimensionality. 

The structure of this article is organized as: Section 2 describes the adaptive thresholding 
Lasso control chart, which is used to detect covariance matrix disturbances in high-dimensional 
processes. Two variability control charts are developed by integrating the adaptive thresholding 
Lasso statistic with the multiple dependent state and generalized multiple dependent state 
sampling strategies in Section 3. In Section 4, firstly, seven out-of-control scenarios for the 
covariance matrix are defined, based on three patterns: diagonal, off-diagonal, and joint 
diagonal/off-diagonal patterns. We then conduct extensive simulation studies to demonstrate the 
effectiveness of the MDS and GMDS sampling strategies in enhancing the sensitivity of the 
adaptive thresholding Lasso control chart. Section 5 is devoted to the conclusion and 
recommendations for future research. 

II. Adaptive thresholding Lasso monitoring scheme

In this section, we discuss the adaptive thresholding Lasso control chart as an efficient 
approach in monitoring the dispersion of high-dimensional processes. This control chart has the 
ability to detect covariance matrix disturbances across all three categories: diagonal, non-diagonal, 
and diagonal-non-diagonal deviations. In this regard, Table 1 presents the indices, distribution 
parameters, sample parameters, and chart parameters employed in the development of the 
adaptive thresholding Lasso chart along with its improved versions based on MDS and GMDS 
sampling strategies. 

RT&A, No 1 (82) 
Volume 20, March 2025 

326



Hajiesmaeili, M., Maleki. M. R., Salmasnia, A. 
IMPROVED ADAPTIVE THRESHOLDING LASSO CHART 

Table 1. Notations 

Indices Description 

t Index of sample  

i Index of observation 

,j k Indices of quality characteristics 

Distribution parameters 

jy Quality characteristic j

tY The matrix of observations obtained in the tht  sample 

tiy The column vector of quality characteristics in the thi  observation of the tht

sample
tijy The value of the 

thj quality characteristic in the thi  observation of the tht sample
p Process dimension 

icμ Target mean vector 
j Target mean parameter of the 

thj quality characteristic
icΣ Target covariance matrix 

2
j Target variance of the 

thj  quality characteristic 

jk Target covariance of quality characteristics j  and k

jk Threshold value for the covariance between quality characteristics j  and k

jk Variance of ,
ˆ
t jkd

ocΣ Off-target covariance matrix 

Ψ The matrix of shift magnitudes within the covariance matrix 

Sample parameters 

ty Sample mean vector at the 
tht  sample. 

tS Sample covariance matrix at the 
tht sample 

2
tjS Sample variance of quality characteristic j  at the 

tht sample 

,t jkS Sample covariance of quality characteristics j  and k  at the 
tht sample 

tD Difference matrix at the 
tht  sample 

ˆ
tD Shrinkage difference matrix at the 

tht  sample 

,t jkd The component of matrix tD  at row j  and column k

,t jkd The component of matrix ˆ tD at row j and column k

tATL Adaptive thresholding LASSO statistic at the 
tht  sample 

Chart/Other parameters 
 Probability of type I error 
n Sample size 
 Regularization parameter 
 Shrinkage parameter 
r Number of additional samples taken 
q Minimum number of additional samples 

UCL Control limit of adaptive thresholding LASSO chart 

innerUCL Inner control limit of the proposed MDS- based adaptive thresholding LASSO charts 

outerUCL Outer control limit of the proposed MDS- based adaptive thresholding LASSO charts 

icARL In-control average run length 

 The time of occurring an assignable cause of deviation 
T The time of alerting an out-of-control signal by the control chart 

( )a + Operator for converting negative values to zero 
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Consider a process in which a product manufacturer or service provider is interested in 
concurrently monitoring p correlated quality characteristics 

1 2, ,..., py y y which all follow a 

normal distribution. In this case, the observations obtained in the 
tht sample are described by the 

matrix 1 2( , ,..., )
t tt t t tn p n=Y y y y , where ( )1 2, ,..., ; 1,..., , 1,...,

T

ti ti ti tip ty y y t T i n= = =y . In addition, tn

denotes the number of observations at the tht  sample, while T indicates the point at which the out-
of-control signal is issued. In this thesis, it is assumed, in accordance with the convention of 
statistical quality control, that the number of observations in each subgroup remains constant and 
equal to n between consecutive samples. Furthermore, it is presumed in this study that the 
observations within a sample are independent from each other. In other words, the columns of the 
observation matrix tY , denoted as 1 2, ,...,t t tny y y , are considered to be independent. The mean

vector and covariance matrix of the study quality characteristics are defined by Equations (1) and 
(2), respectively, when the process is statistically in-control. 

( )1 2, ,...,
T

ic p  =μ (1) 

2
1 12 1

2
21 2 2

2
1 2

p

p
ic

p p p

  

  

  

 
 
 

=  
 
 
 

Σ (2) 

Since the purpose of adaptive thresholding Lasso control chart is to identify variations in the 
covariance matrix in high-dimensional processes, the mean vector is considered to remain constant 
throughout each production cycle, and the assignable cause solely affects the elements of the 
covariance matrix. In other words, when an assignable cause occurs at time  , the covariance 
matrix of random vectors ; 1, 2,..., ; 1,...,ti t T i n = + + =y  changes from icΣ  to oc ic= +Σ Σ Ψ , while

the mean vector remains constant at icμ . The adaptive thresholding Lasso control chart is

designed to compare the sample covariance matrix in each sample with its target matrix. In other 
words, this monitoring procedure conducts the following hypothesis test: 

0

1

:

:

ic p p

ic p p

H

H





− =

− 

Σ Σ 0

Σ Σ 0 (3) 

To test hypothesis (3) using the adaptive thresholding Lasso method, the difference matrix is 

calculated based on the difference between the sample and target covariance matrices as: 
t t ic= −D S Σ (4) 

By calculating the sample mean vector of the 
tht subgroup as 

1

1 n

t ti

in =

= y y , we can obtain the 

sample covariance matrix as follows: 

( )( )

2
1 ,12 ,1

2
,21 2 ,2

1

2
, 1 , 2

1

1

t t t p

n
Tt t t p

t ti t ti t

i

t p t p tp

S S S

S S S

n

S S S

=

 
 
 

= = − − 
− 

 
 

S y y y y (5) 

It is evident that the probability of rejecting the null hypothesis increases as the distance between 

the elements of matrix tD increases from zero. Since tY is a random matrix, the components of

the difference matrix exhibit slight deviations from their nominal values even when the covariance 
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matrix remains stable. Therefore, according to [5], ˆ tD is defined by setting a threshold value based

on Equation (6) such that the respective values of the in-control components are equal to zero. 

( ), , ,1 ; , 1,...,t jk t jk jk t jkd d d j k p



+

= − = (6) 

In Equation (6), the output of the operator ( ).
+
 is equal to 1

jk

jkd




−  when jk jkd


  is less than 1; 

otherwise the output will be zero. Moreover,   is a predetermined constant parameter that 

determines the amount of shrinkage, while jk represents an specified threshold which is

calculated as follows. 
logjk

jk

p

n


 = (7) 

In Equation (7),   is a non-negative constant known as the regularization parameter, while jk

represents the variance of ,
ˆ
t jkd which is calculated in terms of the components of icΣ as: 

2 2 2
,( )t jk j k jkVar d   = + (8) 

In Equation (8), 2
j and 

2
k  denote the variances of variables j  and k , respectively, whereas 

jk

represents the covariance between them. Accordingly, the value of the component in the 
thj row 

and 
thk column of the shrinkage difference matrix at the 

tht  sample can be rewritten as: 

( )2 2 2 1

, ,

,

log
1 ; , 1,...,

j k jk

t jk t jk

t jk

n p
d d j k p

d



    −

+

 
+ 

= − = 
  
 

(9) 

Finally, the adaptive thresholding Lasso chart statistic for the 
tht  sample based on ,

ˆ
t jkd and jk

is calculated according to Equation (10). 
2
,1

1 1

p p t jk

t k l
jk

d
ATL n



−

= =

 
 =
 
 

  (10) 

The ideal value of tATL is zero, and as the sample covariance matrix deviates further from icΣ , 

the chart statistic increases. As can be observed, each component in Equation (10) is a positive 
value, and therefore the adaptive thresholding Lasso control chart only has an upper control limit, 
denoted by UCL . In this study, the value of UCL  is determined through 10,000 iterations of Monte 
Carlo simulation to ensure that the in-control average run length ( icARL ) of the chart is equal to a 

predetermined value of 
1


. 

III. Proposed MDS-ATL and GMDS-ATL control charting methods

One of the key factors that significantly affects the control chart's ability to detect various 
shifts in the distribution parameters is the sampling methodology that is employed. This section 
presents two monitoring approaches, namely MDS-ATL and GMDS-ATL to enhance the 
detectability of the adaptive thresholding Lasso control chart for high-dimensional process 
monitoring based on MDS and GMDS sampling strategies. In the proposed control charting 
methods, the control limit interval is partitioned into three zones of safety, warning, and rejection 
as follows: 
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Rejection zone of 

null hypothesis

Warning zone

Acceptance zone of null 

hypothesis

UCLinner

UCLouter

0

Taking r additional samples

Implementing corrective activities

No action

Figure 1. Safety, warning, and rejection zones

In the MDS-ATL chart, the covariance matrix is declared to be in-control when the adaptive 
thresholding Lasso statistic is less than or equal to the internal control limit i.e. 

 0,t innerMDS ATL UCL−  . On the other hand, if the chart statistic exceeds the outer control limit, 

or equivalently  ),t outerMDS ATL UCL−   , an out-of-control situation is triggered. Then, the 

production process is stopped to implement necessary corrective actions. If neither of the two 
mentioned situations occurs, i.e. ( ),t inner outerMDS ATL UCL UCL−  , the final decision regarding the 

process dispersion is postponed until the additional r samples are taken. In this case, the process 
variability is deemed to be in-control if the adaptive thresholding Lasso statistic associated with 
each additional r samples fall within the acceptance zone. In other words, if the chart statistic for 
any of the additional r samples exceeds innerUCL , the process is out-of-control. 

The MDS-ATL chart employs a rigorous approach to declare the covariance matrix as being in 
control when the chart statistic falls within the warning region. To address this issue and enhance 
chart’s flexibility, we propose using a control chart called the GMDS-ATL. In this chart, we define 
an additional parameter q , as the generalization parameter, alongside the four previous 
parameters n, r, innerUCL , and outerUCL . The difference between the GMDS chart and MDS-ATL lies 
in the condition where the adaptive thresholding Lasso statistic falls within the warning area. In 
such cases, the process is considered in-control if both of the following conditions are fulfilled: (1) 
The chart statistic corresponding to at least q samples from r additional samples is less than or 
equal to innerUCL ; (2) the chart statistic for r additional samples are all smaller than outerUCL . 

IV. Performance evaluation

In this section, the sensitivity of the proposed MDS-ATL and GMDS-ATL control charts to the 
covariance matrix deviations of high-dimensional processes is compared with the adaptive 

thresholding Lasso chart in terms of ARL, SDRL and MRL metrics.  To illustrate this, a numerical 
example based on simulation is presented, wherein the quality of the product or service is assessed 
through 15p =  normally distributed variables. When the process is statistically in-control, the 
mean vector and covariance matrix of the study variables are considered to be equal to 15 1ic =μ 0

and 15ic =Σ I , respectively. In all ATL, MDS-ATL and GMDS-ATL control charts, the
regularization and shrinkage parameters of adaptive thresholding Lasso statistic are set to 1 =  

and 4 = , respectively, and samples of size 10n =  are used to monitor the process dispersion. 

Furthermore, the repetition parameter for the MDS-RPLR and GMDS-RPLR charts is set to 3r = , 

and two values of  1,2q  are utilized for the generalization parameter. To ensure a fair

comparison, the , innerUCL UCL  and outerUCL   values of the ATL-based control charting methods are 

RT&A, No 1 (82) 
Volume 20, March 2025 

330



Hajiesmaeili, M., Maleki. M. R., Salmasnia, A. 
IMPROVED ADAPTIVE THRESHOLDING LASSO CHART 

determined through 20,000 iterations of Monte Carlo simulation in such a way that the in-control 
ARL of all charts is equal to the predefined value of 200icARL = . The upper control limits for the 
competing control charting schemes to achieve 200icARL =  are reported in Table 2. 

Table 2. UCL values 

Chart innerUCL
outerUCL

ATL 3.6710 3.6710 

MDS-ATL 1.7325 3.8002 

GMDS-
ATL 

1q = 1.3346 3.9495 
2q = 1.0126 3.9910 

Next, we will introduce seven out-of-control scenarios for the components of the covariance 
matrix in order to compare the sensitivity of the competing variability charts in response to process 
disturbances. It is important to note that the defined out-of-control scenarios are divided into three 
categories: diagonal, off-diagonal, and diagonal/off-diagonal. The first two scenarios are of the 
diagonal type, while the third and fourth scenarios belong to the off-diagonal category. Finally, the 
remaining three scenarios are categorized as diagonal/off-diagonal. 
Scenario 1. In this scenario according to Equation (11), the assignable cause has no effect on the 
covariance components, while the variance of each of the 15 quality characteristics under study 
deviates equally from their target values. 

1

15 15

1 0 0

0 1 0

0 0 1

oc



+  
 

+ 
 =
 
 

+  

Σ (11) 

Scenario 2. In this scenario, according to Equation (12), the variance of the first quality 
characteristic is increased by   units from its target value. As a result, scenario 2 will lead to a 
sparse deviation in the process covariance matrix. 

2

15 15

1 0 0

0 1 0

0 0 1

oc



+  
 
 =
 
 
 

Σ (12) 

Scenario 3. In this off-diagonal scenario, according to Equation (13), the covariance values 
associated with 70% of the quality characteristics increase from 1 to 1+  . 

3

15 15

1 0 0

1 0 0

1 0 0

0 0 0 1 0

0 0 0 0 1

oc



  
 
 
 
 
 

=   
 
 
 
 
 

Σ (13) 

Scenario 4. The main difference between this scenario and scenario 3 is that only the covariance of 
the first three variables deviate from their nominal value. Given that only 2.66% of all the elements 
of the covariance matrix change under this scenario, it can be characterized as a sparse pattern. 
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4

15 15

1 0 0

1 0 0

1 0 0

0 0 0 1 0

0

0 0 0 0 1

oc



  
 
 
 
  

=  
 
 
 
  

Σ (14) 

Scenario 5. As indicated in Equation (15), the fifth scenario represents a diagonal/off-diagonal out-
of-control pattern wherein the variance and covariance components associated with 30% of quality 
characteristics deviate from their nominal values by   units. 

5

15 15

1 0 0

1 0 0

1

1 0 0

0 0 0 1 0

0 0 0 0 1

oc



+     
 
 +   

 
   +  
 

=    +  
 
 
 
 
 

Σ (15) 

Scenario 6. In this scenario, the first three variables are impacted by the source of deviation, so that 

each of the variance and covariance components increase by   and 
2  units, respectively. 

6

2

2

2

15 15

1 0 0

1 0 0

1 0 0

0 0 0 1 0

0

0 0 0 0 1

oc



 +   
 

 +   
 

  +  =
 
 
 
 
 

Σ (16) 

Scenario 7. Based on Equation (17), the variance and covariance components corresponding to the 
first three variables, and the last three variables change by the amount of   units. However, the 
components related to the 4th to 12th quality characteristics have remained unchanged. 

7

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

oc

+    
 
 +  

 
   + 
 
 
 =
 
 
 +   
 

 +   
 

  +  

Σ (17) 

The ARL, SDRL, and MRL values for the ATL, competing charts under 

 0,0.1,0.2,0.3,0.4,0.5,0.75 are summarized in Tables 3-9. It is evident that in all scenarios and

shift magnitudes, the MDS-ATL and GMDS-ATL charts show significantly better performance 
than the ATL in timely detecting the covariance matrix disturbances. That is to say, incorporating 
MDS and GMDS techniques into the ATL chart significantly enhances its performance in terms of 
ARL, SDRL, and MRL metrics. In particular, the values of ARL, SDRL, and MRL indices under
diagonal changes based on 20,000 replicates are reported in Tables 3 and 4. Table 3 shows that the
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GMDS-ATL scheme has superior performance compared to the ATL and MDS-ATL charts. As 
seen, when   is equal to 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75, equipping the ATL chart with the MDS 
technique leads to improvements in its power by 36.30%, 60.57%, 62.70%, 49.92%, 31.84%, and 
6.16%, respectively. This means that in the first scenario, the average sensitivity improvement of 
the ATL chart in terms of the ARL index, when using the MDS technique, is 41.25% across different 
values of  . The findings from Table 3 demonstrate that implementing the MDS sampling 
technique in the design of the ATL control chart enhances its SDRL index by 35.63%, 61.57%, 
75.82%, 84.03%, 89.11%, and 100% when   is equal to 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75, respectively. 

Table 3. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 1 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 31.3154 8.7568 3.6496 2.1015 1.4789 1.0657 
SDRL 201.2460 30.8788 8.1388 3.1113 1.5094 0.8413 0.2640 
MRL 138 22 6 3 2 1 1 

M
D

S-
A

TL
 ARL 199.1255 19.9484 3.4527 1.3611 1.0525 1.0080 1.0000 

SDRL 198.4491 19.8767 3.1274 0.7522 0.2410 0.0916 0 
MRL 138 14 2 1 1 1 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 17.8049 2.7309 1.0772 1.0441 1.0000 1.0000 
SDRL 197.4807 17.3989 2.3829 0.5795 0.1678 0.0638 0 
MRL 138 12 2 1 1 1 1 

𝑞
=
2

 ARL 198.6688 17.6665 2.9177 1.1110 1.0518 1.0000 1.0000 
SDRL 199.5893 17.3772 2.4720 0.5972 0.1628 0.0619 0 
MRL 138 12 2 1 1 1 1 

Table 4 shows that in the second scenario, equipping the ATL chart with the MDS technique under 

0.1,0.2,0.3,0.4,0.5,0.75 =  leads to improvements of 3.64, 6.11, 8.59, 11.07, 14.80 and 23.45 percent 
in the ARL. The improvement percentages by employing the GMDS technique, with 1q = , are 
10.86%, 15.15%, 28.51%, 34.12%, 36.89%, and 43.27%, respectively. Hence, as the shift magnitude 
increases, the percentage of improvement in the ATL scheme from the application of both MDS 
and GMDS techniques also increases. Furthermore, both the SDRL and MRL indices demonstrate a 
similar trend as the ARL. The main finding from comparing Tables 3 and 4 is that using MDS and 
GMDS techniques for detecting non-sparse diagonal shifts (scenario 1) has a considerably greater 
influence on the performance of the ATL chart compared to sparse diagonal shifts (scenario 2). 

Table 4. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 2 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 173.9385 147.6309 124.5177 104.2381 88.0053 55.6005 
SDRL 201.2460 175.1907 145.4316 123.1942 104.4754 88.9015 55.0208 
MRL 138 121 103 87 72 60 39 

M
D

S-
A

TL
 ARL 199.1255 167.5999 138.6120 113.8206 92.6929 74.9781 42.5623 

SDRL 198.4491 168.7403 139.5496 114.3189 95.0044 75.6889 42.7268 
MRL 138 115 95 79 64 52 30 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 155.0499 125.2636 89.0154 68.6665 55.5435 31.5425 
SDRL 197.4807 147.4571 128.7383 89.7331 65.1677 51.9184 26.8687 
MRL 138 109 88 65 51 41 24 

𝑞
=
2

 ARL 198.6688 154.9197 125.2593 91.2727 69.2921 56.0495 30.1794 
SDRL 199.5893 157.0294 124.2078 93.0953 66.7335 53.1658 23.6370 
MRL 138 109 88 67 52 42 23 
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Table 5 indicates that in terms of ARL index, the MDS-ATL chart outperforms the ATL at various 
values of   (0.1, 0.2, 0.3, 0.4, 0.5, and 0.75), with percentages of 7.58, 18.45, 30.48, 37.38, 41.21, and 
39.89. Additionally, when the GMDS technique is implemented with 1q = , the performance of the 
ATL chart improves by 7.92, 21.16, 34.86, 43.39, 46.86, and 55.76 percent, respectively, under the 
mentioned values of  . As can be seen, the positive effect of using the MDS and GMDS techniques 
on the power of the ATL chart becomes more noticeable with the increase of  . A similar trend 
can be observed in SDRL and MRL indices produced by the MDS and GMDS charts. 

Table 5. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 3 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 120.7972 40.3205 15.9755 8.2071 5.1151 2.4923 

SDRL 201.2460 120.7832 39.4855 15.2993 7.6347 4.5666 1.9078 
MRL 138 83 28 11 6 4 2 

M
D

S-
A

TL
 

ARL 199.1255 111.6419 32.8822 11.1054 5.1396 3.0072 1.4980 

SDRL 198.4491 111.2441 33.2822 11.2720 5.0651 2.7762 1.0197 
MRL 138 78 22 8 3 2 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 111.2271 31.7886 10.4066 4.6458 2.7183 1.1026 
SDRL 197.4807 111.1097 31.4771 10.5509 4.6317 2.5387 0.7109 
MRL 138 77 21 8 3 2 1 

𝑞
=
2

 ARL 198.6688 111.2013 32.0921 10.2317 4.4474 2.6022 1.0711 
SDRL 199.5893 111.2748 31.1282 10.4600 4.3239 2.3699 0.7083 
MRL 138 77 21 7 3 2 1 

Table 6 indicates that the GMDS-ATL scheme demonstrates superior performance compared to the 
MDS-ATL and ATL charts in terms of all ARL, SDRL, and MRL metrics when the assignable cause 
leads to off-diagonal disturbances according to the fourth out-of-control scenario. Similar to the 
previous scenario, the performance improvement of the ATL chart through the utilization of MDS 
and GMDS strategies will be more significant as the shift magnitude increases. For example, when 

0.1,0.2,0.3,0.4,0.5,0.75 = , the MDS-ATL chart demonstrates superiority over ATL in terms of the 
ARL index by 1.15%, 5.47%, 7.92%, 13.93%, 19.36%, and 30.17% respectively. The the ARL 

improvement achieved by implementing the GMDS strategy in the ATL chart for the mentioned 
shifts, is 2.72%, 17.30%, 24.02%, 47.44%, 50.75%, and 36.34% when 1q =  while in the case of 2q =

, the ARL improvements are 4.16%, 16.92%, 28.19%, 54.93%, 57.78%, and 38.37%. In other words, 
under this off-diagonal pattern, increasing q  from 1 to 2 will lead to improved detectability of the 
GMDS-ATL chart. By comparing the results in Tables 5 and 6, it is observed that the improvement 
percentage of all three RL-based indices is more tangible when ATL chart is equipped with MDS 
and GMDS sampling approaches in detection of an off-diagonal non-sparse pattern (as in the third 
scenario) compared to the off-diagonal sparse pattern (as in the fourth scenario). 
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Table 6. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 4 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 
A

TL
 ARL 200.6506 187.9099 155.3939 111.0139 75.9599 51.0764 20.6715 

SDRL 201.2460 186.4131 154.5071 111.4313 75.0029 50.9071 20.2622 
MRL 138 131 108 77 53 35 14 

M
D

S-
A

TL
 

ARL 199.1255 185.7435 146.8887 102.2206 65.3805 41.1865 14.4354 

SDRL 198.4491 186.5648 147.2405 102.0745 65.2222 41.3985 14.5201 
MRL 138 129 102 70 45 29 10 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 182.8032 128.5112 84.3483 39.9277 25.1525 13.1602 
SDRL 197.4807 185.3521 129.5276 85.2083 37.6359 23.8887 8.4463 
MRL 138 127 90 58 28 18 9 

𝑞
=
2

 ARL 198.6688 180.0868 129.0974 79.7237 34.2348 21.5663 12.7393 
SDRL 199.5893 176.4070 127.7548 79.4708 32.3020 20.5031 5.7574 
MRL 138 125 90 55 25 16 9 

Tables 7 to 9 present the run length properties of the ATL, MDS-ATL, and GMDS-ATL control 
charting methods for joint diagonal/off-diagonal disturbances in high-dimensional covariance 
matrices. The results confirm that using the MDS and GMDS control charts, instead of the ATL, 
will significantly lead to faster detection of co-diagonal/off-diagonal changes in the covariance 
matrix components. The results presented in Tables 7 to 9 reveal that as the shift magnitudes 
increase, the superiority of MDS-ATL and GMDS-ATL compared to the ATL control chart becomes 
more evident. 

Table 7. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 5 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 98.9288 44.2593 20.4434 11.0304 6.8975 3.1627 

SDRL 201.2460 98.1537 43.3755 20.2059 10.4759 6.3302 2.5983 
MRL 138 69 31 14 8 5 2 

M
D

S-
A

TL
 

ARL 199.1255 86.9386 32.4176 12.7290 5.8847 3.2767 1.4862 

SDRL 198.4491 86.4191 32.6108 12.6924 5.6984 3.0323 0.9624 
MRL 138 61 22 9 4 2 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 86.2533 31.0648 12.5609 5.4242 3.0203 1.2224 
SDRL 197.4807 84.1714 30.9066 12.4237 5.2813 2.8104 0.7855 
MRL 138 61 21 9 4 2 1 

𝑞
=
2

 ARL 198.6688 86.7379 32.3513 12.8048 5.6068 3.1220 1.2655 
SDRL 199.5893 88.8912 32.1598 12.7473 5.3554 2.8498 0.8444 
MRL 138 61 22 9 4 2 1 
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Table 8. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 6 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 
A

TL
 ARL 200.6506 178.3261 128.3747 78.7263 43.6322 24.2064 7.2093 

SDRL 201.2460 178.1352 128.3269 76.9652 43.3895 23.6536 6.7377 
MRL 138 124 89 55 30 17 5 

M
D

S-
A

TL
 

ARL 199.1255 176.7739 120.3104 66.4980 33.5460 16.5317 3.6357 

SDRL 198.4491 177.6378 120.3849 66.5117 33.6048 16.5764 3.3766 
MRL 138 123 84 46 23 11 2 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 168.6586 108.5676 57.8567 27.8740 13.7365 2.8737 
SDRL 197.4807 169.3584 105.8655 57.3664 29.0077 14.3088 2.5912 
MRL 138 118 76 40 19 9 2 

𝑞
=
2

 ARL 198.6688 176.2301 114.1713 59.7670 29.2099 14.3948 3.1825 
SDRL 199.5893 166.7157 114.6325 60.3128 29.7811 14.6903 2.7198 
MRL 138 121 79 41 19 9 2 

Table 9. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 7 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 78.8354 30.6467 13.7325 7.1715 4.4884 2.1488 

SDRL 201.2460 77.8354 30.0446 13.3228 6.7644 3.9699 1.5554 
MRL 138 55 21 10 5 3 2 

M
D

S-
A

TL
 

ARL 199.1255 65.0101 20.0844 6.9717 3.1433 1.8793 1.1167 

SDRL 198.4491 64.9520 20.0714 6.8471 2.8302 1.4152 0.3920 
MRL 138 45 14 5 2 1 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 64.3264 20.0155 6.7645 3.1169 1.8635 1.0000 
SDRL 197.4807 63.8176 20.2910 6.8467 2.8459 1.4227 0.3619 
MRL 138 44 14 5 2 1 1 

𝑞
=
2

 ARL 198.6688 65.6486 19.8908 7.1158 3.1635 1.8914 1.0241 
SDRL 199.5893 64.4291 20.7047 6.9845 2.7734 1.3868 0.3694 
MRL 138 45 13 5 2 1 1 

V. Conclusion remarks

Manufacturers often prefer using small sample sizes to reduce production costs, while also 
needing to consider a wide range of quality characteristics in order to enhance their market share. 
Therefore, in today's competitive world, encountering high-dimensional data where the sample 
size is smaller than the number of quality characteristics, has become a significant challenge in 
various industrial and service applications. Due to the singularity of the sample covariance matrix, 
conventional multivariate statistical methods cannot be used to monitor the process dispersion 
under high-dimensionality. On the other hand, in recent years, multiple dependent state sampling 
has been effectively utilized to enhance the effectiveness of control charts, primarily for the 
purpose of monitoring the mean parameter of univariate processes. As a result, in this paper, we 
extended two adaptive thresholding Lasso control charts for the rapid detection of covariance 
matrix disturbances in high-dimensional process monitoring using multiple dependent state and 
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generalized multiple dependent state sampling techniques. The performance of the improved 
MDS-ATL and GMDS-ATL control charting methods was compared to the conventional adaptive 
thresholding Lasso through Monte Carlo simulation, using three metrics of ARL, SDRL and MRL. 
The simulation results demonstrate that the utilization of MDS and GMDS methods in design of 
the ATL control chart effectively enhances the detection of covariance matrix disturbances in high-
dimensional processes. Particularly when confronted with assignable causes that result in 
significant deviations in the components of the covariance matrix, the incorporation of MDS and 
GMDS methods in the design of the ATL chart becomes even more crucial. One assumption of this 
article is that the assignable cause solely impacts the components of the covariance matrix. 
However, there are instances where the deviation source can also result in a simultaneous change 
in the mean vector and the covariance matrix of high-dimensional processes. To overcome this 
limitation, it is recommended to employ MDS and GMDS techniques to monitor the coefficient of 
variation in high-dimensional processes. 
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