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Abstract

The main goal of the present paper is to propose a systematic approach to model performance measurements
within the context of continuous-time semi-Markov processes with a finite state space. Specifically, the
mean performance is estimated using the kernel method. The uniform strong consistency and the
asymptotic normality of the proposed estimator is investigated. Furthermore, a non-parametric kernel
estimation of the expected cumulative operational time is addressed. The constructed estimator is proved
to be consistent and to converge to a normal random variable as the time of observation becomes large. As
an illustration example, a simulation study has been conducted in order to highlight the efficiency as well
as the superiority of our method to the standard empirical method.

Keywords: Semi-Markov processes, Kernel estimator, Mean performance, Reliability, Cumulative
operational time, Consistency, Asymptotic normality.

1. Introduction and motivation

Stochastic process theory can be seen as an extension of probability theory that allows modeling
the evolution of a system through the time. In addition, any serious study of renewal processes
would be impossible without using the powerful tool of Markov processes. Markov processes
are significant because, in addition to modeling a wide range of interesting phenomena, their
lack of memory property allows for the computation of probabilities and expected values that
quantify the behavior of the process and the prediction of its potential behavior. Therefore, the
starting step of many attempts to model continuous-time processes has been the Markov process.
However, the Markov property has its limitations. It imposes restrictions on the distribution of
the sojourn time in a state, which is exponentially distributed in the continuous case, though this
is not realistic in general. It is adequate to assume that the probability of leaving a state depends
on the time already spent there. More precisely, it has become clear that the propensity to move
from one state to another often depends strongly on the length of stay in that state. Therefore,
any adequate model must incorporate this feature and the semi-Markov process meets the case.

The study of the semi-Markov process is related to the theory of Markov renewal processes
(MRP) which can be considered as an extension of the classical renewal theory (see for instance,
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Pyke [23], [24] and Limnios and Oprisan [13]). More precisely, the semi-Markov processes
generalize the renewal processes as well as the Markov jump processes and have numerous
applications, especially in reliability (see the pioneer work of Janssen [9] which has made a state
of the art for the area of the semi-Markov theory and its applications). Furthermore, there are
numerous real-world scenarios where semi-Markov models are relevant, such as in fault-tolerant
systems, computer systems and networks, manufacturing systems, healthcare systems, and others.

There is a growing need to assess reliability and performance measure (see, for example,
Smith et al. [27]). Meyer [16] created a conceptual framework for performability, defining it as the
probability that a system achieves a certain level of accomplishment during a utilization interval
[0, t]. In other words, for the semi Markov process (Zt), that describes the evolution of the system
through a set of states E, the performance level, or a reward rate, L(j) is associated with each
state j ∈ E, where the reward function L : E → R is proposed to be a measure of performance
per unit time. The resulting semi-Markov reward process is then able to capture not only the
failure and repair of the system components, but the degradable performance as well. Therefore,
the development of a performance model is badly needed when we are interested in the level of
productivity of a system.

The accumulated reward until time t will be ϕ(t) =
∫ t

0 L(Zu)du which is an integral functional
of the process (Zt). Integral functionals are very important from theoretical as well as practical
point of view. Indeed, in martingale theory, integral functionals are very useful since they are
used as compensators, see Koroliuk and Limnios [12]. In statistics, they are used as empirical
estimators for stationary distributions in semi-Markov processes [15]. In stochastic applications,
they are crucial in some reliability studies, in performance evaluation of computer systems [26]
and so on.

Since the work of [2] in which the author has defined combined measures of performance
and reliability, many researchers have focused on evaluating performability, particularly in cases
where (Zt) is a Markov process with a finite number of states. Meyer [17] has studied the case
of Markov process when the function L is monotonic. Beaudry [3] introduced an algorithm
to compute performability until absorption over an infinite interval. Additionally, Donatiello
and Iyer [5], have proposed an algorithms for computing performability that do not require the
function L to be monotonic.

The semi-Markov case with a finite number of states has been examined by Iyer et al. [7].
The authors demonstrated that the distribution function of ϕ(t) satisfies a Markov renewal-type
equation and proposed approach to solve it. Fore years later, Ciardo et al. [4] have offered an
extension of Beaudry’s approach to semi-Markov processes.
Since then, several research papers have been published on the development of estimators and the
investigation of their asymptotic properties. In [14], the authors have presented a statistical study
of the nonparametric estimation of performability of a finite state space semi-Markov system by
using empirical estimator and give consistency and asymptotic normality results for such a system.

A specific scenario occurs when a reward of 1 is assigned to all operational states and 0 to all
non-operational states. This case was studied by [21], where the expected reward rate at time t,
E(ϕ(t)), is known as the instantaneous or point availability A(t). In this case, ϕ(t) represents the
total time spent in operational states during the interval [0, t].

To the best of our knowledge, there are no existing works on nonparametric kernel estimators
of the performance and performability. The main goal of the present paper is to propose a
systematic approach to model performance measurements within the context of continuous-time
semi-Markov processes with a finite state space. Specifically, the mean performance is estimated
using the kernel method. The uniform strong consistency and the asymptotic normality of the
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proposed estimator is investigated. Furthermore, a non-parametric kernel estimation of the
expected cumulative operational time is addressed. The constructed estimator is proved to be
consistent and to converge to a normal random variable as the time of observation becomes
large. As an illustration example, a simulation study has been conducted in order to highlight
the efficiency as well as the superiority of our method to the standard empirical method.

The remainder of the paper is organized as follows. Section 2 presents some definitions and
notations of the semi-Markov processes in a countable state space, and these are needed in the
work’s sequel. An explicit expression of the mean performance of a finite state space semi-Markov
system is given in Section 3. The basic elements of statistical estimation are given in Section
4. In Section 5, we introduce and discuss in detail the necessary conditions for establishing
the asymptotic properties of the proposed estimator. In Section 6, we illustrate these concepts,
measures and estimators through the cumulative operational time as well as a numerical study.
Some concluding remarks are given in Section 7.

2. Semi-Markov system and related quantities

Definition 1. (Markov renewal process) Let E = {1, . . . , s} be the state space.
A Markov renewal process is a bivariate stochastic process (Jn, Tn) where Jn is the system state at
the nth time, and Tn is the nth jump time, we set T0 = 0. The process has to satisfy the following
formula:

P (Jn+1 = j, Tn+1 − Tn ≤ t | J0, J1, . . . , Jn, T0, T1, . . . , Tn) = P (Jn+1 = j, Tn+1 − Tn ≤ t | Jn) , (1)

for all j ∈ E, all t ∈ R+ and all n ∈ N.
Moreover, if Equation (1) is independent of n, (Jn, Tn) is considered to be time homogeneous.

Definition 2. (Continuous-time semi-Markov process) Consider a Markov-renewal process
{(Jn, Tn) : n ∈ N} defined on a complete probability space and with state space E. The stochastic
process {Zt; t ∈ R+} defined by

Zt = JN(t), (2)

is called a Semi-Markov Process (SMP) where N(t) := sup {n ≥ 0 | Tn ≤ t} is the counting
process of the SMP up to time t. Let us also define Xn = Tn − Tn−1, n ≥ 1, the inter-jump times
of Z = (Zt)t∈R+ .

Let us also introduce some functions associated with the process Z:

• The semi-Markov kernel Q(t) =
{

Qij(t), i, j ∈ E
}

, t ≥ 0 of Z, is given by

Qij(t) = P (Jn+1 = j, Xn+1 ≤ t | Jn = i) ,

and pij := Qij(∞) = P (Jn+1 = j | Jn = i) with p = (pij)i,j∈E is the transition matrix of the
process (Jn) which is called the embedded Markov chain (EMC) of Z.

• The conditional sojourn time distribution in state i, given that the next state to be visited is
j, denoted Fij, is defined by

Fij(t) := P (Xn+1 ≤ t | Jn = i, Jn+1 = j) .

Meanwhile, the sojourn time distribution in state i, denoted Hi, is defined, for every t ∈ R+,
by

Hi(t) = P (Xn+1 ≤ t | Jn = i) = ∑
j∈E

Qij(t),

and its corresponding survival function is defined by Hi(t) = 1 − Hi(t).
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• If we consider g to be a locally bounded function and G to be a real right continuous
nondecreasing function both defined on R+, the Stieltjes convolution of the function g with
the function G is defined, for every t ∈ R+, by

g ∗ G(t) =
∫

R
g(t − x)dG(x) =

∫ t

0
g(t − x)dG(x).

Furthermore, when G and F are cumulative distribution functions, we have

G ∗ F(t) =
∫ t

0
G(t − x)dF(x) =

∫ t

0
F(t − x)dG(x) = F ∗ G(t).

• Now, consider the n-fold convolution of Q by itself, for any i, j ∈ E,

Q(n)
ij (t) =


1{i=j,t≥0} if n = 0,
Qij(t) if n = 1,

∑
k∈E

∫ t

0
Qik(ds)Q(n−1)

kj (t − s) if n ≥ 2.

• The Markov renewal function denoted Ψij(·), is defined, for every i, j ∈ E, t ≥ 0, by

Ψij(t) = Ei[
∞

∑
n=0

1{Jn=j,Tn≤t}]

=
∞

∑
n=0

Pi (Jn = j, Tn ≤ t) =
∞

∑
n=0

Q(n)
ij (t).

The matrix renewal function is given by

Ψ(t) =
∞

∑
n=0

Q(n)(t),

where Ψ(t) = [Ψij(t)].

The matrix renewal function Ψ(t) is the solution of the following Markov renewal equation

Ψ(t) = I(t) + Q ⋆ Ψ(t)1,

where I(t) = I when t ≥ 0 and I(t) = 0 when t < 0.

• The transition matrix function P(t) = [Pij(t)] of the semi-Markov process is defined, for
every i, j ∈ E, t ≥ 0, by

Pij(t) = P (Zt = j | Z0 = i) = P
(

JN(t) = j | J0 = i
)

.

It is known, cf. [23], that

Pij(t) = 1{i=j}

(
1 − ∑

k∈E
Qik(t)

)
+ ∑

k∈E

∫ t

0
Pkj(t − s)Qik(ds).

By solving the above Markov renewal equation, cf. [13], it is seen that, in matrix notation, we have

P(t) = (Ψ ⋆ (I − H))(t),

where (I − H) (t) = diag[1 − Hi(t)].

Definition 3. For a semi-Markov process (Zt)t∈R+ , the limit distribution
π = (π1, . . . , πs)

t is defined, when it exists, for every i, j ∈ E, by

πj = lim
t→∞

Pij(t).
1⋆ stands for the matrix-Stieltjes convolution of an n × r matrix function, A, by an m × n matrix function, B, denoted

B ⋆ A, which can be defined by (B ⋆ A)ij (t) =
n

∑
k=1

Bik ∗ Akj(t), i = 1, . . . , m, j = 1, . . . , r.
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3. Mean performance

The performance process at time t ≥ 0, denoted Φ(t) is the real-valued integral functional of a
homogeneous semi-Markov process (Zt)t∈R+ , cf. [14], defined by

Φ(t) =
∫ t

0
L (Zu) du = ∑

j∈E
L(j)

∫ t

0
1{zu=j}du, (3)

where L is a real-valued function defined on E.
The mean performance at time t ≥ 0, denoted Φ(t), is defined by

Φ(t) := E[Φ(t)] = ∑
i∈E

αiΦi(t) = ∑
i∈E

∑
j∈E

αiL(j)
∫ t

0
Pij(u)du, (4)

where Φi(t) = ∑
j∈E

L(j)
∫ t

0
Pij(u)du, αi = P (J0 = i) and the row vector

α = (αi : i ∈ E) defines the initial distribution of Z.

4. Elements of statistical estimation

Consider a sample path of the Markov renewal process (Jn, Tn)n∈N

Y(M) :=
(

J0, X1, . . . , JN(M)−1, XN(M), JN(M), uM

)
, M ∈ R+,

where N(M) is defined in Definition 2 and uM := M − TN(M).

For all i, j ∈ E, we define:

• Ni(M) :=
N(M)

∑
n=1

1{Jn−1=i}, the number of visits to state i, up to time M.

• Nij(M) :=
N(M)

∑
n=1

1{Jn−1=i,Jn=j}, the number of transitions from i to j, up to time M.

For all i, j ∈ E, t > 0, we define the kernel estimator of Qij and Hi respectively (cf. [1]), by

Q̂ij(t, M) =
1

Ni(M)

N(M)

∑
l=1

G

(
t − Xl
hij,M

)
1{Jl−1=i,Jl=j},

and

Ĥi(t, M) =
1

Ni(M)

N(M)

∑
l=1

G
(

t − Xl
hi,M

)
1{Jl−1=i};

where G(t) =
∫ t
−∞ K(t)dt, with K is a bounded kernel function.

For fixed states i and j, it should be noted that the smoothing parameter of the previous
estimators depends on the sample size, so we should write hij,Nij(M) = hij,M (resp. hi,Ni(M) = hi,M),
however we prefer to use a simpler notation.

The kernel estimator of the Markov renewal function Ψij(t), in matrix form, is given by

Ψ̂(t, M) =
∞

∑
n=0

Q̂(n)(t, M). (5)

The kernel estimator of the transition matrix function P(t) at time t ≥ 0 of the SMP, is given
by

P̂(t, M) =
(

Ψ̂(·, M) ⋆
(

I − Ĥ(., M)
))

(t). (6)
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Based on Equation (4), an nonparametric kernel estimator of the mean performance Φ̂(t, M)
is given by the following expression:

Φ̂(t, M) = ∑
i∈E

∑
j∈E

αiL(j)
∫ t

0
P̂ij(u, M)du. (7)

5. Asymptotic properties

The following assumptions are necessary to derive the asymptotic behaviour of the kernel
estimator defined in (7).

5.1. Assumptions

First, we will assume the following two assumptions:

(H.1) The EMC (Jn)n∈N is an ergodic Markov chain, with stationary distribution ν.

(H.2) The SMP is regular, with finite mean sojourn times m.

Second, the following assumptions are required in order to establish all the asymptotic properties
in this paper:

(H.3) i) Qij(t) and qij(t) are continuously differentiable with respect to the Lebesgue mea-
sure, and let qij(t) and q

′
ij(t) be respectively their corresponding Radon-Nikodym

derivatives.

ii) The derivative q
′
ij is bounded.

(H.4) The function G is a distribution function, where its derivative is K.

(H.5) The kernel K is a density function of bounded variation such that lim
x→∞

|xK(x)| = 0 and∣∣∫ tjKn(t)dt
∣∣ < ∞ for j = 0, 1, and n = 1, 2.

(H.6) The smoothing parameter hij,M satisfies

lim
M−→∞

hij,M = 0 and lim
M−→∞

Mhij,M = ∞.

5.2. Comments on the assumptions

The structural assumptions (H.1) and (H.2) are the same as those used classically for the semi-
Markov processes framework (see, for instance [1] and [6]). More precisely, the recurrence and
the positivity of the EMC (Jn)n∈N in (H.1) ensure that the stationary distribution πj defined in
Definition 3 is strictly positive and unique. Furthermore, since the EMC (Jn)n∈N is irreducible
and aperiodic, the limit in Definition 3 always exists and it is independent of the distribution
in the initial state. (H.2) means that the counting process {N(t) : t ≥ 0} has a finite number of
jumps in a finite period with probability 1. In addition, under this hypothesis we have Tn < Tn+1,
for any n ∈ N, and Tn → ∞ as n goes to infinity. Assumption (H.3) as imposed on Qij(t) and
qij(t) is a regularity type hypothesis. Whereas, assumption (H.3)(i) is a regularity constraint
using to get the strong consistency. the second derivative hypothesis (H.3)(ii) establishes more
restrictive constraints when going through to state the asymptotic normality of our estimators.
(H.5)-(H.6) are technical constraints; they are imposed for the sake of the proof’s simplicity and
brevity.

Before stating our main result, we introduce the following technical lemma which will be
necessary to prove our second result.
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Lemma 1. For n = 1, 2. If (H.3)-(H.5) hold, we have

1
hij,M

∫ +∞

0
Kn

(
v − x
hij,M

)
dQij(x) ⩽ qij(v)

∫ +∞

−∞
Kn (z) dz + o(hij,M).

Proof of Lemma 1 By using a change of variable followed by Taylor’s expansion, we have

1
hij,M

∫ +∞

0
Kn

(
v − x
hij,M

)
dQij(x) =

∫ v
hij,M

−∞
Kn (z) qdr(v − hij,Mz)dz

=
∫ v

hij,M

−∞
Kn (z)

[
qij(v)− hij,Mzq

′
ij(v

∗)
]

dz

⩽ qij(v)
∫ +∞

−∞
Kn (z) dz + o(hij,M),

where v − hij,Mz ≤ v∗ ≤ v.

5.3. Main Results

Our first result concerns the uniform strong consistency of the proposed estimator.

Theorem 1. For any fixed 0 ≤ t ≤ M and i ∈ E, under (H.1)-(H.6), the estimator Φ̂(t, M) of Φ(t)
is uniformly strongly consistent, that is

max
i∈E

sup
t∈[0,M]

| Φ̂i(t, M)− Φi(t) |
a.s.−→ 0 as M −→ ∞.

Proof of Theorem 1 The proof of this theorem is based on (5), (6), (7) and the following
inequality:

max
i∈E

sup
t∈[0,M]

| Φ̂i(t, M)− Φi(t) | ≤ ∑
j∈E

L(j)t
∞

∑
n=0

max
i∈E

sup
t∈[0,M]

∣∣∣Q̂(n)
ij (t, M)− Q(n)

ij (t)
∣∣∣

+ ∑
j∈E

L(j)t
∞

∑
n=0

max
i∈E

sup
t∈[0,M]

∣∣∣Q̂(n)
ij (t, M)− Q(n)

ij (t)
∣∣∣ ∗ Ĥj(t, M)

+ ∑
j∈E

L(j)t max
i∈E

sup
t∈[0,M]

∣∣∣Ĥj(t, M)− Hj(t)
∣∣∣ ∗ Ψij(t).

For all i, j ∈ E, n ∈ N∗ and M ∈ R+, based on a straightforward adaptation of the proof of
Lemma 1 in [19], we get that the estimator Q̂(n)

ij (t, M) is uniformly strong consistent in [0, M]. In

addition, the uniform strong consistency of the kernel estimator Ĥj(t, M) is stated in Theorem 4.1
of [1]. Then,

max
i∈E

sup
t∈[0,M]

| Φ̂i(t, M)− Φi(t) |
a.s.−→ 0, as M −→ ∞.

Before stating our second result, let us consider the renewal process
(
Ti

n
)

n≥0 of successive times
of visits to state i, then Ni(t) is the counting process of renewals. Let µii and µ∗

ii denote the mean
first passage times of the state i in the MRP and in the corresponding Markov chain {Jn; n ≥ 0},
respectively. Furthermore, µii is the mean interarrival times of the eventual delayed renewal
process

(
Ti

n
)

, n ≥ 0, i.e., µii = E
[
Ti

2 − Ti
1
]
, and µ∗

ii = E
[
S∗

i |J0 = i
]

with S∗
i = min{k ≥ 1, Jn = i}

is the first visit time to the state i.
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Theorem 2. For any fixed 0 ≤ t ≤ M, if (H.1)-(H.6) hold, we have√
MhM

[
Φ̂(t, M)− Φ(t)

]
D−→ N

(
0, σ2

Φ(t)
)

, as M −→ ∞,

with hM = min
i,j∈E

{
hij,M

}
and the asymptotic variance

σ2
Φ(t) ⩽ ∑

i∈E
∑
j∈E

µii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du, (8)

where
Rij = ∑

d∈E
∑
r∈E

αdL(r)
(
Ψdi ∗ Ψjr ∗ Hr

)
, (9)

and
Di = ∑

d∈E
∑
r∈E

αdL(r)1{i=r}Ψdr. (10)

Proof of Theorem 2 We have,√
MhM

[
Φ̂(t, M)− Φ(t)

]
= ∑

d∈E
∑
r∈E

αdL(r)
√

MhM

[∫ t

0
P̂dr(u, M)du −

∫ t

0
Pdr(u)du

]
= ∑

d∈E
∑
r∈E

αdL(r)
√

MhM

[∫ t

0

[(
Ψ̂dr(·, M) ∗

(
I − Ĥr(·, M)

))
(u)

− (Ψdr ∗ (I − Hr)) (u)] du] .

Note that the last right side can be written as follows:

∑
d∈E

∑
r∈E

αdL(r)
√

MhM

[∫ t

0

((
Ψ̂dr(·, M)− Ψdr(·)

)
∗
(

Ĥr(·, M)− Hr(·)
))

(u)du

+
∫ t

0

(
Ψdr(·) ∗

(
Ĥr(·, M)− Hr(·)

))
(u)du +

∫ t

0

((
Ψ̂dr(·, M)− Ψdr(·)

)
∗ Hr(·)

)
(u)du

]
.

According to [1] and by following the same arguments as [18], the first term converges to zero as
M tends to infinity.
Consequently, by applying Slutsky’s Theorem, we deduce that

√
MhM

[
Φ̂(t, M)− Φ(t)

]
con-

verges in distribution to the same limit as

√
MhM ∑

d∈E
∑
r∈E

αdL(r)
[∫ t

0

(
Ψdr(·) ∗

(
Ĥr(·, M)− Hr(·)

))
(u)du

+
∫ t

0

((
Ψ̂dr(·, M)− Ψdr(·)

)
∗ Hr(·)

)
(u)du

]
.

By combining Theorem 4.3 (i) of [1] and Theorem 4 (b)[18], along with arguments akin to those

employed in [9] p. 214, we deduce that
√

MhM

[
Ψ̂(·, M)− Ψ(·)

]
dr
(t) has the same limit in

distribution as
√

MhM[Ψ(·) ⋆ ∆Q ⋆ Ψ(·)]dr(t),
where ∆Q = (Q̂ − Q), for every t ≥ 0, t ≤ M, and for every d, r ∈ E, which is written as follows:

∆Qdr(·) =
1

Nd(M)

N(M)

∑
l=1

[
G
(
· − Xl
hdr,M

)
1{Jl−1=d,Jl=r} − Qdr(·)1{Jl−1=d}

]
.

Furthermore,

Ψdr ∗
(

Ĥr − Hr

)
= − ∑

k∈E
Ψdr ∗ ∆Qrk = − ∑

k∈E
∑

m∈E
1{m=r}Ψdr ∗ ∆Qmk.
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Then,
√

MhM

[
Φ̂(t, M)− Φ(t)

]
has the same limit as

1√
M

N(M)

∑
l=1

∑
m∈E

∑
k∈E

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − Xl
hmk,M

)
1{Jl−1=m,Jl=k}

−Qmk(.)1{Jl−1=m}

)]
(u)du

]
,

where Rmk and Dm are given in (9) and (10).
Apply central limit theorem related to semi-Markov processes (see [25]) to the function W f (t)
such that

W f (t) =
N(M)

∑
l=1

f (Jl−1, Jl , Xl)

=
N(M)

∑
l=1

∑
m∈E

∑
k∈E

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − Xl
hmk,M

)
1{Jl−1=m,Jl=k}

−Qmk(.)1{Jl−1=m}

)]
(u)du

]
,

where, for any fixed t > 0, we have defined the function f : E × E × R → R by

f (i, j, x) = ∑
m∈E

∑
k∈E

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − x
hmk,M

)
1{i=m,j=k} − Qmk(.)1{i=m}

)]
(u)du

]
.

In order to apply the Pyke and Schaufele’s CLT, we need to compute the quantities Aij, Ai, Bij, Bi, ri, m f , σ2
d

and then σ2
Φ
(t), using Lemma 1 with assumptions (H.3)-(H.5). We have

Ai = ∑
j∈E

Aij

= ∑
j∈E

∫ +∞

0
f (i, j, x) dQij(x)

= ∑
j∈E

∑
k∈E

∑
m∈E

∫ +∞

0

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − x
hmk,M

)
1{i=m,j=k}

−Qmk(.)1{i=m}

)]
(u)du

]
dQij(x)

= ∑
j∈E

M
Ni(M)

√
hM

[∫ t

0

∫ u

0

(
Rij − Di

)
(u − v)

(
1

hij,M

∫ +∞

0
K

(
v − x
hij,M

)
dQij(x)

)
dvdu

− ∑
k∈E

∫ t

0

∫ u

0
(Rik − Di) (u − v)qik(v)

∫ +∞

0
dQij(x)dvdu

]
.

Then

Ai ⩽ ∑
j∈E

M
Ni(M)

√
hM

∫ t

0

[(
Rij − Di

)
∗
(
o
(
hij,M

))]
(u)du.
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For Bi and by using Jensen’s inequality and Lemma 1, we have

Bi = ∑
j∈E

Bij

= ∑
j∈E

∫ +∞

0
[ f (i, j, x)]2dQij(x)

= ∑
j∈E

∫ +∞

0

[
M

Ni(M)

√
hM

[∫ t

0

[(
Rij − Di

)
∗ G

(
. − x
hij,M

)

− ∑
k∈E

(Rik − Di) ∗ Qik(.)

]
(u)du

]]2

dQij(x)

⩽ ∑
j∈E

∫ +∞

0

(
M

Ni(M)

)2
hM

[∫ t

0

[∫ u

0

(
Rij − Di

)
(u − v)

(
1

hij,M
K

(
v − x
hij,M

))
dv

− ∑
k∈E

∫ u

0
(Rik − Di) (u − v)qik(v)dv

]2

du

 dQij(x).

Then

Bi ⩽ ∑
j∈E

(
M

Ni(M)

)2
hM

∫ +∞

0

[∫ t

0

∫ u

0

[(
Rij − Di

)2
(u − v)

(
1

h2
ij,M

K2

(
v − x
hij,M

))
+ ∑

k∈E
(Rik − Di)

2 (u − v)q2
ik(v)

−2 ∑
k∈E

(Rik − Di)
(

Rij − Di
)
(u − v)qik(v)

1
hij,M

K

(
v − x
hij,M

)]
dvdu

]
dQij(x).

Since Ni(M)
M

a.s.→ 1
µii

(see [13]), when M → +∞ and from the assumption (H.6), the second and the
third term in the last inequality converge to zero, we get

Bi ⩽ ∑
j∈E

µ2
ii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du.

Furthermore,

rd = ∑
i∈E

Ai
µ∗

dd
µ∗

ii
= 0 as M → ∞,

m f =
1

µdd
rd = 0 as M → ∞,

σ2
Φ(t) =

1
µdd

σ2
d (t),

where

σ2
d (t) = ∑

i∈E
Bi

µ∗
dd

µ∗
ii

⩽ µ∗
dd ∑

i∈E
∑
j∈E

µ2
ii

µ∗
ii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du.

Then, since µ∗
ii =

1
vi

(see [10]) and µii =
m̄
vi

(see [13]), where m̄ = ∑
i∈E

mivi is the mean sojourn

time of the MRP; we have

σ2
Φ(t) ⩽ ∑

i∈E
∑
j∈E

µii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du.
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We obtain from the CLT that
√

MhM

[
Φ̂(t, M)− Φ(t)

]
converges in distribution, as M tends to

infinity, to a zero-mean normal random variable, of variance σ2
Φ
(t) given in (8).

6. Applications

The cumulative operational time is considered as one of the most relevant performance measures
for the reliability. In this section, we propose a non-parametric kernel estimator of the expected
cumulative operational time for the semi-Markov system. Then, we investigate the asymptotic
properties of the proposed estimator, namely, the strong consistency and the asymptotic normality.
As an illustration example, we apply the previous results to three-state continuous time SMP.

6.1. The cumulative operational time

The state space E is often split into two subsets for reliability research. The first one, let’s say U,
is made up of up states, whereas the second one, let’s say D, is made up of down states. The start
of an essential event, such as a component failure related to some reason or a complete repair,
might well be associated with the transition into a state. Since we suppose that the system can be
fixed, the process alternates between U and D.

The cumulative operational time is defined by

W(t) =
∫ t

0
1{Zu∈U}du.

It represents the total time that the semi-Markov process Z spends in the set of up states U over
the interval [0, t].

Making use of the assumptions (H.1) - (H.2), along with the aid of the arguments used in [8],
we obtain the following result:

lim
t→+∞

W(t)
t

=

∑
j∈U

νjmj

∑
k∈E

νkmk
,

where mj =
∫ ∞

0 (1 − Hj(t))dt is the mean sojourn time in state j.
The quantity we aim to analyze is the expected cumulative operational time of a semi-Markov

system, denoted by W(t) := E[W(t)]. Which is given by

W(t) = ∑
i∈E

αiWi(t) = ∑
i∈E

∑
j∈U

αi

∫ t

0
Pij(u)du, (11)

where Wi(t) = ∑
j∈U

∫ t

0
Pij(u)du.

The expected cumulative operational time serves as a crucial indicator in maintenance studies,
facilitating the calculation of average system availability, cf. [21], which is expressed as

A(t) =
1
t

W(t) =
1
t ∑

i∈E
∑
j∈U

∫ t

0
Pij(u)du.

From the definition of the expected cumulative operational time W(t) given in Equation (11),
and based on a sample path truncated to the time interval [0, M] of the process, the nonparametric

kernel estimator Ŵ(t, M) is given by

Ŵ(t, M) = ∑
i∈E

∑
j∈U

αi

∫ t

0
P̂ij(u, M)du. (12)
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The asymptotic properties of the proposed estimator are gathered in the following two corollaries.

Corollary 1. For any fixed 0 ≤ t ≤ M, under the same assumptions of Theorem 1, the estimator

of the expected operational time, Ŵ(t, M) is strongly consistent, that is

sup
t∈[0,M]

| Ŵ(t, M)− W(t) | a.s.−→ 0 as M → ∞.

Proof of Corollary 1
This corollary is a particular case of Theorem 1 and then the proof is omitted.

The following result concerns the asymptotic normality of the proposed estimator.

Corollary 2. For any fixed 0 ≤ t ≤ M, we have
√

MhM

[
Ŵ(t, M)− W(t)

]
converges in law, as M

tends to infinity, to a zero mean normal random variable with the asymptotic variance

σ2
W(t) ⩽ ∑

i∈E
∑
j∈U

µii

∫ t

0

[(
Yij − Ci

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du,

where
Yij = ∑

d∈E
∑

r∈U
αd
(
Ψdi ∗ Ψjr ∗ Hr

)
and Ci = ∑

d∈E
∑

r∈U
αd1{i=r}Ψdr.

Proof of Corollary 2
The proof of this result is based on the same arguments as in the proof of Theorem 2.

6.2. Confidence interval

The main purpose of the confidence interval is to supplement the estimate at a point with
information about the uncertainty in this estimate. It is considered as a direct application of the
Central Limit Theorem. In order to provide a confidence interval for the expected cumulative
operational time W(t), we need first to propose a consistent estimator of the variance σ2

W
(t). A

natural consistent estimator of this variance, denoted by σ̂2
W
(t, M), is obtained by estimating the

parameters involved in this quantity such as Qmk(t), H j(t) and Ψim(t).

Indeed, from the strong consistency of Q̂mk(t, M), Ĥ j(t, M) and Ψ̂im(t, M), (see the proof of
Theorems 1 and 2 as well as Theorem 4.1 and Theorem 4.2 (v) in [1]), we deduce the strong
consistency of σ̂2

W
(t, M).

Consequently, from Corollary 2, we get√
MhM

[
Ŵ(t, M)− W(t)

]
D−→ N

(
0, σ̂2

W(t, M)
)

.

Then √
MhM

σ̂W(t, M)

[
Ŵ(t, M)− W(t)

]
D−→ N (0, 1) .

Hence, for α ∈ (0, 1), an asymptotic 100(1 − α)% confidence interval for Ŵ(t, M) can be straight-
forwardly computed:

I =
(

Ŵ(t, M)± z α
2

σ̂W(t, M)
√

MhM

)
where z α

2
is the upper α

2 quantile of the standard normal distribution.
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6.3. Numerical application

To validate our results, we consider a three state system whose state transition diagram is given
in Figure 1. States 1 and 2 are up states and state 3 is a down state.
We have two exponential and two Weibull distribution functions as conditional transitions, for all
x ≥ 0, say H12(x) = 1 − exp (−λ1x) , H31(x) = 1 − exp (−λ2x) ,

H23(x) = 1 − exp
[
−
(

x
α1

)β2
]

, H21(x) = 1 − exp
[
−
(

x
a1

)β1
]

.

The parameters of these distributions are: λ1 = 0.1, λ2 = 0.2, α1 = 0.3, β1 = 2, α2 = 0.1, β2 = 2.

Figure 1: A three state semi-Markov system.

The transition probability matrix of the embedded Markov chain (Jn) is:

P =

 0 1 0
0.95 0 0.05

1 0 0


Where the system is defined by the initial distribution α = (1/3, 1/3, 1/3).

To construct the kernel estimator for the mean performance of a continuous-time semi-Markov
process. The smoothed function K(·) is chosen to be the quadratic function defined as K(u) =
3
4
(
1 − u2) for |u| ≤ 1 and the cumulative distribution function G(u) =

∫ u
−∞

3
4
(
1 − z2) 1[−1,1](z)dz.

The bandwidth hM has been obtained by the "PBbw" method, which computes the plug-in band-
width of the Polansky and Baker method, cf. [22]. We have considered that the observation period
is the interval [0, M] with M = 20000.

Figure 2 gives a comparison between the kernel estimator of the mean performance for
different sample sizes (M = 2000, M = 10000 and M = 20000 ). We observe that this estimator
converges to the true value of the mean performance as M increases.
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Figure 2: Comparison between the kernel estimator of the mean performance for different sample sizes and the true
value.

Figure 3: Comparison between the true values of the mean performance and their estimators (empirical and kernel).

Figure 3 gives a comparison between the empirical estimator (see [14]) and our kernel estima-
tor of the mean performance. We remark easily that, our method provides better results than the
empirical one.
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7. Concluding remarks

The application of the nonparametric kernel approach to estimate the mean performance of a
continuous-time semi-Markov process is the main element of the work described in this paper.
We have proposed a kernel estimator for this quantity then we have provided its asymptotic
properties, such as the uniform strong consistency, as well as the asymptotic normality.
Compared to the empirical estimator, the use of this kernel technique approach has a number of
benefits. Since the empirical function is always a discontinuous function, the kernel smoothing
in particular prevents discontinuities in this function. As a result, the empirical distribution
may be considered a poor approximation when knowing that the underlying distribution is
continuous. To the best of our knowledge, no limit theorems have been obtained for functionals
of homogeneous semi-Markov processes, such as the performance and the related quantities, by
using the kernel approach. In particular, we have made an important connection of our results
with the reliability theory by focusing on the cumulative operational time of the semi-Markov
systems. This crucial indicator is the total time spent by the process in the set of operational
states during a specific time interval. It is used to minimize the expected cost of the maintenance
process. The uniform strong consistency and asymptotic normality have been stated. In addition,
a confidence interval has been constructed. Moreover, a simulation study has been conducted
in order to highlight to the efficiency as well as the superiority of our method to the standard
empirical method.
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