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Abstract 

 

Data depth procedures are statistical methods used to measure the centrality or depth of a point 

within a multivariate dataset. These procedures provide a way to quantify how deep or outlying a 

point is relative to the overall distribution of the data. This study explores various data depth 

procedures to find reliable location estimations in cases like with and without outliers. In this 

paper, various depth procedures, such as Mahalanobis depth, Halfspace depth, Euclidean depth, 

Simplicial depth, and Projection depth, are studied and compared. The efficiency of these depth 

functions is evaluated using real datasets and simulation studies with R software. 
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I. Introduction 
 

Robust statistics is a fundamental branch of statistical theory and methodology designed to 

address the challenges posed by data containing deviations from standard assumptions. These 

deviations may include outliers or non-normality in the data. Robust statistics prioritizes methods 

that are insensitive to small outliers, which are a common occurrence in traditional statistical 

techniques. It aims to yield precise and reliable results even when the assumptions of classical 

statistics are not fulfilled. Robust statistical methods have been developed for many common 

problems such as estimating location, scale and regression parameters. The data depth approach is 

one of the robust statistical methods that measures the depth of a data point in a multivariate 

dataset. It determines the depth of a point by its distance from the center of the data, with points 

closer to the center having a higher depth value. This approach is useful for identifying outliers 

and robustly estimating location and scatter. These methods can be applied to both univariate and 

multivariate datasets, providing robust estimates of location and scatter [2].  

     The rest of the paper is structured as follows. The second section provides a concise overview 

and definitions of different data depth procedures. In the third section, the findings from 

numerical study conducted in both real datasets and simulated environments are presented. 

Finally, the paper concludes with a discussion the last section. 
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II. Data Depth Procedures 

 

Data depth procedures are an innovative approach in robust statistics designed to measure the 

centrality of points within a data set, especially in multivariate contexts [3]. Depth assigns an 

integer to a candidate fit relative to a data set, enabling a center-outward ordering of sample points 

[6]. Unlike traditional order statistics, which rank data from smallest to largest, depth order 

statistics start from the center and move outward [8]. This center-outward approach is crucial for 

multivariate data sets, extending univariate concepts to multivariate analysis and allowing 

nonparametric methods to be used in multivariate data analysis [9]. This concept is particularly 

useful when dealing with complex data structures where classical methods may falter due to the 

presence of outliers or deviations from model assumptions.  

     The applications of data depth procedures are vast and varied, encompassing robust location 

estimation, multivariate outlier detection, classification, and data visualization. The data depth 

procedures used in this study is detailed below. 

 

Mahalanobis Depth (MD) 

 
Mahalanobis (1936) [7] introduced the Mahalanobis depth in robust statistics which measures the 

centrality of a point within a multivariate data set by using the Mahalanobis distance. Mahalanobis 

depth of a point 𝑥 relative to a data set 𝑋 is inversely related to the Mahalanobis distance from 𝑥 to 

the mean of 𝑋. Mahalanobis depth function can be written as 

 

 𝑀ℎ𝐷 (x) =[1 + (𝑥 − 𝑥̅)𝑇𝑆−1(𝑥 − 𝑥̅)]−1                                                     (1) 

 

where 𝑥̅ and S are the mean vector and dispersion matrix. 

This function lacks robustness because it relies on non-robust measures like the mean and 

the dispersion matrix, making it inadequate for handling outliers in a data set.  

 

Halfspace Depth (HD) 

 
In 1975, Tukey (1975) [10] introduced the concept of location depth, also known as halfspace depth 

or Tukey depth, as a tool for visually describing bivariate data sets. In p dimensions, the halfspace 

location depth of a point 𝜃 relative to a data set 𝑥𝑛 = (𝑥1, 𝑥2,…, 𝑥𝑛) ϵ 𝑅𝑝×𝑛 is denoted as 𝑙𝑑𝑒𝑝𝑡ℎ(𝜃;\

𝑋𝑛). It is defined as the smallest number of observation in any closed halfspace with boundary 

through 𝜃. In the univariate setting p, this definition becomes 

 

𝑙𝑑𝑒𝑝𝑡ℎ1(𝜃;\𝑋𝑛) = min{#(𝑥𝑖 ≤ 𝜃), #(𝑥𝑖 ≥ 𝜃)}                                                    (2)          

  

     In the multivariate case, the concept of the median can be generalized to the point with 

the highest depth, known as the Tukey median. Numerous depth functions exist, all aiming to 

quantify how deep or central a point 𝑥 is within the data cloud. A key advantage of halfspace 

depth is its affine invariance. The primary reason for employing the Tukey median as a 

multivariate location estimator is its robustness, which can be evaluated using the breakdown 

value 𝜖∗. Halfspace depth provides a powerful, geometrically intuitive way to measure the 

centrality of points in multivariate data. It is widely used in robust statistics, particularly for 

identifying outliers and assessing data spread. By calculating how well a point is "enclosed" by the 

data, it provides a robust measure of centrality, independent of the data's distribution. However, 

the method’s computational cost can be prohibitive in high-dimensional settings without efficient 

algorithms. 
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Euclidean Depth (L2D) 

 
The 𝐿2-depth was introduced by Zuo and Serfling (2000) [11]. The 𝐿2-depth 𝐷𝐿2 measures the 

outlyingness of a point based on its mean distance from a chosen center of the distribution, defined 

as 

 

𝐷𝐿2(𝑧/𝑋) = (1 + 𝐸(‖𝑧 − 𝑋‖)−1                                                        (3)                                                                                                                                                                      

 

     For an empirical distribution of points 𝑥𝑖 (𝑖 = 1,2, … , 𝑛), it is given by 

 

𝐷𝐿2(𝑧/𝑋1, … . 𝑋𝑛) = (1 +
1

𝑛
∑ (‖𝑧 − 𝑋𝑖‖)𝑛

𝑖=1

−1
                                              (4) 

 

     The 𝐿2-depth vanishes at infinity and reaches its maximum at the spatial median of 𝑋, 

minimizing 𝐸(‖𝑧 − 𝑋‖).  

     In centrally symmetric distributions, this maximum is at the center. The 𝐿2-depth demonstrates 

properties such as monotonicity with respect to the deepest point, convexity, compactness of 

central regions, and continuous dependence on 𝑧. It also converges in probability for uniformly 

integrable and weakly convergent sequences. However, the 𝐿2-depth is not a sensible ordering of 

dispersion as it contradicts the dilation order, increasing with the dilation of 𝑝. 

     The 𝐿2-depth is invariant against rigid Euclidean motions but not affine invariant. An affine 

invariant version is constructed using a positive definite matrix M and the M-norm given by 

 

‖𝑍‖𝑀 = √𝑧′𝑀−1𝑧, 𝑧 ∈  𝑅𝑑                                                             (5) 

 

     Let 𝑆𝑋 be a positive definite d×d matrix that measures the dispersion of X in an affine 

equivariant way, such that 𝑆𝑋𝐴+𝑏 = 𝐴𝑆𝑋𝐴′ holds for any matrix A of full rank and any b. Then an 

affine invariant 𝐿2-depth is given by (1 + 𝐸(‖𝑧 − 𝑋‖𝑆𝑋)−1. Besides invariance, it has the same 

properties as the 𝐿2-depth. A simple choice for 𝑆𝑋 is the covariance matrix ∑𝑋 of X.  

 

Simplicial Depth (SD) 

 
Liu (1990) [4] introduced the concept of simplicial depth, which measures the centrality of a point x 

in a p-dimensional data set, x ϵ 𝑆𝑛ℝ𝑝. Simplicial depth is defined as the number of closed 

simplices containing x and having p+1 vertices in 𝑆𝑛. In the bivariate case, it counts the number of 

triangles formed by sample points in 𝑆𝑛 contain x. Simplicial depth is robust against outliers: if a 

set of sample points is represented by the point of maximum depth, up to a constant fraction of the 

sample points can be arbitrarily corrupted without significantly altering the location of the 

representative point. It is also invariant under affine transformations. 

     However, simplicial depth lacks some desirable properties for robust measures of central 

tendency. For centrally symmetric distributions, there is not always a unique point of maximum 

depth at the center of the distribution. Additionally, the simplicial depth does not necessarily 

decrease monotonically from the point of maximum depth. Despite these limitations, simplicial 

depth remains a useful measure in robust statistics and computational geometry, particularly for 

its robustness to outliers and its affine invariance. Simplicial depth is a robust, non-parametric 

method for measuring the centrality of a point in a multivariate dataset. By focusing on simplices 

(the convex hulls of subsets of data points), simplicial depth provides a geometric measure of how 

deep or central a point is within the distribution. It is particularly useful for outlier detection and 

robust estimation in multivariate data, but its computational complexity can be a limitation, 

particularly in high-dimensional datasets. 
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Projection Depth (PD) 

 
The projection depth function initiated by Liu (1992) [5]. It is based on a measure of outlyingness  

and the idea behind the Donoho (1982) [1]. Further, this depth function was explored by Zuo and 

Serfling (2000) [11]. 

     For a univariate distribution function 𝐹 of 𝑥, the outlyingness 𝑂(𝐹, 𝑥) is defined as  

 

𝑂(𝐹, 𝑥) = sup {𝑄(𝑢, 𝑥, 𝐹)}                                                               (6) 

 

over all unit vectors 𝑢, where 𝑄(𝑢, 𝑥, 𝐹) =   
(𝑢𝑇𝑥− 𝜇(𝐹𝑢))

𝜎(𝐹𝑢)
, and  𝐹𝑢 is the distribution of  𝑢𝑇𝑥.  

     The projection depth 𝑃𝐷(𝑥, 𝐹) is then given by 

 

𝑃𝐷(𝑥, 𝐹) =  
1

1+𝑂(𝑥,𝐹)
                                                                    (7) 

 

     This approach reflects the projection pursuit methodology, involving the supremum over 

infinitely numerous direction vectors, making the computation of projection depth seemingly 

intractable. Initially, classical location and scale measures were used, but these were later replaced 

by robust measures like the median and Median Absolute Deviation (MAD). 

 

III. Numerical Study 

 
This section evaluates the effectiveness of various data depth procedures by considering both real 

and simulation studies. The analysis includes a comprehensive assessment of different depth 

procedures, such as Mahalanobis, Halfspace, L2, Simplicial, and Projection depths. These 

procedures are applied to both real datasets and simulated data to provide a robust evaluation of 

their performance. By calculating and comparing the depth values, the study aims to determine the 

efficiency and reliability of each method. This comparison helps identify which depth procedures 

are most effective in accurately determining centrality and handling outliers. 

     The experimental findings from two different real datasets, available in R packages, are 

presented in this section. These datasets contain one or more predictors. The depth values 

computed using various depth functions are presented in Tables 1 and 2. 

starsCYG dataset –  It contains features of 47 stars in the Hertzsprung-Russell diagram of the Star 

Cluster CYG OB1. It includes one predictor variable, the logarithm of the star's effective surface 

temperature (log.Te), and one response variable, the logarithm of its light intensity (log.light). 

Cook's distance is used to identify the 9 outliers in the dataset. 

Anscombe dataset – There are 51 observations in this dataset. The predictor variables are Income, 

Young, Urban and the response variable is Education. Cook's distance revealed 7 outliers in this 

dataset. 
Table 1: Computed depth values for starsCYG dataset 

 

 

Methods MD HD L2D SD PD 

With Outliers 0.941 

(25) 

 

0.383 

(28) 

0.465 

(25) 

0.322 

(25) 

0.670 

(25) 
Without 

Outliers 

0.920 

(42) 

0.342 

(42) 

0.433 

(42) 

0.345 

(33) 

0.714 

(42) 

 

 

                       (.) Observation number 
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(a). With Outliers (b). Without Outliers 
Figure 1: Bagplot for starsCYG dataset (with and without outliers) 

 
Table 2: Computed depth values Anscombe dataset 

 

 

Methods MD HD L2D SD PD 

With Outliers 0.869 

(14) 

 

0.333 

(25) 

0.352 

(25) 

0.145 

(25) 

0.565 

(25) 
Without 

Outliers 

0.941 

(42) 

0.341 

(25) 

0.346 

(25) 

0.169 

(25) 

0.583 

(25) 

 

 

                         

Tables 1 and 2 reveal that, in both the presence and absence of outliers, the Mahalanobis depth 

consistently exhibits the highest depth values. This indicates that the Mahalanobis depth method is 

particularly effective at measuring centrality, regardless of whether outliers are present in the 

dataset. The real study compares the performance of five data depth methods MD, HD, L2D, SD, 

and PD with and without outliers. When outliers are present, MD is the most efficient method with 

a score of 0.869, showing its robustness in handling contamination. In contrast, SD and PD exhibit 

a significant drop in efficiency, with scores of 0.145 and 0.565, respectively, indicating their 

susceptibility to outliers. When the outliers are removed, the efficiency of all methods increases, 

with MD still leading at 0.941. HD and L2D show similar performance, with scores of 0.341 and 

0.346, respectively. The efficiency of SD and PD improves somewhat after removing outliers, but 

they still remain the least efficient with scores of 0.169 and 0.583, respectively. The results highlight 

that MD is the most robust and efficient method, particularly when outliers are present, while HD 

and L2D offer a balanced performance.  

     The simulation study aims to assess and compare the efficiency of different data depth 

procedures in handling multivariate data. It investigates how each method performs under various 

contamination scenarios, such as location and scale contamination, which simulate real-world 

deviations from ideal data. The goal is to identify the most effective and reliable depth procedures, 

particularly in the presence of data contamination, which is common in practical applications. The 

data is simulated from normal distribution of sample size n=1000 with mean vector µ (0, 0) and 

unit covariance matrix ∑ = 𝐼2, and the simulated data is then contaminated in three different 

scenarios such as location contamination, scale contamination, and a combination of location and 

scale contamination. These contaminations are introduced at varying levels of 0%, 5%, 10%, 15%, 

20%, and 25%. 

     For location contamination, the simulated data is contaminated by the mean vector µ (5, 5). In 

the case of scale contamination, the data is contaminated by altering the covariance matrix to ∑ = 

2𝐼2. In location and scale contamination, the simulated data is contaminated by the mean vector µ 

(3, 3) and ∑ = 1.5𝐼2. These varying levels of contamination allows to evaluate the robustness and 

performance of different data depth procedures under different types and degrees of data 

contamination and are presented in Table 3. 
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Table 3: Computed depth values for Simulation study 
 

 

Levels MD HD L2D SD PD 

0% 0.869 

(14) 

 

0.333 

(25) 

0.352 

(25) 

0.145 

(25) 

0.565 

(25) 

 

 

 

 

 

Location Contamination 

 5% 0.960 

(45) 

0.377 

(45) 

0.397 

(45) 

0.139 

(45) 

0.664 

(45) 

 

 
10% 0.958 

(54) 

0.388 

(45) 

0.399 

(45) 

0.155 

(45) 

0.706 

(45) 

15% 0.929 

(54) 

0.388 

(45) 

0.389 

(45) 

0.159 

(43) 

0.662 

(45) 

 20% 0.936 

(54) 

0.377 

(45) 

0.390 

(54) 

0.157 

(45) 

0.667 

(45) 

25% 0.935 

(54) 

0.311 

(43) 

0.388 

(54) 

0.145 

(43) 

0.598 

(43) 

Scale Contamination 

 5% 0.992 

(52) 

0.432 

(52) 

0.385 

(52) 

0.161 

(52) 

0.838 

(52) 

10% 0.890 

(59) 

0.344 

(62) 

0.386 

(59) 

0.136 

(62) 

0.609 

(62) 

15% 0.987 

(52) 

0.433 

(52) 

0.392 

(52) 

0.166 

(52) 

0.788 

(52) 

20% 0.888 

(47) 

0.352 

(45) 

0.385 

(45) 

0.152 

(45) 

0.673 

(45) 

25% 0.972 

(47) 

0.432 

(47) 

0.391 

(47) 

0.168 

(47) 

0.745 

(47) 

Location and Scale Contamination 

5% 5% 0.916 

(45) 

0.344 

(45) 

0.381 

(45) 

0.145 

(45) 

0.583 

(45) 

10% 0.951 

(45) 

0.412 

(45) 

0.386 

(45) 

0.158 

(45) 

0.734 

(45) 

15% 0.950 

(45) 

0.382 

(45) 

0.387 

(45) 

0.156 

(45) 

0.676 

(45) 

20% 0.924 

(45) 

0.382 

(45) 

0.383 

(45) 

0.152 

(45) 

0.710 

(45) 

25% 0.922 

(45) 

0.381 

(45) 

0.382 

(45) 

0.158 

(45) 

0.707 

(45) 

                        

Based on the results presented in Table 3, it can be concluded that the Mahalanobis depth 

consistently identifies the deepest location point among the different data depth procedures 

evaluated. This indicates that the Mahalanobis depth is particularly effective at determining the 

central point of the dataset, demonstrating its robustness and reliability in comparison to other 

depth measures. Even in the presence of outliers, Mahalanobis depth shows the smallest decrease 

in efficiency, highlighting its ability to maintain accuracy when the data is contaminated. The 

method's robustness is further emphasized by its superior performance under both location and 

scale contamination scenarios. 
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IV. Discussion 

The study concludes that among the various data depth measures tested, Mahalanobis Depth 

consistently identifies the deepest points across different scenarios, both with and without outliers. 

This suggests that Mahalanobis Depth provides a stable measure of centrality, even when the data 

contains extreme values or deviates from standard assumptions. In contrast, other depth measures 

like Halfspace Depth and Projection Depth demonstrate sensitivity to outliers and complex 

distributions, sometimes shifting central points. L2 Depth and Simplicial Depth also showed varied 

performance, especially in non-elliptical data structures. Overall, Mahalanobis Depth's consistent 

centrality assessment highlights its utility in robust statistical applications where a reliable 

measure of depth is crucial. 
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