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Abstract 

This article introduces an approach to optimize the design of Repetitive Group Sampling (RGS) 

plan in the context of quality control for modern manufacturing processes. The primary objective of 

this study is to enhance decision-making efficiency by applying Bayesian principles to develop 

optimal sampling plans. In modern manufacturing environment, the industries are using the 

advanced technologies and machineries to maintain the quality of their products. The existence of 

defects would consequently be highly rare in such production. In such situation, Zero Inflated 

Poisson (ZIP) distribution is a more appropriate probability distribution rather than the usual 

Poisson distribution. Further, manufacturing industries often use a variety of manpower and 

materials to produce their products in various production streams. This may lead to have more 

quality variation in between lots and hence, the lot quality will vary over lots. The lots that arise 

from such a production process will be unstable, and quality variations among the units are often 

heterogeneous in nature. In such situation, the Bayesian sampling plans under Zero Inflated 

Poisson distribution would be more effective and alternative for traditional sampling plans. This 

paper studies the designing and selection of Bayesian Repetitive Group Sampling (BRGS) Plan 

under the conditions of Gamma-Zero Inflated Poisson distribution (G-ZIP). To investigate the 

effectiveness of this plan, a comparison between the proposed BRGS plan and various existing 

sample plans is made. Further, we provided the procedure and tables with the suitable numerical 

illustration to compute the optimal sampling plan. 

Keywords: Bayesian perspective, group sampling, quality control, decision-
making, process monitoring. 

1. INTRODUCTION

Acceptance sampling plans are useful tools for applications involving quality assurance and 
provide the producer and the consumer a general rule for lot sentencing to satisfy their 
requirements for product quality. A well-designed acceptance sampling plan not only reduces 
inspection costs and time, but also protects both the producer and the consumer. Therefore, a 
sampling plan with a smaller sample size required for inspection is more desirable and useful, 
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particularly when inspection is costly and destructive. There are several sampling schemes that 
have been used for various situations in the industry. One of the sampling schemes called the 
repetitive sampling plan has been introduced by Sherman. This sampling procedure is especially 
effective for situations where product inspection is destructive and costly. It enables the acceptance 
or rejection of a lot based on repeated testing of a small number of identical samples. The operating 
procedure of the attributes RGS plan can be seen in Sherman [1]. Further, the RGS plans are 
usually more efficient than the single sampling plan. The RGS plan can achieve the desired level of 
protection with a smaller sample size compared to a single sampling plan. Soundararajan and 
Ramasamy [2] developed procedures and tables to select the optimal parameters for the RGS plan. 
Balamurali et al., [3] developed the RGS plan and demonstrated that it significantly reduces the 
average sample size compared to single and double sampling plans. Recently, Kannan et.al., [4] 
proposed economic designed RGS plan to satisfy both producer’s and consumer’s risks with 
minimum cost under Birnbaum–Saunders distribution. However, recent attempts to develop 
procedures for Repetitive Group Sampling (RGS) plans specifically for attribute quality 
characteristics have been limited. Hence, this paper attempts to extend the concept of repetitive 
group sampling based on attribute quality characteristics. 

In recent years, due to technological advancements there is a competitive environment in 
manufacturing industries has produce products in perfect quality. However, in production 
processes, there may be natural variability that causes some batches to have zero defects while 
others have a Poisson-distributed number of defects. ZIP distributions allow for the modeling of 
this variability effectively. Incorporating the ZIP distribution into acceptance sampling plans can 
lead to more efficient and cost-effective sampling plans. By accurately modeling the likelihood of 
zero defects, we can design acceptance sampling plans that reduce the number of samples required 
for inspection when the process is consistently producing zero-defective items. ZIP distribution is 
appropriate to design sampling plans that are more conservative when it comes to rejecting 
batches, reducing the risk of rejecting batches with only a small number of defects or no defects at 
all. Further, the application of ZIP model to defects in the manufacturing process has been 
discussed by Lambert [5]. In dental epidemiology research, Bohning et al., [6] made a few 
significant comparisons between the ZIP distribution and the Poisson distribution to measure 
people’s dental health. Some of the applications of ZIP distribution can be found in Xie et al., [7], 
Rodrigues [8], Naya et al., [9], Sim and Lim [10], Yang et al., [11], Mussida et al., [12]. Further, 
Loganathan and Shalini [13] developed a single sampling plan based on attributes under the ZIP 
distribution. Additionally, Rao [14] designed a single sampling plan for resubmitted lots 
considering the ZIP distribution. 

In Bayesian methodology, the acceptance sampling plans includes prior information regarding the 
process variations for taking decisions about the submitted lots can be used under the sampling 
plans as an alternative to the traditional sampling plans. The optimal design of repetitive group 
sampling plans under a Bayesian perspective represents a significant advancement in quality 
control for modern manufacturing. It enables enhanced decision-making efficiency, leading to 
improved process performance, reduced costs, and increased customer satisfaction. The proposed 
methodology has practical implications for manufacturers seeking to optimize their quality control 
processes and navigate the challenges of the dynamic manufacturing landscape. Bayesian methods 
offer a flexible framework for modeling and estimation, allowing for more accurate and reliable 
decision-making. Several studies have successfully applied Bayesian techniques in various quality 
control applications, including process monitoring, parameter estimation, and defect prediction. 
Hald [15] provided a detailed discussion on the procedures and implications of a Bayesian Single 
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Sampling Plan, considering both Gamma-Poisson (GP) and Beta-Binomial distributions. 

Additionally, Calvin [16], Case et al., [17], and Guthrie and Johns [18] explored the selection of 
prior distributions for the lot fraction of non-conforming items in Bayesian sampling plans. 
Vijayaraghavan et al., [19] discussed a Bayesian Single Sampling Plan using the Gamma-Poisson 
distribution and proposed a method to evaluate the efficiency of this sampling plan in comparison 
to the conventional Poisson Single Sampling Plan. Rajagopal et al., [20] developed a Bayesian 
Single Sampling Plan based on the Polya distribution, utilizing the Guenther approach, and 
examined the discriminating power of these plans through their corresponding operating 
characteristic curves. 

The purpose of this article is to develop a Bayesian Repetitive Group Sampling (BRGS) plan by 
attribute, based on the G-ZIP distribution, using the Guenther approach. In next section, provides 
an operating procedure of Repetitive Group Sampling plan. In third section, a brief description of 
the Bayesian G-ZIP distribution along with its performance measure is given. The fourth section 
provides the operating procedure and tables for selecting the proposed plan and to determine the 
optimum plan parameters for the specified quality levels through the Guenther iterative producer. 
In the fifth section, numerical illustrations are provided to assess the effectiveness of proposed 
plan compared to alternative sampling plans. The results are summarized in the concluding 
section. 

2. REPETITIVE GROUP SAMPLING PLAN

Sherman [1] introduced the Repetitive Group Sampling (RGS) plan, which provides a 
straightforward procedure for attribute-based quality characteristics. This plan is more efficient 
than single sampling and resembles sequential sampling methods. It is particularly suited for 
situations involving destructive or costly inspections, using repeated samples to determine lot 
acceptance or rejection. The RGS plan achieves the desired protection with a smaller sample size 
compared to single sampling. According to Sherman [1] the operating procedure of RGS plan 
involves the following steps. First, a random sample of size n is taken from the lot. Next, the 
number of non-conforming items, d in the sample is observed. If 𝑑 ≤ 𝑐1, the lot is accepted. If 𝑑 >

𝑐2, the lot is rejected. If  𝑐1 < 𝑑 ≤ 𝑐2, the sampling and inspection process is repeated until a 
decision is made. This plan is completely specified by three parameters, namely sample size n and 
the acceptance numbers 𝑐1 and 𝑐2. It is observed that the RGS plan reduces to a single sampling 
plan when  𝑐1 = 𝑐2 with 𝑐1 always being less than 𝑐2. 
The probability of lot acceptance is determined by using the Operating Characteristic (OC) 
function, which is derived to be: 

𝑃𝐴(𝑝) =
𝑃𝑎(𝑝)

𝑃𝑎(𝑝)+𝑃𝑟(𝑝)
(1) 

Where, 𝑃𝑎(𝑝) is the probability of acceptance of a submitted lot with fraction defective p based on a 
given sample, whereas 𝑃𝑟(𝑝) is the corresponding probability of lot rejection. 

3. THE OC FUNCTION OF BAYESIAN RGS PLAN UNDER G-ZIP DISTRIBUTION

In acceptance sampling plan the number of nonconforming occurrences during a sampling 
inspection is considered as count data, their Poisson frequency distribution model could be 
identified using a probability distribution with parameter, representing the average number of 
defects per unit. However, the Zero-Inflated Poisson count models provide an alternative method 
to explain the excess zeros that is a greater number of non-conforming units by modeling the data 
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as a mixture of two separate distributions.  
As given by Lambert [5] the probability function of a Zero Inflated Poisson distribution is given by, 

𝑃(𝑋 = 𝑥; 𝜔, 𝜆) = {
𝜔 + (1 − 𝜔)𝑒−𝜆 ,  𝑤ℎ𝑒𝑛 𝑥 = 0 

(1 − 𝜔)
𝑒−𝜆𝜆𝑥

𝑥!
,    𝑤ℎ𝑒𝑛 𝑥 = 1,2,3 …

(2) 

Where, ω and λ are the parameters of ZIP distribution with  0 < 𝜔 < 1, 𝜆 > 0. When 𝜔 = 0, this 
model reduces to the Poisson model. Further, when the manufacturing process is well monitored, 
defects become a rare event, resulting in many sampled products having zero defects. In such 
cases, the ZIP distribution is the appropriate probability distribution for modeling the number of 
defects in the sampled products. When the number of nonconformities items in the sample is 
followed by the model of Zero Inflated Poisson distribution with parameter (𝑛𝑝, 𝜔), when the 
proportion of nonconformities p varies at random from lot by lot and is distributed according to a 
gamma distribution, which is a natural conjugate prior to p, the density function of the p is given 
by, 

𝑓(𝑝/𝑡, 𝑠) =
𝑒−𝑡𝑝𝑡𝑠𝑝𝑠−1

Γ𝑠
, 0 ≤ 𝑝 < ∞, 𝑡, 𝑠 > 0 

Where, t is scale parameter and s is the shape parameter. If 𝐸(𝑝) = 𝑝̅ is gives the scale parameter is 
obtained by 𝑡 = 𝑠/𝑝̅. Here, the prior knowledge s is estimated from past history of the production 
process. Further, the Uniform distribution is assumed to be the conjugate prior to ω with 
parameters a and b. The probability density function of the ω is defined as, 

𝑓(𝜔/𝑎, 𝑏) =
1

𝑏 − 𝑎
 , 𝑎 ≤ 𝜔 ≤ 𝑏 

In particular, the limitation of parameter ω can be taking 𝑎 = 0 and 𝑏 = 1, that is the uniform prior 
on (0,1). Then the equation for the standard uniform distribution is, 

𝑓(𝜔) = 1    for    0 ≤ 𝜔 ≤ 1 

Thus, the predictive distribution of the number of defectives x is reduced to the G-ZIP distribution. 
In cases where the production process is unstable, the non-conforming items x and the average 
number of defects p are independently distributed. According to Hald [15] the average probability 
of acceptance 𝑝̅ is approximately obtained by, 

𝑃𝑎(𝑝̅) = ∫ 𝑃𝑎(𝑝) 𝑓(𝑝)𝑑𝑝
∞

0
 (3) 

Thus, the average probability of acceptance 𝑝̅ under the conditions of Gamma prior distribution 
and ZIP sampling distribution can be obtained by, 

𝑝(𝑥; 𝜔, 𝑛𝑝̅, 𝑠) = {
𝜔 + (1 − 𝜔)(1 − 𝜌)𝑠,  𝑤ℎ𝑒𝑛 𝑥 = 0 

(1 − 𝜔) (
𝑥 + 𝑠 − 1

𝑠 − 1
) 𝜌𝑥(1 − 𝜌)𝑠,    𝑤ℎ𝑒𝑛 𝑥 = 1,2,3 …

 (4) 

Let us take for convenience 𝜌 = (
𝑛𝑝̅

𝑛𝑝̅+𝑠
). It is to be observed that the sampling distribution of x is the 

Zero Inflated Negative binomial model with parameter s and ( 𝑛𝑝̅

𝑛𝑝̅+𝑠
) When production is not stable, 

both x and 𝑝̅ are independently distributed, and hence the sampling distribution of x, according to 
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Hald [15] under the conditions that 𝑝̅ < 0.1, 𝑝̅/𝑠 < 0.2 the OC function is given by, 

𝑃𝑎(𝑝̅) = ∑ 𝑝(𝑥; 𝜔, 𝑛𝑝̅, 𝑠)𝑐
𝑥=0 (5) 

where 𝑝̅ is the average lot quality or average fraction non-conforming. Here, the value of s can be 
estimated from the prior information about the production process. When 𝑐 = 0, the lot acceptance 
probability becomes as,  

𝑃𝑎(𝑝̅) = 𝜔 + (1 − 𝜔)(1 − 𝜌)𝑠 (6) 

Based on this, the OC function of Bayesian RGS plan under the conditions of Gamma-Zero Inflated 
Poisson distribution is given by, 

𝑃𝐴(𝑝̅) =
𝜔 + (1 − 𝜔)(1 − 𝜌)𝑠 + ∑ 𝑝(𝑥; 𝜔, 𝑛𝑝̅, 𝑠)𝑐1

𝑥=1

1 − ∑ 𝑝(𝑥; 𝜔, 𝑛𝑝̅, 𝑠)𝑐2
𝑥=1 + ∑ 𝑝(𝑥; 𝜔, 𝑛𝑝̅, 𝑠)𝑐1

𝑥=1

4. DETERMINATION OF PLAN PARAMETER

The optimal sampling plans are determined for a fixed parameters ω, s and a wide range of 𝑝1 and 
𝑝2 with specified producer's and consumer's risks which are presented in Table 5.1- 5.8. The plan 
parameters are obtained from these tables with producer's risk to a maximum of 5% and 
consumer's risk to a maximum of 10%. Under these conditions, can be determine the plan 
parameters and minimize the Average Sample Number (ASN) at the level of Limiting Quality 
Level (LQL). The ASN of the RGS plan is given by, 

𝐴𝑆𝑁 =
𝑛

𝑃𝑎(𝑝)+𝑃𝑟(𝑝)
(7) 

Where 𝑃𝑎(𝑝) and 𝑃𝑟(𝑝) are the probability of acceptance and probability of rejection of a lot, under 
G-ZIP model. It should be noted that, the values of the parameter s, in the prior distribution range
over the interval (0, ∞). It is observed from the empirical study that the values of 𝑃𝑎(𝑝) of BRGS
plan by attributes under the conditions of G-ZIP distribution do not differ much from those of ZIP
plans at each value of p for larger values of s. It indicates that the OC function under the conditions
of G-ZIP converges to non-Bayesian ZIP sampling plans. Hence, two different values such as 5 and
10 are taken for s. The set of tables corresponds to these values of s with the fixed parameter 𝜔 =

0.001,0.01,0.05,0.09 are considered. The BRGS plan can be used for the situation where the shape
parameter is known and unknown. Normally, producers keep the record of the estimated shape
parameter value for their product or it can be estimated from the available data. While searching
for the optimum sampling plan using the iterative procedure [22], the values of n and c were
restricted to the maximum of 7500 and 75 respectively for the iteration purpose. In some cases,
very large values were obtained for n, which are not feasible to apply in practice. To those data
sets, the optimum sampling plans are not presented which are denoted by the symbol ***.

5. NUMERICAL ILLUSTRATION

In this section, the procedure of selecting the plan parameters for the proposed plan is described 
with numerical illustrations. The significance of the Bayesian RGS plan under the conditions of G-
ZIP distribution is highlighted. 
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Table.5.1 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.001.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
72; 0,2 

(104.85) 
54; 0,1 
(64.21) 

47;0,1 
(55.833) 

41;0,1 
(48.745) 

36; 0,1 
(42.937) 

33;0,1 
(39.171) 

0.01 
79; 0,3 

(141.668) 
66;0,3 

(118.110) 
51;0,2 

(74.609) 
45; 0,2 

(65.533) 
40; 0,1 

(58.252) 
36; 0,2 

(52.426) 

0.015 
94; 0,5 

(249.636) 
72; 0,4 

(157.949) 
56;0,3 

(101.052) 
49;0,3 

(88.422) 
44;0,3 

(78.740) 
36;0,2 

(52.427) 

0.02 
117;0,8 

(516.976) 
85;0,6 

(268.894) 
68;0,5 

(177.547) 
54;0,4 

(118.462) 
44;0,3 

(78.740) 
40;0,3 

(70.996) 

0.025 
152;0,13 

(1387.722) 
103;0,9 

(538.750) 
78;0,7 

(294.534) 
59;0,5 

(155.794) 
48;0,4 

(105.299) 
44;0,4 

(94.623 

0.03 
262;0,29 

(9932.649) 
 127;0,13 

(1150.453) 
89;0,9 

(457.218) 
68;0,7 

(258.482) 
57;0,6 

(178.655) 
47;0,5 

(124.818) 

0.035 *** 
190;0,24 

(5104.563) 
109;0,13 
(983.553) 

82;0,10 
(494.337) 

65;0.8 
(287.209) 

51;0,6 
(161.337) 

0.04 *** *** 
153;0,22 

(3515.175) 
95;0,13 

(867.326) 
73;0,10 

(438.453) 
58;0,8 

(260.776) 

0.045 *** *** *** 
130;0,21 

(2708.636) 
89;0,14 

(915.086) 
66;0,10 

(398.724) 

0.05 *** *** *** *** 
112;0,20 
(2116.08) 

80;0,14 
(809.744) 

Table.5.2 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.01.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
75;0,2 

(106.448) 
57;0,1 

(66.937) 
49;0,1 

(57.500) 
43;0,1 

(50.423) 
38;0,1 

(44.625) 
34;0,1 

(39.986) 

0.01 
83;0,3 

(142.062) 
70;0,3 

(118.685) 
54;0,2 

(76.324) 
47;0,2 

(66.617) 
42;0,2 

(59.363) 
38;0,2 

(53.562) 

0.015 
100;0,5 

(241.745) 
76;0,4 

(155.790) 
60;0,3 

(101.730) 
52;0,3 

(88.833) 
46;0,3 

(78.885) 
38;0,2 

(53.562) 

0.02 
135;0,9 

(564.108) 
98;0,7 

(317.435) 
72;0,5 

(172.095) 
57;0,4 

(116.843) 
51;0,4 

(103.854) 
42;0,3 

(71.211) 

0.025 *** 
128;0,11 
(653.018) 

84;0,7; 
(272.087) 

68;0,6 
(191.242) 

56;0,5 
(133.852) 

46;0,4 
(93.438) 

0.03 *** *** 
117;0,12 
(642.718) 

79;0,8 
(291.620) 

70;0,7 
(201.816) 

50;0,5 
(120.738) 

0.035 *** *** *** 
108;0,13 
(646.546) 

75;0,9 
(313.394) 

59;0,7 
(189.999) 

0.04 *** *** *** *** 
96;0,13 

(574.708) 
72;0,10 

(335.409) 

0.045 *** *** *** *** *** 
91;0,14 

(588.234) 
0.05 *** *** *** *** *** *** 
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Table.5.3 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.05.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
99;0,2 

(122.031) 
83;0,2 

(102.068) 
71;0,2 

(87.379) 
56;0,1 
(61.64) 

49;0,1 
(54.100) 

45;0,1 
(49.497) 

0.01 
140;0,5 

(224.654) 
104;0,4 

(155.587) 
80;0,3 

(108.986) 
70;0,3 

(95.363) 
55;0,2 

(69.794) 
49;0,2 

(60.641) 

0.015 
409;0,19 
(811.944) 

145;0,7 
(254.984) 

100;0,5 
(140.467) 

75;0,4 
(115.645) 

70;0,4 
(103.974) 

56;0,3 
(76.290) 

0.02 *** 
1015;0,58 
(2027.701) 

204;0,13 
(400.903) 

108;0,7 
(191.332) 

78;0,5 
(124.846) 

70;0,5 
(112.327) 

0.025 *** *** *** 
358;0,28 
(758.619) 

126;0,10 
(241.031) 

87;0,7 
(152.957) 

0.03 *** *** *** *** 
676;0,58 

(1352.596) 
215;0,20 
(426.644) 

0.035 *** *** *** *** *** *** 

Table.5.4 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.09.

AQL 

(𝒑𝟏) 
LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
239;0,4 

(260.462) 
170;0,3 

(183.289) 
153;0,3 

(163.427) 
11;0,2 

(117.033) 
100;0,2 

(105.238) 
89;0,2 

(93.804) 

0.01 *** 
886;0,25 
(985.032) 

360;0,11 
(400.36) 

191;0,6 
(211.871) 

152;0,5 
(167.066) 

119;0,4 
(129.815) 

0.015 *** *** *** 
1549;0,61 
(1726.471) 

591;0,25 
(656.937) 

291;0,13 
(323.966) 

0.02 *** *** *** *** *** *** 
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Table.5.5 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.001.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
57;0,1 

(69.554) 
48;0,1 

(58.376) 
41;0,1 

(49.919) 
36;0,1 

(43.783) 
32;0,1 

(38.919) 
29;0,1 

(35.193) 

0.01 
71;0,3 

(140.775) 
53;0,3 

(82.117) 
46;0,2 

(70.677) 
40;0,2 

(61.715) 
36;0,2 

(55.081) 
29;0,1 

(35.193) 

0.015 
78;0,4 

(199.729) 
59;0,3 

(117.322) 
51;0,4 

(100.536) 
40;0,2 

(61.715) 
36;0,2 

(55.084) 
32;0,2 

(49.372) 

0.02 
93;0,6 

(385.083) 
71;0,5 

(233.454 
56;0,4 

(142.347) 
44;0,3 

(88.007) 
40;0,3 

(78.176) 
36;0,3 

(70.358) 

0.025 
114;0,9 

(945.404) 
77;0,6 

(323.137) 
61;0,5 

(199.759) 
49;0,4 

(124.580) 
44;0,4 

(110.305) 
36;0,3 

(70.358) 

0.03 
165;0,16 

(4826.770) 
96;0,9 

(771.389) 
71;0,7 

(379.076) 
58;0,6 

(241.223) 
48;0,5 

(154.045) 
39;0,4 

(99.861) 

0.035 
171;0,21 

(8081.907) 
126;0,14 

(2620.430) 
82;0,9 

(665.819) 
63;0,7 

(325.282) 
52;0,6 

(212.464) 
43;0,5 

(139.114) 

0.04 *** *** 
102;0,13 

(1846.700) 
72;0,9 

(578.504) 
56;0,7 

(289.139) 
46.0,6 

(194.784) 

0.045 *** *** 
320;0,46 

(31309.960) 
90;0,13 

(1573.900) 
64;0,9 

(514.226) 
50;0,7 

(263.145) 

0.05 *** *** *** 
118;0,13 

(4987.170) 
76;0,12 

(1108.500) 
57;0,9 

(472.702) 

Table.5.6 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.01.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
62;0,2 

(99.826) 
50;0,1 

(59.932) 
43;0,1 

(51.489) 
38;0,1 

(45.365) 
34;0,1 

(40.509) 
30;0,1 

(35.959) 

0.01 
74;0,4 

(139.493) 
56;0,2 

(83.276) 
48;0,2 

(71.380) 
42;0,2 

(62.457) 
37;0,2 

(55.344) 
30;0,1 

(35.959) 

0.015 
82;0,4 

(193.514) 
62;0,3 

(116.243) 
53;0,3 

(99.637) 
47;0,3 

(87.182) 
37;0,2 

(55.344) 
34;0,2 

(50.175) 

0.02 
108;0,7 

(458.610) 
75;0,5 

(220.322) 
59;0,4 

(137.877) 
47;0,3 

(87.182) 
41;0,3 

(77.496) 
37;0,3 

(69.746) 

0.025 
182;0,14 

(1575.390) 
90;0,7 

(382.166) 
71;0,6 

(250.271) 
57;0,5 

(163.766) 
46;0,4 

(107.148) 
37;0,3 

(69.749) 

0.03 *** 
152;0,14 

(1304.828) 
84;0,8 

(415.720) 
62;0,6 

(219.427) 
50;0,5 

(146.881) 
41;0,4 

(96.756) 

0.035 *** *** 
130;0,14 

(1125.282) 
66;0,7 

(295.112) 
55;0,6 

(195.438) 
45;0,5 

(132.193) 

0.04 *** *** *** 
171;0,21 

(1653.542) 
71;0,9 

(399.379) 
54;0,7 

(229.300) 

0.045 *** *** *** 
498;0,59 

(4960.443) 
101;0,14 
(877.904) 

64;0,9 
(358.414) 

0.05 *** *** *** *** 
365;0,49 

(3679.178) 
91;0,14 

(787.621) 
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Table.5.7 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.05.

AQL 
(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
85;0,2 

(108.512) 
71;0,2 

(90.530) 
54;0,1 

(60.372) 
47;0,1 

(52.613) 
42;0,1 

(46.956) 
38;0,1 

(42.431) 

0.01 
96;0,3 

(136.436) 
81;0,3 

(116.526) 
61;0,2 

(77.687) 
53;0,2 

(67.741) 
48;0,2 

(60.773) 
43;0,2 

(54.569) 

0.015 
159;0,7 

(300.280) 
105;0,5 

(179.863) 
79;0,4 

(125.816) 
60;0,3 

(87.147) 
54;0,3 

(77.684) 
49;0,3 

(70.051) 

0.02 *** 
230;0,13 
(456.923) 

101;0,6 
(184.261) 

78;0,5 
(135.143) 

61;0,4 
(97.857) 

55;0,4 
(88.070) 

0.025 *** 
752;0,44 

(1504.971) 
267;0,18 
(540.667) 

135;0,10 
(266.137) 

79;0,6 
(143.038) 

63;0,5 
(107.918) 

0.03 *** *** 
862;0,59 

(1788.419) 
298;0,23 
(597.590) 

153;0,13 
(305.145) 

89;0,8 
(170.951) 

0.035 *** *** *** 
957;0,75 

(1911.998) 
333;0,29 
(664.908) 

178;0,17 
(355.931) 

0.04 *** *** *** *** *** *** 

Table.5.8 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.09.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
167;0,3 

(180.948) 
119;0,2 

(126.195) 
100;0,2 

(106.460) 
89;0,2 

(94.431) 
80;0,2 

(84.701) 
61;0,1 

(62.851) 

0.01 
409;0,11 
(456.721) 

241;0,7 
(266.445) 

160;0,5 
(176.768) 

120;0,4 
(132.239) 

93;0,3 
(100.703) 

83;0,3 
(90.078) 

0.015 *** 
740;0,26 
(822.420) 

358;0,14 
(400.650) 

218;0,9 
(242.516) 

139;0,6 
(155.153) 

110;0,5 
(122.328) 

0.02 *** *** 
1442;0,62 
(1604.849) 

568;0,27 
(635.174) 

315;0,16 
(351.616) 

221;0,12 
(246.443) 

0.025 *** *** *** *** 
921;0,50 

(1020.115) 
423;0,25 
(473.118) 

0.03 *** *** *** *** *** *** 
   *** Sampling plan does not exist 

5.1. ILLUSTRATION 1 

Suppose that the quality engineer in medical research center wants to run an experiment to make a 
decision on a product, whether to accept or reject based on BRGS plan under G-ZIP model. If the 
engineer desired to determine a sampling plan for given sets of strengths AQL and LQL say, 𝑝1 =

1%, 𝑝2 = 8% with producer’s risk (α) 5% and consumers risk (β) 10% and the estimated values of 
𝜔 = 0.05 and 𝑠 = 5. Under these requirements, from the Table 5.3 one can find value of optimum 
parameters as 𝑛 = 70, 𝑐1 = 0 and 𝑐2 = 3 with 𝐴𝑆𝑁 = 95.363. 
Execution of the plan: 

The BRGS plan can be executed under the G-ZIP conditions is operated as follows: 
• Step 1: Drawn a random sample of 70 units from the lot and observe the number of non-

conforming items (d), in the sample.
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• Step 2:  If there are no nonconforming items is found, then accept the lot. If more than 3

nonconforming items are observed, then reject the lot.
• Step 3: If the number of nonconforming items is lies between 0 or 3, then repeat these steps

until a decision is made on the same lot.

5.2. ILLUSTRATION 2 

Suppose that the quality engineer’s interest is to focus on sampling inspection towards submitted 
lot for a given strength of parameters 𝑝1 = 0.01, 𝛼 = 0.05, 𝑝2 = 0.07, 𝛽 = 0.10 and 𝜔 = 0.05. From 
the Table 5.9, one can find the ASN value of Single Sampling Plan (SSP) under the conditions of G-
ZIP distribution is determined for different values of 𝑠 = 5 and 10 respectively. Thus, the optimum 
of ASN values are (𝑠 = 5, 𝐴𝑆𝑁 = 318) and (𝑠 = 10, 𝐴𝑆𝑁 = 166). But, the Bayesian RGS plan under 
the G-ZIP distribution for the values of prior information 𝑠 = 5 and 10 respectively, can be 
determined optimum of ASN values (𝑠 = 5, 𝐴𝑆𝑁 = 108.99) and (𝑠 = 10, 𝐴𝑆𝑁 = 77.69). Therefore, 
this illustration clearly shows that the BRGS plan is more efficient then the BSSP under the G-ZIP 
distribution. Further, we made a comparative study on the result of RGS plan with the SSP under 
the conditions of G-ZIP distribution in terms of ASN values. Obviously, a sampling plan having 
smaller ASN would be more preferable. Table.5.9 shows the values of ASNs for the RGS plan 
under G-ZIP distribution with sample size of the SSP under the conditions of G-ZIP distribution 
for some selected combinations of AQL and LQL values. Here, it is considered only two values of 
the shape parameter with the different values of 𝜔 = 0.001,0.01,0.05,0.09 are given in table. 

Table 5.9 ASN values of the RGS Plan and SSP under the conditions of G-ZIP distribution for specified 𝑝1, 𝑝2, 

𝛼 = 0.05 and 𝛽 = 0.10. 

s = 5 s = 10 

ω 𝒑𝟏 𝒑𝟐 SSP RGS SSP RGS 

0.001 

0.005 0.05 191 104.85 126 69.55 
0.005 0.06 124 64.21 105 58.38 
0.01 0.06 264 118.11 162 82.12 
0.01 0.07 166 74.61 115 70.68 

0.015 0.07 491 101.05 186 100.54 
0.015 0.08 276 88.42 142 61.72 
0.02 0.08 1432 118.46 204 88.01 
0.02 0.09 452 78.74 145 78.18 

0.025 0.09 *** 105.30 236 110.31 
0.025 0.1 *** 94.62 277 70.36 

0.01 

0.005 0.05 198 106.45 108 99.83 
0.005 0.06 129 66.94 93 59.93 
0.01 0.06 308 118.69 166 83.28 
0.01 0.07 203 76.32 118 71.38 

0.015 0.07 567 101.73 191 99.64 
0.015 0.08 311 88.83 146 87.18 
0.02 0.08 *** 116.84 231 87.18 
0.02 0.09 535 103.85 167 77.5 

0.025 0.09 *** 133.85 260 107.15 
0.025 0.1 *** 93.44 185 69.75 
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Table 5.10 ASN values of the RGS Plan and SSP under the conditions of G-ZIP distribution for specified 𝑝1, 𝑝2, 

𝛼 = 0.05 and 𝛽 = 0.10. 
s = 5 s = 10 

ω 𝒑𝟏 𝒑𝟐 SSP RGS SSP RGS 

0.05 

0.005 0.05 242 122.03 154 108.51 
0.005 0.06 202 102.07 129 90.53 
0.01 0.06 579 155.59 226 116.53 
0.01 0.07 318 108.99 166 77.69 

0.015 0.07 *** 140.47 273 125.82 
0.015 0.08 716 115.45 193 87.15 
0.02 0.08 *** 191.33 355 135.14 
0.02 0.09 *** 124.85 233 97.86 

0.025 0.09 *** 241.03 459 143.04 
0.025 0.1 *** 152.96 285 107.92 

0.09 

0.005 0.05 842 260.46 332 180.95 
0.005 0.06 515 183.29 234 126.2 
0.01 0.06 *** 985.03 475 266.45 
0.01 0.07 *** 400.36 337 176.77 

0.015 0.07 *** *** *** 400.65 
0.015 0.08 *** 1726.47 *** 242.52 
0.02 0.08 *** *** *** 635.17 
0.02 0.09 *** *** *** 351.62 

0.025 0.09 *** *** *** 1020.12 
0.025 0.1 *** *** *** 473.12 

From Table 5.9 and 5.10, it can be clearly observed that the ASN value of the proposed plan is 
significantly lower than that of the existing Bayesian Single Sampling Plan for all combinations of 
AQL and LQL values. Furthermore, it is noteworthy that the RGS plan under the G-ZIP 
distribution is more economical than the Single Sampling Plan in terms of ASN. This suggests that 
the plan provides the desired protection with minimal inspection, thus greatly reducing the 
inspection costs. 

6. COMPARATIVE ANALYSIS ON SAMPLING PLANS

In garment manufacturing industries, where apparel brands source garments are produced in bulk 
quantity, sampling inspection is an essential step before placing the bulk order. The sampling 
process covers garment fit checking, fabric and trims quality checking, approval value-added 
processes, and approval of complete finished garment. The primary objective of the sampling plan 
is to safeguard from the risk of making a wrong decision on the part of the manufacturer and the 
consumers. For instance, the quality control personal wants to run an experiment to make a 
decision on the quality of the shirts to decide whether the whole lot should be delivered to 
customers or not based on sampling inspection. Suppose that the garments company desire to 
determine the sampling plan for a lot consisting of 9000 pieces of shirts with the acceptance quality 
level is 1% and limiting quality level is 7%. Further, the experimenter is fixed the consumer’s and 
producer’s risk level as 5% and 10% with the estimated value of 𝑠 = 5.  In order to obtain the 
comparative study, the values of 𝑝𝑎(𝑝) of the RGS plan under the conditions of GP, ZIP and G-ZIP 
are given in Table.6.1 for the various values of p. 
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For instance, the strength of the plan is specified as 𝑝1 = 0.015, 𝛼 = 0.05, 𝑝2 = 0.09, 𝛽 = 0.10 and 
𝑠 = 10, it is determined that the RGS plan under the conditions of GP distribution is (40, 2), ZIP 
distribution are (33,2), (41,2) and   for the various fixed parameter 𝜔 = 0.01,0.05,0.09 respectively. 
Corresponding to this strength, the RGS plan under the conditions of G-ZIP distribution are 
determined for different values of ω. The values of ω and the corresponding RGS Plans are (𝜔 =

0.01, 𝑛 = 37, 𝑐 = 2), (𝜔 = 0.05, 𝑛 = 54, 𝑐 = 3) and (𝜔 = 0.09, 𝑛 = 139, 𝑐 = 6).  The value of 𝑃𝑎(𝑝) of 
these given sampling plans are calculated and are given in Table 4.10. All the RGS plan under the 
conditions of G-ZIP distribution have been determined for the same strength. It should be noted 
that the G-ZIP RGS plan enables to take the decision about the current lot considering the past 
history of the production process. But, the ZIP RGS plan takes decision based on the current 
sample information only. 
From the Table 6.1, it can be observed that all the given sampling plans have higher 𝑃𝑎(𝑝) for lower 
values of p and have sudden drop in 𝑃𝑎(𝑝) for higher values of p. It indicates that all the given 
sampling plans, in general, it protects the producer's interest against good quality lots and 
safeguard the consumer against poor quality lots. In addition, the RGS plan under the conditions 
of G-ZIP distribution dominate the non-Bayesian ZIP RGS plan and Bayesian GP SSP invariably at 
all values of p below 𝑝1 = 0.040. It shows that the G-ZIP RGS plan provides a better protection to 
the producer from the risk of rejecting the lots of good quality compared to the non-Bayesian ZIP 
RGS plan and Bayesian GP RGS plan. For instance, in the case of GP RGS plan, corresponding to 
𝑝 = 0.01, the probability of acceptance value is (0.986) and ZIP SSP corresponding to 𝑝 = 0.01, the 
probability of acceptance values is 0.991, 0.997 and 0.997 for the various parameter   𝜔 =

0.01,0.05,0.09 respectively. But, under the G-ZIP case, for the same values of ω, the probability of 
acceptance values corresponding to 𝑝 = 0.01 are 0.997, 0.992 and 0.997. It is seen that G-ZIP RGS 
plan accept lots having lower fraction nonconforming with higher probability. 

Table 6.1 Values of OC functions of GP RGS, ZIP RGS and G-ZIP RGS sampling plans for the given 

strength 𝑝1 = 0.015, 𝛼 = 0.05, 𝑝2 = 0.09, 𝛽 = 0.10 and 𝑠 = 10. 

model GP RGS ZIP RGS G-ZIP RGS

parameters 
ω - 0.01 0.05 0.09 0.01 0.05 0.09 
n 40 33 41 88 37 54 139 
c 2 2 2 4 2 3 6 

Lot fraction 
nonconforming 

(p)  

0.007 0.995 0.997 0.999 1.000 0.999 0.998 1.000 
0.010 0.986 0.991 0.997 0.997 0.997 0.992 0.997 
0.012 0.976 0.984 0.993 0.992 0.994 0.984 0.989 
0.015 0.954 0.969 0.983 0.973 0.985 0.963 0.952 
0.020 0.896 0.926 0.946 0.879 0.956 0.898 0.781 
0.030 0.713 0.770 0.768 0.508 0.819 0.663 0.376 
0.035 0.606 0.667 0.640 0.362 0.714 0.533 0.271 
0.040 0.504 0.561 0.511 0.268 0.599 0.420 0.209 
0.045 0.412 0.460 0.399 0.208 0.488 0.331 0.171 
0.050 0.334 0.372 0.310 0.171 0.389 0.263 0.147 
0.055 0.269 0.297 0.242 0.146 0.308 0.212 0.132 
0.060 0.217 0.237 0.193 0.130 0.243 0.175 0.121 
0.650 0.176 0.189 0.158 0.118 0.192 0.148 0.113 
0.075 0.117 0.121 0.113 0.105 0.124 0.112 0.103 
0.080 0.096 0.098 0.099 0.100 0.101 0.100 0.100 
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Table 6.2 Values of producer, consumer and total sum of risk for the specified strength with 𝑠 = 10 of the optimum 

sampling plan. 
Model ω α (%) β (%) α+β (%) 

GP RGS - 1.41 21.75 23.15 

ZIP RGS 
0.01 0.91 23.68 24.58 
0.05 0.34 19.34 19.67 
0.09 0.26 12.99 13.25 

G-ZIP RGS
0.01 0.3 24.28 24.58 
0.05 0.79 17.53 18.32 
0.09 0.27 12.06 12.32 

The probability of acceptance corresponding to 𝑝 = 0.06 for GP RGS plan is 0.217 and ZIP RGS 
plans are (0.237, 0.193, 0.130) for the parameter 𝜔 = 0.01, 0.05, 0.09 respectively. But, under the G-
ZIP case, for the same values of ω, the probability of acceptance corresponding to 𝑝 = 0.06 are 

(0.243, 0.175, 0.121). It shows that G-ZIP RGS plan with moderately higher value of ω accepts the 
lots having higher fraction nonconforming with lower probability, which also protects consumer 
against accepting poor quality lots. 

Figure.1 are presents the OC curves of G-ZIP RGS plan along with the OC curves of GP and ZIP 
RGS plans based on Table 6.1. From these Figures, it can be observed that all the three plans of OC 
curves are in desirable shape with a swell at lower values of p and a sudden drop at higher values 
of p. However, particularly, the G-ZIP RGS plan has the probability of acceptance is large for good 
quality lots and is small for bad quality lots, which indicate that these RGS plan ensure protection 
to both producer and consumer. Further, when the value of 𝜔 becomes large, the proposed plan 
was performed better than the classical RGS plan under the ZIP distribution and the GP RGS plan. 
From these results, the garments company can be obtained that the proposed BRGS plan will give 
the optimum sampling plan for the desired quality levels as well as safeguard both the producers 
and consumers instead of tradition sampling plan. 

Figure 1: Comparative analysis of operating characteristic curves 
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7. Conclusion

In this article, we have developed a Repetitive Group Sampling plan based on the Gamma-Zero 
Inflated Poisson (G-ZIP) distribution from a Bayesian perspective. This proposed sampling plan is 
particularly useful when production processes are well monitored and result in a significant 
number of defect-free products. Further, the plan incorporates historical production data, allowing 
for the consideration of inherent or natural variability in the process. The article also provides a 
comprehensive procedure for designing and selecting plan parameters using the two-point 
approach on the Operating Characteristic (OC) curve. Additionally, the tables are constructed for 
some specified strengths  ( 𝑝1, 𝑝2, 𝛼 , 𝛽) for the limited number of values  𝜔 and 𝑠. From the 
illustrations, the proposed sampling plan has the better performance measures than over some 
existing sampling plans. The proposed sampling plan can be applied in various industries 
Including Electronic device manufacturing industries, medicine research centers and food 
industries etc. It is strongly suggested that the proposed plan be utilized in the industries for lot 
sentencing and products determination. The study opens up avenues for further research in the 
area of Bayesian group sampling. Future investigations could explore the integration of advanced 
statistical techniques, such as Markov chain Monte Carlo methods, to enhance the precision and 
efficiency of the proposed methodology. Additionally, the application of the methodology to 
specific manufacturing industries and the development of decision support tools could be 
explored to facilitate practical implementation.  
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