


ISSN 1932-2321 

© "Reliability: Theory & Applications", 2006, 2007, 2009-2025 

© " Reliability & Risk Analysis: Theory & Applications", 2008 

© I.A. Ushakov 

© A.V. Bochkov, 2006-2025 

© Kristina Ushakov, Cover Design, 2024 

http://www.gnedenko.net/Journal/index.htm 

All rights are reserved 

The reference to the magazine "Reliability: Theory & Applications" 

at partial use of materials is obligatory. 

2

http://www.gnedenko.net/Journal/index.htm


Journal of International Group on Reliability 

RELIABILITY: 
THEORY & APPLICATIONS 

Vol.20 No.1 (82), 

March 2025 

San Diego 

2025 



Editorial Board 

Editor-in-Chief 

Rykov, Vladimir (Russia) 

Doctor of Sci, Professor, Department of Applied 

Mathematics & Computer Modeling, Gubkin 

Russian State Oil & Gas University, Leninsky 

Prospect, 65, 119991 Moscow, Russia. 

e-mail: vladimir_rykov@mail.ru

Managing Editors 

Bochkov, Alexander (Russia) 

Doctor of Technical Sciences, Scientific Secretary 

JSC NIIAS, Scientific-Research and Design 

Institute Informatization, Automation and 

Communication in Railway Transport, Moscow, 

Russia, 107078, Orlikov pereulok, 5, building 1 

e-mail: a.bochkov@gmail.com

Gnedenko, Ekaterina (USA) 

PhD, Lecturer Department of Economics Boston 

University, Boston 02215, USA 

e-mail: gnedenko@bu.edu

Bushinskaya, Anna (Russia) 

Candidate of Tech. Sci. Leading Research Fellow 

of the Sci & Engng Center of the Russian 

Academy of Sciences, Ekaterinburg 

e-mail: bushinskaya@gmail.com

Sazonov, Aleksey (Russia) 

Leading Specialist of the Standardization 

Department, JSC NIIAS (Joint Stock Company 

"Design &Research Institute for Information 

"Technology, Signaling and Telecommunications 

on Railway Transport), Bild 1, 5 Orlikov 

Pereulok, Moscow, Russia, 107078 

e-mail: sazonoff2007@gmail.com

Deputy Editors 

Dimitrov, Boyan (USA)  

Ph.D., Dr. of Math. Sci., Professor of Probability 

and Statistics, Associate Professor of Mathe-

matics (Probability and Statistics), GMI Engine-

ering and Management Inst. (now Kettering) 

e-mail: bdimitro@kettering.edu

Gnedenko, Dmitry (Russia) 

Doctor of Sci., Assos. Professor, Department of 

Probability, Faculty of Mechanics and 

Mathematics, Moscow State University, 

Moscow, 119899, Russia 

e-mail: dmitry@gnedenko.com

Kashtanov, Viсtor A. (Russia)  

PhD, M. Sc (Physics and Mathematics), Professor 

of Moscow Institute of Applied Mathematics, 

National Research University "Higher School  

of Economics" (Moscow, Russia) 

e-mail: VAKashtan@yandex.ru

Krishnamoorthy, Achyutha (India) 

M.Sc. (Mathematics), PhD (Probability,

Stochastic Processes & Operations Research),

Professor Emeritus, Department of Mathematics,

Cochin University of Science & Technology,

Kochi-682022, INDIA.

e-mail: achyuthacusat@gmail.com

Recchia, Charles H. (USA) 

PhD, Senior Member IEEE Chair, Boston IEEE 

Reliability Chapter A Joint Chapter with New 

Hampshire and Providence, Advisory 

Committee, IEEE Reliability Society 

e-mail: charles.recchia@macom.com

Shybinsky Igor (Russia)  

Doctor of Sci., Professor, Division manager, 

VNIIAS (Russian Scientific and Research 

Institute of Informatics, Automatics and 

Communications), expert of the Scientific 

Council under Security Council of the Russia 

e-mail: igor-shubinsky@yandex.ru

Yastrebenetsky, Mikhail (Ukraine) 

Doctor of Sci., Professor. State Scientific and 

Technical Center for Nuclear and Radiation 

Safety 

e-mail: ma.yastreb2013@gmail.com

Associate Editors 

Aliyev, Vugar (Azerbaijan) 

Doctor of Sci., Professor, Chief Researcher of the 

Institute of Physics of the National Academy of 

Sciences of Azerbaijan, Director of the AMIR 

Technical Services Company 

e-mail: prof.vugar.aliyev@gmail.com

Balakrishnan, Narayanaswamy (Canada) 

Professor of Statistics, Department of 

Mathematics and Statistics, McMaster University 

e-mail: bala@mcmaster.ca

4

mailto:gnedenko@bu.edu
https://www.gnedenko.net/Personalities/Bushinskaya/Bushinskaya_vizitka.htm
mailto:bushinskaya@gmail.com
https://www.gnedenko.net/Personalities/Sazonov/Sazonov_vizitka.htm
mailto:sazonoff2007@gmail.com
https://www.hse.ru/org/persons/47634697
mailto:VAKashtan@yandex.ru
mailto:prof.vugar.aliyev@gmail.com


Carrión García, Andrés (Spain) 

Professor Titular de Universidad, Director of the 

Center for Quality and Change Management, 

Universidad Politécnica de Valencia, Spain  

e-mail: acarrion@eio.upv.es

Chakravarthy, Srinivas (USA)  

Ph.D., Professor of Industrial Engineering & 

Statistics, Departments of Industrial and 

Manufacturing Engineering & Mathematics, 

Kettering University (formerly GMI-EMI) 1700, 

University Avenue, Flint, MI48504 

e-mail: schakrav@kettering.edu

Сui, Lirong (China) 

PhD, Professor, School of Management & 

Economics, Beijing Institute of Technology, 

Beijing, P. R. China (Zip:100081) 

e-mail: lirongcui@bit.edu.cn

Finkelstein, Maxim (SAR) 

Doctor of Sci., Distinguished Professor in 

Statistics/Mathematical Statistics at the UFS. 

Visiting researcher at Max Planck Institute for 

Demographic Research, Rostock, Germany and 

Visiting research professor (from 2014) at the 

ITMO University, St Petersburg, Russia 

e-mail: FinkelM@ufs.ac.za

Kaminsky, Mark (USA)  

PhD, principal reliability engineer at the NASA 

Goddard Space Flight Center  

e-mail: mkaminskiy@hotmail.com

Krivtsov, Vasiliy (USA)  

PhD. Director of Reliability Analytics at the Ford 

Motor Company. Associate Professor of 

Reliability Engineering at the University of 

Maryland (USA)  

e-mail: VKrivtso@Ford.com, krivtsov@umd.edu

Lemeshko Boris (Russia)  

Doctor of Sci., Professor, Novosibirsk State 

Technical University, Professor of Theoretical 

and Applied Informatics Department 

e-mail: Lemeshko@ami.nstu.ru

Lesnykh, Valery (Russia) 

Professor, Doctor of Sci., Adviser to Director 

General, LLC Gazprom gaznadzor, Novocheryo-

mushkinskaya Street, 65, Moscow, 117418, 

Russia 

e-mail: vvlesnykh@gmail.com

Levitin, Gregory (Israel)  

PhD, The Israel Electric Corporation Ltd. 

Planning, Development & Technology Division. 

Reliability & Equipment Department, Engineer-

Expert; OR and Artificial Intelligence 

applications in Power Engineering, Reliability. 

e-mail: levitin@iec.co.il

Limnios, Nikolaos (France) 

Professor, Université de Technologie de 

Compiègne, Laboratoire de Mathématiques, 

Appliquées Centre de Recherches de Royallieu, 

BP 20529, 60205 COMPIEGNE CEDEX, France  

e-mail: Nikolaos.Limnios@utc.fr

Papic, Ljubisha (Serbia)  

PhD, Professor, Head of the Department of 

Industrial and Systems Engineering Faculty of 

Technical Sciences Cacak, University of 

Kragujevac, Director and Founder the Research 

Center of Dependability and Quality 

Management (DQM Research  

Center), Prijevor, Serbia 

e-mail: dqmcenter@mts.rs

Ram, Mangey (India) 

Professor, Department of Mathematics, 

Computer Science and Engineering, 

Graphic Era (Deemed to be University), 

Dehradun, India. Visiting Professor, Institute of 

Advanced Manufacturing Technologies, Peter 

the Great St. Petersburg Polytechnic University, 

Saint Petersburg, Russia. 

e-mail: mangeyram@gmail.comq

Timashev, Sviatoslav (Russia) 
Doctor of Sci., Professor, Director and principal 
scientist the Sci & Engng Center of the Russian 
Academy of Sciences, Ekaterinburg 
e-mail: timashevs@cox.net

Zio, Enrico (Italy) 

PhD, Full Professor, Direttore della Scuola di 

Dottorato del Politecnico di Milano, Italy. 

e-mail: Enrico.Zio@polimi.it

5

https://www.gnedenko.net/Personalities/Timashev/Timashev_vizitka.htm
https://www.gnedenko.net/Personalities/Timashev/Timashev_vizitka.htm
mailto:timashevs@cox.net


e-Journal Reliability: Theory & Applications publishes papers, reviews, memoirs, and

bibliographical materials on Reliability, Quality Control, Safety, Survivability and

Maintenance.

Theoretical papers must contain new problems, finger practical applications and should 

not be overloaded with clumsy formal solutions. 

Priority is given to descriptions of case studies. 

General requirements for presented papers. 

1. Papers must be presented in English in MS Word or LaTeX format.

2. The total volume of the paper (with illustrations) can be up to 15 pages.

3. А presented paper must be spell-checked.

4. For those whose language is not English, we kindly recommend using professional

linguistic proofs before sending a paper to the journal.

The manuscripts complying with the scope of journal and accepted by the Editor are 

registered and sent for external review. The reviewed articles are emailed back to the 

authors for revision and improvement. 

The decision to accept or reject a manuscript is made by the Editor considering the 

referees' opinion and considering scientific importance and novelty of the presented 

materials. Manuscripts are published in the author's edition. The Editorial Board are not 

responsible for possible typos in the original text. The Editor has the right to change the 

paper title and make editorial corrections. 

The authors keep all rights and after the publication can use their materials (re-publish it 

or present at conferences). 

Publication in this e-Journal is equal to publication in other International scientific 

journals. 

Papers directed by Members of the Editorial Boards are accepted without referring. 

The Editor has the right to change the paper title and make editorial corrections. 

The authors keep all rights and after the publication can use their materials (re-publish it 

or present at conferences). 

Send your papers to Alexander Bochkov, e-mail: a.bochkov@gmail.com 

6

mailto:a.bochkov@gmail.com


Table of Contents 
RT&A, No 1 (82) 

Volume 20, March 2025 

 

Table of Contents 

IN MEMORY OF Yu. BELIAEV ..................................................................................................................... 35 

Editorial 

A NEW GENERALIZED EXPONENTIATED FAMILY OF CONTINUOUS DISTRIBUTIONS 

WITH APPLICATIONS TO ENVIRONMENTAL DATA SETS  ...........................................................  38

Ibrahim, Sule, Olalekan Akanji, Bello, Ismail Adekunle, Kolawole 

Different researchers in the field of distribution theory have derived new models for generalizing the classical ones to 
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Exponentiated Pareto-G family of distributions with two positive shape parameters. Some statistical properties of the 

new family of distributions, such as explicit expressions for the quantile function, probability-weighted moments, 

moments, generating function, Reliability function, hazard function, and order statistics are discussed. A maximum 

likelihood estimation technique is employed to estimate the model parameters. Two submodels such as Weibull and 

Frechet distributions are employed to check the fit of the family of distributions with the aid of their pdf and hazard 

function plots. Also, a simulation study is presented to assess the performance of the maximum likelihood estimator. 

Furthermore, two real-life applications are carried out to assess the fit and flexibility of the new family using the Weibull 

model as the baseline. The results showed that the new distribution fits better in the two real data sets considered among 

the range of distributions considered.  
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In this article, a weighted three-parameter Xgamma distribution has been proposed. It is an extension of two-parameter 

Xgamma distribution. The weighted three-parameter Xgamma distribution designed for modelling real-life data. The 

density function and cumulative distribution function, moments, hazard and survival function, moment-generating 

function and characteristic function, Bonferroni and Lorenz curve, renyi entropy of this distribution have all been 

derived. The parameter of this distribution is estimated by maximum likelihood estimation method. Finally, an 

application of the model to a real-life data set is presented and compared with some other existing distributions.  
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This study explores the stress-strength reliability model (P) for Generalized Inverse Weibull (GIW) distribution 

through transformation techniques. We compare two sampling methods: ranked set sampling (RSS) and simple random 

sampling (SRS), where stress and strength are two independent random variables from the GIW distribution 

respectively. RSS, is used for estimating stress-strength model, as this technique of sampling is more efficient 

alternative of SRS for obtaining the more informative sample. In this article, the maximum likelihood estimator (MLE) 

for stress-strength model is obtained through transforming technique. MLE estimates of stress-strength obtained 

through Ranked set sampling (RSS) methods are evaluated against corresponding estimates derived from simple 

random sampling (SRS) to understand their relative effectiveness and accuracy. The statistical estimators derived from 

Ranked Set Sampling (RSS) methodology exhibit superior efficiency relative to their Simple Random Sampling (SRS) 

counterparts. The empirical utility of RSS-based estimation procedures is subsequently validated through application 

to real datasets.  
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Understanding agricultural production patterns is crucial for enhancing productivity and ensuring food security. This 

study explores the dynamics of agricultural production in Tamil Nadu using the Vector Autoregressive (VAR) model 

to capture the interdependence among various crop yields and rainfall over time. Employing Python programming for 

data analysis and modeling, the study leverages historical time-series data to identify trends, forecast production, and 

analyze the impact of external shocks on agricultural outputs. The research incorporates preprocessing techniques to 

ensure stationarity, optimal lag selection using Akaike’s Information Criterion (AIC) and Bayesian Information 

Criterion (BIC), and diagnostic checks for model accuracy and stability. The findings provide insights into the temporal 

relationships among various crops and rainfall. Additionally, Impulse Response Functions (IRF) and variance 

decomposition analyses offer a deeper understanding of how shocks to one variable propagate through the system. The 

study demonstrates the utility of Python-based VAR models in agricultural forecasting and decision-making, offering 

policymakers and stakeholders a robust tool to improve resource allocation and agricultural planning in Tamil Nadu. 

This work highlights the potential of data-driven approaches to address challenges in the agricultural sector effectively. 
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Dynamic group multi-criteria decision making is essential for making informed, balanced, and adaptive decisions in 

complex and evolving environments. By integrating multiple methodologies and considering the dynamic nature of 

criteria and group interactions, dynamic group multi-criteria decision making provides a robust framework for 

decision-making across various fields and applications. Dynamic group fuzzy multi-criteria decision making under Z-

information is a sophisticated approach that incorporates the dynamic aspects of decision making, the involvement of 

multiple stakeholders, and the use of fuzzy logic to handle uncertainties and imprecise information. Z-information 

refers to a type of uncertain information that combines fuzzy numbers and Z-numbers, where Z-numbers account for 

both the reliability of the information and its fuzziness. By integrating fuzzy logic and Z-numbers, it effectively handles 

dual uncertainties of fuzziness and reliability, while dynamically adapting to changes in criteria and stakeholder 

preferences. In this article, a dynamic multi-criteria decision-making model is proposed to solve strategic vendor 

selection problems that need to be evaluated in different time periods and involve uncertainty. Z-information is used 

to express uncertainty and in the proposed model, the decision-making group is asked to evaluate the alternatives in 

different time periods, and the evaluations made for these different periods are combined.  
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Pankaj Kumar, Laxmi Prasad Sapkota, Vijay Kumar 

This paper introduces a novel family of probability distributions, termed the Cos-G family, which is derived from a 

trigonometric transformation approach. We present the general structural properties of this family and focus on one of 

its unique members. This newly proposed distribution, formulated from the inverse Weibull distribution, exhibits 

flexible hazard rate shapes, including reverse-J, increasing, and inverted bathtub forms. We investigate its fundamental 

statistical properties and employ the maximum likelihood estimation method to estimate its parameters. The 

performance of the estimation technique is assessed through a Monte Carlo simulation, revealing that biases and mean 

square errors decrease as sample size increases, ensuring reliable parameter estimation even for small samples. To 

illustrate its practical applicability, we fit the suggested model to three real-world datasets and compare its performance 

against existing models using various goodness-of-fit measures and model selection criteria. The results confirm the 

superiority of the proposed model in capturing complex data structures.  
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In this paper we introduced Exponentiated Log - Uniform distribution as a generalisation of the Log - Uniform 
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distribution function, hazard rate function, and survival function. And derive various statistical properties such as 

moments, mean deviations, and quantile function of the new distribution. We also obtain the probability density 

functions of the order statistics of the Exponentiated Log-Uniform Distribution.To estimate the parameters of the 

distribution and the stress strength parameters, we use the maximum likelihood method, and validate the estimates of 

the model parameters through a simulation study. Our findings reveal that the Exponentiated Log-Uniform 

Distribution exhibits the least bias and that the values of the mean square error decrease as the sample size increases, 

indicating the effectiveness of this distribution in modeling real-world data. We applied the Exponentiated Log-

Uniform distribution to a real data set and compared it with Exponentiated Quasi Akash Distribution and 

Exponentiated Weibull Distribution. It was found that the new distribution was a better fit than the other distributions 

based on the values of the AIC, CAIC, BIC, HQIC, the Kolmogorov-Smirnov (K-S) goodness-of-fit statistic and the p-

values.  
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This paper describes the role of queuing theory in supermarket or shopping complex. Generally, a supermarket is a 

place where people are gathered to purchase the daily requirement products and here, a queue represents the 

customers/items in ascending or descending order. An interesting aspect of queuing process resides in the measures of 

its system’s performance especially in terms of average service rate and system’s utilization. Simulation is a powerful 

and versatile tool for modeling facilities in supermarket. So, queuing process with simulation provide the average 

service rate and it helps in predicting queue lengths as well as waiting durations when multiple items are manufactured 

and distributed using first come first serve discipline. M/M/s model and poisson process are used to explore the 

supermarket with server arrival rate and service rate.  
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Fathima Thensi N, Nazeema Beevi.T 

We proposed a new model called the Alpha Power Transformed Weibull-Lomax (APTWL) distribution which extends 

the Weibull Lomax distribution and have an increasing, decreasing and bathtub shapes for the hazard rate function. 

Various structural properties of the new distribution are derived including moments, probability weighted moments, 

generating and quantile function. The Renyi and q entropies are also obtained. Statistical inference is presented for the 

APTWL distribution using the method of maximum likelihood estimation to estimate the parameters of proposed 

distribution. The potentiality of the new model is illustrated by means of three real life datasets. The results of the 

analysis of the datasets show the superiority of APTWL distribution over some compared distributions.  

ALTERNATE QUADRA-SUBMERGING POLAR FUZZY GRAPH AND ITS DECISION-
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Anthoni Amali A, J . Jesintha Rosline, Aruna G 

In this article, the two extreme values [-1,1] is proposed with it’s uncertain submerging values [-0.5,0.5] as the 

Alternate Quadra Submerging Polar (AQSP) Fuzzy Graph. The AQSP Fuzzy graph COVID-19 vaccines survey 

model has been analyzed to find the highest and the lowest membership and the non-membership value of the five 

influencing factors effectively. The notion of the AQSP fuzziness has been considered from the various points of view, 

in the specification of variables with the multiple input of single output rule. The self-reporting nature of the collected 
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survey data of the COVID - 19 Booster shots acceptance and the non-acceptance values between [-1,0] and [0,1] 

converges precisely with the level of fixation [-0.5.0] and [0,0.5] alternatively by using the uncertain values in decision 

making process of the human behaviours in mathematical Analysis.  
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Amit kumar, Ajay Singh Yadav, Dharmendra Yadav 

Effective management of production inventory for deteriorating items with dynamic demand patterns is crucial for 

businesses operating in today’s competitive markets. This paper proposes a comprehensive model that addresses the 

complexities arising from the dual storage locations, item deterioration, and demand dependencies on both time and 

selling price. To optimize the decision variables associated with production and inventory control, we employ the Flower 

Pollination Optimization (FPO) algorithm, a nature-inspired meta-heuristic known for its ability to efficiently 

navigate complex search spaces. The two-storage production inventory model integrates the dynamics of item 

deterioration over time, capturing the real-world challenges faced by supply chain managers. The demand for items is 

modeled to be sensitive to both temporal variations and changes in selling prices, reflecting the intricate nature of 

market dynamics. Our approach leverages the FPO algorithm to explore and exploit the solution space, allowing for 

the identification of optimal or near-optimal strategies for production quantities, order quantities, and inventory levels. 

The FPO algorithm mimics the pollination process in nature, striking a balance between exploration and exploitation 

to efficiently search for solutions in a highly dynamic and nonlinear environment. The proposed model and optimization 

approach are validated through extensive simulations and sensitivity analyses. The results demonstrate the 

effectiveness of the FPO algorithm in finding robust solutions that enhance inventory management, mitigate 

deterioration-related losses, and adapt to varying demand scenarios. This research contributes to the field of supply 

chain optimization by offering a novel perspective on tackling the challenges associated with dual storage, item 

deterioration, and demand dependencies. The findings provide valuable insights for practitioners seeking advanced 

strategies for optimizing their production inventory systems in the face of evolving market conditions.  

PREDICTION OF MECHATRONIC COMPONENTS AND HUMAN-MACHINE SYSTEM  ........ 189 

Iftikhar Chalabi 

Modern machines and equipment’s have a complex mechatronic structure consisting of various components, and their 

reliability depends on a large number of random factors that arise during design, production and operation, which are 

often impossible to predict. Each element of the modern machines is characterized by different performance criteria and 

corresponding failures. Various statistical models of failure distribution are widely used to quantify the reliability of 

machines and devices. The choice of a statistical model and its parameters is important for a proper assessment of 

reliability. The chosen statistical model should reflect the actual distribution of failures fairly correctly. In presented 

article is proposed a new failure distribution for reliability prediction of mechatronic components of modern machines 

and human-machine systems. A large number of sudden failures of modern complex technical facilities containing 

electronic and mechatronic structural elements seriously affect its λ-characteristic. Various studies have already shown 

that the failure behavior of complex systems cannot always be characterized by the "bathtub curve". This is especially 

true for modern complex machines, which, among other things, consist of numerous electronic components for which 

no wear and fatigue failures are assumed. For this reason, an alternative service life distribution for the description 

failure behavior of modern mechatronic components and human-machine systems is proposed. This is about the failure 

curves, which are initially characterized by a low or high failure rate and then tend to a constant failure rate. To 

determine the reliability indexes are provided analytical formulas. Methods for estimating the parameters of this 

distribution are presented based on failure statistic. To determine distribution parameters, statistical data on failures 

of the technical system are sufficient only in the first period of its operation. This is one of the main advantages of the 

presented distribution. On the example of practical cases, the hypothesis of compliance of the proposed theoretical 

distribution to the actual statistical data on failures of various mechatronic systems and human-machine system was 

tested.  
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M.T. Babayev, N.V. Budagova

The reliability of water supply systems plays a crucial role in ensuring sustainable water use, minimizing economic 

losses, and preventing failures in critical infrastructure. This paper proposes a mathematical approach to modeling the 

reliability of water systems based on probability theory and Markov processes. The main types of failures, their impact 

on operational characteristics, and economic consequences are examined. A simulation of the water supply network is 

conducted, considering the probabilistic characteristics of failures and recovery processes. The analysis of results 

demonstrates that the implementation of predictive monitoring methods and the optimization of maintenance strategies 

significantly enhance the resilience of water supply systems. The developed model can be applied in the planning of 

modernization and management of water supply infrastructure to improve its efficiency and economic feasibility.  
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Aijaz Ahmad, Fathima Bi, Mahfooz Alam, Aafaq A. Rather, Danish Qayoom, Asgar Ali 

This paper focuses on the Bayesian estimation of the shape parameter for the Inverse Topp-Leone (ITL) distribution. To 

achieve this, we employ both the extended Jeffrey’s prior and the gamma prior, facilitating the derivation of posterior 

distributions for the shape parameter. The Bayesian estimators are calculated under various loss functions, including 

the squared error loss function (SELF), entropy loss function (ELF), precautionary loss function (PLF), and Linex loss 

function (LLF), each chosen to address different practical scenarios and estimator biases. In addition to the Bayesian 

approach, we also explore maximum likelihood estimation (MLE) to provide a comparative benchmark. The performance 

of these estimators is assessed and compared based on mean squared error (MSE) across multiple sample sizes, allowing 

for a detailed evaluation of estimator robustness and accuracy. A real-world dataset is then analyzed to further 

demonstrate the relative efficiency of each estimator under the different loss functions, providing practical insights into 

the applicability of each estimation approach for the ITL distribution. This analysis offers a comprehensive perspective 

on the versatility and precision of Bayesian and classical estimation methods for the ITL model.  

BAYESIAN SPATIAL TEMPORAL TREND ANALYSIS FOR DECISION MAKING AND RISK 

ASSESSMENT IN DENGUE INCIDENCE STUDIES: A CASE OF TAMILNADU  ..........................  219 

Jaisankar Ramasamy, Ranjani Murugesan 

This study presents a Bayesian spatial-temporal analysis for studying Dengue incidence in Tamil Nadu, aiming to 

provide insights into decision-making and risk assessment strategies. Statistical models that allow a more accurate 

depiction of true disease rates by borrowing information from neighboring regions will help mitigate the effects of 

sparsely populated regions and deliver better inference. Perhaps the most conspicuous manner of modeling spatial 

dependence is to introduce spatially associated random effects within a Bayesian hierarchical setting. The Bayesian 

modeling and inferential framework are flexible and extremely rich in its capabilities to accumulate various scientific 

hypotheses and assumptions. The spatial and spatial temporal epidemiology is concerned with the description and 

analysis of spatial and spatial temporal variations in disease risk with respect to risk factors. As the primary aim of this 

work is to quantify the spatial disease pattern of dengue incidences apart from the mapping of disease modelling the 

disease and finding spatial clusters/hotpots is one important aspect in epidemiology is to find the temporal trends in or 

outside of clusters. In this study, a spatial-temporal trends model is fitted using the Leroux CAR prior’s set up for 

studying the spatial-temporal disease patterns with the estimation of the temporal trends with reference to dengue 

incidences in Tamil Nadu, India.  
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estimator performed better than methods involving stratified random sampling. Additionally, a numerical example is 

given to verify the theoretical conclusions for real-world applications. We go over how the problem was formulated, 

how to use LINGO software to solve it, and the results. It is advised to choose the estimator with the lowest MSE in 

real-world stratified random sampling situations. The strategy shows significant cost savings and efficient use of 

resources. The effectiveness of the recommended approach is demonstrated by testing the methodology on both simulated 

and real-world datasets.  

RELIABILITY ANALYSIS OF C-SECTION WHERE STRENGTH AND HEAR STRESS ARE 

NORMALLY DISTRIBUTED  ....................................................................................................................... 242  

T. Raja jithendar, M. TirumalaDevi, K. Sandhya

The failure of a component depends on many parameters, such as complexity, time, design, reliability of components, 

and operating conditions. If failure depends on the stress of a component, such reliability models are called stress 

dependent models. There are many types of stresses that occur in the body, like tensile, compressive, shear, and bending. 

Shear stress develops in a body when a pair of opposite forces act across the section tangentially. In structural design, 

the choice of section shapes for different components is crucial for efficiency, strength, and stability. That’s why C –

sections are used as purlins. C-sections have a shape that allows for effective load distribution. In this paper, reliability 

analysis has been conducted over the C-section by applying load and finding the shear stress in the flange and web of 

C-section. It is observed from the computations that reliability decreases as the load and overall depth of the section

increase. Reliability increases as the thickness and width of the web increase.

AN ALGORITHM FOR CONDITIONAL EXTREME VALUE THEORY GARCH-EVT 

TECHNIQUE FOR ESTIMATING VALUE AT RISK  ............................................................................. 253 

K.M. Sakthivel, V. Nandhini

Extreme events in financial time series are characterized by their low probability yet high impact and they pose 

significant challenges in financial risk management. This study aims to model and forecast extreme events, with a 

particular emphasis on Value at Risk (VaR) estimation. It explores the concept of conditional Extreme Value Theory 

(EVT) for modeling volatility series to estimate VaR by integrating Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models with EVT, forming the GARCH-EVT approach. An automated algorithm was 

developed to optimize both model selection and threshold determination, ensuring accurate estimation of VaR. This 

automated procedure enhances the model selection process by identifying the optimal GARCH model and the most 

appropriate EVT threshold, addressing the complexities inherent in modeling extreme events. The comprehensive 

backtesting procedures are used to assess the effectiveness and precision of the algorithm in forecasting VaR, along with 

a simulation that evaluates both in-sample and out-of-sample performance of the model and candidate thresholds across 

various methods. The automated GARCH-EVT approach demonstrates effectiveness in accurately estimating VaR, 

providing a reliable and efficient method for extreme risk assessment in financial markets. This method streamlines the 

process of model selection and threshold optimization, contributing to improved risk management in financial markets. 
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STRATIFIED RANDOM SAMPLING WITH RISK APPROACH .........................................................  277 

Astha Jain, Diwakar Shukla 

In stratified random sampling, the sample size allocation is a problem which is tackled by many scientists and survey 

practitioners. Generally the proportional allocation, Neyman allocation and cost based allocation, are used to conduct 

sample surveys for gathering information from each strata. One can think of risk imposed on the life of investigators 

which is yet not considered while sample size allocation to risky strata. In this paper, the risk indicators stratum-wise 

are defined using police station records and hospital records. Such indicators are used for the determination of sample 

size allocation. For optimization, the Lagrange multiplier technique is used with two constants whose values need to 

be determined. An algorithm is proposed and analysed for such using simulation. The outcome of analysis provides 

that sample size allocation is directly proportional to the strata size and variability but inversely proportional to the 

square root of risk indicators of the stratum (with varying values of constants). This paper opens a new approach for 

the consideration of risk based sample size allocation and estimation in the setup of stratified sampling. 

DIGITAL INVENTORY: REFORMAT RISK OPTIMIZATION MODEL FOR A LAPTOP .............  290 

Diwakar Shukla, Deepti Sahu 

In recent times, due to advancements in technologies specially in the computer world, people face problem related to 

limited digital capacity of a digital devices. Many reasons exist such as unwanted or unnecessary files stored in (a) 

System digital space (b) ROM space (c) Working space for users and (d) Hard disk space. By the regular use of a laptop, 

user space and hard disk digital space get occupied because of the creation of new files and new folders at every moment. 

Such a situation motivates for development of a digital inventory model for digital space. This paper presents a digital 

inventory model which is a useful tool for laptop reformat risk minimization. Users Categories are defined as per their 

intensive professional involvements. Several graphs are drawn showing the output analysis and importance of the 

study. Theoretical findings are supported by the numerical computations. It is found that reformat risk is directly 

proportional to the growth of file/folder creation in either of categories. 

ENHANCING PATTERN SEQUENCE-BASED FORECASTS: A MODIFIED STRATEGY 

RELATIVE TO ELECTRICAL LOAD .......................................................................................................... 301 

Suseelatha Annamareddi, Sudheer Gopinathan 

A precise forecast of the one-day-ahead load is essential for the efficient management of modern power system 

operations. This paper proposes a univariate model for short term load forecasting (STLF) that improves the precision 

of the Pattern sequence forecasting (PSF) algorithm. An analysis was conducted to identify the underlying patterns in 

the electrical load data using Kmeans clustering and hierarchical clustering algorithms. The results demonstrate the 

efficacy of hierarchical clustering. The limitations of the original PSF algorithm, particularly in its clustering and 

prediction phases are addressed using hierarchical clustering and a new weighted average formula. The proposed 

method was validated using real-time series datasets and its performance was compared with those of three pattern 

sequence-based forecasting models. The performance is further evaluated on two electricity demand data sets and 

compared with bench mark models. The uncertainty and reliability of the forecast model was assessed using an error 

variance metric. The results show the superior forecast accuracy of the model. 

EXPONENTIATED POISSON-G FAMILY OF DISTRIBUTION: SUB-MODELS, PROPERTIES, 

ESTIMATION WITH REAL-LIFE APPLICATION  .................................................................................. 312 

Habibah Rahman, Tanusree Deb Roy 

This study proposes a new family of distributions. A study is done on some of its basic characteristics, such as quantile, 

skewness, kurtosis, hazard rate function, moments, mean deviations, availability and reliability function of successive 

linear and circular systems, mean time to failure, mean time between failure, and availability, Bonferroni and Lorenz 

curves, and entropies. Two unique models of the new family are studied in depth once the general class is introduced. 
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The special basis models have been taken from the exponential and Fréchet distributions. The parameters of the model 

are estimated using maximum likelihood techniques. There is a thorough analysis of percentage points. Three unique 

real data sets are used to demonstrate the significance of the new family. A comparison is drawn between the suggested 

distribution family and well-known two-, three-, and four-parameter components. To model actual data, it can be used 

as an alternative model to various lifetime distributions found in the statistical literature.  

IMPROVED ADAPTIVE THRESHOLDING LASSO CHART FOR MONITORING 

DISPERSION OF HIGH-DIMENSIONAL PROCESSES USING GENERALIZED MULTIPLE 

DEPENDENT STATE SAMPLING  ............................................................................................................. 324 

Mehrdad Hajiesmaeili, Mohammad Reza Maleki, Ali Salmasnia 

In many applications of multivariate statistical quality control, it is commonly observed that the number of quality 

characteristics exceeds the sample size. This poses significant challenges in monitoring high-dimensional data. In such 

conditions, it is challenging to detect sparse changes where an assignable cause leads to the deviation of only a few 

elements in the covariance matrix. On the other hand, the utilization of the multiple dependent state (MDS) sampling 

technique to enhance the sensitivity of control charts has recently attracted the attention of researchers. However, to 

the best of the authors' knowledge, no previous research has been conducted on equipping multivariate dispersion 

control charting methods with the MDS technique under high dimensionality. Therefore, this article integrates the 

adaptive thresholding Lasso statistic with the MDS and generalized MDS techniques to track all types of disturbances 

in the covariance matrix of high-dimensional processes, including diagonal, off-diagonal, and joint diagonal/off-

diagonal deviations. The performance of the proposed control charts will be compared through a numerical example 

under seven out-of-control patterns in terms of three metrics: average, standard deviation, and median of run length. 

The results clearly indicate that the use of both sampling techniques significantly improves the run length properties 

of the adaptive thresholding Lasso chart.  

A NEUTROSOPHIC FUZZY ACCEPTANCE SAMPLING PLAN BASED ON NEGATIVE 

BINOMIAL DISTRIBUTION  ....................................................................................................................... 339 

Jayalakshmi S, Gopinath M 

This paper suggests a novel method for acceptance sampling that integrates neutrosophical fuzzy logic with the negative 

binomial distribution. The complexity and ambiguity that characterize real-world circumstances are typically 

overlooked by traditional acceptance sampling methodologies. The neutrosophic Fuzzy Acceptance Sampling Plan 

(NFASP) incorporates the negative binomial distribution, which is particularly well-suited for count data, to account 

for circumstances where defect occurrences are important. The efficacy of the methodology is demonstrated by 

theoretical study and simulations. This innovative method lifts acceptance sampling to a more accurate and 

sophisticated procedure by dealing with ambiguity and indeterminacy.  

OPTIMIZING INVENTORY OF DETERIORATING PRODUCTS WITH PRICE-DEPENDENT 

DEMAND USING QUANTUM-BEHAVED AGTO VARIANTS .......................................................... 350 

Muragesh Math, D. Gopinath, B. S. Biradar 

Preservation of a product is an important issue in the inventory control system. It prevents the deterioration effect of 

the products while these are stored in the warehouse/showroom. Considering deterioration effect of the product and 

preservation technology, an inventory model of non-instantaneous deteriorating items is developed with the demand 

dependent on the selling price of the product. Two different preservation rates are considered. Shortages are allowed 

partially with two different backlogging rates. Due to consideration of three-parameter Weibull distributed 

deterioration and preservation facility, the corresponding optimization problems are highly nonlinear. So, these 

problems cannot be solved analytically due to nonlinearity. To overcome this situation, different variants of quantum-

behaved Artificial Gorilla Troops Optimizer (AGTO) are used. To illustrate and validate the proposed model, a 

numerical example is considered and solved for each case, and compared the results with the different variants of AGTO 

algorithms. Finally, a sensitivity analysis is performed to study the effect of changes of different parameters of the model 

on the optimal policy. 
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APPLICATION OF FUZZY LOGIC IN AGRICULTURAL NETWORK ANALYSIS FOR 

OPTIMIZING CROP PRODUCTION  ........................................................................................................  363 

Mushtaq A. Lone, S. A. Mir, Sushil Kumar, Aafaq A. Rather, Danish Qayoom, S. Ramki 

This study investigates the application of fuzzy logic and fuzzy set theory in agricultural networking to identify the 

optimal paths for different crop production activities. Traditionally networking methods often face challenges with 

incomplete and uncertain data, which are prevalent in agriculture. Fuzzy logic using decagonal fuzzy number offers a 

more versatile method of handing imprecise data. In this study decagonal fuzzy numbers are defuzzified by rolling 

averages with a window of three to determine the optimal path. The solution of the formulated mathematical 

programming model is obtained using R software which enabling accurate computation of the best routes in 

agricultural networks and three different examples were taken and the network diagram is also shown. This paper 

further shows the scope of agriculture especially network path analysis in agriculture which can enhance decision 

making, which in turn can rise crop yields and improve agriculture productivity.  

A GENERALIZED POWER SUJATHA DISTRIBUTION WITH PROPERTIES AND 

APPLICATIONS  .............................................................................................................................................  373 

Hosenur Rahman Prodhani, Rama Shanker 

This paper introduces a generalized power Sujatha distribution as an extension of the two-parameter generalization of 

Sujatha distribution, initially proposed for analyzing and modeling lifetime data in medical and engineering fields. The 

existing generalization of Sujatha distribution, being two-parameter, may not always provide a satisfactory fit for 

certain lifetime data from both theoretical and practical perspectives. The generalized power Sujatha distribution is 

presented as a comprehensive model, encompassing both the Generalization of Sujatha distribution and the Sujatha 

distribution as particular cases, specifically for the analysis of data in medical and engineering domains. The paper 

delves into the statistical properties of the proposed distribution, examining the behavior of its probability density 

function and cumulative distribution function across varying parameter values. Additionally, the first four raw 

moments of the distribution are derived and provided. The expressions for the hazard rate function and mean residual 

life function are obtained, and their behaviors under different parameter values are discussed. Stochastic ordering, a 

valuable tool for comparing stochastic nature, is also explored. The method of maximum likelihood is discussed for 

parameter estimation, and a simulation study is conducted to assess the performance of maximum likelihood estimates 

as sample sizes increase. To validate the applicability of the distribution, two real lifetime data sets from medical and 

engineering fields are analyzed. The goodness of fit of the generalized power Sujatha distribution is evaluated using the 

Akaike Information criterion and Kolmogorov-Smirnov statistic. The results demonstrate that the proposed 

distribution offers a closer fit compared to three-parameter power Quasi Lindley distribution, Three-parameter Sujatha 

distribution, Generalized gamma distribution, and two-parameter Generalizations of Sujatha distribution, as well as 

Weibull distribution and one-parameter Sujatha distribution. Given its superior fit over Power Quasi Lindley and 

Weibull distributions, particularly in the context of modeling and analyzing data from medical and engineering fields, 

the paper concludes by recommending the generalized power Sujatha distribution as the preferred choice over the 

considered distributions for such applications.  

RELAY CONTACTOR SYSTEM AS A MEANS OF CONTROLLING A LINEAR ELECTRIC 

DRIVE  .........................................................................................................................................................  388 

G.S. Kerimzade, G.V. Mamedova 

The energy sector is currently undergoing rapid change as a result of advances in technology, changes in consumer 

demand and the desire for more sustainable and efficient energy sources. Against the background of these changes, the 

problems of process management and optimization in the energy system are particularly relevant. One of the main 

directions in this field is the application of control systems through different-purpose control apparatus that can 

effectively react to changes in the environment and dynamically adapt to new conditions. The future development of 

the theory and practice of automatic control is related to the determination of the maximum possibilities of the systems 

and their construction, which are the best according to any technical and economic indicator. It is the research and 
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development of control systems through apparatus in the energy sector, taking into account modern requirements and 

technological possibilities. Control systems are widely used in various fields of technology, they are applied in the 

automation of production processes and calculations. Positive results are obtained when simulating the system using 

different parameter values for different types of interference signals. Management systems with the use of hardware 

can be successfully applied in the real working conditions of energy enterprises and can ensure optimal use of resources, 

reduction of operating costs and minimization of negative effects on the environment. This article discusses the 

characteristics of relay-contactor control systems. Relay contactor equipment controls electric drives powered by 

electric motors from a network with a constant voltage, which are widely used in all industries. Relay-contactor control 

systems are control systems built on a relay-contactor element base and designed to automate the operation of engines. 

With the help of such control systems, operations such as turning the engine on and off, choosing the direction and 

speed of rotation, starting and braking the engine, creating temporary pauses in movement, protective shutdown of the 

engine and stopping the mechanism are automated. These operations are necessary to perform the movement of the 

working body of the mechanism according to technological conditions. An electric drive, made on the basis of a relay-

contactor control system, is a simple, unregulated electric drive of direct or alternating current, mainly for general 

industrial use, for example, electric drive of cranes, elevators, conveyors, fans, pumps, some transport devices, etc.  

KERNEL SMOOTHING OF THE MEAN PERFORMANCE FOR HOMOGENEOUS 

CONTINUOUS TIME SEMI-MARKOV PROCESS ................................................................................. 397 

Tayeb Hamlat, Fatiha Mokhtari, Saadia Rahmani 

The main goal of the present paper is to propose a systematic approach to model performance measurements within the 

context of continuous-time semi-Markov processes with a finite state space. Specifically, the mean performance is 

estimated using the kernel method. The uniform strong consistency and the asymptotic normality of the proposed 

estimator is investigated. Furthermore, a non-parametric kernel estimation of the expected cumulative operational time 

is addressed. The constructed estimator is proved to be consistent and to converge to a normal random variable as the 

time of observation becomes large. As an illustration example, a simulation study has been conducted in order to 

highlight the efficiency as well as the superiority of our method to the standard empirical method. 

CHARACTERIZATION OF SOME GENERALIZED DISTRIBUTIONS USING ORDER 

STATISTICS .....................................................................................................................................................  413 

Haseeb Athar, Mohd. Amir 

The Lindley distribution has been useful for fitting lifetime data. In recent times, several authors studied the extension 

of the original Lindley distribution. In this paper, we introduced the two general classes of distributions, which include 

all earlier versions of Lindley distributions. These general classes are characterized using conditional expectations of 

order statistics. Further, there results are applied to characterize several known distributions like Lindley, X-Lindley, 

power Lindley, Lindley-Pareto, Ailamujia, power Ailamujia, Lindley-Weibull, length-biased exponential, inverse 

Lindley, inverse power Lindley and inverted length biased exponential distributions. 

CONSTRUCTION OF GAMMA ZERO-INFLATED POISSON DOUBLE SAMPLING PLANS ....  425 

Priyadharshini R, Shalini K 

In a well-supervised production framework, non-conformities occur seldom, resulting in a more number of zeros in the 

count of non-conformities. The zero-inflated Poisson (ZIP) distribution is a suitable model for handling zero inflation. 

Double sampling plan (DSP) is a precise quality inspection method where a decision on the approval or rejection of a 

lot is made after reviewing two samples, providing stronger conclusions than single sampling plan (SSP). In practice, 

decision-making for submitted lots requires a consistent assessment of both within-lot and between-lot variations, 

which can be addressed using Bayesian methodology. A Bayesian approach integrates prior knowledge and provides 

more information for making decisions about the approval or rejection of a lot. This article focuses on the designing of 

Bayesian DSPs; employing a Gamma prior to the parameter in the Poisson component of ZIP distribution the operating 

characteristic (OC) function is derived. Examples are provided to assess Gamma-ZIP (GZIP) DSPs. The significance 

of GZIP DSPs over conventional ZIP DSPs is also presented.  
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A STUDY ON COMPARISON OF VARIOUS CONTINUOUS SAMPLING AND SKIP-LOT 

SAMPLING PLAN PROCEDURES  .............................................................................................................  439 

S. Suganya, K. Pradeepa Veerakumari

This paper explains the brief review of skip-lot sampling plan procedures followed by continuous sampling plan 

procedures. Also, various types of skip-lot sampling plans are compared with continuous sampling plans. The efficiency 

of SkSP-T is tested on comparison with various skip-lot sampling plans using Single Sampling Plan. A new system of 

skip-lot sampling plan of type SkSP-T is compared with other skip-lot sampling plans. Different types of skip-lot 

sampling plans namely SkSP-2, SkSP-3, SkSP-V and SkSP-R. The tables are constructed for various combinations of 

various parameters using various numerical methods.  

DECISION SUPPORT SYSTEM OF EVAPORATING SYSTEM OF SUGAR PLANT ...................... 445 

Parveen Sihmar, Vikas Modgil 

This paper addresses an analysis methodology for assessing the efficacy of a evaporating system in a sugar industry. A 

stochastic Petri nets technique is employed to simulate the interactions between the subsystems. A software package, 

"Petri module," from GRIF, was licensed. The performability of subsystems has been evaluated, and fluctuations in 

repair and failure rates have been observed. The maintenance order priority was assigned to the subsystems of the 

evaporating system based on the criticality of failure. Finally, a decision support system is implemented to assist 

maintenance personnel in making more informed decisions during the development of maintenance policies. It has been 

noted that the evaporator is an essential component that requires the complete attention of the plant manager.  

MODELING RELIABILITY IN k-OUT-OF-m SYSTEMS WITH UNEQUAL LOAD SHARING 

USING PROPORTIONAL CONDITIONAL REVERSE HAZARD RATE ........................................... 454 

Sukumar V. Rajguru, Santosh. S. Sutar 

This paper explores a load-sharing model within a k-out-of-m system, where multiple components work together to 

handle a shared load. Such systems are prevalent in various engineering and industrial applications. While previous 

studies have focused on equal load-sharing rules, this research emphasizes systems operating under an unequal load-

sharing rule, which has a significant impact on the system’s reliability and performance. Specifically, the paper 

examines a k-out-of-m load-sharing system modeled using the proportional conditional reverse hazard rate model, 

incorporating unequal load sharing. We have derived expressions for the probability density function and cumulative 

distribution function of system failure. To illustrate the model, they use a 2-out-of-4 configuration with Weibull 

baseline distributions. The maximum likelihood estimation method is employed to estimate the model parameters, and 

the performance of these estimates is evaluated through a simulation study, assessing both bias and mean square errors. 

Additionally, the practical applicability of the model is demonstrated through the analysis of two real datasets. 

IMPROVING VARIANCE PRECISION IN POPULATION STUDIES: THE ROLE OF POST-

STRATIFICATION AND AUXILIARY DATA  ......................................................................................... 472 

M. I. Khan, S. Qurat Ul Ain, M. Younis Shah

In this study, we propose an enhanced estimator for the finite population variance in the context of post-stratified 

sampling, incorporating an auxiliary variable to improve accuracy. We derive expressions for the bias and mean square 

error (MSE) of the proposed estimator, providing an approximation accurate up to the first order. The theoretical 

analysis highlights the conditions under which the proposed estimator yields lower bias and reduced MSE, making it 

a more efficient alternative to traditional methods. To evaluate the practical performance of this estimator, we apply it 

to two real-world data sets, where our results demonstrate a marked improvement in efficiency over existing estimators. 

The numerical findings confirm that, in post-stratified sampling, the proposed estimator significantly enhances the 

precision of variance estimation, especially when the auxiliary variable is highly correlated with the study variable. 

This work not only contributes a more efficient estimator but also provides valuable insights into the application of 

auxiliary information in post-stratified sampling designs.  
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A COMPARATIVE STUDY ON PARAMETER ESTIMATION TECHNIQUES FOR THE 

DISCRETE INVERSE RAYLEIGH DISTRIBUTION  ..............................................................................  483

Haripriya M, Radhika A, Jeslin J 

This article explores into the Discrete Inverse Rayleigh Distribution, a novel discrete analogue of the continuous 

Inverse Rayleigh distribution, formulated by inverting a continuous Rayleigh random variable. The Discrete Inverse 

Rayleigh Distribution can effectively capture a range of hazard rate shapes, exhibiting either unimodal or monotonic 

decreasing behaviors depending on parameter values. To estimate the parameters of this distribution, we examine four 

distinct methods: a heuristic algorithm, a probability paper plotting technique designed for the Inverse Rayleigh, the 

method of moments, and the method of proportions. Each method offers unique strengths and presents different 

computational requirements and precision levels. Through rigorous simulation studies, we assess the accuracy and 

reliability of these methods, evaluating their performance across a variety of scenarios. Our results indicate that the 

methods of moments and proportions encounter significant difficulties when estimating parameters for right-skewed 

Discrete Inverse Rayleigh distributions. These challenges are primarily due to numerical instability and poor 

convergence properties under certain parameter configurations, which can limit their practical applicability in these 

cases. In contrast, both the probability paper plotting method and the heuristic algorithm demonstrate robustness and 

enhanced accuracy, especially in the context of right-skewed distributions. The probability paper plot is notably effective 

due to its reliance on graphical techniques that simplify parameter estimation in complex, non-monotonic datasets, 

whereas the heuristic algorithm provides a more computationally efficient solution without sacrificing precision. To 

validate the utility of the Discrete Inverse Rayleigh Distribution, we compare its performance with the Discrete 

Rayleigh Distribution by fitting both models to a real-world dataset. The comparative analysis leverages the Akaike 

Information Criterion (AIC) to quantitatively assess model fit. Our findings underscore the advantages of the Discrete 

Inverse Rayleigh Distribution, particularly in applications where discrete data exhibits non-monotonic hazard rates, 

highlighting its superior fit over the traditional Discrete Rayleigh in this context. This study contributes to the growing 

toolkit for discrete time-to-event data modeling, offering insights into effective parameter estimation strategies and 

demonstrating the value of the Discrete Inverse Rayleigh Distribution for specialized discrete hazard rate analysis.  

DESIGNING SINGLE SAMPLING PLANS BASED ON ZERO-INFLATED BINOMIAL 

DISTRIBUTION ..............................................................................................................................................  493

Sangeetha S, Shalini K, Hemalatha R 

Statistical Quality Control (SQC) involves the use of statistical techniques used to assess and monitor the quality of a 

product. Acceptance sampling is a statistical technique that determines whether to approve or decline a batch of 

products using a sample instead of inspecting each one individually. This helps to manage quality assurance and 

reduces the need for exhaustive inspection, balancing the risks of accepting faulty items and rejecting good ones. A 

single sampling plan (SSP) involves inspecting a fixed number of items from a batch and deciding based on the 

results whether the entire batch should be accepted or rejected. Now-a-days in the manufacturing processes, due to 

the evolution in technology the number of nonconforming is very less and this leads to a high frequency of zeros in 

the count data of nonconforming. If count data contains a significant number of zeros, the Zero-inflated Binomial 

(ZIB) distribution is the suitable probability distribution for such conditions. The ZIB distribution addresses this 

issue by combining a binomial distribution with an inflation parameter that accounts for the excessive zeros, making 

it a more accurate representation of the quality control process in environments where defectives are rare. This article 

aims to design SSPs when the number of non-conforming units follows ZIB distribution. By adopting the ZIB 

distribution, the SSPs provide better decision-making in terms of acceptance or rejection of product batches. The 

operating characteristic (OC) function of the ZIB sampling plan is derived. Furthermore, the parameters of the SSP, 

specifically the sample size n and acceptance number c, are derived for various sets of values, such as (p1, 𝛼, p2, 𝛽). 

Numerical illustrations are presented to demonstrate the application of the ZIB SSPs. The risk efficiency of ZIB SSP 

is compared with Binomial SSP.  
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LEVERAGING RANK SET SAMPLING FOR ENHANCED STRESS-STRENGTH 

ESTIMATION IN THE CONTEXT OF NAKAGAMI DISTRIBUTION  .............................................. 500 

Surinder Kumar, Rahul Shukla, Bhupendra Meena, Shivendra Pratap Singh 

This study addresses the estimation of the stress-strength reliability model, where stress and strength both following 

the Nakagami distribution. While conventional approaches have relied on simple random sampling (SRS) for 

estimating reliability models, recent research suggests that ranked set sampling (RSS) offers a more efficient alternative. 

RSS yields more informative samples compared to SRS, potentially enhancing the accuracy of reliability estimations. 

Our investigation focuses on deriving maximum likelihood estimators (MLEs) for stress-strength under both SRS and 

RSS methodologies. To evaluate the comparative efficacy of these sampling techniques, we conduct a comprehensive 

Monte Carlo simulation study. The results of this analysis provide compelling evidence that RSS-based estimators 

outperform their SRS counterparts in terms of efficiency and precision. This research contributes to the growing body 

of literature supporting the adoption of RSS in reliability engineering. By demonstrating the superior performance of 

RSS in the context of Nakagami-distributed stress-strength models, we offer valuable insights for researchers and 

practitioners seeking to optimize their estimation procedures in reliability analysis.  

EVALUATION OF PARAMETRIC ESTIMATION METHODS FOR THE GAMMA 

DISTRIBUTION USING MAXIMUM LIKELIHOOD AND BAYESIAN APPROACHES IN A 

CENSORED LIFE-TESTING STRATEGY WITH MARKOV CHAIN MONTE CARLO 

SIMULATIONS ...............................................................................................................................................515  

Christian Akrong Hesse, Dominic Buer Boyetey, Emmanuel Dodzi Kpeglo, Albert Ayi Ashiagbor 

The goal of this study was to address the computational challenges associated with parametric estimation of the gamma 

distribution by evaluating the performance of the maximum likelihood and maximum a-posteriori estimation methods 

within the framework of Markov Chain Monte Carlo simulations. This was done by first assuming a censored life-

testing strategy that terminates on the rth failure from a given sample of n electronic devices. Second, we obtained the 

joint distribution function of the first r-order statistic by arranging the r values in order of magnitude. Finally, we 

explored through the Markov Chain Monte Carlo framework using the maximum likelihood and maximum a-posteriori 

to estimate the gamma distribution parameters. The findings of this study suggest that both estimation methods were 

not significantly different from the actual hypothesized parameter values. Further, we observed that irrespective of the 

prior distribution used for the Bayesian maximum a-posteriori Markov Chain Monte Carlo estimation, the resulting 

parametric estimates of the gamma distribution remain the same, confirming the assertion that the Bayesian maximum 

a-posteriori Markov Chain Monte Carlo approach is a valuable tool for informative posterior analysis. The study’s

uniqueness lies in adopting a censored life-testing strategy centered on the joint distribution function of the first r-

order statistic.

ENHANCING LINDLEY DISTRIBUTION PARAMETER ESTIMATION WITH HYBRID 

BAYESIAN AVERAGE MODEL FOR FUZZY DATA ..............................................................................528  

Abbarapu Ashok, Nadiminti Nagamani 

With the ultimate goal of increasing parameter estimate accuracy, this study will examine and assess a number of 

estimating techniques used with the Lindley distribution in the context of fuzzy data. Gibbs sampling, Bootstrapping 

Sampling, MCMC, MH, and a unique hybrid methodology that combines these approaches via Bayesian model 

averaging were also studied. The research looks at several sample sizes ranging from 15 to 100 and repeats the estimate 

method 10,000 times for each size. Fuzzy data are created using established fuzzy systems, and the performance of each 

approach is measured using average values (AV), mean squared errors (MSE), coverage probabilities, and confidence 

interval lengths. The findings show that the hybrid technique consistently produces estimates closer to the genuine 

parameter value of one across all sample sizes, with smaller mean squared errors than individual methods. Furthermore, 

the hybrid method’s confidence intervals preserve coverage probabilities that are consistent with the targeted 

confidence level, demonstrating the method’s trustworthiness in statistical inference. Overall, the results show that 

the hybrid technique improves estimate accuracy and reliability, providing a strong foundation for parameter 

estimation in the Lindley distribution framework using fuzzy data. 
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UNRELIABLE M/G/1 QUEUE WITH GENERAL RETRIAL TIME, WORKING VACATION 

AND SETUP TIME ..........................................................................................................................................  543 

Hadjadj Houari , Arrar Nawel , Lahcene Yahiaoui 

In the current article, a retrial queuing system with working vacations, interruptions, setup time, and perfect repair is 

analyzed. The scenario includes a server taking working vacations during empty periods without a complete halt of 

servicing customers; however, the rates of service remain reduced. Further, a setup time is included here, implying that 

if the server remains idle when a new customer enters, the state changes to inactive plus a setup duration before 

restarting operation. In this phase of setup, the setup failure happens and is replaced immediately before the server can 

proceed to normal operations. In addition to this, automatic power-off to conserve energy is there when no customer 

comes while the server is in vacation mode. Customers who find that the server cannot be accessed spend time waiting 

in retrial orbit instead of entering a normal queue. Here they’re encouraged to try again for service after a random 

time. The steady state probability generating functions for system size and retrial group size are obtained by analyzing 

the system dynamics through the supplementary variable technique (SVT). Reliability and optimization analyses will 

be included in what will be studied from the system. Reliability concerns evaluating the chances of the server being 

available at different failure and repair sites while in the system, while optimization looks at the best configuration of 

system parameters that will work towards achieving greater efficiency and reduced delays. Explicit mathematical 

formulations can be obtained under ergodicity conditions describing the system size distribution and sojourn time and 

state probabilities. For a practical realization of the model, which numerically experiments would be carried out in 

Python, the theoretical results were validated. Such results therefore hold information on how direct retrials, setup 

times, service rates, and repair mechanisms affect overall system behavior. They also provide strong evidence for trade-

offs between energy conservation on the one hand and reliability together with continuous service on the other. The 

proposed model together with practical implementation thus produces very significant inferences relevant to real service 

models in which the optimization of resources and efficiency of operation are critical.  

ESTIMATING THE POPULATION MEAN USING STRATIFIED DOUBLE UNIFIED 

RANKED SET SAMPLING FOR ASYMMETRIC DISTRIBUTIONS  ................................................. 557 

Mohammed Ahmed Alomair, Chainarong Peanpailoon, Roohul Andrabi, Tundo, Khalid Ul Islam 

Rather  

In this study, we propose a novel sampling technique known as Stratified Unified Ranked Set Sampling (SDURSS) 

and evaluate its efficiency for estimating population means. SDURSS is designed to enhance the estimation accuracy 

by integrating concepts from ranked set sampling with stratified sampling. Our results demonstrate that the SDURSS 

estimator generally exhibits superior efficiency compared to SRS, particularly in complex distribution scenarios. While 

SDURSS often performs more efficiently than SSRS and SRSS, its performance relative to these methods varies 

depending on the specific distribution and sample size. In several cases, SDURSS outperforms SSRS and SRSS, 

highlighting its potential benefits in practical applications. The findings suggest that SDURSS is a promising 

alternative to traditional sampling methods, offering improved efficiency and potentially more accurate estimates of 

population means. This research underscores the value of exploring advanced sampling techniques to enhance statistical 

estimation, particularly in scenarios involving asymmetric distributions where traditional methods may be less 

effective.  

A SIGNIFICANT STUDY ON ROBUST MEASURE OF LOCATION PARAMETERS USING 

DATA DEPTH APPROACHES .....................................................................................................................  573 

Kalaivani S 

Data depth procedures are statistical methods used to measure the centrality or depth of a point within a multivariate 

dataset. These procedures provide a way to quantify how deep or outlying a point is relative to the overall distribution 

of the data. This study explores various data depth procedures to find reliable location estimations in cases like with 

and without outliers. In this paper, various depth procedures, such as Mahalanobis depth, Halfspace depth, Euclidean 

depth, Simplicial depth, and Projection depth, are studied and compared. The efficiency of these depth functions is 

evaluated using real datasets and simulation studies with R software.  
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OPTIMIZING A LINEAR FRACTIONAL FUNCTION OVER AN INTEGER EFFICIENT SET ..... 580 

Leila YOUNSI-ABBACI 

Over recent decades, significant advancements have been made in optimization over the efficient set. This paper 

introduces a novel exact algorithm designed to optimize a linear fractional objective function over the integer efficient 

set of a multi-objective linear programming problem (MOILP). Without enumerating all efficient solutions, our method 

employs a selection strategy to iteratively improve the primary objective while progressively refining the feasible region 

and excluding dominated points. By exploring edge connections within the truncated feasible space, the proposed 

algorithm ensures convergence to the global optimal value in a finite number of iterations. A numerical example 

demonstrates the algorithm’s effectiveness and practical application. This approach addresses critical challenges in 

multiobjective integer programming, particularly the nonconvexity of the efficient set and the absence of explicit feasible 

set descriptions.  

A MODIFIED INCIDENT EDGE PATH ALGORITHM FOR EFFICIENT SHORTEST PATH 

SOLUTIONS IN PIPELINE NETWORKS AND URBAN NAVIGATION SYSTEMS ....................... 591 

Kanchana M, Kavitha K 

The article describes how to utilize the Modified Incident Edge Path Algorithm (MIEPA) to identify the cheapest transit 

option and the best route. The MIEPA algorithm, which is based on graph theory, is simple to use and can potentially 

be employed to major smart logistics challenges such as pipeline networks and Google Maps. It evaluates the most 

optimal approach to minimize transportation expenses using MATLAB. The algorithm ensures that each node gets 

visited and determines the shortest path from the origin to all other nodes. The running time complexity and theorem 

of the new method are presented, and the algorithm is compared to the existing algorithm. The proposed MIEPA 

addresses negative weights and prevents negative cycles. It has used two real-world problems to evaluate the suggested 

algorithm. 

ON SOME PROPERTIES AND APPLICATIONS OF THE MODI-FRECHET DISTRIBUTION ....601  

Akhila P., Girish Babu M. 

In this paper we introduce a novel expansion of Frechet distribution from Modi family of probability distributions. The 

important statistical properties like moments, stochastic ordering, and entropy are studied in this paper. Two distinct 

characterizations of the proposed distribution are derived through the hazard rate function and truncated moments. 

The statistical inference about the parameters of the new distribution is studied using the method of maximum 

likelihood estimation. To study the flexibility and practical utility of the distribution, two real-life data sets from the 

reliability sector and from the biomedical field were analyzed. An extensive simulation study is also conducted to 

validate the accuracy and consistency of the estimation techniques.  

BAYESIAN ESTIMATION OF INVERSE AILAMUJIA DISTRIBUTION USING DIFFERENT 

LOSS FUNCTIONS  ........................................................................................................................................ 620 

Aijaz Ahmad, Manzoor A. Khanday, Sonali Kedar Powar, Aafaq A. Rather, C. Subramanian 

This paper focuses on the Bayesian estimation of the parameter of the inverse Ailamujia distribution, employing 

advanced prior structures and diverse loss functions. Specifically, the extended Jeffreys’ prior and gamma prior are 

utilized to derive the Bayesian estimators. Estimation is performed under various loss functions, including squared 

error, entropy, precautionary, and Linex loss functions, ensuring a comprehensive analysis. To demonstrate the 

practical applicability and comparative performance of these estimators, an empirical investigation is conducted using 

a real dataset. The findings highlight the adaptability and effectiveness of the proposed Bayesian approach across 

different estimation scenarios.  
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ENHANCING EMOTION RECOGNITION WITH MULTIMODEL APPROACH USING DEEP 

NEURAL NETWORKS  .................................................................................................................................. 632 

Dr. Komal Anadkat, Ayush Solanki, Dhruva Patel, Vraj Thakkar 

Recognizing and extracting different emotions, and then validating those emotions have become important for 

enhancing human-computer interaction. Emotions play a crucial role in social interactions, facilitating rational 

decision-making and perception. Previously researched emotion recognition models have typically focused on a single 

input type like images, text, or audio, where each model can identify the emotion of a person through a single source 

like facial expressions, voice, social media posts, etc. However, these uni-model approaches are limited because they rely 

on just one type of data, which often misses the full range of emotional cues. To overcome these limitations, multi-

model emotion recognition techniques are proposed which are useful for detecting emotions through a person’s facial 

expressions, speech, social media status, and then EEG data. Model fusion techniques have been applied to detect the 

most accurate emotion for a particular person through fusion of all the models. A recognition rate-based weighting 

approach is proposed for model fusion, wherein models are assigned weights proportional to their individual recognition 

rates. This approach enhances overall performance by combining the outputs of various models with higher emphasis 

on those with better accuracy. The decision fusion-based multi- model emotion recognition model is proposed which 

achieved a maximum of 87%. accuracy using a bi-model approach and 92% accuracy with a tri-model approach. The 

weighted decision fusion approach assigns more weight to the model which is more accurate and achieved 93% 

accuracy. The proposed recognition rate-based weighting approach for fusion has provided significant results, achieving 

approximately 93% accuracy with 0.900 and 0.904 Cohen kappa and Mathew score respectively using facial expression, 

speech, and social media text modalities on combined dataset. The proposed model achieved 63% accuracy on a real-

world collected dataset without considering EEG data and improved to 73% if EEG is also considered.  

OVERVOLTAGE AT THE TRANSFORMER WHEN DISCONNECTING CLOSE 

ASYMMETRICAL SHORT CIRCUITS  ...................................................................................................... 645 

Nahid Mufidzade, Gulgaz Ismayilova 

This article examines overvoltages at the inputs of high-voltage (HV) and low-voltage (LV) transformers rated at 110/6 

kV and 110/10 kV, focusing on scenarios involving grounded and isolated neutrals during short circuits near the 

transformers. The study finds that with an isolated neutral, overvoltages resulting from a phase-to-ground short circuit 

reach the highest levels, as anticipated. However, the disconnection of all types of asymmetrical short circuits—whether 

with an isolated or grounded neutral—yields even greater, potentially excessive overvoltages. This occurs because the 

windings of undamaged transformer phases remain partially energized during disconnection, leading to significant 

currents being interrupted. The magnetic energy from these currents converts to electrical energy, resulting in 

substantial voltage increases, characterized as pulsed overvoltages lasting several microseconds. Implementing 

switches with shunt resistance can reduce these overvoltages considerably, though the remaining levels may still exceed 

acceptable thresholds. To mitigate the risk of such excessive overvoltages, installing surge arresters at the inputs of 

high-voltage transformers is recommended, ensuring that transformer input overvoltages remain within permissible 

limits.  

OPTIMIZING BAYESIAN REPETITIVE GROUP SAMPLING PLAN FOR QUALITY 

CONTROL TO ENHANCE DECISION MAKING EFFICIENCY IN MODERN 

MANUFACTURING  ...................................................................................................................................... 658 

P. Sivakumar1, V. Kaviyarasu, V. Devika

This article introduces an approach to optimize the design of Repetitive Group Sampling (RGS) plan in the context of 

quality control for modern manufacturing processes. The primary objective of this study is to enhance decision-making 

efficiency by applying Bayesian principles to develop optimal sampling plans. In modern manufacturing environment, 

the industries are using the advanced technologies and machineries to maintain the quality of their products. The 

existence of defects would consequently be highly rare in such production. In such situation, Zero Inflated Poisson 

(ZIP) distribution is a more appropriate probability distribution rather than the usual Poisson distribution. Further, 

manufacturing industries often use a variety of manpower and materials to produce their products in various 
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production streams. This may lead to have more quality variation in between lots and hence, the lot quality will vary 

over lots. The lots that arise from such a production process will be unstable, and quality variations among the units 

are often heterogeneous in nature. In such situation, the Bayesian sampling plans under Zero Inflated Poisson 

distribution would be more effective and alternative for traditional sampling plans. This paper studies the designing 

and selection of Bayesian Repetitive Group Sampling (BRGS) Plan under the conditions of Gamma-Zero Inflated 

Poisson distribution (G-ZIP). To investigate the effectiveness of this plan, a comparison between the proposed BRGS 

plan and various existing sample plans is made. Further, we provided the procedure and tables with the suitable 

numerical illustration to compute the optimal sampling plan.  

PERFORMANCE ANALYZATION OF ERLANG SERVICE MODEL UNDER TRIANGULAR 

FUZZY NUMBER BY USING THE L-R FUZZY APPROACH ................................................................ 673 

Dr. V. P. Anuja 

A traditional mathematical technique for analyzing line-waiting delays and overcrowding is queuing theory. It 

addresses the number of patrons in line as well as numerous other queue-related issues. Developing an Erlang service 

model in a fuzzy environment is our study’s goal. This study aims to investigate the anticipated number of patients 

in the line as well as the queuing system’s waiting time. To achieve this, we applied the L-R strategy under triangular 

fuzzy numbers and the alpha-cuts method. To measure various linguistic aspects in queuing systems, the fuzzy 

approach has been used. The findings showed that waiting times are determined using recommended techniques and 

that the fuzzy Erlang model is stable. Finally, we provide numerical examples to show the capabilities of the suggested 

method.  

DEVELOPMENT OF NEW METHODS FOR PROTECTING SUBSTATION AND OVERHEAD 

LINES FROM OVERVOLTAGES  ............................................................................................................... 683 

N.M. Piriyeva, N.S. Mammadov, S.V. Rzayeva

This article explores various methods and devices used for protecting overhead lines and substations from surges, 

particularly those induced by lightning strikes. Traditional surge protection methods such as lightning rods, arresters, 

and grounding systems are discussed, highlighting their limitations and challenges, especially in long-distribution 

networks. The study examines the development and implementation of novel surge protection devices, including 

nonlinear surge arresters, frequency-dependent devices (FDD), and multi-chamber arresters. Special attention is given 

to FDD, which utilizes ferromagnetic materials to create frequency-dependent resistance, effectively suppressing high-

frequency overvoltages. Experimental results demonstrate the efficacy of FDD in reducing the amplitude of lightning-

induced overvoltage pulses and enhancing the lightning resistance of overhead lines and substations. However, 

challenges such as insufficient information on device effectiveness, limited ohmic resistance at high frequencies, and 

size constraints hinder widespread adoption. The article concludes by emphasizing the need for further research to 

optimize FDD designs, increase active resistance, and assess operational effectiveness to facilitate broader deployment 

across different voltage classes.  

A MODIFIED WEIGHTED DISTRIBUTION -APPLICATION ON DIABETES MELLITUS AND 

PANCREATIC CANCER DATA ................................................................................................................... 690 

Praseeja C B, Prasanth C B, C Subramanian, Unnikrishnan T 

This research article attempts to establish and explore a case of two parameter Nwikpe distribution and termed it as 

Area Biased C2N distribution. As the characteristics of Hydrogen per Oxide(H2O2) is quite different from that of 

Water (H2O) even though both are the different combinations of the same elements Oxygen & Hydrogen, the 

characteristics of initial distribution is also entirely different from that of the area biased modified distribution. The 

implemented new distribution has distinct structural characteristics, and its parameters are estimating using 

maximum likelihood estimation. Utilizing biomedical data, the new distribution’s application has been examining to 

ascertain its superiority and utility. One lifetime data set shows the mean reduction in blood glucose (mg/dL) after 

three days of the first usage of the Metformin medicine from a random sample of 130 patients from a hospital at Chennai, 

TamilNadu with type 2 diabetes mellitus by testing the FBS-Fasting Blood Glucose. The another set of lifetime data 

shows the mean reduction in blood glucose (mg/dL) after each dosage of the FIASP insulin-medicine in alternate days 
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of a pancreatic cancer patient, noted for 63 days randomly. Both data set is going to fit to the new distribution and 

analyze them, to determine the supremacy and usefulness.  

EXPLORING QUADRASOPHIC FUZZY SET: APPLICATIONS IN ASSESSING STRESS 

LEVELS AND SELF-ESTEEM CONNECTIONS ....................................................................................... 700 

G. Aruna, J. Jesintha Rosline, A. Anthoni Amali

The ambiguous environment has been addressed with a variety of fuzzy sets and their extensions. The Quadrasophic 

Fuzzy Set is one of the generalization of Fuzzy set to handle imprecise information efficiently. It is defined with two 

new parameters. In this artifact, we defined the operations, theorems, and relations of the Quadrasophic Fuzzy Set with 

pertinent examples. We also established a comparison study with other existing models. Additionally, the integration 

of Quadrasophic Fuzzy data with the TOPSIS approach to solve the Multi Criteria Decision Making problem is 

proposed and illustrated by examining the relationship between employee stress levels and their self-esteem, which can 

trigger obsessive-compulsive disorder, using real-life data. The results are analyzed with SPSS software.  

BAYESIAN GLM: A NON-INFORMATIVE APPROACH FOR PARAMETER ESTIMATION IN 

EXPONENTIAL DISPERSION REGRESSION MODELS ....................................................................... 715 

Ibrahim Sadok, Mourad Zribi 

This paper proposes a novel Bayesian approach to parameter estimation in exponential dispersion regression models 

(EDRM). By employing a non-informative prior distribution, we offer a flexible and robust framework that avoids the 

need for subjective prior specification. To efficiently sample from the posterior distribution, we develop an importance-

sampling algorithm tailored to the EDRM. Through a real-world data analysis, we demonstrate the efficacy of our 

proposed method in providing accurate and reliable parameter estimates. This research contributes to the advancement 

of Bayesian statistical modeling techniques and offers valuable insights for practitioners in various fields.  

IMPLEMENTATION OF THE MAXIMUM PERMISSIBLE OVERLOAD CAPACITY OF A DC 

MOTOR   ......................................................................................................................................................... 728 

Rafig Sultanov, Elbrus Ahmedov, Nadir Aliyev 

DC motors, due to their wide applicability in various industrial sectors, necessitate precise control of their overload 

capacity to ensure safe and efficient operation. This study presents a comprehensive methodology for assessing the 

maximum permissible overload capacity of a DC motor. The core of this methodology lies in the derivation and 

application of the electromechanical characteristic equation of an electric drive with current cutoff. This equation serves 

as the foundation for constructing the electromechanical characteristics of the drive, providing a detailed representation 

of the motor's performance under varying operational conditions. A novel circuit is proposed, featuring an automatic 

adjustment mechanism for the cut-off current setting based on the speed of the electric drive. This adaptive circuit 

design ensures that the motor operates within its maximum permissible overload capacity, thereby optimizing 

performance and preventing potential damage due to excessive loads. By leveraging this advanced control methodology, 

the reliability and efficiency of DC motors in industrial applications can be significantly enhanced. This approach not 

only maximizes the motor's operational capabilities but also contributes to the overall safety and longevity of the electric 

drive systems.  

THE ROLE OF MODERN GROUNDING DEVICES IN ENSURING THE STABILITY OF 

POWER SYSTEMS  ......................................................................................................................................... 734 

I.N. Rahimli, A.L. Bakhtiyarov, G.K. Abdullayeva

The article focuses on investigating the impact of grounding device parameters on the stability of power systems under 

external disturbances, such as short circuits and lightning strikes. The study examines transient processes in power 

systems, including the analysis of rotor angle variations in generators and voltage recovery. Numerical modeling based 

on the equations of synchronous generators and electromagnetic transient processes is employed. A comparative 
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analysis of various grounding device configurations is conducted, taking into account their resistance and the system's 

recovery time. The research results identify the optimal parameters of grounding devices that minimize the recovery 

time of power systems and enhance their overall stability. The findings can be utilized in the design and operation of 

power systems with improved reliability.  

RELIABILITY, AVAILABILITY AND MAINTAINABILITY OF A BOILER IN THERMAL 

POWER PLANT– A CASE STUDY .............................................................................................................. 743 

K. Sunitha, T. Sumathi Uma Maheshwari, M. Tirumala Devi, A. Satyanarayana4

Many countries face problems in electricity generation. Boilers play an important role in a power plant. Sudden failures 

of a power plant boiler components cause loss of production and high maintenance cost. Due to unplanned and irregular 

maintenance, which can ultimately increase the production cost of electricity. This is a common challenge faced by 

power plant operators worldwide. The present study aims to examine and analyze the failure times of a boiler at a 

thermal power plant and identify its critical failure expectancy and system reliability. The data was collected over a 

long period and was analyzed using statistical methods. In this study, the hypothesis has been proposed to choose the 

best analysis. Furthermore, reliability, availability, and maintainability analysis were carried out under discrete 

analysis. The analysis included identifying the probability distribution of the failure times, identifying critical failure 

expectancy, and determining system reliability.  

PROBABILISTIC INVENTORY MODEL FOR DETERIORATING ITEMS WITH UNCERTAIN 

DEMAND UNDER PENTAGONAL FUZZY ENVIRONMENT ............................................................ 754 

Ashish Negi, Ompal Singh 

Using a pentagonal fuzzy framework, this research presents a probabilistic inventory model for deteriorating items 

under an uncertain demand. Degeneration of items puts a company’s financial ability to meet its objectives at risk. 

Few models have synchronized optimization over this whole scenario with all components, according to a survey of the 

literature. It deals with the difficulties of inventory control in situations where demand is represented by fuzzy sets but 

is not precisely known. The model offers a clearer and more useful understanding of demand uncertainty by 

defuzzifying pentagonal fuzzy numbers using the Graded Mean Integration Representation (GMIR) approach. The 

goal of the study is to optimize inventory levels in order to minimize total costs, which include holding, degradation, 

shortage, and purchase. These components are included into a mathematical model, and numerical scenarios are shown 

to compare the both potential strategies. The sensitivity of the solution and decision variables with respect to different 

inventory characteristics is examined in both crisp and fuzzy settings. Fuzzy logic is integrated into the model to 

provide a strong framework for making decisions when dealing with ambiguous demand and the complications that 

come with deteriorating inventory. The paper includes numerical examples and sensitivity analyses to demonstrate the 

model™s effectiveness and practical relevance. These findings provide valuable guidance for inventory managers aiming 

to improve decision-making and operational efficiency in contexts with fuzzy demand and deteriorating products. At 

the optimal position, the total cost is relatively inelastic to an increase in base deterioration rate and more elastic to a 

decrease in it. Although the crisp example is marginally less efficient per unit cost, total costs are lower than in the 

fuzzy case, which is to be expected given the fuzzy case’s potential for superior results.  

RELIABILITY ANALYSIS OF A POWER DISTRIBUTION SYSTEM WITH TWO 

TRANSFORMERS AND SIX FEEDERS  .....................................................................................................  773 

Syed Mohd Rizwan, Satish Tanavade, Kajal Sachdeva, Syed Zegham Taj 

The article explores the reliability and sensitivity of a power distribution substation. It includes an analysis based on 

real maintenance data collected from a 33/11kV electrical power distribution substation, which features a set of two 6 

MVA power transformers supplying power through a total of six outgoing feeders (three feeders per transformer). The 

study documents faults observed in both transformers and all six outgoing feeders. The reliability of the substation is 

evaluated using various indices such as availability, repair durations, and expected repair frequencies for different 

failure types. The analysis employs Markov processes and regenerative point techniques. In addition to reliability, the 

study includes a profit analysis of the substation. It presents graphical representations of key parameters. Furthermore, 
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a sensitivity analysis is conducted to assess how variations in parameters impact the availability and profitability of 

the substation components. Substation economics is also established to assess the operational viability.  

A NEW FAMILY OF LINDLEY DISTRIBUTIONS FEATURING BIMODAL CASES ...................... 787 

Festus C. Opone, Jacob C. Ehiwario, Sunday A. Osagie, John N. Igabari, Nosakhare Ekhosuehi 

Several lifetime distributions have been developed in literature to handle different real-world scenario. Most of these 

distributions were developed to model a unimodal (symmetric or asymmetric) data. Only a hand-full of these 

distributions exhibits a bimodal property. This paper explores a new family of Lindley distributions featuring a bimodal 

property. We introduce five different sub-families of the T-Power Lindley{Y} family based on the quantile function of 

the uniform, exponential, Frechet, log-logistic and logistic distributions. Useful mathematical properties of the proposed 

T-Power Lindley{Y} family of distributions are derived and sub-models were the random variable T follows the one-

parameter Topp- Leone, exponential, exponentiated exponential, Weibull and Gumbel distributions are introduced.

From the graphical representation of the density function of these sub-models, we observe that the shape of the density

function accommodates a decreasing (reversed-J), left-skewed, right-skewed, symmetric, as well as a bimodal shape. In

order to illustrate the usefulness and performance of the proposed T-Power Lindley{Y} family of distributions, the

Gumbel Power Lindley (GPL) distribution belonging to the proposed family of distribution was employed to fit a

bimodal data set alongside with the beta-Normal distribution. Result obtained from the analysis revealed that the

Gumbel Power Lindley (GPL) distribution compares favourably better than the beta-Normal distribution. The density

fits of the distributions for the data set was also investigated to support the claim.

OPTIMIZING TWO-WAREHOUSE INVENTORY MODEL FOR DETERIORATING ITEMS 

WITH GENERALIZED EXPONENTIAL DEMAND, PARTIAL BACKLOGGING, AND 

INFLATION USING BACTERIAL FORAGING OPTIMIZATION ...................................................... 800 

Garima Sethi, Ajay Singh Yadav, Dharmendra Yadav 

This paper presents a novel two-warehouse inventory model for degrading products, where the 

demand rate is governed over time by a generalized exponential function. Two real-world supply chain challenges that 

are taken into account in the model are the economic effects of inflation and partial backlog. By reducing the whole cost, 

which includes holding, shortage, and degradation charges, the Bacterial Foraging Optimization (BFO) method 

maximizes inventory management. The effectiveness of the model is validated through a comprehensive numerical 

example, and graphical representations demonstrate the impact of key factors on system performance. The results 

demonstrate how BFO may be used to complex inventory problems, giving supply chain managers crucial data as they 

try to balance cost-effectiveness and demand fluctuations in an inflationary environment. This approach highlights the 

need of advanced optimization techniques in improving decision-making processes for degrading products in a two-

warehouse scenario.  

SURVIVAL ANALYSIS OF A STOCHASTIC MODEL ON CARDIOVASCULAR SYSTEM 

CONSIDERING POSSIBILITES OF DAMAGE, FAILURE AND RECOVERY OF HEART  ........... 814 

Shikha Bhardwaj, Rajeev Kumar 

The present paper deals with survival analysis of a stochastic model on cardiovascular system considering possibilities 

of damage, failure and recovery of heart. The analysis is based upon a stochastic model for the system considering 

different kinds of damage and failure of heart at different situations. The treatments and recovery of heart are taken in 

to account. On complete failure of heart, transplantation of the heart is also considered. The model has been analyzed 

by determining important measures of effectiveness using Markov process and regenerative point technique. Sensitivity 

analysis has also been done to select important parameters for enhancing the survivability of the system.  
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SAMPLING INSPECTION SCHEMES WITH SWITCHING RULES FOR LIFE TESTS BASED 

ON EXPONENTIAL DISTRIBUTION ........................................................................................................ 827 

A. Pavithra, R. Vijayaraghavan

A life test is a random experiment which is performed on manufactured items such as electric and electronic components 

in order to estimate their lifetime by selecting the items randomly from the production process. The lifetime / lifespan 

of the product is a random variable that follows a specific continuous-type probability distribution, called the lifetime 

distribution. Reliability sampling, which is one among the classifications of product control techniques, deals with 

inspection procedures for sentencing one or more lots or batches of items submitted for inspection. An acceptance 

sampling scheme is a combination of sampling inspection plans with switching rules for changing from one plan to 

another. A switching rule is an instruction within a sampling scheme for changing from one sampling plan to another 

of greater or lesser severity of sampling based on the demonstrated quality history. In this paper, the concept of sampling 

schemes for life tests with a switching rule involving two samples under the assumption that the lifetime random 

variable follows an exponential distribution is introduced. A procedure is developed for designing the optimum 

sampling schemes with minimum sample sizes when two points on the desired operating characteristic curve are 

prescribed providing protection to the producer and the consumer. 

USE OF MEDIAN BASED ESTIMATOR TO MITIGATE OUTLIER’S EFFECT THROUGH S2  

CHART  ......................................................................................................................................................... 835 

Sonam Jaiswal 

In this paper, we consider an upper-sided Phase II variance chart with probability limits in case of unknown parameter 

because the quality practitioner interested in monitoring increased variance of the process parameter. It is well 

established that when the Phase I data are contaminated with spurious observations, performance of the chart is 

suspected to deviate from what is normally expected. Therefore, we propose an improved performance of one-sided 

variance chart under the exceedance probability criterion for a fixed in-control average run length using the absolute 

deviation from median estimator. Under the exceedance probability criteria, the chart is designed so that the user can 

get more confidence in their in-control average run length values. The proposed chart is compared with the existing 

chart in case of contaminated and non-contaminated observations. Result shows that performance of variance chart 

shows robust performance when using absolute deviation from median estimator. Finally, an example has been provided 

in the favour of our proposed study.  

ADVANCED STATISTICAL APPROACH TO FAILURE DATA WITH GAMMA AND 

WEIBULL DISTRIBUTIONS  ........................................................................................................................ 848 

Vijayan S, Kavitha S 

This paper aims to systematically investigate the utility of the Gamma and Weibull distributions, focusing on their 

application to biomedical datasets and clarifying their mathematical and statistical properties. By analyzing lifetime 

data across various disciplines, the research emphasizes the effectiveness and flexibility of these distributions in 

capturing the complexities of biomedical data. It underscores the importance of parameters such as standard error, log-

likelihood, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) in value estimation. The 

findings suggest that both distributions provide valuable insights into the underlying data, with practical implications 

for reliability engineering and failure analysis. Moreover, the study demonstrates that the Weibull distribution offers 

a better fit to the given data than the Gamma distribution due to its adaptability, which yields superior results. A key 

contribution of this study is the proposal of a model based on estimating the Conditional Weibull distribution for feature 

parameters, which accurately predicts a finite mixture of two-parameter Weibull distributions initially verified on 

datasets.  
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BAYESIAN PARAMETER ESTIMATION FOR TRANSMUTED WEIBULL DISTRIBUTION 

WITH CENSORING RATES AND VARIOUS LOSS FUNCTIONS  .................................................... 855 

Jeslin J, Radhika A, Haripriya M 

Statistical distributions are essential tools for describing and predicting real-world phenomena, though recent 

advancements in data collection have made it challenging to fit existing probability models to many practical datasets. 

While non-parametric models are sometimes recommended, parametric models retain substantial popularity due to 

their interpretability and flexibility. The quadratic rank transmutation map (QRTM) technique has been used to create 

new families of non-Gaussian distributions, known as transmuted distributions, which allow for modifications in 

moments, skewness, and kurtosis, thus increasing flexibility. The transmuted Weibull distribution (TWD) has gained 

attention for applications in reliability, survival analysis, and lifetime data analysis. This article focuses on a Bayesian 

analysis of the transmuted Weibull distribution, a generalization of the traditional Weibull model that addresses its 

limitations, particularly for datasets exhibiting non-monotonic failure rates. Bayesian parameter estimation is 

performed using a Markov Chain Monte Carlo (MCMC) algorithm, with both non-informative and informative priors. 

We calculate Bayes estimators (BEs) and posterior risks (PRs) under different loss functions, including the Absolute 

Error Loss Function (AELF), precautionary loss function (PLF), and quadratic loss function (QLF). Simulation studies 

evaluate the Bayes estimators' performance, investigating the effects of various priors, sample sizes, and censoring rates 

on estimation accuracy and credible interval width. Real-world data applications highlight the practical utility of the 

Bayesian approach for the TWD, showing consistent results with increasing sample sizes and underscoring the 

robustness of the MCMC algorithm for parameter estimation. The article is structured as follows: the TWD’s 

parameters, including scale, shape, and transmutation, are estimated under different loss functions and priors. 

Bayesian credible intervals (BCIs) are also computed. Both uncensored and censored data environments are considered, 

with varying sample sizes and censoring rates. Posterior risks for each estimator are analyzed to assess performance, 

and two real datasets are used to illustrate the flexibility and applicability of the proposed distribution. This study lays 

a foundation for future research, such as exploring mixtures of transmuted Weibull distributions or conducting 

Bayesian analyses for record values.  

OPTIMIZATION OF EQUIPMENT RELIABILITY BASED ON A NEURO-FUZZY APPROACH: 

CASE OF A FLOUR MILL .............................................................................................................................. 865 

Ngnassi Djami Aslain Brisco 

The main objective of this paper is to present an innovative approach combining fuzzy logic and artificial neural 

networks to optimize equipment reliability in the specific context of a flour mill. Faced with the challenges of 

performance and profitability in this industrial sector, the neuro-fuzzy methodology has been developed to meet the 

challenges related to the complexity and uncertainty inherent in equipment reliability management. The first part of 

the paper provides an overview of the problem, introducing the key concepts of reliability and maintenance, while 

highlighting the particular challenges of the milling industry. This paper also outlines the advantages of the neuro-

fuzzy approach for optimizing equipment reliability. The methodology for developing the neuro-fuzzy model is detailed 

in the second part. It covers the construction of the fuzzy inference system, the design of the neural network structure, 

as well as the training and optimization steps of the model. The case study conducted in a flour mill is presented in the 

third part. After a description of the company and its equipment system, the collection and analysis of reliability data 

are presented, as well as the implementation of the developed neuro-fuzzy model. The results obtained demonstrate that 

this methodology makes it possible to better anticipate failures, optimize maintenance interventions, and reduce 

associated costs. Sensitivity analysis and comparison with other optimization methods confirm the validity and 

operational and economic benefits of the proposed approach.  

ENHANCING INTRUSION DETECTION SYSTEM RELIABILITY USING GWO-SOMNN 

(GREY WOLF OPTIMIZATION WITH SELF-ORGANIZING MAP NEURAL NETWORK) .......... 883 

Archana Gondalia, Apurva Shah 

In today’s fast-changing technological environment, the number of Internet-connected devices has grown 

significantly, raising the risk of cybersecurity threats for both individuals and organizations. Network Intrusion 

Detection Systems (NIDS) have become vital tools for protecting networks from these increasing threats. This paper 
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presents a GWO-SOMNN approach (Gray Wolf Optimization with Self-Organizing Map Neural Network) that 

combines Grey Wolf Optimization (GWO), Self-Organizing Maps (SOM) and Neural Networks (NN) for feature 

selection and classification on the UNSW-NB15 dataset. The proposed method leverages GWO to optimize feature 

selection, reducing the dataset’s dimensionality and computational load, while SOM is employed for clustering and 

visualizing high-dimensional data. Neural Networks are then used for effective classification of network attacks. The 

GWO-SOMNN approach is evaluated on the UNSW-NB15 dataset, and its performance is measured in terms of 

97.18% accuracy and 97.15% F1-score for binary classification and 82.41% accuracy and 78.92% F1-score for 

multiclass classification. The results demonstrate significant improvements over traditional methods, particularly in 

enhancing the classification of both binary and multi-class network attacks. These findings highlight the potential of 

this integrated approach in developing more efficient and accurate network intrusion detection systems.  

ANALYSIS OF AN ENCOURAGED ARRIVAL MARKOVIAN QUEUE WITH SINGLE 

WORKING VACATION, IMPATIENCE AND RENEGING OF CUSTOMERS  ............................... 897 

V. Narmadha, P. Rajendran

In this paper, we analyze a single server markovian queueing model with encouraged arrivals that undergoes a single 

working vacation. Additionally, we consider the impatience and reneging behavior of customers in the queue during 

the working vacation period. Customers arrive at the system following a Poisson distribution. The server goes on 

vacation when the system is empty and stays on vacation for a random period that follows an exponential distribution. 

During the working vacation period, the server continues to provide service at a slower rate. After the vacation, the 

server returns to the regular service period and continues providing service at the regular busy period rate if there are 

one or more customers in the system, or it remains idle until a new customer arrives. During the working vacation, 

customers in the queue become impatient and renege from the system, with the reneging time assumed to follow an 

exponential distribution. The system is characterised as a quasi-birth-death process, and the stationary probabilities are 

derived using the probability generating function method. Some numerical analysis is also carried out to show the effect 

of encouraged arrivals on performance measures.  

IMPACT OF DESIGN AND CONSTRUCTION ERRORS ON THE STRUCTURAL 

RELIABILITY OF STEEL INDUSTRIAL BUILDINGS  ........................................................................... 903 

Andrey Lipin, Seymur Bashirzade, Mukhlis Hajiyev, Rafail Garibov 

Errors in design and construction critically undermine the structural reliability of industrial buildings, putting 

property, the environment, and human safety at risk. In this regard, the present research work is intended to investigate 

how such mistakes influence the performance of the main structural components and the stability of steel industrial 

buildings. Detailed finite element analysis was performed using DIANA FEA for solid modeling and SAP2000 for 

beam modeling to assess global structural performance. This includes, among others, the insufficiency of local 

reinforcement in compressed members and eccentricity in column connections. It was performed to analyze the local 

and global buckling behaviors, deviations in symmetry, and inefficiency of the bracing systems. Consequently, it reveals 

a significant reduction in load-bearing capacity due to reinforcement deficiencies in the compressed elements and 

eccentricity, while a structural loss in integrity becomes highly significant at symmetry deviations, especially in 

horizontal loads. This study provides critical insights into mitigating design and construction errors to enhance the 

reliability of industrial steel buildings.  

COST AND RELIABILITY OPTIMIZATION OF A COMPLEX SYSTEM USING MULTI-

OBJECTIVE GREY WOLF OPTIMIZATION TECHNIQUE  .................................................................. 918 

Anuj Kumar, Ganga Negi, Mangey Ram, Sangeeta Pant, Sushil Chandra Dimri 

Modern engineering systems increasingly focus on multi-objective optimization. Nature-inspired optimization 

techniques have shown superior efficiency and effectiveness compared to many traditional methods across various 

parameters. This work demonstrates the reliability and cost optimization of a complex bridge system using the Multi-

Objective Grey Wolf Optimization algorithm (MOGWO). The bridge system in question is a series-parallel system. A 

key performance highlight is the use of an archive for search agents to generate a Pareto optimal front (PoF) with a 
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minimal number of iterations. Among the various solutions in the PoF, the solution set that best meets the multi-

objective criteria is preferred. Additionally, statistical analyses are conducted to further validate the competitiveness of 

the results.  

EXPLORING AN EXTENDED RAYLEIGH DISTRIBUTION: MODELING AND 

APPLICATIONS IN REAL LIFE SCENARIOS .......................................................................................... 928 

Aadil Ahmad Mir, S.P. Ahmad 

In this manuscript, we propose a new extension of the Rayleigh distribution, named as Ratio Transformation Rayleigh 

Distribution (RTRD), which offers superior fits compared to the Rayleigh distribution and several of its known 

generalizations. We derive various properties of the proposed distribution, including moments, moment generating 

function, hazard rate, conditional moments, Bonferroni and Lorenz curves, mean residual life, mean waiting time, 

Renyi entropy and order statistics. The unknown parameters are estimated using the maximum likelihood estimation 

procedure. An extensive simulation study is conducted to illustrate the behavior of the maximum likelihood estimators 

(MLEs) based on Mean Square Errors. The flexibility of the new distribution is demonstrated by applying it to two 

real data sets. Comparative analysis with the Rayleigh distribution, Weighted Rayleigh distribution, Exponentiated 

Rayleigh distribution and Transmuted Rayleigh distribution reveals that RTRD outperforms these competing 

distributions based on Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Akaike Information 

Criterion Corrected (AICC) and other goodness of fit measures.  

THE MARSHALL-OLKIN EXTENDED SHANKER DISTRIBUTION AND ITS 

APPLICATIONS  ............................................................................................................................................. 942 

Sara Ziari, S.M.T.K. MirMostafaee  

In this paper, we introduce the Marshall–Olkin extended Shanker distribution, as an extension of the Shanker 

distribution, using the Marshall-Olkin approach. Several important properties of the new distribution, such as the 

hazard rate function, moments, incomplete moments, mean deviations, Lorenz and Bonferroni curves, and Rényi 

entropy are explored. The estimation of the parameters is discussed with the help of the maximum likelihood method. 

The performance of the estimators is evaluated using a simulation study. Two real data applications are developed in 

order to assess the flexibility and power of the new distribution. The goodness of fit criteria reveal that the new model 

may provide a better fit than the Shanker distribution and other competing models that belong to the Marshall-Olkin 

G family of distributions.  

ANALYSIS OF THERMAL PROCESSES IN A CONTROLLED ASYNCHRONOUS MOTOR ...... 957 

S.Y. Shikhaliyeva 

This article examines the reliability and risks associated with technical systems involved in the conversion of mechanical 

energy to electrical energy, focusing on the thermal dynamics of electric machines. It explores the processes of heat 

generation due to energy losses, primarily heat dissipation, and the effects of temperature increases on the longevity 

and performance of the machine. The cooling systems essential for managing heat transfer and minimizing overheating 

are analyzed, considering factors such as heat conduction, convection, and radiation, as well as the role of 

electrohydraulic and aerodynamic systems in optimizing heat exchange. Special attention is given to the impact of 

temperature fluctuations on the insulation materials of electric machines, with an emphasis on how overheating 

accelerates insulation degradation and reduces machine lifespan. The paper further discusses the intricate relationship 

between cooling efficiency, machine power, and the economic implications of designing effective thermal management 

systems. Moreover, the challenges of selecting and optimizing cooling strategies in electric machine design are 

highlighted, considering both technical and economic factors. Lastly, the study delves into ventilation calculations 

necessary to ensure efficient airflow and cooling, using practical equations and methods for determining pressure loss 

and fan performance, underscoring the complexity and importance of achieving optimal temperature conditions for 

long-term, reliable machine operation.  
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ENHANCING ENERGY SYSTEM RELIABILITY: MODERN APPROACHES AND 

SOLUTIONS ..................................................................................................................................................... 966 

Sh.V. Ismayilova, Z.A. Isgandarova, K.M. Mukhtarova 

The article analyzes methods for improving the reliability of energy systems considering the SAIDI and SAIFI 

indicators, which reflect the duration and frequency of power outages. Approaches are discussed, including the 

implementation of intelligent monitoring systems, Automated Distribution Management Systems (ADMS), as well 

as distributed generation and redundancy. The study confirms that the integrated use of these technologies significantly 

enhances network reliability, reducing SAIDI and SAIFI indices, and evaluates the economic efficiency of these 

solutions, demonstrating their long-term profitability.  

SELECTION OF A BAYESIAN DOUBLE SAMPLING PLAN THROUGH MARKOV 

DEPENDENCE METHOD IN DRUG DISCOVERY ................................................................................ 972 

Kaviyarasu V, Karthick 

Most of the pharmaceutical firms have worked hard to maintain quality in their manufacturing products like medicines 

and biological instruments using the principles of statistical quality control to optimize the fault model. In this field, 

one of the pioneering statistical methods is acceptance sampling by attributes. A sampling plan is used to assess the 

quality of goods, keep an eye on the quality of the materials, and confirm whether or not the yields are defect-free or not. 

When posterior knowledge about the parameter is known, the Bayesian strategy provides a more robust statistical 

method for reaching a suitable conclusion. In this article a new Bayesian double sampling plan under stochastic 

modeling was established. This is achieved by various characteristics of sampling plan explicit by its random variable 

and its probability function. This plan is studied through the Gamma- Poisson model to safeguard both the producer 

and consumer by minimizing the Average Sample Number and Total Cost. Necessary tables and figures are constructed 

for the selection of optimal plan parameters and suitable illustrations are provided that are applicable under 

pharmaceutical industries.  

OPTIMIZATION ANALYSIS OF UNRELIABLE MULTI-SERVER QUEUEING SYSTEM WITH 

BERNOULLI SCHEDULE WORKING VACATION, THRESHOLD-BASED RECOVERY 

POLICY, AND IMPATIENCE ....................................................................................................................... 981  

Hayat Ramdani, Amina Angelika Bouchentouf, Lahcene Yahiaoui 

This paper analyzes an unreliable multi-server queueing system incorporating working vacations, Bernoulli 

interruptions, breakdowns with a threshold recovery policy, balking, abandonment, and retention. During the break 

period, if there are customers in the queue, the servers may either resume normal service or continue their vacation. 

Customers arriving while the system is saturated are rejected. Failures occur unexpectedly but only when at least one 

customer is present in the system. Recovery procedures remain in effect until the total number of customers surpasses 

a predefined threshold. Using matrix-analytic methods, we derive steady-state solutions and explicit formulas for 

various performance indicators. Further, we explore cost parameter optimization.   

CLASSICAL AND BAYESIAN ESTIMATION OF EXPONENTIATED INVERSE RAYLEIGH 

DISTRIBUTION BASED ON RECORD VALUES ....................................................................................  996 

Iftkhar Khan, Zaki Anwar, Zakir Ali 

In this article explores two approaches for estimating the parameters of the exponentiated inverse Rayleigh distribution 

(EIRD) using record values: Classical estimation and Bayesian estimation. In classical estimation, maximum likelihood 

estimators (MLE’s) and the asymptotic confidence intervals are derived based on the observed Fisher information 

matrix of the parameters. In Bayesian estimation, estimators of the parameters are obtained under the square error loss 

function. This involves using Tierney-Kadane’s approximation (TK) and Markov chain Monte Carlo (MCMC) 

methods for Bayesian computation. Additionally, the article constructs the highest posterior credible intervals of the 

parameters using the MCMC method. To evaluate the performance of these estimators, a Monte Carlo simulation study 
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is conducted to compare their behavior. Finally, a real data analysis is presented to illustrate the application of the 

methods discussed in the article.  

THE POISSON-SUJA DISTRIBUTION AND ITS APPLICATIONS IN BIOLOGICAL COUNT 

DATA SETS ...................................................................................................................................................... 1009 

Rama Shanker, Joyshree Saharia, Kamlesh Kumar Shukla 

The Poisson-Suja distribution which is a Poisson mixture of Suja distribution has been proposed. The descriptive 

statistics based on moments including coefficient of variation, skewness, kurtosis and index of dispersion has been 

derived and studied. Over-dispersion, unimodality and increasing hazard rate properties of the distribution have been 

studied. The method of moment and the method of maximum likelihood have been discussed for estimating parameters. 

Applications and the goodness of fit the distribution and its comparison with other one-parameter discrete distributions 

have also been presented. It was found more closer fit than other compared distributions. So, it can be considered as 

good discrete distribution for count datasets.  

A NEW TRANSMUTED PROBABILITY MODEL: PROPERTIES AND APPLICATIONS .............. 1020 

Khawar Javaid, Bilal Ahmad Para 

In this article, we introduced a new three parameter continuous probability model by extending a two parameter log-

logistic distribution using the quadratic rank transmutation map technique. We provide a comprehensive description 

of the statistical properties of the newly introduced model. Robust measures of skewness and kurtosis of the proposed 

model have also been derived along with the moment generating function, characteristic function, reliability function 

and hazard rate function of the proposed model. The estimation of the model parameters is performed by maximum 

likelihood method followed by a Monte Carlo simulation procedure. The applicability of this distribution to modeling 

real life data is illustrated by two real life examples and the results of comparison to base distribution in modeling the 

data are also exhibited.  

MULTI-OBJECTIVE PROBLEM WITH MULTIPLE JOBS ASSIGNED TO A SINGLE 

MACHINE WITHIN AVAILABLE COST UNDER UNCERTAIN ENVIRONMENT  ...................... 1035 

Aamir Khan, Quazzafi Rabbani, Ahteshamul Haq 

The assignment problem is a key challenge in optimization and operations research, finding applications in diverse 

real-world scenarios. The Hungarian method is a widely employed algorithm for solving this problem, especially in its 

balanced form. However, for unbalanced assignment problems, where tasks outnumber resources (or vice versa), an 

extension is necessary. One common approach introduces a dummy resource, but this may leave tasks unassigned. The 

Modified Hungarian method improves upon the standard algorithm for unbalanced problems, ensuring that all tasks 

are assigned to real resources. This is achieved by modifying the cost matrix and algorithm steps to accommodate 

additional tasks and resources. Triangular fuzzy numbers are discussed when exact parameter information is 

undefined, and fuzzy programming is applied to determine a compromise result. Incorporating cost and profit per 

resource, the Modified Hungarian algorithm addresses the problem of unspecified job allocations to a single machine 

by introducing a cost parameter for each machine. The methodology is demonstrated on a numerical example for better 

comprehension.  

RELATIONSHIP BETWEEN THE LEIMKUHLER CURVE AND RELIABILITY MEASURE 

CONCEPTS IN DOUBLE TRUNCATED VARIABLES ........................................................................... 1049 

Vahideh Asghari, Gholamreza Mohtashami Borzadaran, Hadi Jabbari 

This paper investigates the application of Leimkuhler curve and doubly truncated distributions in informetrics. 

Leimkuhler curve, ranking sources in descending order, emerges as a key tool for identifying efficient information 

sources. The study introduces a random variable representing the age of cited articles, influencing the probability 

distribution in retrospective citation analysis. Reliability measures, including mean residual life function and mean 
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past residual life function are employed to analyze engineering and reliability aspects in informometric data. 

Truncation in probability distributions, particularly the doubly truncated distribution, is explored, revealing its broad 

applicability. The relationship between the Leimkuhler curve and truncated distributions will also be examined.  

MATHEMATICAL ANALYSIS OF THE MECHANICAL PART OF THE DESIGN SCHEME OF 

THE ELECTRIC DRIVE OF A HYBRID ELECTRIC MACHINE  .......................................................... 1061 

S.A. Khanahmedova 

The paper analyzes the mechanical part of the design scheme of the electric drive of a hybrid electric machine, which is 

a key stage in the design and research of automatic control systems. The main elements of a mechanical system, a model 

of a real mechanical system connected to an electric drive, including all moving elements, transmission mechanisms, 

and actuators that convert electrical energy into mechanical work, are considered. The presented calculation scheme 

allows you to analyze dynamic processes, i.e. to study the system's behavior over time, to determine stability, 

fluctuations, and other characteristics. Calculations of various mass systems are performed using the capabilities of the 

MATLAB/Simulink software package for a three-mass and two-mass system. These models can be used for different 

systems with different parameters. To draw up a structural diagram, the elements of the mechanical part and the 

connections between the elements, the types of these connections (rigid, elastic) and the directions of motion 

transmission are determined. Structural diagrams are used to analyze the dynamic characteristics of the system, 

determine transients, stability, and vibrations.  

ZERO TRUNCATED POISSON REGRESSION MODEL FOR REPRODUCTIVE PATTERNS 

ON COUNT DATA  ........................................................................................................................................ 1070 

B. Muniswamy, M. V. Lavanya

The number of children ever born is an important measure for understanding fertility patterns, which impact 

demographic structures and population growth. The problem relates to the modeling of count data that includes the 

truncation of zero values, specifically focusing on women who have experienced childbirth at least once. This study 

analyzes the factors that influence the number of children ever born (CEB) among women aged 15 to 50 in Andhra 

Pradesh, utilizing data from the National Family Health Survey (NFHS-5) conducted from 2019 to 2021. The study 

used Zero-Truncated Poisson (ZTP) and Zero-Truncated Generalized Poisson (ZTGP) models to identify major 

determinants, including religion, kind of cooking fuel used, place of delivery, wealth, age, and fertility choices. The ZTP 

regression model was found to be the best model and identifies significant determinants such as religion, wealth, age, 

and fertility preferences. The results show that rural residence, Muslim faith, and older age groups are associated with 

higher CEB, while wealthier women tend to have fewer children. The study shows the importance of implementing 

focused reproductive health activities, specifically in rural regions, to manage population growth and enhance the health 

outcomes of both mothers and children.  

AN M/G/1 RETRIAL QUEUE WITH WORKING VACATION, NON-PERSISTENT 

CUSTOMERS AND A WAITING SERVER ............................................................................................... 1089 

R. Keerthana

An M/G/1 retrial queue with working vacation, non persistent customers and a waiting server is taken into 

consideration in this study. Both retrial times and service times are assumed to follow general distribution and the 

waiting server follows an exponential distribution. Before switching over to a vacation the server waits for some 

arbitrary amount of time and so is called a waiting server. During the working vacation period customers are served 

at a lesser rate of service. We obtain the PGF for the number of customers and the mean number of customers in the 

invisible waiting area which is acquired by utilizing the supplementary variable technique. We compute the waiting 

time distribution. Out of interest a few special cases are conferred. Numerical outcomes are exhibited.
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REPETITIVE SAMPLING INSPECTION PLAN UNDER TRUNCATED LIFETEST BASED ON 

ONE PARAMETER POLYNOMIAL EXPONENTIAL DISTRIBUTION .............................................. 1100 

Anumita Mondal, Sudhansu S. Maiti 

This article constructs a Repetitive Sampling Inspection Plan under Truncated life test (RSIPTL) when the lifetime 

follows the One Parameter Polynomial Exponential (OPPE) family of distributions. In RSIPTL, a lot can be accepted 

or rejected in the first, second, and so on, based on the number of defective items in each sample. The OPPE has infinite 

support. It has transformed into its unit form to utilize finite support, i.e., having the support (0, 1). The Lindley 

distribution, a particular choice of the OPPE, has been studied in detail. We obtained the minimum number of items 

required in a lot to satisfy the consumer risk. Extensive tables are prepared for easy understanding and use of the plan 

for industrial workers. The RSIPTL is compared with a single sampling plan (SSP) and a two-stage reliability 

acceptance sampling plan (TSRASP) for Lindley and Exponential distributions. Two data sets are discussed and 

comparative statements are made with respect to the proposed plan.  
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IN MEMORY OF YU. BELYAEV 

• 
Dear Colleagues, 

The Gnedenko Forum is deeply saddened to announce the death, at the age of 93 of one of the 

leading experts in probability theory, mathematical statistics and their applications, Doctor of 

Physical and Mathematical Sciences, Professor, Laureate of the State Prize of the USSR 

YURI KONSTANTINOVICH BELYAEV 

(31 August 1932, Moscow - 22 January 2025, Umeå, Sweden) 

Yu.K. Belyaev On the memory of Prof. Yuri K. Belyaevwas born in Moscow. From 1951 to 1956 he 

was a student at the Department of Mathematics of the Faculty of Mechanics and Mathematics of 

the Lomonosov Moscow State University. From 1956 to 1959 he was a postgraduate student at the 

Mathematical Institute of the USSR Academy of Sciences (MIAN). During his postgraduate 

studies, on a topic suggested by his supervisor A.N. Kolmogorov, he studied the properties of the 

trajectories of Gaussian random processes. In 1960 he defended his PhD thesis on this subject at 

MIAN. 

After this doctorate Yu.K. Belyaev started work at the Lomonosov Moscow State University. He 

began a long period (until the mid-1990s) of scientific collaboration with B.V. Gnedenko and A.D. 

Soloviev. They focused on the development of reliability theory, statistical methods of quality 

control, queueing theory, reliability models, on organization of conferences and seminars at MSU. 

When the "Reliability Cabinet" was established at the Polytechnic Museum in Moscow, Y.K. 

Belyaev lectured there on statistical methods for analyzing reliability test data. 

The joint work with B.V. Gnedenko and A.D. Soloviev on the book "Mathematical Methods of 

Reliability Theory"; established the main directions in the study of statistical problems in reliability 

theory and statistical quality control.  
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In parallel, Y.K. Belyaev continued his studies on the properties of point processes. In this relation 

Yu.K. Belyaev selected, translated, and edited the famous monograph (written by D. Cox and W. 

Smith) on the renewal theory, which played a remarkable key role in the development, wide 

dissemination and application of this theory by Soviet specialists and those, familiar with the 

Russian language. He also supplemented this monograph with an excellent complete review of the 

modern (at that time) results of the renewal processes. 

In 1970, for getting the degree of Doctor of Physical and Mathematical Sciences he defended a 

respective doctoral thesis at the Institute of Applied Mathematics (IAM) of the USSR Academy of 

Sciences. The thesis was on random point processes generated by random fields. Under his 

supervision, 24 doctoral students successfully defended their theses.  

* 

When I graduated from MIPT, V.V. 

Kalashnikov invited me to speak at a seminar 

on probability theory and mathematical 

statistics at Moscow State University. 

Kalashnikov invited me to speak at a seminar 

on probability theory and mathematical 

statistics at MSU. This seminar was held at 

MSU by Acad. A.N. Kolmogorov and at that 

time it was chaired by B.V. Gnedenko, A.D. 

Soloviev and Y.K. Belyaev. A special feature of 

this seminar was the close connection between 

probability theory and its applications in 

queueing theory, reliability theory and 

mathematical statistics. I was very lucky that 

the leaders of the seminar played an important role in my future scientific work in 

Vladivostok and actually gave me an admonition to work in science and to do what I was 

and still am interested in. This is how B.V. Gnedenko came to the Far Eastern 

Mathematical School with a number of very interesting papers. A.D. Solovyov acted as my 

opponent in my doctoral thesis. Y.K. Belyaev was remembered for his very interesting 

work on mathematical statistics. I remember how, when I was already working in Sweden, 

Y.K. Belyaev presented his original and very informative results on the application of 

mathematical statistics in ecology at an international conference on probability theory at 

Moscow State University. I remember some articles on the queueing theory and reliability 

published by Y.K. Belyaev in the journal "Technical Cybernetics". Y.K. Belyaev worked 

closely with I.A. Ushakov in solving some problems of reliability theory. As far as I can 

judge, Yu.K. Belyaev played a great role in the organisation of the journal 'Reliability: 

Theory and Applications'. Already while working in Vladivostok, I had the opportunity to 

see how some of Yu.K. Belyaev's results on asymptotic methods of probability theory 

echoed the work of V.M. Zolotarev on limit theorems of probability theory, which 

fascinated me. For me personally, Y.K. Belyaev played an important role in that group of 

remarkable specialists in probability theory who, in my opinion, formed the backbone of 

the probabilists on whom we, then young scientists working even far from Moscow, tried 

to orient ourselves and rely. 

Gurami Tsitsiashvilli 
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Y.K. Belyaev founded and was the head of the Department of Reliability and Queueing Theory of 

the University Laboratory of Statistical Methods at MSU. Later this department was transformed 

into the Laboratory of Probability and statistics at the Department of Probability Theory of the 

Faculty of Mechanics and Mathematics of MSU. Y.K. Belyaev was a member of the editorial boards 

of the scientific journals "Technical Cybernetics"; and "Statistics". Y.K. Belyaev is one of the authors 

of the book "Questions of the Mathematical Theory of Reliability", published under the supervision 

of B.V. Gnedenko IN 1983. 

The rapid development of computational techniques and the numeric methods reasonably created 

a need for new approaches in applications. For solving problems of estimating the accuracy of 

statistical inference, like study of distributions of point estimates, the biases, various classifiers, 

selection of the regression function in the presence of explanatory variables, etc. Y.K. Belyaev gave 

a theoretical justification of the validity of options for intensive use of computations in solving 

several such problems. Professor Belyaev has been invited to teach and conduct research at the 

Universities of Berlin and Magdeburg (Germany), Sofia (Bulgaria), Lund and Umeå (Sweden). 

Since 1993 he has been a professor at Umeå University where he supervised more than 30 doctoral 

students. 

Y.K. Belyaev is a laureate of the USSR State Prize, a member of the International Statistical Institute 

(ISI) and the Institute of Mathematical Statistics (IMS). He is the author of more than 200 scientific 

publications, including 5 books. Since the establishment of the Gnedenko Forum, Yuri K. Belyaev 

has been its unchanging Honorary President. It is largely thanks to his support and attention that 
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ABSTRACT 

Different researchers in the field of distribution theory have derived new models for generalizing the 

classical ones to make them more flexible and to aid their application in various fields. This 

generalization and extension of the classical models is mostly done using families of distributions. 

This article presents a new family of distributions called the Exponentiated Pareto-G family of 

distributions with two positive shape parameters. Some statistical properties of the new family of 

distributions, such as explicit expressions for the quantile function, probability-weighted moments, 

moments, generating function, Reliability function, hazard function, and order statistics are 

discussed. A maximum likelihood estimation technique is employed to estimate the model 

parameters. Two submodels such as Weibull and Frechet distributions are employed to check the fit 

of the family of distributions with the aid of their pdf and hazard function plots. Also, a simulation 

study is presented to assess the performance of the maximum likelihood estimator. Furthermore, two 

real-life applications are carried out to assess the fit and flexibility of the new family using the 

Weibull model as the baseline. The results showed that the new distribution fits better in the two 

real data sets considered among the range of distributions considered. 

Keywords: Exponentiated Pareto-G, maximum flood level, precipitation, 

consistent, flexibility 

I. INTRODUCTION

Research in the field of statistical distribution theory has increased tremendously in the past few 

years and still growing rapidly. Different researchers in the field of distribution theory have 
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derived new models for generalizing the classical ones to make them more flexible and to aid their 

application in various fields. This generalization and extension of the classical models is mostly 

done using families of distributions. These families of distributions developed have aided the fit of 

many classical distributions with the addition of extra parameters to the baseline distributions. 

Several considerations motivate the development of new generalized families of 

distributions. More adaptable, flexible, and robust models are required since current distributions 

frequently fall short of capturing the variability and patterns found in modern data. New 

distributions that can explain high-dimensional data and adjust to different contexts become 

crucial as data dimensionality and complexity rise. By offering a more accurate representation of 

the underlying processes, such distributions improve the resilience and accuracy of statistical 

analysis. Some of the well-known recently proposed modified families of distributions in the 

literature by different researchers to improve the standard theoretical distribution and also add 

flexibility to the classical distributions are: the new generalized family of distributions by [2], 

Topp-Leone Kumaraswamy-G family of distributions by [12], Topp-Leone Exponentiated-G family 

of distributions by[ 11], Rayleigh-exponentiated odd generalized-X family of distributions by [17], 

Type I half-logistic exponentiated-G family of distributions by [6], new generalized family of 

distributions by [15], Exponentiated type II generalized Topp-Leone-G family of distributions by 

[1]. 

II. THE EXPONENTIATED PARETO-G FAMILY (ETP-G) OF DISTRIBUTIONS

A new two-parameter distribution, called the exponentiated Pareto distribution introduced by [9] 

with cdf and pdf given as 

 ( ; , ) 1 1F x x


 
   

 
(1) 

   
1

1
( ; , ) 1 1 1f x x x

 
  


      

 
   (2) 

According to [3], the cdf of the T-X family of distribution is given as 

 
 

 
( )

( )

W G x

a

F x r t dt R W G x            (3) 

Where  ( )W G x satisfies the following conditions

(i)    ( ) ,W G x a b

(ii)  ( )W G x is differentiable and monotonically non-decreasing, and 

(4) 

(iii) 
   ( ) as - and ( ) asW G x a x W G x b x    

Let ( )r t  be the pdf of a random variable  ,T c d for c d   and  ( )W G x  be a

function of the cdf of a random variable X . 

Then the pdf corresponding to equation (3) is given by; 
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   ( ) ( ) { ( ) }
d

f x W G x r W G x
dx

 
  
 

     (4) 

Proposition 1: 

Let  ;G x  be the cdf of any arbitrary random variable X . Also, let  ,T c d  be a random

variable with a pdf, ( )r t . Furthermore, let our proposed link function be given as ( )G x , using the 

expoenentiated Pareto distribution as the generator, then the cdf of Exponentiated Pareto-G family 

of distributions is given as: 

 ( ; , , ) 1 1 ( ;F x G x
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1 (1 ( ))

0
( ; , , )

G x

F x k


  
 

   

( ; , , ) 1 (1 ( ; ))F x G x
         , 0 x      (7) 

Where , 0    are the shape parameters and 0   is a vector of parameters depending on the 

baseline distribution used. 

The pdf to equation (7) is given as 

   
1

1
( ; , , ) ( ; ) 1 ( ; ) 1 1 ( ; )f x g x G x G x
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III. EXPANSION OF DENSITY
This section presents the densities expansion which will be used to estimate some of the 

distributions properties. 
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For | | 1z  and   is a positive real non integer. 

Applying equation (9) and equation (10) on the last term in equation (8), we have 
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In this vain, using equation (9) and equation (10) on equation (6), we have 
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IV. PROPERTIES OF ETP-G

I. PROBABILITY WEIGHTED MOMENTS (PWMS)

,
0

( ) ( )( ( ))r s r s

r s E X F X x f x F x dx


      (13) 

The PWMs of EtP-G is derive by substituting equation (11) and equation (12) into equation (13) by 

replacing h with s, we have 
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II. MOMENTS

0
( ) ( )r rE X x f x dx



        (15) 

The rth moments for EtP-G distribution is derive by substituting equation (11) into equation (15) to 

obtain 
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III. MOMENT GENERATING FUNCTION (MGF)

The Moment Generating Function of x is given as 

0
( ) ( )tx

xM t e f x dx


   (17) 

The MGF for EtP-G distribution is derive by substituting equation (11) into equation (17) we obtain 
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where the expansion of 
0 !

z z
tx
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 and following the process of moments above, we have the

MGF for EtP-G distribution  in equation (18) given as 
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IV. RELIABILITY FUNCTION

 ( ; , , ) 1 1 1 ( ;R x G x
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V. HAZARD FUNCTION
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VI. QUANTILE FUNCTION
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VII. ORDER STATISTICS
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The pdf of rth order statistic for distribution is obtained also replacing h with v+r-1 in cdf 

expansion, we have 
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The pdf of the minimum order statistic of the EtP-G distribution is obtained by setting r=1 in 

equation (24) 
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Also, the pdf of the maximum order statistic of the distribution is obtained by setting r = n in 

equation (24) 
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VIII. MAXIMUM LIKELIHOOD ESTIMATION

This section explores the maximum likelihood estimation (mle) technique to estimate the unknown 

parameters of the EtP-G distribution. Let 1 2, ,..., nx x x be a random sample of size n from the EtP-G 

distribution. Then, the likelihood function based on observed sample for the vector of parameter 

( , , )T    is given by

1 1 1

log log log log ( ; ) 1 log 1 ( ; ) 1 log 1 1 ( ; )
n n n

i

i i i

L n n g x G x G x        (27) 

The components of score vector , ,U U U U are given as 

1 1

1 ( ; ) log 1 ( ; )
log 1 ( ; ) 1 0

1 1 ( ; )

n n

i i

G x G xn
U G x

G x
 (28) 

1

log 1 1 ( ; ) 0
n

i

n
U G x    (29) 

1

1 1 1

1 ( ; ) ( ; )( ; ) ( ; )
1 1

( ; ) 1 ( ; ) 1 1 ( ; )

n n n

i

i i ii

G x G xg x G x
U

g x G x G x
 (30) 

Equations (28), (29) and (30) cannot be solved analytically, so we have to resort to numerical 

method to estimate the unknown parameters. 
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V. SUB MODELS

I. EXPONENTIATED PARETO-WEIBULL (ETPW) DISTRIBUTION

The cdf and pdf of the Weibull distribution are given as 

( )( ; , ) 1 xG x e
     (31) 

1 ( )( ; , ) xg x x e
        (32) 

Where 0, , 0x    . 

The cdf for ETPW distribution is obtained by inserting equation (31) into equation (7) as 

( )( ; , , , ) 1 2 xeF x




    
    

   
   (33) 

And the pdf for ETPW distribution is obtained by differentiating equation (33) with respect to x as 

1 ( ) ( ) (

1
1

)( ; , , , ) 2 1 2x x xxf x e e e
    









    


   
         

     
 (34) 

Where 0, , , , 0x     

Figure 1: Plots of pdf of ETPW distribution with different parameter values 

Reliability function for the ETPW distribution is given as 

( )( ; , , , ) 1 1 2 xeR x



    

     
   

(35)
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Hazard function for the ETPW distribution is given as 
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Quantile function for the ETPW distribution is given as 
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II. EXPONENTIATED PARETO-FRECHET (ETPFr) DISTRIBUTION

The Frechet distribution's cdf and pdf are provided as 
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The cdf for ETPFr distribution is given as 
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The pdf for ETPFr distribution is given as 
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Figure 2: Plots of pdf of ETPFr distribution with different parameter values 

Reliability function of the ETPFr distribution is given as 

( )

( ; , , , ) 1 1 1 xR x e
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Hazard function of the ETPFr distribution is given as 
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Quantile function of the ETPFr distribution is given as 
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VI. SIMULATION STUDY

This section addresses a numerical analysis to evaluate the performance of MLE for ETPW 

Distribution. 
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Table 1: MLEs, biases and RMSE for some values of the parameters of ETPW distribution 

    (25,2,6,5)  (27,4,8,6) 

N Parameters Estimated 

Values 

Bias RMSE Estimated 

Values 

Bias RMSE 

20 







25.7129  

2.7524  

6.7789  

5.0041 

0.7129 

0.7524 

0.7789 

0.0041 

3.7808 

2.0073 

2.2489 

0.4382 

27.7166  

5.5891  

9.1209  

6.0493 

0.7166 

1.5891 

1.1209 

0.0493 

4.1678 

4.0788 

2.8826 

0.4292 

50 







25.5242  

2.2234  

6.4049  

5.0226 

0.5242 

0.2234 

0.4049 

0.0226 

3.1134 

0.9125 

1.5416 

0.2663 

27.4919  

4.5111  

8.5580  

6.0445 

0.4919 

0.5111 

0.5580 

0.0445 

3.2601 

1.8794 

1.7238 

0.2728 

100 





25.3816  

2.0852  

6.2106  

5.0193 

0.3816 

0.0852 

0.2106 

0.0193 

2.3289 

0.4054 

1.0451 

0.1648 

27.4562  

4.2018  

8.2503  

6.0314 

0.4562 

0.2018 

0.2503 

0.0314 

2.2990 

0.9604 

1.1375 

0.1609 

250 





25.5657  

2.0123  

5.9821  

5.0174 

0.5657  

0.0123 

-0.0179

0.0174

1.6176 

0.2027 

0.5937 

0.0796 

27.3854  

4.0360  

8.0288  

6.0192 

0.3854 

0.0360 

0.0288 

0.0192 

1.4242 

0.4619 

0.6385 

0.0843 

500 





25.4954  

1.9991  

5.9229  

5.0078 

0.4954 

-0.0009 -

0.0771

0.0078

1.2777 

0.1293 

0.4329 

0.0553 

27.2583  

4.0074  

7.9697  

6.0076 

0.2583  

0.0074 

-0.0303

0.0076

0.8795 

0.2968 

0.4076 

0.0495 

1000 





25.4001  

1.9956  

5.9244  

5.0045 

0.4001 

-0.0044 -

0.0756

0.0045

0.9152 

0.0896 

0.2979 

0.0323 

27.1578  

4.0003  

7.9761  

6.0031 

0.1578  

0.0003 

-0.0239

0.0031

0.5850 

0.1969 

0.2774 

0.0342 

Table 1 displays the values of biases, estimated values and RMSEs It is noticed from the table that 

the RMESs approach zero and the estimates tend to the true parameter values as the sample 

increases. This is an indication that that the maximum likelihood estimates are efficient and 

consistent. 

VII. APPLICATION

The fit of ETPW distribution is tested with applications to environmental data sets to assess its 

flexibility and robustness. The fit of the new model is compared with some existing distributions 

having Weibul distribution as the baseline. The comparators are: the Type I Half-Logistic 

Exponentiated Weibull (TIHLEtW) Distribution by [7], Type II Exponentiated Half Logistic 

Weibull (TIIEHLW) distribution by [4], Half-Logistic Generalized Weibull (HLGW) Distribution by 

[13], Exponentiated Weibull (EW) by [14]vand Weibull Distribution by [16]. 

The data set 1 consists of 20 observations with respect to maximum flood level data to see 

how the new model works in practice. The data has been obtained from [8] and is given as: 0.654, 

RT&A, No 1 (82) 
Volume 20, March 2025 

48



I. , Sule, O. A., Bello, I. A., Kolawole
GENERALIZED EXPONENTIATED-G FAMILY OF DISTRIBUTIONS

0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.3235, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 

0.338, 0.392, 0.484, 0.265. 

The data set 2 is obtained from [10] and also reported in [5]. It consists of thirty successive 

values of March precipitation (in inches) in Minneapolis/St Paul.  The data are:   

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 

0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

Table 2: The models' MLEs and performance requirements based on data set 1 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtPW 38.9937 0.0354 206.5286 0.5620 16.3103 -24.6205 -20.6376

TIHLEtW 13.8158 2.3621 37.6306 0.5298 13.9359 -19.8717 -15.8888

TIIEtHLW 4.2059 0.6008 2.7424 6.0126 13.3035 -18.6071 -14.6242

HLGW - 0.2951 6.5128 6888.7174 14.9716 -23.9432 -20.0560

EtW - 1.4919 3.0333 2.3652 13.9497 -21.8993 -18.9121

W - 3.5083 - 14.2303 13.2633 -22.5261 -20.5352

Figure 3: Fitted cdf, pdf, Q-Q, and P-P plots for data set 1 

Table 3: The models' MLEs and performance requirements based on data set 1 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtPW 48.1901 0.0022 2.9823 1.0738 -38.0910 84.1820 89.7868 

TIHLEtW 4.1437 0.6170 13.5135 0.5563 -38.4067 84.8135 90.4183 
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TIIEtHLW 0.7691 1.6782 0.4909 1.5904 -38.1060 84.2121 89.8168 

HLGW - 0.3416 2.7617 2.7351 -40.1181 86.2362 90.4398 

EtW - 2.4241 1.1680 0.8941 -39.8193 85.6386 89.8422 

W - 1.8088 - 0.3154 -41.6433 87.2866 90.0891 

Figure 4: Fitted cdf, pdf, Q-Q, and P-P plots for data set 2 

Tables 2 and 3 outline the results of the mle of the parameters of the EtPW distribution together 

with the comparator distributions. Based on the goodness of fit statistic AIC and BIC, the new 

probability model recorded the lowest AIC as well the lowest BIC value suggesting that the EtPW 

is best fits the two data sets. Figures 3 and 4 also buttress and reaffirm the fit of the EtPW 

distribution as it follows the pattern and shape of the data. 

VIII. CONCLUSION

This research article proposed and studied a new family of distributions called the Exponentiated 

Pareto-G family of distributions. The family was derived from the exponentiated Pareto 

distribution using the T-X methodology proposed by [3]. The properties of the new family such as 

quantile function, probability-weighted moments, moments, generating function, reliability 
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function, hazard function, and order statistics were examined as statistical components of the 

newly proposed family of distributions. The parameters of the family are estimated using the 

method of maximum likelihood technique. Two submodels such as Weibull and Frechet are used 

to show the shape of the family as baseline distributions. A simulation results to evaluate the new 

distribution's performance is carried out using Weibull as the baseline distribution. This is to assess 

the efficiency of the estimation method used. Two real data sets are applied to ascertain the 

importance and flexibility of the new family of distributions. The results reveal that the new 

exponentiated Pareto Weibull distribution appears to be superior to the existing models 

considered. This implies that the new family has added flexibility to the baseline distribution and it 

can be used to model data in a variety of fields. 
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Abstract 

In this article, a weighted three-parameter Xgamma distribution has been proposed. It is an 

extension of two-parameter Xgamma distribution. The weighted three-parameter Xgamma 

distribution designed for modelling real-life data. The density function and cumulative 

distribution function, moments, hazard and survival function, moment-generating function and 

characteristic function, Bonferroni and Lorenz curve, renyi entropy of this distribution have all 

been derived. The parameter of this distribution is estimated by maximum likelihood estimation 

method. Finally, an application of the model to a real-life data set is presented and compared with 

some other existing   distributions. 

Keywords: weighted three-parameter Xgamma distribution, Reliability 

analysis, moments, maximum likelihood estimation, order statistics, renyi 

entropy. 

I. Introduction

Choosing a sampling unit with equal probability for observational research on the population like 

fish, insects, plants and wild- animals is impossible. Due to this, the recorded observations are 

skewed, and the sampling frame is not well defined. These observations deviate from the original 

distribution, and as a result, their modeling gives rise to the weighted distribution theory. These 

studies pertain to survival analysis, family data analysis, and reliability. The weighted distribution 

theory is often used to handle model specification and data interpretation. Fisher developed the 

idea of weighted distribution first in 1934, and Rao formalized and improved it in 1965. Zelen 

introduced the weighted distribution of a length-biased sample in 1974, while Patil and Ord 

examined a size-biased sampling and related topics in 1976. In a series of articles with other co-

authors, Patil has extensively pursued weighted distribution for the purpose of the encountering 

data analysis. 

In this article, we introduce a new weighted distribution (see more reference [9][11][15][16]) 

known as weighted three-parameter Xgamma distribution, is the extension of the two parameter 

Xgamma distribution (see reference [14]). The alternative form of weighted three parameter 

Xgamma distribution is introduced in Section 3. The survival properties are studied in Section 4.
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Moments, moment generating-function and characteristic function are described in Section 5. In 

Section 6, order statistics of the distribution are derived. The likelihood ratio test is discussed in 

Section 7. Bonferroni and Lorenz curve and Renyi entropy are discussed  in Section 8 and 9, 

respectively. Methods of estimating parameters are discussed in section 10. In section11, two real 

data sets are analyzed to show of the application of weighted three-parameter Xgamma 

distribution; finally, Section 12 concludes.  

II.Two-parameter Xgamma distribution

Two-parameter Xgamma distribution is the generalization of Xgamma distribution [14] by adding 

additional parameter 𝛼. 

The probability density function (PDF) of a two-parameter Xgamma distribution is given by 

 𝐹(𝑥; 𝛼, 𝜃) = (
𝜃2

𝛼 + 𝜃
) (1 + (

𝛼𝜃

2
) 𝑥2) 𝑒−(𝜃𝑥)   x, α, 𝜃 > 0  (1) 

The cumulative distribution function (CDF) is given by 

 𝐹(𝑥) = 1 − 
(𝛼 + 𝜃 + 𝛼𝜃𝑥 +

1
2 𝛼𝜃2𝑥2)

(𝛼 + 𝜃)
𝑒−𝜃𝑥   x, α, 𝜃   >  0  (2) 

III. Weighted three-parameter Xgamma distribution

The concept of a weighted distribution, we have a definition, see Patil et al. (1988) as 

 𝑓𝑤(𝑋) =
𝑤(𝑥)𝑓(𝑥)

𝐸(𝑤(𝑥))
 ;  x >  0  (3) 

Where W(x) is the non-negative weight function and 𝑓𝑤(X) is pdf. We have different choices 

of weight function based on the different weight model (see the references [1], [2], [5], [6], [7], [13]). 

In the paper, use w(x) = xc as a weight function. Then the probability function of weighted 

distribution is 

 𝑓𝑤(X) =
(xc)f(x)

E(xc)
 ;  c >  0  (4) 

Where 

𝐸(𝑥𝑐) = ∫ (𝑥𝑐)𝑓(𝑥; 𝛼, 𝜃)𝑑𝑥
 ∞

0

 

After simplification, we get   

 𝐸(𝑥𝑐) =
𝑐!

2𝜃𝐶(𝛼 + 𝜃)
)[2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐)]  (5) 

Substituting (1) and (5) in (4), we get 
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𝑓 𝑤(𝑥; 𝛼, 𝜃, 𝑐) =
𝑥𝑐 (

𝜃2

𝛼 + 𝜃
) (1 + (

𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

(
𝑐!

2𝜃𝐶(𝛼 + 𝜃)
) [2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐)]

Definition 1: A non-negative continuous random variable X, is said to follow weighted three -

parameter Xgamma distribution with parameters  𝛼, 𝜃 𝑎𝑛𝑑 𝑐  if its pdf is given by      

 𝑓𝑤(𝑥, 𝛼, 𝜃, 𝑐) =  
𝑥𝑐𝜃𝑐+2 (1 + (

𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝑐!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

 (6) 

It is denoted by X~WTPXG ( 𝛼, 𝜃 , 𝑐 ). 

Note: 

     (1).  When we put c = 0 in (6), we obtain the two-parameter Xgamma distribution with parameter 

𝛼 𝑎𝑛𝑑 𝜃 [14]. 

 (2). Weighted three-parameter Xgamma distribution is positive skewed distribution. 

Figure 1 show the density function for weighted three-parameter Xgamma distribution for 

different value of 𝛼, 𝜃 𝑎𝑛𝑑 𝑐. 

Then the cumulative distribution function of weighted three-parameter Xgamma distribution is 

given by      

 𝐹𝑤(𝑥, 𝛼, 𝜃, 𝑐) =
 𝜃𝛾(𝑐 + 1, 𝜃𝑥) +

𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥)

𝑐!
2

[2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)]
 (7) 

Where,  𝛾(𝑐 + 1, 𝜃𝑥) and 𝛾(𝑐 + 4, 𝜃𝑥) is a lower incomplete gamma function [4].   

Figure 2 show the distribution function for weighted three-parameter Xgamma distribution for 

different value of 𝛼, 𝜃 𝑎𝑛𝑑 𝑐.      

Figure 1: probability density function of Weighted three-parameter Xgamma distribution 
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Figure 2: cumulative distribution function of Weighted three-parameter Xgamma distribution 

IV. Reliability analysis

In this section, we study survival function, hazard function, reverse hazard function, mills ratio, 

odds rate function and cumulative hazard function for the weighted three-parameter Xgamma 

distribution with parameter 𝛼, 𝜃 and c given in (6). 

I.Survival function:

The survival function is also known as the reliability function. The survival function of the 

weighted three-parameter Xgamma distribution is given by 

𝑠(𝑥, 𝛼, 𝜃) = 1 − 𝐹(𝑥, 𝛼, 𝜃, 𝑐)  (8) 

Substituting equation (7) in (8) 

𝑠(𝑥, 𝛼, 𝜃, 𝑐) = 1 −  
 𝜃𝛾(𝑐 + 1, 𝜃𝑥 ) +

𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥 ) ]

𝑐!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

 (9) 

Figure 3: survival function of Weighted three-parameter Xgamma distribution 
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II. Hazard function

 The hazard function of a weighted three-parameter Xgamma distribution is given 

ℎ (𝑥, 𝛼, 𝜃, 𝑐)  =
 𝑓𝑤(𝑥, 𝛼, 𝜃, 𝑐)

𝑠(𝑥, 𝛼, 𝜃, 𝑐)

h(x, α, θ, c) =

xcθc+2 (1 + (
αθ
2

) x2) e−(θx)

c!
2

 (2θ + α(1 + c)(2 + c))

1 −  
 θ γ(c + 1, θx ) +

α
2

 γ(c + 3, θx ) ]

c!
2

 (2θ + α(1 + c)(2 + c))

After simplification, we get 

 ℎ(𝑥, 𝛼, 𝜃, 𝑐) =
𝑥𝑐𝜃𝑐+2 (1 + (

𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝑐!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐)) − [𝜃 𝛾 (𝑐 + 1, 𝜃𝑥 ) +
𝛼
2

 𝛾(𝑐 + 3, 𝜃𝑥 )]

Figure 4: hazard plot of Weighted three-parameter Xgamma distribution 

III. Reverse Hazard function

The reverse hazard function of a weighted three-parameter Xgamma distribution is given 

ℎ𝑟(𝑥) =
𝑓𝑤(𝑥; 𝛼, 𝜃, 𝑐)

𝐹𝑤(𝑥; 𝛼, 𝜃, 𝑐)

ℎ𝑟(𝑥) =

𝑥𝑐𝜃𝑐+2 (1 + (
𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝑐!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

 [𝜃 𝛾(𝑐 + 1, 𝜃𝑥) +
𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥)

𝑐!
2

[2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)]

 After simplification ,we get 

RT&A, No 1 (82) 
Volume 20, March 2025 

57



P. Pandiyan, Athira D V 
A WEIGHTED THREE PARAMETER XGAMMA DISTRIBUTION
WITH PROPRTIES AND ITS APPLICATION TO REAL LIFE DATA.

ℎ𝑟(𝑥) =
𝑥𝑐𝜃𝑐+2 (1 + (

𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝜃   𝛾(𝑐 + 1, 𝜃𝑥) +
𝛼
2

 𝛾(𝑐 + 3, 𝜃𝑥)

IV. Mills Ratio

 The mills ratio of a weighted three-parameter Xgamma distribution is given by 

 m(x) =  
1

ℎ(𝑥, 𝛼, 𝜃, 𝑐)

𝑚(𝑥) =
1

𝑥𝑐𝜃𝑐+2 (1 + (
𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝑐!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))  −   [𝜃   𝛾 (𝑐 + 1, 𝜃𝑥 ) +

𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥 ) ]

V. Odds rate function

The odds rate function of a weighted three-parameter Xgamma distribution is given 

𝑂(𝑥) =
𝐹𝑤(𝑥; 𝛼, 𝜃, 𝑐)

1 − 𝐹𝑤(𝑥; 𝛼, 𝜃, 𝑐)

𝑂(𝑥) =

[𝜃   𝛾(𝑐 + 1, 𝜃𝑥 ) +
𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥 ) ]

𝑐!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

1 −  
[𝜃   𝛾(𝑐 + 1, 𝜃𝑥 ) +

𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥 ) ]

𝑐!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

 After simplification, we get 

𝑂(𝑥) =
𝜃   𝛾(𝑐 + 1, 𝜃𝑥 ) +

𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥)]

𝑐!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐)) − [𝜃   𝛾(𝑐 + 1, 𝜃𝑥 ) +
𝛼
2

 𝛾(𝑐 + 3, 𝜃𝑥 )]

VI. Cumulative hazard function

The cumulative hazard function of a weighted three-parameter Xgamma distribution is given 

𝐻(𝑥) = − ln (1 −  
[𝜃   𝛾(𝑐 + 1, 𝜃𝑥 ) +

𝛼
2  𝛾(𝑐 + 3, 𝜃𝑥 ) ]

𝑐!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))
) 

V. Statistical Properties

 In this section, discuss  the statistical properties of the weighted three-parameter Xgamma 

distribution, that is moment, moment-generating function, and characteristic function.  
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I. Moments

 If X is a random variable that follows a weighted three-parameter Xgamma distribution with pdf 

(6), then the rth  order moment, that is 𝜇𝑟
′  can be obtained as    

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟

∞

0

𝑓𝑤(𝑥)𝑑(𝑥) 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟

𝑥𝑐𝜃𝑐+2 (1 + (
𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝐶!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

𝑑𝑥
∞

0

 

After simplification we get rth order raw moment is 

𝜇𝑟
′ =

𝜃𝑐+2[2𝛤(𝑐 + 𝑟 + 1) + 𝛼𝛤(𝑐 + 1)]

𝑐! (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))𝜃  𝑟+𝑐+2
 (10) 

Putting r=1, 2 ,3, 4 in (10) we get 1st, 2nd, 3rd , 4th row moments of weighted three-parameter 

Xgamma distribution  

𝜇1
′ =

2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1)

2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)
 (11) 

𝜇2
′ =

2(𝑐 + 1) (𝑐 + 2) + 𝛼(𝑐 + 3)(𝑐 + 2)(𝑐 + 1)

[2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)]𝜃
 (12) 

𝜇3
′ =

2(𝑐 + 1) (𝑐 + 2)(𝑐 + 3) + 𝛼(𝑐 + 3)(𝑐 + 2)(𝑐 + 1)(𝑐 + 4)

[2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)]𝜃  2
 (13) 

𝜇4
′ =

2(𝑐 + 1) (𝑐 + 2)(𝑐 + 3)((𝑐 + 4) + 𝛼(𝑐 + 3)(𝑐 + 2)(𝑐 + 1)(𝑐 + 4)(𝑐 + 5)

[2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)]𝜃  3
 (14) 

Note: 

 1.mean of the weighted three-parameter Xgamma distribution is given by 

Mean =
2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1)

2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)

2. variance of the weighted three-parameter Xgamma distribution is given by

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
2(𝑐 + 1) (𝑐 + 2) + 𝛼(𝑐 + 3)(𝑐 + 2)(𝑐 + 1)

[2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)]𝜃
− (

2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1)

2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)
)

2

=
2(c + 1) + α(c + 1)(c + 2)

θ(2θ + α(c + 1)(c + 2))
2 (α(1 − θ)(c + 1)(c + 2) − 2θc) 

3. Standard deviation

𝜎 = √(
2(c + 1) + α(c + 1)(c + 2)

θ(2θ + α(c + 1)(c + 2))
2 (α(1 − θ)(c + 1)(c + 2) − 2θc) 
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4. Coefficient of variation (CV)

𝐶 𝑉 =
√2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1)

√𝜃 (2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1)
100 

II. Moment generating function and Characteristic function

If a random variable X follows a  weighted three-parameter Xgamma distribution, then the 

moment-generating function (MGF) is given as follows,      

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥)  (15) 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥
∞

0

𝑓(𝑥)𝑑𝑥 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥
∞

0

𝑥𝑐𝜃𝑐+2 (1 + (
𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝑐!
2   (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

𝑑𝑥 

 𝑀𝑥(𝑡)  =
𝜃𝑐+2

𝑐!
2

(2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2))
∫ 𝑒−𝑥(𝜃−𝑡)

∞

0

𝑥𝑐 (1 + (
𝛼𝜃

2
) 𝑥2) 𝑑𝑥 

 After simplification, we get the moment-generating function is 

𝑀𝑥(𝑡) =
𝜃𝑐+2(2(𝜃 − 𝑡)2 + 𝛼𝜃(𝑐 + 1)(𝑐 + 2)

(𝜃 − 𝑡)𝑐+3(2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)
 (16) 

Similarly, the characteristic function is obtained as     

𝜙𝑥(𝑡) =
𝜃𝑐+2(2(𝜃 − 𝑖𝑡)2 + 𝛼𝜃(𝑐 + 1)(𝑐 + 2)

(𝜃 − 𝑖𝑡)𝑐+3(2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)
 (17) 

VI. Order Statistics

In this section, we derive the order statistics from weighted three-parameter Xgamma distribution. 

Let 𝑥(1), 𝑥(2), 𝑥(3),…. 𝑥(𝑛)  be the order statistics of the random variable 𝑥1, 𝑥2,…… 𝑥𝑛 taken from 

weighted three parameter Xgamma distribution. Then the probability density function of the m th 

order statistics X(m) is defined as   

 𝑓𝑤(𝑚)(𝑥) =
𝑛!

(𝑚 − 1)! (𝑛 − 𝑚)!
𝑓(𝑥)[𝐹 (𝑥)]𝑚 − 1 [1 − 𝐹(𝑥)]𝑛 − 𝑚  (18)

Inserting equation (6) & (7) in (18) 

 fw(m)(x)    =  
n!

(m − 1)! (n − m)!

xcθc+2 (1 + (
αθ
2

) x2) e−(θx)

c!
2  (2θ + α(1 + c)(2 + c))

( 
 θγ(c + 1, θx) +

α
2  γ(c + 3, θx)

c!
2

[2θ + α(c + 1)(c + 2)]
)

m−1
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 (
 θγ(c + 1, θx) +

α
2  γ(c + 3, θx)

c!
2

[2θ + α(c + 1)(c + 2)]
)

n−m

 (19) 

Put m=1 in equation (19), we get first order statistics X (1) =mini (𝑥1, 𝑥2,…… 𝑥𝑛) and m=n, we get nth

order statistics X(n) =max (𝑥1, 𝑥2,…… 𝑥𝑛) 

VII. Likelihood Ratio Test

The likelihood-ratio test is a hypothesis test that compares two competing statistical models’ 

goodness of fit. Assume that x1, x2, ………. xn be n random sample taken from a weighted three- 

parameter Xgamma distribution to test the hypothesis. 

𝐻0: 𝑓(𝑥) = 𝑓(𝑥, 𝛼, 𝜃, 𝑐) 

 against  

𝐻1: 𝑓(𝑥) =  𝑓𝑤(𝑥, 𝛼, 𝜃, 𝑐) 

 ∆ =
𝐿1

𝐿0

∏
𝑓𝑤  (𝑥𝑖)

𝑓(𝑥𝑖)

𝑛

𝑖=1

 ∆= ∏

𝑥𝑐
𝑖𝜃

𝑐+2 (1 + (
𝛼𝜃
2

) 𝑥𝑐
𝑖) 𝑒−(𝜃𝑥𝑖)

𝐶!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

(
𝜃2

𝛼 + 𝜃
) (1 + (

𝛼𝜃
2

) 𝑥𝑐
𝑖) 𝑒−(𝜃𝑥𝑖)

𝑛

𝑖=1

∆= ∏
𝑥𝑐

𝑖𝜃
𝑐(𝛼 + 𝜃)

𝐶!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

𝑛

𝑖=1

The null hypothesis is rejected if 

∆=
𝜃𝑐(𝛼 + 𝜃)

𝐶!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))
∏ 𝑥𝑐

𝑖    >    K

𝑛

𝑖=1

∆= ∏ 𝑥𝑐
𝑖 >

𝑘

[
𝜃𝑐(𝛼 + 𝜃)

𝐶!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))
]

𝑛

𝑛

𝑖=1

∆∗= ∏ 𝑥𝑐
𝑖 > 𝐾∗

𝑛

𝑖=1

Where 

 𝐾∗ =
𝑘

[
𝜃𝑐(𝛼 + 𝜃)

𝐶!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))
]

𝑛

A Chi-square variate with one degree of freedom is distributed as -2log ∆ for large sample size (n). 

The null hypothesis is rejected when the probability value is provided by  
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𝑝(∆∗) > 𝛼∗ 

Where 𝛼∗ = ∏ 𝑥𝑖
𝑐𝑛

𝑖=1 is less than level of significance. And ∏ 𝑥𝑖
𝑐𝑛

𝑖=1  is the observed value of the 

statistic ∆∗ 

VIII. Bonferroni and Lorenz Curves

In this section, we derive the Bonferroni and Lorenz curves from the weighted three-parameter 

Xgamma distribution [2]. The Bonferroni and Lorenz curve is a powerful tool in the analysis of 

distributions and has applications in many fields, such as economies, insurance, income, reliability, 

and medicine. The Bonferroni and Lorenz cures is given as 

 𝐵(𝑝) =
1

𝑝𝜇1
′
∫ 𝑥 𝑓𝑎(𝑥)𝑑𝑥

𝑞

0

 

And 

 𝐿(𝑝) =
1

𝜇1
′

∫ 𝑥 𝑓𝑎(𝑥)𝑑𝑥

𝑞

0

 

Where 

𝜇1
′ = 𝐸(𝑋) =

2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1)

2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2)
 and 𝑞 = 𝐹−1(𝑝) 

 𝐵(𝑝) =
2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2

𝑝(2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1))
∫ 𝑥

𝑥𝑐𝜃𝑐+2 (1 + (
𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝐶!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

 𝑑𝑥

𝑞

0

 

 𝐵(𝑝) =
2𝜃𝑐+2

𝐶! 𝑝(2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1))
∫  𝑥𝑐𝑥 𝑒−𝜃𝑥 (1 + (

𝛼𝜃

2
) 𝑥2)  𝑑𝑥

𝑞

0

 

 𝐵(𝑝) =
2𝜃𝑐+2

𝐶! 𝑝(2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1))
{∫  𝑥𝑐+1𝑒−𝜃𝑥  𝑑𝑥 + ∫

𝛼𝜃

2
 𝑥𝑐+3𝑒−𝜃𝑥𝑑𝑥 }

𝑞

0

𝑞

0

 

After simplification we get 

 𝐵(𝑝) =
2𝜃  𝛾(𝑐 + 2, 𝜃𝑞) + 𝛼𝛾(𝑐 + 4, 𝜃𝑞)

𝐶! 𝑝𝜃(2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1))
 (20) 

Where 𝐿(𝑝) = 𝑝𝐵(𝑝) 

 𝐿(𝑝) =
2𝜃  𝛾(𝑐 + 2, 𝜃𝑞) + 𝛼𝛾(𝑐 + 4, 𝜃𝑞)

𝐶! 𝜃(2(𝑐 + 1) + 𝛼(𝑐 + 2)(𝑐 + 1))
 (21) 

IX. Renyi Entropy

The Renyi entropy is important in ecology and statistics as an index of diversity. For a given 

probability distribution (6), Renyi entropy is given by 

 𝑅(𝜆) =
1

1 − 𝜆
log ∫(𝑓𝑤

𝜆(𝑥))𝑑𝑥

∞

0

Where 𝜆 > 0 𝑎𝑛𝑑 𝜆 ≠ 1 

 𝑅(𝛽) =
1

1 − 𝜆
log ∫ (

𝑥𝑐𝜃𝑐+2 (1 + (
𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝐶!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))
)

𝜆

𝑑𝑥

∞

0
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 𝑅(𝛽) =
1

1 − 𝜆
log (

𝜃𝑐+2

𝐶!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

)

𝜆

∫ 𝑥𝑐𝜆 (1 + (
𝛼𝜃

2
) 𝑥2)

𝜆

𝑒−𝜃𝜆𝑥𝑑𝑥

∞

0

 

 Using binomial expansion in above equation and can be obtain 

 𝑅(𝜆) =
1

1 − 𝜆
𝑙𝑜𝑔 (

𝜃𝑐+2

𝐶!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

)

𝜆

∑  

𝜆

𝑖=0

(𝜆
𝑖

) (
𝛼𝜃

2
)

𝑖

∫ 𝑥𝑐𝜆+2𝑖𝑒−𝜃𝜆𝑥𝑑𝑥

∞

0

 

 𝑅(𝜆) =
1

1 − 𝜆
𝑙𝑜𝑔 (

𝜃𝑐+2

𝐶!
2

 (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))
)

𝜆

∑  

𝜆

𝑖=0

(𝜆
𝑖

) (
𝛼𝜃

2
)

𝑖 (𝑐𝜆 + 2𝑖)!

(𝜆𝜃)𝑐𝜆+2𝑖+1
 (22) 

X. Estimations of Parameter

 Let x1, x2……xn   be the random sample of size n taken from weighted three-parameter Xgamma 

distribution, then the likelihood function is defined as below, 

𝐿(𝑥, 𝛼, 𝜃, 𝑐) = ∏ 𝑓(𝑥, 𝛼, 𝜃, 𝑐)

𝑛

𝑖=1

 

𝐿(𝑥, 𝛼, 𝜃, 𝑐) = ∏
𝑥𝑐𝜃𝑐+2 (1 + (

𝛼𝜃
2

) 𝑥2) 𝑒−(𝜃𝑥)

𝐶!
2  (2𝜃 + 𝛼(1 + 𝑐)(2 + 𝑐))

𝑛

𝑖=1

𝐿(𝑥, 𝛼, 𝜃, 𝑐) = (
𝜃𝑐+2

𝑐!
2

(2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2))
)

𝑛

𝑒−𝜃 ∑ 𝑥𝑖
𝑛
𝑖=1 ∏ 𝑥𝑐

𝑛

𝑖=1

(1 +
𝛼𝜃

2
𝑥𝑖

2)

Take logarithm on both sides we get 

𝑙 𝑛 𝐿(𝑥, 𝛼, 𝜃, 𝑐) =  𝑛𝑙𝑛 (
𝜃𝑐+2

𝑐!
2

(2𝜃 + 𝛼(𝑐 + 1)(𝑐 + 2))
) − 𝜃 ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑙𝑛 (

𝑛

𝑖=1

(1 +
𝛼𝜃

2
𝑥𝑖

2)𝑥𝐶)

 𝑙𝑛  𝐿(𝑥, 𝛼, 𝜃, 𝑐) = 𝑛(𝑐 + 2)𝑙𝑛𝜃 − 𝑛 𝑙𝑛𝑐! − 𝑛𝑙𝑛𝜃 − 𝑛 𝑙𝑛
𝑐!

2
− 𝑛 𝑙𝑛𝛼 − 𝑛 ln(𝑐2 + 3𝑐 + 2)

− 𝜃 ∑ 𝑥𝑖
 +

𝑛

𝑖=1

∑ 𝑐 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

+ ∑ ln (1 +
𝛼𝜃

2
𝑥𝑖

2)

𝑛

𝑖=1

 (23) 

After differentiating equation (23) with respect to 𝛼, 𝜃 and c and equating to zero we get 

𝜕 ln 𝐿(𝑥, 𝛼, 𝜃, 𝑐)

𝜕𝛼
=

𝜃

2
∑

𝑥𝑖
2

(1 +
𝛼𝜃
2 𝑥𝑖

2)

𝑛

𝑖=1

−
𝑛

𝛼
= 0  (24) 

𝜕 ln 𝐿(𝑥, 𝛼, 𝜃, 𝑐)

𝜕𝜃
=

𝛼

2
∑

𝑥𝑖
2

(1 +
𝛼𝜃
2 𝑥𝑖

2)

𝑛

𝑖=1

+
𝑛(𝑐 + 1)

𝜃
− ∑ 𝑥𝑖

 

𝑛

𝑖=1

= 0 (25)
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𝜕 ln 𝐿(𝑥, 𝛼, 𝜃, 𝑐)

𝜕𝑐
= 𝑛 ln 𝜃 −

2𝑛

𝑐!
𝜓(𝑐 + 1)Γ(𝑐 + 1 −

4𝑛

𝑐
+ ∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

= 0  (26) 

Where 𝜓 is the Digamma function [15]. On solving equations (24), (25) and (26) we obtain 

the maximum likelihood estimator of parameters in weighted three-parameter Xgamma 

distribution. But we have the above equations  in complex form; it can’t be solved directly, so we 

estimate the parameter of the weighted three-parameter Xgamma distribution using R and 

Wolfram Mathematica. 

XI. Applications

 In this section, we have considered two real data sets  for the purpose of showing that the 

distribution of weighted three-parameter Xgamma distribution shows a better fit over two 

parameter Xgamma distribution and Xgamma distribution. 

The Akaike information criterion (AIC), Bayesian information criterion (BIC), Akaike 

information criterion corrected (AICC), Hannan-Quinn information criterion (HQIC), Consistent 

Akaike information criterion (CAIC), and -2logl are using for model selection. It can be evaluated 

by using the formula as follows; 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔𝐿 𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘+1)

(𝑛−𝑘−1)
 𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2𝑙𝑜𝑔𝐿 

𝐶𝐴𝐼𝐶 =
2𝑘𝑛

𝑛−𝑘−1
− 2𝑙𝑜𝑔𝐿  𝐻𝑄𝐼𝐶 = 2𝑘𝑙𝑜𝑔(log(𝑛)) − 2𝑙𝑜𝑔𝐿 

Where n is the sample size, k is the number of parameters, and -2logL is the maximal value of 

the log likelihood function. After the calculation of AIC, AICC, HQIC, CAIC, and -2logL which the 

model with the  minimum value is chosen as the best model to fit the data.  

Data set 1: blood cancer (leukemia)      

The following real lifetime data set consists of 37 patients suffering from blood cancer (leukemia) 

reported from one of the ministries of health hospitals in Saudi Arabia (see Abouammah et al. [3]). 

The ordered lifetimes (in years) are given below in Data Set 1 as: 

1.145,1.208,1.263,1.414,2.025,2.036,2.162,2.211,2.37,2.532,2.693,2.805,2.91,2.912,3.192,3.263,3.348, 

3.348,3.427,3.499,3.534,3.767,3.751,3.858,3.986,4.049,4.244,4.323,4.381,4.392,4.397,4.647,4.753,4.929, 

4.973,5.074,5.381 

Table 1: The summary of blood cancer data set 

Data set 2:  lung cancer  

The following real lifetime data set consists of 39 lung cancer patients’ survival periods (measured 

in months) as reported by Pena (2002). The ordered lifetimes (in months) are given below in Data 

Set 2 as: 

2.99,3.06,3.15,3.45,3.71,3.75,3.81,4.11,4.27,4.34,4.40,4.63,4.73,4.93,5.03,5.16,5.17,5.49,5.68,5.72,5.98, 

8.15,8.62,8.48,8.61,9.46,9.53,10.05,10.15,10.95,5.85,11.24,11.63,12.26,12.65,12.78,13.18,13.4 

 Min  1st Qu   Median   Mean  Variance  3rd Qu   Max 

1.145  2.532  3.427   3.357  1.359  4.323  5.381 
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Table 2: The summary of lung cancer data set 

Table 3: MLEs AIC, BIC, AICC, CAIC, HQIC and -2log 𝐿 of the fitted distribution for the given data set 1 

Distribution  WTPXG   TPXG   XG 

𝜃=2.063455 𝜃 = 8.935533e-01 𝜃 =0.69602623

 (4.860449 e-05)  (8.482223e-02)  (0.07361946) 

MLE   𝛼 ̂= 2.171212 e+05  𝛼 ̂=2.478485 e+03 

      (1.677722 e+04)  (1.677841e+04) 

 𝑐 ̂ =3.926777 

 (1.573179) 

-2logL  119.3462  129.9725  151.4200 

AIC  125.3203  133.9725  153.4202 

BIC  130.1531  137.1944  155.0311 

AICC  125.7648  134.4170   153.8646 

HQIC  127.05  135.1084  153.9881 

CAIC  126.0735  134.3255  153.5345 

Table 4: MLEs AIC, BIC, AICC, CAIC, HQIC and -2log 𝐿 of the fitted distribution for the given data set 2 

Distribution  WTPXG  TPXG  XG 

𝜃= 0.6597119 𝜃 = 4.211952e-01 𝜃=0.36242629

 (0.1542389)       (3.945576e-02)  (0.03606323) 

MLE  𝛼 ̂= 614.8364779   𝛼 ̂=1.113155e+03 

    (2836.4541338)  (9.687653e+03) 

  𝑐 ̂= 1.6986652 

 (1.0404110) 

-2logL  192.5258  196.1067  208.8136 

AIC  203.4356  203.4358  212.4512 

BIC    198.5228  200.1067  210.8136 

AICC   198.9552  200.5391   211.246 

HQIC  200.2707  201.2719  211.3962 

AIC  199.2287  200.4495  210.924 

From tables 3 and  4 we can observe AIC, BIC, AICC, HQIC, CAIC, and -2logL values are 

lowest in the weighted three-parameter Xgamma distribution compared to the two-parameter 

Xgamma distribution and Xgamma distribution. Hence, it can be concluded that the weighted 

three-parameter Xgamma distribution model is the best model compared to the two-parameter 

Xgamma distribution and Xgamma distribution. 

XII. Conclusion

This research deals with the selection of an appropriate model for fitting survival data. In this 

paper, the Two-parameter Xgamma distribution is extended to provide a new distribution, called 

Min 1st Qu  Median  Mean  Variance  3rd Qu  Max 

2.99  4.355  5.700  7.120  11.377  9.920  13.400 
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weighted three-parameter Xgamma distribution, which is the lifetime model for a real- life data 

set. In the section 3 to 10, discussing the statistical property of weighted three-parameter Xgamma 

distribution. The effectiveness of the suggested model is demonstrated by an examination of two 

real cancer data sets. The result indicates that the weighted three parameter Xgamma distribution 

is more flexible and practical than the  two-parameter Xgamma distribution and Xgamma 

distribution. 
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Abstract 

This study explores the stress-strength reliability model (P) for Generalized Inverse Weibull (GIW) 

distribution through transformation techniques. We compare two sampling methods: ranked set sampling 

(RSS) and simple random sampling (SRS), where stress and strength are two independent random 

variables from the GIW distribution respectively. RSS, is used for estimating stress-strength model, as 

this technique of sampling is more efficient alternative of SRS for obtaining the more informative sample. 

In this article, the maximum likelihood estimator (MLE) for stress-strength model is obtained through 

transforming technique. MLE estimates of stress-strength obtained through Ranked set sampling (RSS) 

methods are evaluated against corresponding estimates derived from simple random sampling (SRS) to 

understand their relative effectiveness and accuracy. The statistical estimators derived from Ranked Set 

Sampling (RSS) methodology exhibit superior efficiency relative to their Simple Random Sampling (SRS) 

counterparts. The empirical utility of RSS-based estimation procedures is subsequently validated through 

application to real datasets. 

Keywords: Stress-strength reliability, simple random sampling, ranked set sampling, 
generalized inverse Weibull distribution, maximum likelihood estimation. 

1. Introduction

The stress-strength model is a fundamental concept in reliability engineering and statistics. It is used to 
assess the probability of failure or success in a system subject to the random variations in stress and 
strength. This model is employed by many researchers in various fields, including engineering, 
materials science, quality control, and finance etc. The probability that a system’s random stress Y is less 
than its random strength X is represented by = 𝑃𝑟(𝑌 < 𝑋)  in the context of stress-strength model. In 
other words, it calculates the probability of failure in the stress-strength model. The system failure occurs 
when the stress exceeds the strength. Recently, the problem of stress-strength model is evaluated by an 
alternative approach of sampling proposed by Mclntyre [1] The pioneering investigations of Birnbaum 
[2] and Birnbaum and McCarty [3] represent the initial academic exploration of this fundamental
problem. Church and Harris [4] were the first to use the phrase "stress-strength". Since then, a sizable
amount of work has been completed from both a parametric and non-parametric perspective. For earlier
bibliography one may refers to, Chaturvedi and Kumar [5], Kotz et al. [6], Kundu and Gupta [7][8],
Raqab and Kundu [9], Kundu and Raqab [10], Krishnamoorthy et al. [11], Hassan [12], Wang et al. [13],
Kayal et al. [14], Kumar and Chaturvedi [15]. In the above referred studies the estimation for the
considered model is based on SRS.
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The circumstances in which it is challenging to take the actual measurement for sample units 
(costly, destructive, time consuming), the RSS strategy can be used in under these circumstances which 
maintains the accuracy of our statistical judgements and reduces the sample size. Akgul and Senoglu 
[16] obtained the point estimators of stress-strength model when the stress and the strength  both are
independent Weibull random variables with common shape and different scale parameters based on
RSS by using maximum likelihood (ML) and modified ML methodologies, Hassan et al. [17] used RSS
for point and interval estimators of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) based on Gompertz distribution and MLES are
compared by using MC simulation techniques. Hossein et al. [18] consider the RSS to estimate the
parameters  exponentiated pareto distribution and conclude that the estimator based on the ranked set
sample have far better efficiency than the simple random sample at the same sample size. Akgul and
Senoglu [19] constructed the asymptotic confidence interval for ‘P’ and obtained point and interval
estimators for 𝑃 = 𝑃𝑟(𝑌 < 𝑋) based on RSS, in addition the BCI for ‘P’ is constructed based on two
distinct resampling methods.

  In this paper we consider the point estimation of ‘P’ the stress-strength model, when the random 
stress and strength are two independent GIW random variables with different shape and scale 
parameters. A quick summary of the GIW distribution is given in section 2 and the point estimation of 
P using the maximum likelihood (ML) approach based on SRS is given in section 3. A brief explanation 
of RSS and its application in the point estimation  is given in section 4. Monte Carlo simulation study is 
carried out in section 5 and a real life data study is performed for this model in section 6. Section 7 gives 
the concluding remarks for this study. 

2. Preliminary

The GIW distribution is a continuous probability distribution which is proposed by de. Gosmao et al. 
[20]. It is an extended form of the Inverse Weibull distribution, introducing additional shape parameters 
to provide more flexibility in modelling. GIW has many applications in reliability, particularly in 
modelling the degradation of mechanical components such as pistons and crankshafts of diesel engines, 
as well as the breakdown of insulating fluid and in biological studies, where it is used to model a variety 
of failure characteristics such as infant mortality, useful life, and wear-out periods. Figure 1 and Figure 
2 are showing the behaviour of probability density function and hazard rate function of GIW distribution 
respectively. The probability density function is positively skewed and the hazard rate function which 
is also known as failure rate function, during the initial phase, the hazard rate increases, indicating that 
the conditional probability of failure grows over time. This might represent a period where stress 
accumulation or wear-out effects dominate. However, after reaching a peak, the hazard rate begins to 
decrease, suggesting that units that have survived beyond a certain point have demonstrated their 
resilience and are less likely to fail immediately. This pattern can be observed in various real-world 
phenomena, such as certain mechanical systems or biological processes. 

The probability density function (pdf) and cumulative distribution function (cdf) of GIW 
distribution are given respectively as 

𝑓( 𝑥, 𝛼 𝛽, 𝛾 ) =  𝛾𝛽𝛼𝛽𝑥−(𝛽+1)
exp [−𝛾 (

𝛼

𝑥
)

𝛽

]  ; x, α, β, γ > 0  (2.1) 

𝐹(𝑋) =   exp [−𝛾 (
𝛼

𝑥
)

𝛽

]  ; x, α, β, γ > 0  (2.2) 

Hazard rate equation of GIW distribution given as follows- 

ℎ(𝑡) = 𝛾𝛽𝛼𝛽𝑡−(𝛽−1)𝑒𝑥𝑝 (−𝛾 (
𝛼

𝑡
)

𝛽

) [1 − 𝑒𝑥𝑝 (−𝛾 (
𝛼

𝑡
)

𝛽

)]
−1

; t, α, β, γ > 0     (2.3) 
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(a) For fixed α = 1.6 and γ = 0.6 (a) For fixed α = 2.7 and γ = 1.9

(b) For fixed β = 2 and γ = 0.6 (b) For fixed β = 1.4 and γ = 0.8

(c) For fixed α = 1.6 and β = 2 (c) For fixed α = 1.5 and β = 1.9

Figure 1: Behaviour of pdf Figure 2: Behaviour of Hazard rate 

3. Point Estimator for 𝑃 = 𝑃𝑟(𝑌 < 𝑋) based on SRS

The pdf of GIW distribution is given by 

𝑓( 𝑥, 𝛼 𝛽, 𝛾 ) =  𝛾𝛽𝛼𝛽𝑥−(𝛽+1)
exp [−𝛾 (

𝛼

𝑥
)

𝛽

]  ; x, α, β, γ > 0   (3.1) 
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Let the rv’s X and Y follow the GIW distribution given at (3.1) with the parameters (𝛼, 𝛽, 𝛾) and 
(𝜃, 𝜇, 𝜒). 
Theorem 3.1: The MLE of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) is given by 

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

�̅�𝑌

(�̅�𝑋 +  �̅�𝑌)

𝑤ℎ𝑒𝑟𝑒 �̅� =  
1

𝑛1

∑ 𝑥𝑖
−𝛽

𝑛1

𝑖=1

= �̅�𝑋 (𝑠𝑎𝑦), 𝑎𝑛𝑑 𝜉̅ =  
1

𝑛2

∑ 𝑦𝑖
−𝜇 = �̅�𝑌

𝑛2

𝑖=1

(say) 

Proof: Let us consider the transformation 𝑥−𝛽 = Φ in (3.1), we get 
𝑓(Φ|𝜆)  =  λ𝑒𝑥𝑝[−λΦ]  ; Φ, λ  > 0                                                                                                                       (3.2) 
which is exponential distribution with parameter λ, where λ =  𝛾𝛼𝛽  
Let us considered Φ and ξ be two independent rv’s which follows exponential distribution with 
parameters 𝜆1 and 𝜆2 respectively, where 𝑥−𝛽 = Φ and 𝑦−𝜇 = ξ
Thus for 
 𝑃 = 𝑃𝑟(ξ < Φ) 

𝑃 = ∫ ∫ 𝑓(Φ|𝜆1)𝑑Φ𝑓(ξ|𝜆2)𝑑ξ
 ξ 

Φ=0

∞

0

 

𝑃 =
𝜆1

(𝜆1+ 𝜆2 )
 (3.3)  

If Φ1, Φ2, … , Φ𝑛1
 𝑎𝑛𝑑   ξ 1,  ξ 2, … ,  ξ 𝑛2

 are two independent random samples of size 𝑛1 𝑎𝑛𝑑 𝑛2 from the 
pdf’s 𝑓(Φ|𝜆1) and 𝑓(ξ|𝜆2) respectively then the joint pdf is given by 

𝑓(Φ, ξ |𝜆1, 𝜆2)  =   λ1
𝑛1 λ2

𝑛2𝑒𝑥𝑝[−𝑛1 λ1Φ̅ − 𝑛2 λ2ξ̅]    (3.4) 

Taking likelihood function of (3.4) and derivatives w.r.to  𝜆1 𝑎𝑛𝑑 𝜆2 and equating to zero, we get MLES 
of 𝜆1 𝑎𝑛𝑑 𝜆2 respectively i.e. 

λ1= 
1

�̅�
   and λ2 =  

1

�̅�

The reliability function of P is 

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

�̅�

(�̅�+ �̅� )
 (3.5) 

The equation (3.5) can be written as 

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

�̅�𝑌

(�̅�𝑋 +  �̅�𝑌)

4. Point Estimator for P = 𝑃𝑟(𝑌 < 𝑋) based on RSS

In this section, we derive the ML estimator of P based on RSS. We first discuss about RSS, RSS is a 
specialized statistical sampling method designed to improve the efficiency and accuracy of estimating 
population parameters, particularly when dealing with populations that are highly heterogeneous or 
contain outliers. This sampling technique was introduced as an alternative to traditional sampling 
methods, such as SRS, in order to tackle the challenges posed by extreme values or skewed distributions 
in the population. A significant increase in precision can occasionally be obtained by using RSS as an 
alternative to SRS. In a work by G. A. McIntyre, it was first suggested in relation to evaluating herbage 
productivity. RSS procedures are given below: 

I. Consider random sample 𝑥1,  𝑥2 , … , 𝑥𝑚  by SRS each of size m.
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II. To obtain k observations from a population
III. Then, rank order them according to a pre-defined attribute.
IV. The unit that is judged the smallest is included in your ranked set sample.
V. This first unit is called the first judgement order statistics and denoted by X[1].

VI. Then we repeat the same process k time, there for the sample size is obtained as 𝑛 = 𝑘𝑚.
VII. For better understanding this entire process, see the following table:

Cycle 1 X[1]1 X[2]1 X[3]1 ... X[k]1 

Cycle 2 X[1]2 X[2]2 X[3]2 ... X[k]2 

...
 ...

 

...
 

...
 

...
 ...
 

Cycle m X[1]m X[2]m X[3]m ... X[k]m 

4.1 The maximum likelihood estimator of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) 

Let 𝑥𝑖𝑗 ; 𝑖 = 1,2, … , 𝑚1 and 𝑗 = 1,2, … , 𝑟1  denote the raked set sample of size 𝑛1 = 𝑟1𝑚1 from GIW 
distribution with parameter (𝛼, 𝛽, 𝛾) where 𝑚1  is the set size and 𝑟1 is the number of cycles and  𝑦𝑘𝑙 ; 𝑘 =

1, 2, … , 𝑚2 and 𝑙 = 1, 2, … , 𝑟2   denote the ranked set sample of size 𝑛2 = 𝑟2𝑚2 from GIW distribution with 
parameter (𝜃, 𝜇, 𝜒) where 𝑚2 is the set size and 𝑟2 is the number of cycles. Then the pdf of 𝑥𝑖𝑗  and  𝑦𝑘𝑙  

𝑓 𝑖(𝑥𝑖𝑗) =  
𝑚1 !

(𝑖 − 1 ) ! (𝑚1 − 𝑖 ) !
[𝐹(𝑥𝑖𝑗  )]𝑖−1[1 − 𝐹(𝑥𝑖𝑗)]𝑚1−𝑖  𝑓(𝑥𝑖𝑗)

𝑓 𝑘(𝑦𝑘𝑙) =  
𝑚2 !

(𝑘 − 1 ) ! (𝑚2 − 𝑘 )! 
[𝐹( 𝑦𝑘𝑙)]𝑘−1[1 − 𝐹(𝑦𝑘𝑙)]𝑚2−𝑘  𝑓(𝑦𝑘𝑙)

Then the likelihood function based on RSS is given by 

𝐿 =   ∏ ∏ 𝑓𝑖 (𝑥𝑖𝑗) ∏ ∏ 𝑔𝑘 (𝑦𝑘𝑙)

𝑚2

𝑙=1

𝑟2

𝑘=1

𝑚1

𝑗=1

𝑟1

𝑖=1

 

=  ∏ (∏
𝑚1!  (𝜆1 exp(−𝜆1𝛷𝑖𝑗))

(𝑖 − 1)! (𝑚1 − 𝑖)!

𝑚1

𝑗=1

exp(−𝜆1𝛷𝑖𝑗))

𝑖−1𝑟1

𝑖=1

(−exp(−𝜆1𝛷𝑖𝑗))
𝑚1−𝑖+1

∏ (∏
𝑚2! (𝜆2 exp(−𝜆2𝜉𝑘𝑙))

(𝑘 − 1)! (𝑚2 − 𝑘)!
exp(−𝜆2𝜉𝑘𝑙)

𝑚2

𝑙=1

)

𝑘−1

[−exp(−𝜆2𝜉𝑘𝑙)]𝑚2−𝑘+1

𝑟2

𝑘=1

𝐿 = 𝑊𝜆𝑛1𝜆𝑛2 ∏ (∏ exp (−𝜆1𝛷𝑖𝑗)

𝑚1

𝑗=1

)

𝑖−1𝑟1

𝑖=1

[− exp(−𝜆1𝛷𝑖𝑗)]
𝑚1−𝑖+1

exp(−𝜆1𝛷𝑖𝑗)

∏ (∏ exp (−𝜆2𝜉𝑘𝑙)

𝑚2

𝑙=1

)

𝑘−1𝑟2

𝑘=1

[1 − exp(−𝜆2𝜉𝑘𝑙)]𝑚2−𝑘+1 exp(−𝜆2𝜉𝑘𝑙)

 (4.1) 
where 

𝑊 =  ∏ ∏
𝑚1

(𝑖 − 1)! (𝑚1 − 𝑖)!

𝑚1

𝑗=1

𝑟1

𝑖=1

∏ ∏
𝑚2

(𝑘 − 1)! (𝑚2 − 𝑘)!

𝑚2

𝑙=1

𝑟2

𝑘=1

Taking log 
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𝑙𝑜𝑔 𝐿 = 𝑙𝑜𝑔 𝑊 + 𝑛1𝑙𝑜𝑔𝜆1 + 𝑛2𝑙𝑜𝑔𝜆2 + ∑ ∑(𝑖 − 1)

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑙𝑜𝑔 [𝑒𝑥𝑝(−𝜆1𝛷𝑖𝑗) −  𝜆1 ∑ ∑ 𝛷𝑖𝑗

𝑚1

𝑗=1

𝑟1

𝑖=1

+ 𝜆1 ∑ ∑(𝑚1

𝑚1

𝑗=1

− 𝑖 + 1)𝛷𝑖𝑗 − 𝜆2 ∑ ∑ 𝜉𝑘𝑙

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑟1

𝑖=1

+ ∑ ∑(𝑘 − 1)

𝑚2

𝑙=1

𝑟2

𝑘=1

𝑙𝑜𝑔 [𝑒𝑥𝑝(−𝜆2𝜉𝑘𝑙)

+ 𝜆2 ∑ ∑(𝑚2

𝑚2

𝑙=1

− 𝑘 + 1)𝜉𝑘𝑙

𝑟2

𝑘=1

𝜕𝑙𝑜𝑔𝐿

𝜕𝜆1

= 0 

Then, 

𝑛1

𝜆1

− ∑ ∑
(𝑖 − 1) exp(−𝜆1𝛷𝑖𝑗) 𝛷𝑖𝑗

exp(−𝜆1𝛷𝑖𝑗)

𝑚1

𝑗=1

𝑟1

𝑖=1

− ∑ ∑ 𝛷𝑖𝑗

𝑚1

𝑗=1

𝑟1

𝑖=1

+ ∑ ∑(𝑚1

𝑚1

𝑗=1

− 𝑖 + 1)𝛷𝑖𝑗

𝑟1

𝑖=1

 (4.2) 
𝜕𝑙𝑜𝑔𝐿

𝜕𝜆2

= 0 

Then, 

𝑛2

𝜆2

− ∑ ∑
(𝑘 − 1) exp(−𝜆2𝜉𝑘𝑙) 𝜉𝑘𝑙

exp(−𝜆2𝜉𝑘𝑙)

𝑚2

𝑙=1

𝑟2

𝑘=1

− ∑ ∑ 𝛷𝑖𝑗

𝑚2

𝑙=1

𝑟2

𝑘=1

+ ∑ ∑(𝑚1

𝑚2

𝑙=1

− 𝑘 + 1)𝜉𝑘𝑙

𝑟2

𝑘=1

(4.3) 
Using a numerical method, we ascertain the values of the ML estimators for λ1 and λ2 based on RSS 
shown by 𝜆1𝑅𝑆𝑆

𝑀𝐿 and 𝜆2𝑅𝑆𝑆
𝑀𝐿  and using the invariance property of the ML estimator, we get the maximum 

of reliability parameter P based on RSS as 

𝑃𝑅𝑆𝑆
𝑀𝐿 =

𝜆1𝑅𝑆𝑆
𝑀𝐿

𝜆1𝑅𝑆𝑆
𝑀𝐿 +𝜆2𝑅𝑆𝑆

𝑀𝐿  (4.4) 

where, λ1= 
1

�̅�
   and λ2 =  

1

�̅�

𝑃𝑅𝑆𝑆
𝑀𝐿 =

𝜉�̅�𝑆𝑆
𝑀𝐿

�̅�𝑅𝑆𝑆
𝑀𝐿 + 𝜉�̅�𝑆𝑆

𝑀𝐿

where, 

�̅�𝑅𝑆𝑆
𝑀𝐿 =  

1

𝑛1

∑ 𝑥𝑖
−𝛽

𝑛1

𝑖=1

= �̅�𝑥,𝑅𝑆 𝑆   𝑎𝑛𝑑     𝜉�̅�𝑆𝑆
𝑀𝐿 =

1

𝑛2

∑ 𝑦𝑖
−𝜇 = �̅�𝑦,𝑅𝑆𝑆

𝑛2

𝑖=1

𝑃𝑆𝑅𝑆 
𝑀𝐿 =

�̅�𝑦,𝑅𝑆𝑆

(�̅�𝑥,𝑅𝑆𝑆 +  �̅�𝑦,𝑅𝑆𝑆)

5. Simulation Study

This section contains the simulation study that compares our suggested reliability estimator P based on 
RSS with the conventional reliability estimator of P based on SRS using the provided MSE and Bias 
values, 𝐵𝑖𝑎𝑠(�̂�) = 𝐸(�̂� − 𝑃)  and  𝑀𝑆𝐸(𝑃) = 𝐸(�̂� − 𝑃)2,  respectively. The relative efficiency of the 
estimator of P is calculated as =  

𝑀𝑆𝐸(𝑃𝑀𝐿𝐸,𝑆𝑅𝑆)

𝑀𝑆𝐸(𝑃𝑀𝐿𝐸,𝑅𝑆𝑆)
 . If the value of relative efficiency is greater than one, it

signifies that �̅�𝑆𝑅𝑆 is more efficient than the �̅�𝑅𝑆𝑆. Using the R programming language, all calculations 
were carried out. The following steps are used to explain the simulation study. 
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1. Generate 1000 simple random sample of 𝑥1, … , 𝑥𝑛1
 and 𝑦1, … , 𝑦𝑛2

 from Generalize Inverse Weibull
distribution with the sample sizes (𝑛1, 𝑛2).
2. Generate 1000 random sample 𝑥11, … , 𝑥𝑚1𝑟1

 and 𝑦11, … , 𝑦𝑚2𝑟2
 from Generalize inverse Weibull

distribution with set sizes 𝑚1 =  𝑚2 = 3, 4, 5 in case of number of cycles 𝑟1 = 𝑟2 = 5 and when 𝑟1 = 𝑟2 =

10 then set size 𝑚1 =  𝑚2 = 2, 3, 4.
3. Initially the parameter for X ~ GIW (α, β, γ) distribution are taken as α = 2, β = 0.1, γ = 0.6 and Y ~ GIW
(𝜃, 𝜇, 𝜒), 𝜃 = 3, µ= 0.2, χ = 0.5. After that we vary α = 2.5, 4 and 𝜃 = 3.5, 5 respectively and other parameters
are fixed.
4. The MSEs relative efficiency and biased are calculated.

Table1: Biases, MSES and RE of P under SRS and RSS when β = 0.1, γ = 0.6 and μ= 0.2, χ = 0.5 and  𝑟1=𝑟2= 5, 10

SRS RSS 

𝒓𝟏= 𝒓𝟐=  5 

(𝑛1,𝑛2) (𝑚1,𝑚2) 𝑃𝑇𝑟𝑢𝑒 �̂�𝑆𝑅𝑆 Bias MSE �̂�𝑅𝑆𝑆 Bias MSE RE 

α=2,  𝜃=3 (15,15) (3,3) 0.50797 0.51985 0.01187 0.000185 0.51981 0.01183 0.000165 1.12343 

(15,20) (3,4) 0.51953 0.01156 0.000172 0.51989 0.01191 0.000161 1.07190 

(20,20) (4,4) 0.51964 0.01167 0.000169 0.51966 0.01168 0.000152 1.11753 

(20,25) (4,5) 0.51965 0.01167 0.000165 0.51987 0.01189 0.000153 1.08270 

(25,25) (5,5) 0.51960 0.01163 0.000163 0.51996 0.01198 0.000154 1.06218 

α=2.5,  𝜃=3.5 (15,15) (3,3) 0.50584 0.51947 0.01362 0.000218 0.51995 0.01410 0.000215 1.01260 

(15,20) (3,4) 0.51946 0.01361 0.000212 0.51993 0.01408 0.000212 1.00436 

(20,20) (4,4) 0.51956 0.01371 0.000212 0.51965 0.01380 0.000201 1.05510 

(20,25) (4,5) 0.51956 0.01371 0.000209 0.51971 0.01386 0.000200 1.04142 

(25,25) (5,5) 0.51952 0.01367 0.000207 0.51982 0.01397 0.000202 1.02271 

α=4,  𝜃=5 (15,15) (3,3) 0.49976 0.51995 0.02018 0.000421 0.51995 0.02019 0.000416 1.01253 

(15,20) (3,4) 0.51994 0.02017 0.000418 0.51993 0.02017 0.000413 1.01343 

(20,20) (4,4) 0.51992 0.02015 0.000417 0.51998 0.02021 0.000414 1.00835 

(20,25) (4,5) 0.51992 0.02015 0.000416 0.51991 0.02014 0.000410 1.01551 

(25,25) (5,5) 0.51991 0.02014 0.000415 0.51998 0.02022 0.000412 1.00549 

𝒓𝟏= 𝒓𝟐=  10 

(𝑛1,𝑛2) (𝑚1,𝑚2) 𝑃𝑇𝑟𝑢𝑒 �̂�𝑆𝑅𝑆 Bias MSE �̂�𝑅𝑆𝑆 Bias MSE RE 

α=2,  𝜃=3 (20,20) (2,2) 0.50797 0.51986 0.01189 0.000175 0.51953 0.01155 0.000154 1.13637 

(20,30) (2,3) 0.51984 0.01186 0.000167 0.51984 0.01186 0.000156 1.07116 

(30,30) (3,3) 0.51984 0.01186 0.000163 0.51975 0.01177 0.000150 1.08497 

(30,40) (3,4) 0.51983 0.01186 0.000159 0.51980 0.01182 0.000149 1.06985 

(40,40) (4,4) 0.51970 0.01172 0.000153 0.51992 0.01194 0.000150 1.02107 

α=2.5,  𝜃=3.5 (20,20) (2,2) 0.50584 0.51974 0.01389 0.000217 0.51947 0.01362 0.00020 1.08420 

(20,30) (2,3) 0.51972 0.01387 0.000211 0.51972 0.01387 0.000203 1.03920 

(30,30) (3,3) 0.51972 0.01387 0.000208 0.51964 0.01379 0.000199 1.04873 

(30,40) (3,4) 0.51971 0.01386 0.000205 0.51969 0.01384 0.000198 1.03801 

(40,40) (4,4) 0.51960 0.01375 0.000201 0.51978 0.01394 0.000200 1.00415 

α=4,  𝜃=5 (20,20) (2,2) 0.49976 0.51992 0.02015 0.000417 0.51997 0.02020 0.000416 1.00415 

(20,30) (2,3) 0.51990 0.02013 0.000414 0.51989 0.02013 0.000410 1.00944 

(30,30) (3,3) 0.51990 0.02013 0.000413 0.51984 0.02007 0.000407 1.01444 

(30,40) (3,4) 0.51989 0.02013 0.000411 0.51987 0.02011 0.000407 1.00961 
(40,40) (4,4) 0.51982 0.02005 0.000408 0.51994 0.02018 0.000392 1.04033 
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The data presented in Table 1 consistently demonstrates that the relative efficiency exceeds unity, 
indicating the superior performance of ranked set sampling over simple random sampling in stress-
strength reliability estimation. 

6. Real data application

In order to confirm the results from earlier portions of the paper, we looked at two actual datasets in this 
section. We use two real-life data sets proposed by Efron B. [21]. The dataset includes patients from two 
groups who have head and neck cancer diseases. The survival times of 58 patients with radiotherapy-
treated head and neck cancer are shown in the first dataset, whereas the survival times of 45 patients 
receiving chemotherapy plus radiation treatment are shown in the second dataset. In the context of 
stress–strength reliability, Yadav et al.  [22] analysed these datasets and they showed that the Inverse 
Weibull distribution could be used to model these datasets. These datasets can also be useful in the case 
of generalized Weibull distribution. The first dataset of 58 patient is used for the strength variable X and 
the second dataset of 45 patients is used for stress variable Y in the stress-strength model 𝑃 = 𝑃𝑟(𝑌 < 𝑋). 
The datasets are as follows: 

First data set of 58 patients 

6.53 7 10.42 14.48 16.1 22.7 34 41.55 

42 45.28 49.4 53.62 63 64 83 84 

91 108 112 129 133 133 139 140 

140 146 149 154 157 160 160 165 

146 149 154 157 160 160 165 173 

176 218 225 241 248 273 277 297 

405 417 420 440 523 583 594 1101 

1146 1417 

Second data set of 45 patients 

12.2 23.56 23.74 25.87 31.98 37 41.35 47.38 

55.46 58.36 63.47 68.46 78.26 74.47 81 43 

84 92 94 110 112 119 127 130 

133 140 146 155 159 173 179 194 

195 209 249 281 319 339 432 469 

519 633 725 817 1776 

The first dataset of 58 patient is used for the strength variable X ~ GIW (α, β, γ) and the second dataset 
of 45 patients is used for stress variable Y ~ GIW (θ, µ, χ) in the stress-strength model 𝑃 = 𝑃𝑟(𝑌 < 𝑋). By 
using the iteration method in R software, the MLES of α, β, γ and θ, µ, 𝜒 is comes out as  �̂� = 2.9057, 
 �̂� =  0.7859, 𝛾 = 12.3257 and �̂� = 6.8548, �̂� = 1.0248, �̂� = 11.5366. Now if we take these MLEs values 
of the parameters as the true value for these datasets then the stress-strength model 𝑃 = 𝑃𝑟(𝑌 < 𝑋) from 
the Eq. (3.3) is P = 0.25574 
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Figure 3: The PDF, CDF and P-P Plots of the GIW distribution for First dataset 

Figure 4: The PDF, CDF and P-P Plots of the GIW distribution for First dataset 

Prior to delving into the core of our investigation, it is imperative to conduct a thorough examination of 
the salient characteristics of our dataset. To validate the robustness of our results, we employ a rigorous 
statistical methodology: the Kolmogorov-Smirnov (K-S) test, complemented by its associated P-value 
(P-V). This approach facilitates the quantification of the concordance between our empirical 
observations and theoretical expectations. 
Our analysis yields promising results. For the initial dataset, we obtain a K-S distance of 0.31547 and a 
corresponding P-V of 0.42560. The secondary dataset exhibits comparable outcomes, with a K-S distance 
of 0.08889 and a P-V of 0.99520. These metrics provide substantial evidence supporting the close 
alignment of our model with the observed data. 
To enhance comprehension and provide visual context, we have generated a series of graphical 
representations. These illustrations, presented in Figures 3 and 4, offer a comprehensive visualization of 
our statistical findings. They encompass probability-probability (PP) plots, as well as depictions of the 
estimated probability density function (PDF) and cumulative distribution function (CDF) for both 
datasets. These visual aids serve to corroborate and elucidate the numerical results of our analysis, 
thereby facilitating a more profound understanding of the data's underlying characteristics. 
Now we draw 10 samples random sample of size 10 from each dataset and calculate the term �̅�𝑥 and �̅�𝑦 
for each sample respectively. The simple random samples from each dataset are shown in Table 2 and 
Table 3, respectively. 

RT&A, No 1 (82) 
Volume 20, March 2025 

75



S Kumar, B Meena, R Shukla, SP Singh   
STRESS-STRENGTH MODELLING WITH RSS 

Table 2: Simple random samples from Data set 1 

�̅�𝑥

Sample 1 157 176 63 129 7 53.62 140 149 218 225 0.04257 
Sample 2 241 154 218 140 63 10.42 277 173 165 154 0.03312 
Sample 3 157 149 49.4 440 165 154 140 34 273 22.7 0.03118 
Sample 4 149 63 165 139 45.28 49.4 42 41.55 10.42 22.7 0.05443 
Sample 5 157 112 14.48 173 440 218 160 139 417 140 0.02745 
Sample 6 218 225 146 149 42 1417 176 7 297 53.62 0.04135 
Sample 7 165 157 133 63 173 420 45.28 112 176 583 0.02213 
Sample 8 225 140 165 277 149 14.48 91 129 108 157 0.03016 
Sample 9 157 64 157 63 154 146 165 241 16.1 133 0.03187 

Sample 10 140 22.7 417 176 139 149 146 41.55 583 241 0.02662 

Table 3: Simple random samples from Data set 2 

�̅�𝑦

Sample 1 1776 119 74.47 725 81 37 469 43 63.47 58.36 0.01097 

Sample 2 110 209 130 281 37 63.47 74.47 173 112 319 0.00889 
Sample 3 173 55.46 37 68.46 63.47 281 319 25.87 31.98 195 0.01481 
Sample 4 339 74.47 37 112 63.47 81 25.87 31.98 209 110 0.01492 
Sample 5 249 281 173 47.38 81 633 37 23.56 74.47 140 0.01256 
Sample 6 469 633 519 127 25.87 78.26 84 173 339 37 0.01019 

Sample 7 1776 94 817 23.56 469 130 43 146 173 68.46 0.01044 
Sample 8 127 110 78.26 249 209 41.35 94 43 432 155 0.00947 
Sample 9 110 159 23.74 194 31.98 633 1776 155 112 179 0.01061 

Sample 10 432 130 119 339 58.36 127 469 37 146 55.46 0.00902 

In the next step, we draw 10 ranked set samples of size 10 from both the Data sets. To draw the ranked 
set sample of size n = 10, we take the set size m = 5 and run r = 2 cycles. 

Table 4 : Ranked set samples from Data set 1 
�̅�𝑥

Sample1 7 112 157 165 405 10.42 108 139 160 225 0.05240 

Sample 2 139 225 297 165 583 10.42 64 417 112 440 0.03091 

Sample 3 7 165 165 160 173 112 63 49.4 146 160 0.04368 

Sample 4 42 63 176 160 149 6.53 133 154 133 277 0.04495 

Sample 5 22.7 7 165 405 1417 91 112 154 218 1417 0.04232 

Sample 6 91 64 146 160 1101 112 108 157 154 1101 0.02010 

Sample 7 84 139 405 149 1146 108 154 165 218 157 0.01795 

Sample 8 6.53 140 64 165 594 140 133 84 420 241 0.04069 

Sample 9 16.1 149 160 154 154 45.28 16.1 146 139 277 0.04040 

Sample 10 10.42 45.28 160 225 594 6.53 149 149 277 417 0.05364 
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Table 5: Ranked set samples from Data set 2 

�̅�𝑦

Sample 1 43 55.46 195 319 249 23.56 41.35 155 130 173 0.01271 

Sample 2 25.87 94 58.36 159 469 63.47 68.46 146 194 817 0.01070 

Sample 3 12.2 63.47 173 146 469 41.35 155 112 155 633 0.01469 

Sample 4 63.47 112 119 339 249 25.87 84 81 81 725 0.01053 

Sample 5 47.38 55.46 195 249 817 41.35 92 155 281 1776 0.00855 

Sample 6 12.2 37 119 155 817 23.74 37 194 432 519 0.01877 

Sample 7 74.47 140 63.47 173 519 55.46 55.46 319 74.47 432 0.00887 

Sample 8 23.56 119 78.26 195 725 23.56 130 133 281 519 0.01213 

Sample 9 37 94 194 195 469 31.98 41.35 173 155 249 0.01100 

Sample 10 37 112 68.46 179 319 81 58.36 339 94 817 0.00930 

To get 10 samples of size 10, we totally run 20 cycles. Each two subsequent cycles constitute one sample 
of size 10. The 20 cycles we performed to get the 10 ranked samples from population X and displayed in 
Table 4. Similarly, the 20 cycles from population Y are drawn and the 10 ranked set samples are shown 
in Table 5. 

Table 6: Bias, MSE and Relative efficiency of stress-strength model P in case of SRS and RSS 
SRS RSS 

�̅�𝑥 �̅�𝑦 �̂�𝑆𝑅𝑆 Bias MSE �̅�𝑥 �̅�𝑦 �̂�𝑅𝑆𝑆 Bias MSE RE 
(%) 

Sample 1 0.04257 0.01097 0.25278 -0.00295 0.052 0.05240 0.01271 0.23154 -0.0242 0.00872 5.92 
Sample 2 0.03312 0.00889 0.03091 0.01070 
Sample 3 0.03118 0.01481 0.04368 0.01469 
Sample 4 0.05443 0.01492 0.04495 0.01053 
Sample 5 0.02745 0.01256 0.04232 0.00855 
Sample 6 0.04135 0.01019 0.02010 0.01877 
Sample 7 0.02213 0.01044 0.01795 0.00887 
Sample 8 0.03016 0.00947 0.04069 0.01213 
Sample 9 0.03187 0.01061 0.04040 0.01100 
Sample10 0.02662 0.00902 0.05364 0.00930 

Based on Table 6, it can be inferred that the MSE of stress-strength model P under RSS conditions is 
lower than that of stress-strength model P under SRS circumstances. 5.92% of RSS is relative to SRS, or 
relative efficiency. Thus, in real-world scenarios, RSS techniques yield better outcomes than SRS 
strategies. 

7. Conclusions

This work addresses the challenge of estimating the reliability function  𝑃 = 𝑃𝑟(𝑌 < 𝑋), where X and Y 
are the independent random strength and stress variables from GIW distribution. The MLE of P is 
derived for SRS and RSS. Monte Carlo simulation study is performed to compare between point 
estimators of P in both cases SRS and RSS. The MLE of P based on RSS is more efficient results than the 
MLE of P based on the SRS. We further validate the advantages of RSS through an analysis of real-life 
data. Future research we shall explore the application of various type of ranked set sampling techniques 
in estimating the reliability models. 
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Abstract 

Understanding agricultural production patterns is crucial for enhancing productivity and ensuring 

food security. This study explores the dynamics of agricultural production in Tamil Nadu using the 

Vector Autoregressive (VAR) model to capture the interdependence among various crop yields and 

rainfall over time. Employing Python programming for data analysis and modeling, the study 

leverages historical time-series data to identify trends, forecast production, and analyze the impact 

of external shocks on agricultural outputs. The research incorporates preprocessing techniques to 

ensure stationarity, optimal lag selection using Akaike’s Information Criterion(AIC) and Bayesian 

Information Criterion(BIC), and diagnostic checks for model accuracy and stability. The findings 

provide insights into the temporal relationships among various crops and rainfall. Additionally, 

Impulse Response Functions(IRF) and variance decomposition analyses offer a deeper 

understanding of how shocks to one variable propagate through the system. The study demonstrates 

the utility of Python-based VAR models in agricultural forecasting and decision-making, offering 

policymakers and stakeholders a robust tool to improve resource allocation and agricultural 

planning in Tamil Nadu. This work highlights the potential of data-driven approaches to address 

challenges in the agricultural sector effectively. 

Keywords: Time Series Analysis, Stationary, Impulse Response Functions, 

Augmented Dickey-Fuller Test, Granger Causality Test, Vector Autoregressive. 

I. Introduction

Agriculture plays a pivotal role in Tamil Nadu's economy, serving as a cornerstone for livelihood, 

food security, and economic growth. The state's diverse agro-climatic conditions enable the 

cultivation of various crops, making it a vital contributor to India's agricultural output. Farook and 

Kannan[8], investigate the influence of climate change on the yields of Kharif and Rabi rice crops, 

focusing on the impact of maximum temperature, minimum temperature, and rainfall using a 

VAR model that incorporates Granger causality, IRF, and variance decomposition. Their results 

reveal significant temperature effects on both types of rice, with rainfall negatively affecting Kharif 

yields and both maximum temperature and rainfall reducing Rabi yields.  
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This paper focuses on forecasting the production of major crops, including Paddy, Cumbu, 

Cholam, Ragi and Maize. These crops not only fulfill the dietary needs of Tamil Nadu's population 

but also play a pivotal role in the state's agricultural economy and resilience. Their significance lies 

in their ability to support food security, adapt to diverse climatic conditions, and provide 

livelihood opportunities to farmers across the state. Promoting sustainable cultivation practices 

and value addition for these crops can further enhance their role in Tamil Nadu's agricultural 

development. However, the agricultural sector faces several challenges, including erratic rainfall 

patterns, fluctuating market dynamics, and the increasing need for efficient resource allocation. 

Understanding the complex interdependencies among these factors is critical for informed 

decision-making and sustainable agricultural development. 

Modern analytical methods provide powerful tools to examine the interdependencies and 

dynamics within agricultural systems. VAR analysis stands out as a versatile econometric model 

for understanding the relationships between multiple time-series variables. The VAR model allows 

researchers to identify causal relationships, forecast trends, and evaluate the impact of external 

shocks, making it a powerful tool for analyzing agricultural production patterns. This study 

applies the VAR model to explore the interdependencies of agricultural production variables in 

Tamil Nadu, such as crop yields and rainfall. Leveraging the computational power and versatility 

of Python programming, the research provides a comprehensive analysis of historical data to 

uncover trends and derive actionable insights. The objective of this research is to forecast 

agricultural production, understand the influence of key factors, and provide a data-driven 

foundation for policymaking and resource optimization. By integrating modern computational 

tools with advanced econometric techniques, this study contributes to enhancing agricultural 

planning and addressing the challenges of the sector in Tamil Nadu. 

Granger[4], introduced testable definitions of causality and feedback using simple two-

variable models. He developed a causality test to determine the directional relationships between 

variables, providing a systematic approach to identify causal links. Additionally, he addressed the 

critical issue of instantaneous causality, further enriching the understanding of temporal 

relationships in time series data. 

II. Review of Literature

This section reviews and discusses several foundational and relevant papers that provide context 

and support for this article. Granger and Newbold[5], critically examines the pervasive issue of 

spurious regression in econometrics, particularly in time series analysis, and its implications for 

applied research. The authors highlight the frequent reporting of regression equations with high R2 

values but alarmingly low Durbin-Watson statistics, indicating significant autocorrelation in 

residuals. Despite warnings in econometric textbooks, such errors persist in respected literature, 

leading to inefficiencies, suboptimal forecasts, and invalid significance tests of coefficients. The 

findings of Dickey and Fuller[2] hold considerable importance for hypothesis testing and 

parameter estimation in autoregressive models, particularly in identifying whether a time series is 

stationary or nonstationary. By offering methods to test the unit root hypothesis (H0 : p = 1), the 

paper contributes to the broader econometric literature on time series analysis. It underscores the 

importance of understanding the behavior of estimators in near-nonstationary environments, 

providing a foundation for more robust inference in such contexts.  

Runkle[12], critically evaluates the utility of unrestricted VARs in understanding the 

interrelationships among key macroeconomic variables such as interest rates, money, prices, and 

output. The evidence highlights significant limitations in drawing strong conclusions using this 

approach. Granger[6] explored the intricate connection between causality, statistical methods, and 

their practical implications, emphasizing the importance of thoughtful evaluation in both 
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theoretical and applied settings. Johansen[9], explores the statistical framework for analyzing 

nonstationary VAR processes that are integrated of order 1, focusing on cointegration properties. 

The authors derive the maximum likelihood estimator for the cointegration space and propose a 

likelihood ratio test to evaluate the dimensionality of the cointegration vectors. Additionally, they 

develop tests for linear hypotheses about the cointegration vectors. 

Barkley et al.,[1] provide an in-depth examination of the institutional framework of the 

Saudi economy using a VAR model. The study reveals that external variables, such as world 

inflation rates and Saudi oil policies, play a crucial role in shaping the country's economic 

outcomes. Waggoner and Zha[15], develops Bayesian methods to compute the exact finite-sample 

distribution of conditional forecasts in VAR models, addressing parameter uncertainty and 

expanding their applicability. The study highlights the practical utility of these methods in 

assessing monetary policy impacts and analyzing scenarios with specific economic conditions. This 

advancement enhances the reliability of VAR-based macroeconomic forecasts for policy and 

practical applications. 

Stock and Watson[14], analyze the role of VARs in macro-econometrics, emphasizing their 

effectiveness in data description and forecasting. While VARs excel in capturing dynamic 

relationships among time series, the study highlights their limitations in structural inference and 

policy analysis due to the "identification problem," which requires economic theory or institutional 

insights to resolve. Zivot[16]  offers a comprehensive overview of the VAR model, emphasizing its 

versatility in analyzing multivariate time series, especially in economic and financial contexts. Also 

primarily focused on VAR for stationary time series, while also previewing its extension to 

nonstationary series with cointegration. Sasikumar and Sheik[13], provided text highlights the 

critical role of financial market volatility in shaping investment decisions and regulatory policies. It 

effectively underscores the significance of time series modeling, particularly in the context of 

forecasting stock market dynamics. The discussion about exploring the interconnections between 

variables such as the dollar rate, crude oil, and fuel prices using a VAR model is particularly 

compelling.  

Hamzah et al.,[7] present a thorough application of the VAR model to investigate the 

export dynamics of Indonesia’s major agricultural commodities—coffee beans, cacao beans, and 

tobacco—over a ten-year period. The study effectively demonstrates the suitability of the VAR 

model for multivariate time series analysis, particularly for capturing the intricate dynamic 

relationships between endogenous and exogenous variables. By evaluating VAR models with 

varying lag structures (VAR(1) to VAR(5)), the researchers employ a rigorous model selection 

process based on well-established statistical criteria, including AIC, Corrected AIC, Schwarz 

Bayesian Criterion (SBC), and Hannan-Quinn Information Criterion (HQIC). The selection of the 

VAR(2) model as the best fit is robustly supported by these criteria, significantly enhancing the 

reliability and credibility of the findings.  

III. Data Source and Basic Statistics

The data for this study were obtained from the official website of the Department of Economics 

and Statistics, Government of Tamil Nadu, India (https://www.tn.gov.in/crop/stat.html), covering 

the period from 1990-91 to 2022-23. This source provides reliable and comprehensive statistical 

information, ensuring the validity and accuracy of the analysis conducted in this research. Table 

3.1 presents the basic statistical summary of the dataset used in this study. This summary provides 

an initial understanding of the data distribution and variability, which is essential for further 

analysis. Paddy and Ragi are more stable compared to Maize and Cholam, which exhibit higher 

fluctuations in yield. Cholam's skewness and kurtosis suggest potential outliers or irregular 

growth conditions. 
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Table 3.1: Basic Statistics 

Basic 

Statistics 

Rainfall 

(in mm) 

Paddy 

(in Tonnes) 

Cholam 

(in Tonnes) 

Cumbu 

(in Tonnes) 

Ragi 

(in Tonnes) 

Maize 

(in Tonnes) 

Maximum 1401.1 8141300 868940 296270 362343 2989945 

Minimum 598.1 3222776 153856 56505 114429 43820 

Mean 973.47 6253034.87 363440.03 155494.72 230889.75 1043979.06 

Median 985.8 6610607 345820 146132 227476 759112 

Skewness 0.1087 -0.75 1.25 0.48 0.1350 0.69 

Kurtosis -0.6067 -0.19 2.75 -0.65 -1.0332 -1.20

CV 0.19867 0.21404 0.40525 0.40354 0.29949 1.0408 

SD 190.4448 1317966.677 145036.983 61790.6097 68093.8147 1070031.06 

IV. Methodology

The VAR model is a statistical model used to capture the linear interdependencies among multiple 

time series. The VAR model is an extension of the univariate autoregressive (AR) model to 

multivariate time series data, allowing each variable to be a function not only of its past values but 

also of the past values of all other variables in the system. The following flowchart is representing 

the procedure of VAR model.  

Figure 4.1: Flow Chart of VAR Analysis Procedure 

4.1. Assumptions of VAR Model 

The following are basic assumptions for performing VAR analysis 

• No Multicollinearity - Variables should not be perfectly correlated.

• Linearity - The relationships between variables are assumed to be linear.

• No Serial Correlation in Residuals - Check for autocorrelation in residuals after

fitting the model using tests like the Ljung-Boxtest.

• Homoscedasticity - The variance of residuals should be constant over time.
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4.2. General Form of VAR(p) Model 

For a system of k variables, the VAR(P) model is written as  

tptpttt YAYAYAY   2211
   (1) 

where   ktttt yyyY 21 vector of k variables at time t, Ai is kk   coefficient matrices for 

lag i, p is number of lags and   ktttt 21 Vector of error terms (innovations),

assumed to be white noise, i.e., ),0(~  Nt . 

4.3. VAR(1) Model with Two Variables 

Consider a VAR(1) model(first order VAR) with two variables 

 
tttt YYY 1)1(212)1(11111       (2) 

tttt YYY 2)1(222)1(12122       (3) 

where 1 and 2 are the intercept terms, 22211211 ,,,  are the coefficient for lagged values and 

tt 21 , are the error terms for each equation. The above equation (2) and (3) can be expressed in 

matrix form as 
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4.4. Granger Causality Test 

The Granger causality test evaluates whether past values of one time-series variable (Xt) provide 

statistically significant information about another variable (Yt) beyond the information contained 

in its own past values. This is done by comparing two regression models: a restricted model 

(without Xt) and an unrestricted model (including Xt). Restricted model(No Xt) is defined as 
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where Yt is current value of the dependent variable, βi is coefficients of lagged Yt, p is number of 

lags and ϵt is error term (white noise). Then the Unrestricted Model (Including Xt) is defined as 
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where Xt is lagged values of the independent variable and i coefficients for the lagged Xt. The

Granger causality test uses an F-test to compare the restricted and unrestricted models is 
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here RSSR  is Residual Sum of Squares from the restricted model, RSSU is Residual Sum of Squares 

from the unrestricted model, p is number of lags tested, n number of observations and k is Total 

number of parameters in the unrestricted model. Decision rule of the above F – Statistic, reject H0 if 

the p-value is less than the significance level (0.05) and the rejection indicates that Xt Granger-

causes Yt. 

4.5. Impulse Response Functions 

Lütkepohl[11], offers an overview of IRFs in VAR models, emphasizing their role in analyzing 

dynamic relationships and responses to shocks. IRF is a fundamental method in time-series 

econometrics, widely applied within the framework of VAR models. This analysis is designed to 

evaluate the impact of an unexpected change, referred to as a shock or impulse, in one variable on 

the other variables within a system. By tracing the effects of such a shock over subsequent time 

periods, IRF reveals how interconnected variables respond and adapt dynamically.  

This approach is particularly useful for understanding the magnitude, direction, and 

duration of these interactions, offering a comprehensive view of the causal relationships and 

feedback mechanisms present in complex systems. The IRF measures the effect of a one-time shock 

in one variable ( jt ) on all variables in the system (Y𝑖𝑡) over time. The IRF formula is  

t

ht

h

Y




     (8) 

4.6. Augmented Dickey-Fuller (ADF) Test 

Dickey and Fuller[3], examines the statistical properties of a time series model of the form 

ttt YY  1 , where Yt is fixed and t are independent and normally distributed random

variables with mean 0 and variance 
2 . The focus is on the likelihood ratio test for the joint 

hypothesis (α, β) = (0, 1), which corresponds to a random walk without drift.  

ADF test is also known as unit root test. It is a statistical procedure used in time-series 

analysis to determine whether a time series is stationary or non-stationary. A stationary time series 

has a constant mean and variance over time, while a non-stationary time series exhibits trends, 

seasonality, or varying variance. If a time series has a unit root, it means that it is non-stationary 

and requires differencing to achieve stationarity before applying models like VAR or Auto 

Regressive Integrated Moving Average (ARIMA). It  is sensitive to the choice of lag length (𝑝), 

which can be selected using criteria like AIC or BIC. 

V. Results and Discussions

5.1. ADF Test 

In this section, the results of the analysis are presented systematically, focusing on the key findings 

derived from the data. Before applying the VAR model, it is essential to verify whether the selected 

data is stationary. The ADF test evaluates this by testing the null hypothesis that the series has a 

unit root (non-stationary). A low p-value (< 0.05) indicates rejecting the null hypothesis, suggesting 

that the series is stationary. From the table 5.1, p-values of Rainfall, Paddy, and Ragi have p-values 

< 0.05, indicating that these data series are stationary. The remaining data series are non-stationary. 

Accordingly, the crops Paddy and Ragi are suitable for a VAR model, while for the other crops, a 

Vector Error Correction Model (VECM) or ARIMA model can be applied.  
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Table 5.1: Augmented Dickey-Fuller Test 

Crops ADF Test Statistic p - value 

Rainfall -4.568784031659 0.0001474082433563 

Paddy -3.966250739089 0.0015979164166240 

Cholam -1.967101070968 0.3011817556291899 

Cumbu -2.607373774359 0.0914828150744177 

Ragi -3.585822200935 0.0060379338458998 

Maize -1.018083747077 0.7466116628126567 

The assessment of linearity is conducted using a linear regression model. The calculated R2  

value is 0.08842 for the relationship between Rainfall and Paddy, and 0.000315 for Rainfall and 

Ragi. Based on these results, we can proceed with applying a VAR model only for Paddy and Ragi. 

5.2. Lag Selection 

Selecting the optimal lag length in a model is an important step because it determines how many 

past observations of the variables in the model are used to predict their future values. Incorrect lag 

selection can lead to misleading results. 

Table 5.2: Optimum Lag Selection 

Lag AIC BIC HQIC 

0 64.48 64.67 64.54 

1 19.01 19.96 19.30 

2 20.83 22.54 21.35 

3 21.21 23.68 21.96 

4 20.84 24.08 21.83 

5 23.73 27.73 24.95 

The table 5.2 presents the optimal lag order selection for a VAR model based on three 

selection criteria: AIC, BIC, and HQIC. The minimum AIC value is 19.01, the minimum BIC value 

is 19.96, and the minimum HQIC value is 19.30 at lag1. The optimal lag length is 1, as determined 

by all three criteria. This indicates that the relationships between the variables are best captured by 

considering only the most recent lag in the VAR model. 

5.3. Impulse Response Function 

In the IRF analysis of Rainfall to Paddy, a unit shock (unexpected change) in rainfall is used, and 

the graph illustrates its effect on paddy production over time. A one-unit shock in Rainfall results 

in a significant positive response in Paddy at the start, as indicated by the sharp rise in the impulse 

response curve. The shock in Rainfall has an immediate positive effect on Paddy production, 

indicating that rainfall is generally beneficial in the short term. The negative response observed in 

the subsequent periods may be due to the harmful effects of excessive rainfall, such as 

waterlogging, soil nutrient depletion, or flooding. 

By Period 10, the effect of the shock in Rainfall on Ragi almost vanishes, indicating that the 

system stabilizes over time. In periods where the confidence intervals include zero, the impact of 

the shock may not be statistically significant. Initially, the impact is statistically significant 

(confidence intervals do not cross zero), but as the intervals narrow toward zero over time, the 

significance of the effect decreases. 
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Figure 5.1: Impulse Response Function Rainfall to Paddy and Ragi 

5.4. VAR Model 

Lee[10], conducts an in-depth analysis of the causal relationships and dynamic interactions 

between asset returns, real activity, and inflation in the postwar United States using a multivariate 

VAR framework, providing valuable insights into the complex interplay between macroeconomic 

indicators and financial variables. The presented VAR model estimated using Ordinary Least 

Squares (OLS). It consists of two equations, each corresponding to one of the endogenous 

variables: Paddy and Ragi. A total of 33 observations were utilized for estimation, providing the 

basis for analyzing interdependencies among these variables. The log-likelihood value of -479.937 

serves as a measure of the model's overall fit, with higher (less negative) values indicating better 

fit. To assess and compare model performance, information criteria such as the AIC, BIC, and 

HQIC are computed. These criteria penalize model complexity, and lower values indicate a better 

balance between fit and simplicity. Among them, BIC is often favoured due to its stricter penalty 

for model complexity, making it a preferred metric for model selection. 

Paddytttt PaddyfallRainYearPaddy   1131121111 _     (9) 

Ragitttt RagifallRainYearRagi   1231221212 _   (10) 

In equation (9), 1 represent a Constant term or baseline value for Paddy that is

independent of other variables, 111 tYear is the influence of year from the previous period on 

Paddy, 112 _ tfallRain is the influence of the previous period's value of Rainfall on Paddy, 

113 tPaddy captures the effect of Paddy's own previous value on its current state, reflecting 

consistency or persistence in its behavior over time. 
Paddy is error term, in other words random

shocks or unexplained variation in Paddy. A similar interpretation applies to equation (10). 

Table 5.3: Actual and Forecasted Values 

Year 

Actual Values Forecasted Values 

Rainfall 

(in mm) 

Paddy 

(in Tonnes) 

Ragi 

(in Tonnes) 

Rainfall 

(in mm) 

Paddy 

(in Tonnes) 

Ragi 

(in Tonnes) 

1990-91 714.6 5782440 316240 714.60 5782440.00 316240.00 
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1991-92 898.9 6596260 310610 899.76 6289285.80 301198.87 

1992-93 862 6805720 291000 919.44 6536957.02 268547.41 

1993-94 1171.9 6749810 330970 906.59 6389536.28 261099.76 

1994-95 933.8 7558710 285020 982.96 7036997.82 245495.86 

1995-96 750.6 5290030 221060 904.29 6492306.99 243275.31 

1996-97 1121.2 5805300 190530 935.48 5804547.51 251970.63 

1997-98 1133.8 6893730 217940 1008.06 6142549.85 185342.88 

1998-99 1080.4 8141300 240610 979.00 6365657.99 189505.47 

99-2000 896.8 7532100 245940 929.53 6479790.50 197842.16 

2000-01 785.3 7366320 259490 908.25 6254337.95 229478.04 

2001-02 795.2 6583630 235310 889.79 6187846.23 252689.53 

2002-03 731 3577108 140169 919.15 6039911.11 245827.78 

2003-04 1034.6 3222776 176381 1001.40 5301287.55 229395.41 

2004-05 1078.9 5061622 154085 1085.72 5907828.88 215194.89 

2005-06 1304.1 5209433 132172 1040.43 5910618.67 181648.21 

2006-07 859.7 6610607 148148 1090.67 6093582.41 141017.99 

2007-08 1164.8 5039954 175944 945.14 5658135.72 192788.63 

2008-09 1023.1 5183385 169944 1068.17 6173918.51 184698.28 

2009-10 937.8 5665258 160939 1032.94 5964952.35 198239.93 

2010-11 1165.1 5792415 171096 1000.19 5825139.33 200128.79 

2011-12 937.1 7458657 224862 1051.55 6196705.45 176887.79 

2012-13 743.1 4050334 138011 948.11 6276321.94 220050.68 

2013-14 790.6 7115195 362343 1012.75 5400115.14 227811.75 

2014-15 987.9 7949437 349628 929.35 6886061.78 317211.53 

2015-16 1118 7374681 282054 951.42 7110411.10 278908.07 

2016-17 598.1 3554113 114429 1002.30 6876184.23 231659.58 

2017-18 1017.2 6638450 321332 1003.97 5084997.01 239505.93 

2018-19 698.9 6131550 255975 1006.66 6960801.78 273190.79 

2019-20 985.8 7265161 274474 950.78 6149976.56 282109.08 

2020-21 1232.8 6881725 288627 984.29 6684976.18 247023.14 

2021-22 1401.1 7906373 227476 1056.34 7087419.11 228083.97 

2022 -23 1170.6 7556567 206553 1065.69 6998552.23 165293.84 

2023-24 - - - 1025.00 6567790.00 186125.00 

2024-25 - - - 1025.00 6229389.00 202381.00 

2025-26 - - - 1038.00 6319154.00 214837.00 

2026-27 - - - 1040.00 6419746.00 219749.00 

2027-28 - - - 1040.00 6463104.00 221745.00 

2028-29 - - - 1041.00 6483788.00 223006.00 

2029-30 - - - 1043.00 6500922.00 223927.00 

2030-31 - - - 1045.00 6517247.00 224571.00 

2031-32 - - - 1048.00 6532388.00 225030.00 

2032-33 - - - 1050.00 6546546.00 225385.00 
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Table 5.3 provides an actual and forecasted of yearly values of Rainfall, Paddy and Ragi 

over the period from 1990-91 to 2032-33. The actual and estimated rainfall values over the time 

period are depicted in Figure 5.2(a). The estimated rainfall values are relatively more stable 

compared to the actual values, indicating that the forecasting model has smoothed out the extreme 

variations seen in the actual data. From the overall trend, it appears that both actual and forecasted 

rainfall have shown similar trajectories in recent years, with both stabilizing around the 1100 mm 

mark. The consistency of the forecasted values over time suggests that the forecasting method 

might be using a simplified approach that doesn't capture short-term weather fluctuations.  

Figure 5.2(a): Actual vs Forecasted Value of Rainfall (in mm) over the Years 

Figure 5.2(b) illustrates the historical variations in paddy production alongside the actual 

and forecasted values. From around 2020 onwards, the forecast remains steady, showing no major 

variation. This stability might suggest an assumption of consistent external conditions affecting 

paddy production. The closeness of the blue and red lines in many years suggests that the 

forecasting model performs well in capturing production trends. 

Figure 5.2(b): Actual vs Forecasted Paddy Production (in Tonnes) over the Years 

Figure 5.3(c) depicts the historical trends in Ragi production along with the actual and 

forecasted values. The actual production of Ragi exhibits significant fluctuations over the years, 

with periods of both steep increases and decreases. The forecasted production generally smooths 

out the variability, following the overall trend of actual production but without sharp deviations. 

The forecasted production stabilizes in the later years, indicating an assumption of steadier 

production levels. This could be based on historical trends or constraints in the forecasting 

method. 
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Figure 5.2(c): Actual vs Forecasted Ragi Production (in Tonnes) over the Years 

VI. Conclusion

Rainfall shocks can have both positive and negative effects on Paddy production. Measures to 

mitigate short-term disruptions, such as drainage systems or adaptive farming techniques, may 

help stabilize yields. Over time, the negative impact subsides and stabilizes near zero, suggesting 

that the system recovers after the shock in Rainfall, and the long-term relationship between 

Rainfall and Ragi is relatively neutral.  The forecast predicts a slow and steady improvement in 

Rainfall, which is expected to positively influence the production of both Paddy and Ragi. In 

Rainfall, the accuracy of the forecast can be assessed by comparing the actual data points with the 

forecasted ones. In some periods, the forecasted values align well with the actual values, while in 

others, there are noticeable discrepancies. The forecasting model provides a general sense of the 

production trend for Paddy but struggles with accurately predicting extreme changes. The forecast 

stabilizes future production, which might oversimplify the dynamics of agricultural production 

influenced by factors like climate, policy, and market conditions. Refining the model with 

additional variables or enhancing the methodology could improve accuracy, especially for 

capturing sharp variations in production. The forecasting model captures the general trend of Ragi 

production but struggles with periods of high volatility. Future adjustments to the model, such as 

incorporating additional variables or using more robust techniques, could improve accuracy, 

particularly during periods of extreme variability. Ragi demonstrates more resilience and 

consistent growth, whereas Paddy shows variability and slower recovery, signalling the need for 

specific attention to enhance its yield. 

References 

[1] Barkley Rosser, J. Jr, Richard, and Sheehan, G. (1995). A Vector Autoregressive Model of the

Saudi Arabian Economy, Journal of Economics and Business, 47: 79 – 90. 

[2] Dickey, D. A, and Fuller, W, A. (1979). Distribution of the Estimators for Autoregressive

Time Series With a Unit Root. Journal of the American Statistical Association, 74(366): 427-431. 

[3] Dickey, D. A, and Fuller, W, A. (1981). Likelihood Ratio Statistics for Autoregressive Time

Series with a Unit Root. Econometrica, 49(4): 1057-1072. 

[4] Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-

spectral Methods. Econometrica, 37(3): 424–438. 

[5] Granger, C. W. J. and Newbold, P. (1974). Spurious Regressions in Econometrics. Journal of

Econometrics, 2(2): 111–120. 

[6] Granger, C. W. J. (1988). Some Recent Development in a Concept o f Causality. Journal of

Econometrics, 39(1-2): 199-211. 

[7] Hamzah, L. M, Nabilah, S. U, Russel, E, Usman, M, Virginia, E. and Wamiliana, (2020),

Dynamic Modelling and Forecasting of Data Export of Agricultural Commodity by Vector 

RT&A, No 1 (82) 
Volume 20, March 2025 

90



R. Kamalanathan, A. Sheik Abdullah*, A. Jawahar Farook
VAR MODEL FOR FORECASTING AGRICULTURAL PRODUCTION
USING PYTHON PROGRAMMING

Autoregressive Model, Journal of Southwest Jiaotong University, 55(3): 1-10. 

[8] Jawahar Farook, A. and Senthamarai Kannan, K. (2014). Climate Change Impact on Rice

Yield in India – Vector Autoregression Approach, Sri Lankan Journal of Applied Statistics, 16(3): 161-

178. 

[9] Johansen, S. (1988). Statistical Analysis of Cointegration Vectors. Journal of Economic

Dynamics and Control, 12(2-3): 231–254. 

[10] Lee. B. S. (1992). Causal Relations Among Stock Returns, Interest Rates, Real Activity, and

Inflation. The Journal of Finance, 47(4): 1591-1603. 

[11] Lütkepohl, H. (2008). Impulse Response Function. The New Palgrave Dictionary of Economics,

1–5. 

[12] Runkle, D. E. (1987). Vector Autoregressions and Reality. Journal of Business & Economic

Statistics, 5(4): 437-442. 

[13] Sasikumar, R. and Sheik Abdullah, A. (2017). Vector Autoregressive Approach for Impact

of Oil India Stock Price on Fuel Price in India. Communications in Statistics: Case Studies, Data 

Analysis and Applications, 3(1-2): 41-47. 

[14] Stock, J. H. and Watson, M. W. (2001). Vector Autoregressions. Journal of Economic

Perspectives, 15(4): 101–115. 

[15] Waggoner, D. F. and Zha T. (1999). Conditional Forecasts in Dynamic Multivariate Models.

The Review of Economics and Statistics, 81(4): 639-651. 

[16] Zivot, E. and Wang, J. Modeling Financial Time Series with S-Plus®, Springer

Science+Business Media New York, 2003. 

RT&A, No 1 (82) 
Volume 20, March 2025 

91



Kamala Aliyeva 
APPLICATION OF FUZZY DYNAMIC GROUP MULTI-CRITERIA 
DECISION MAKING BASED ON Z-NUMBERS 

APPLICATION OF FUZZY DYNAMIC GROUP MULTI-

CRITERIA DECISION MAKING BASED ON Z-NUMBERS 

Kamala Aliyeva 
• 

Azerbaijan State Oil and Industry University 
kamala.aliyeva@asoiu.edu.az 

Abstract 

Dynamic group multi-criteria decision making is essential for making informed, balanced, and 

adaptive decisions in complex and evolving environments. By integrating multiple methodologies 

and considering the dynamic nature of criteria and group interactions, dynamic group multi-criteria 

decision making provides a robust framework for decision-making across various fields and 

applications. Dynamic group fuzzy multi-criteria decision making under Z-information is a 

sophisticated approach that incorporates the dynamic aspects of decision making, the involvement of 

multiple stakeholders, and the use of fuzzy logic to handle uncertainties and imprecise information. 

Z-information refers to a type of uncertain information that combines fuzzy numbers and Z-numbers,

where Z-numbers account for both the reliability of the information and its fuzziness. By integrating

fuzzy logic and Z-numbers, it effectively handles dual uncertainties of fuzziness and reliability, while

dynamically adapting to changes in criteria and stakeholder preferences. In this article, a dynamic

multi-criteria decision-making model is proposed to solve strategic vendor selection problems that

need to be evaluated in different time periods and involve uncertainty. Z-information is used to

express uncertainty and in the proposed model, the decision-making group is asked to evaluate the

alternatives in different time periods, and the evaluations made for these different periods are

combined.

Keywords: Fuzzy logic, Z-numbers, multi-criteria decision making, vendor 
selection, dynamic group decision making 

I. Introduction

Dynamic group multi-criteria decision making is a decision-making process that involves 
multiple criteria, stakeholders, and evolving scenarios over time. This     approach integrates the 
complexities of group dynamics, changing environments, and various criteria that must be 
considered to reach an optimal decision. Multi-criteria decision making is indeed a critical branch in 
management science [1]. It involves evaluating and making decisions based on multiple conflicting 
criteria. This complexity is inherent in various real-world problems where decision-makers must 
consider several factors to arrive at the best possible solution [2]. A feature of several practical 
problems of multicriteria choice on a finite set of alternatives is not only a significant number of 
criteria and restrictions of various types, but also the presence of dependencies between the criteria, 
which appear when formalizing the preferences of the decision maker [3]. Additional difficulties 
arise when comparing qualitative criteria specified, for example, in linguistic scales [4]. Successful  
solution to the methodological and algorithmic problems that arise when forming a preference 
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function based on criteria of various types was implemented during the development of dynamic 
multi-criteria decision-making approach [5]. The information used in the decision-making process 
of many multi-criteria decision-making problems generally belongs to the same time period. When 
evaluating alternatives and criteria, the same time period, that is, the time period in which the 
evaluation is made, is taken into account. However, in some cases, it is necessary to evaluate the 
current performance of the alternatives as well as their performance in previous time periods. For 
example, the information required for decision making in investment decisions, medical diagnosis, 
personnel evaluation, and evaluation of the effectiveness of military systems must be collected in 
different time periods. For this purpose, Xu and Yager developed dynamic multi-criteria decision-
making procedures based on fuzzy sets and dynamic fuzzy weighted environment operator for 
combining information collected in different time periods [6]. This authors also proposed a dynamic 
intuitionistic fuzzy multi-attribute decision making process in which all criteria are explained by 
intuitionistic fuzzy numbers collected at different periods. The authors defined intuitionistic fuzzy 
and imprecise intuitionistic fuzzy variables and used the intuitionistic fuzzy weighted environment 
operator when all decision information about attributes in different periods is represented by 
intuitionistic fuzzy numbers. Su et al. investigated the    dynamic intuitionistic fuzzy multi-attribute 
group decision making problem. In this study, evaluations are made using fuzzy sets by a group of 
decision makers in different periods [7]. The authors present an interactive method for solving 
intuitionistic fuzzy multi-attribute group decision making problems. In this method, firstly, decision 
makers use intuitionistic fuzzy set-in different periods for evaluation alternatives. Dynamic multi-
criteria decision making is particularly relevant in environments where information and 
circumstances continuously change, necessitating ongoing reassessment and adjustment of 
decisions [8]. Exploring dynamic multi-criteria decision making involves understanding how 
decision-making processes can adapt to changes over time, incorporating evolving criteria, 
preferences, and conditions [9]. Dynamic multi-criteria decision making is an advanced approach 
that integrates the temporal evolution of criteria and preferences, allowing for more flexible, 
adaptive, and robust decision-making processes. By leveraging methodologies such as dynamic 
AHP [10], dynamic TOPSIS [11], and fuzzy logic [12], and by continuously incorporating real-time 
data and feedback, dynamic MCDM can significantly enhance decision quality in complex, changing 
environments across various fields. The decision-making environment is usually uncertain due to 
some uncontrollable factors. Lots of applications in the real world are researched based on 
uncertainty, such as fault diagnosis [13] and reliability analysis [14]. To cope with such uncertainty, 
many tools have been put forward, including fuzzy set [15], evidence theory [16], linguistic in-
formation [17] and Z-numbers [18]. Dynamic decision-making with Z-numbers is an advanced 
approach that incorporates the uncertainty and reliability of information in evolving scenarios. Z-
numbers, introduced by Lotfi A. Zadeh, are an extension of fuzzy numbers that consider both the 
fuzzy value of a piece of information and its reliability [19]. Dynamic decision-making with Z-
numbers is an advanced approach to decision-making that incorporates both uncertainty and 
reliability in information. It provides a robust framework for handling uncertainty and reliability in 
evolving scenarios. This framework is particularly useful in dynamic decision-making scenarios, 
where conditions evolve over time and decision-makers must handle both vague information and 
varying degrees of trust in that information. By incorporating both the fuzzy value and reliability of 
information, this approach allows for more adaptive and informed decision-making. It is 
particularly valuable in complex and dynamic fields such as vendor selection, where continuous 
updates and adjustments are necessary to respond to changing conditions and new data. 

The structure of this article is formed as follows. Section 2 introduces the basic definitions of the 
dynamic fuzzy multi-attribute decision making approach with Z numbers that is employed in this 
problem.  Section 3 proposed statement and solution of the supplier selection problem. Section 4 
represents the main results achieved in this article. 
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II. Preliminaries

Definition 1. Z-numbers extend the concept of fuzzy numbers to include both the uncertainty of 

a value and the reliability of that value. A Z-number ( ),Z A B= consists of two components - A  is a

fuzzy number representing an uncertain value, B  is fuzzy number representing the reliability of  A

[19].  
Definition 2. Basic operations on Z numbers represented as below [20]. Suppose are given two 

Z numbers, ( ) ( )( )1 1 1 1 1 1 1, , , , ,l m u l m uz a a a b b b=  and ( ) ( )( )2 2 2 2 2 2 2, , , , ,l m u l m uz a a a b b b= . 

( )(

     ( )

1 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

, , ,

max , ,max , ,max ,

l l m m u u
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z z a a a a a a

b b b b b b b b b b b b

     + = + + +
 (1) 
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     ( )
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      =
  (2) 

( ) ( )( )1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , 0m u l m uz a a a r r r r r r    =    (3) 

( ) ( ) ( )( ) ( )( )1 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , 0l m u l m uz a a a b b b b b b
      = 

Definition 3. Z-number-valued pairwise comparison matrix ( )ijZ is a matrix of Z-numbers [21]: 

11 11 11 1 1 1

1 1 1

( , ) ... ( , )

( ( , )) . ... .

( , ) ... ( , )

n n n

ij ij ij

n n n nn nn nn
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= =  
 = = 

 (4) 

A Z-number ( , ), , 1,...,ij ij ijZ A B i j n= = describes partially reliable information on degree of

preference for i-th criterion against j-th one. A  and B  can be linguistic terms selected from linguistic 
set 

ZA and ZB , respectively. For example,

   1 2 3 4, , , , , ,Z ZA about a nearly a exactly a over a and B very low sure low sure shure very sure= =

where ( )1, ,4ia i =  can be certain values of evaluation, such as percentages. 

Let 
ijD D =    be the decision-making matrix, where ijD is the evaluation of any alternative with

respect to each attribute. ( ),ij ijD Z A B=  and the Z-number ( ), , 1,2, , , 1,2, ,ijZ A B i m j n= =  is the

evaluation of the j - th criteria for i - th alternative, which contains the opinion of evaluators, A , 

and reliability of the opinion, B . Thus, the decision-making problem can be modelled as below. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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11 11 11

, , ,

, , ,

, , ,

Z A B Z A B Z A B

Z A B Z A B Z A B
D

Z A B Z A B Z A B

 
 
 
 =
 
 
 
 

(5)
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Definition 4.  Assume ( ) ( )( )1 1 1 1 1 1 1, , , , ,l m u l m uz a a a b b b=  and ( ) ( )( )2 2 2 2 2 2 2, , , , ,l m u l m uz a a a b b b=

are Z -numbers, then normalize their second components as below [21]. 

( ) ( )( )1 1 1 1 1 1 1 1 1 1, , , , ,l m u l m uz a a a b b b b b b=   (6) 

( ) ( )( )2 2 2 2 2 2 2 2 2 2, , , , ,l m u l m uz a a a b b b b b b=  (7) 

where 
1 1 1 1

l m ub b b b= + + , 
2 2 2 2

l m ub b b b= + +

Definition 5. Let ( ) ( ) ( )1 2, , , pt t t   be the arguments collected from P different periods. 

Weight vector ( )t of the time series ( )1,2, ,kt k p= , introduced a basic unit-interval monotonic 
function based approach to determining ( )t [22]. 

 ( )

1

1

k

P P

k

e e

t
e

 




 
− 

 
=

−
    (8) 

P is size of periods, k is observation of period, and 0 1  . ( )kt show the importance degrees 
of the arguments of the different periods and can reflect the change of the importance degrees of the 
periods.  

Definition 6. A Z-number ( , )Z A B=  is characterized by fuzzy number A , fuzzy number B  and 
an underlying set of probability distributions G  [23]. Distance between Z-numbers 1 2( , )D Z Z

determined as follows. Distance between 1A and 2A is computed as below.

    
1 2 (0,1] 1 2( , ) sup ( , )D A A D A A 

=       (9) 

11 12 21 22

1 2( , )
2 2

A A A A
D A A

   
  + +

= −  (10) 

1A and
2A denote  -cuts of 1A and 2A respectively,

11 12,A A  denote lower and upper bounds of

1A ( 21 22,A A   are those of 
2A ). Distance between 1B and 2B is computed analogously. A distance

between sets 1G and 2G  of probability distributions 1p and 2p can be expressed as  

1

2

1 1 2 2

1

2
1 2 , 1 2( , ) inf (1 ( ) )p G p G

R
D G G p p dx 

 
= − 

 
  (11) 

where the expression in figure brackets is the Hellinger distance between two probability 
distributions 1p and 2p . The use of inf operator implies that among all the possible pairs of
distributions, the pair of the closest 1 1p G and 2 2p G is found to define distance 1 2( , )D G G . Given 

1 2( , )D A A , 1 2( , )D B B and 1 2( , )D G G , the distance for Z-numbers is defined as below.        

1 2 1 2 1 2( , ) ( , ) (1 ) ( , )totalD Z Z D A A D B B = + −  (12) 

1 2( , )totalD B B  is a distance for reliability restrictions which is computed as: 
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1 2 1 2 1 2( , ) ( , ) (1 ) ( , )totalD B B wD B B w D G G= + −  (13) 

, [0,1]w  are DM’s assigned importance degrees. 
        Definition 7. The basic concept of the simple additive weighted method is to find the weighted 
sum of performance ratings on each alternative on all attributes. This method needs the procedure 
of normalization of the decision matrix to a scale suitable to all alternative ratings [23]. The formula 
for normalization represented as follows: 

ij

ij

ij

ij

ij

X

Max X
R

Min X

X





= 




 (14) 

ijR is performance rating, 
ijMax X is maximum value of each row and column, 

ijMin X is 
minimum value of each row. The preference value for each alternative ( iV ) is represented as 
below.  

 
1

n

i j ijj
V W r

=
=  (15) 

iV is final value of the alternative,  
jW  is specified weight, 

ijR is normalization of the matrix. A larger 
value of  iV  indicates that iA alternatives are preferred. 

Definition 8. An inconsistency index K  for Z-number-valued pairwise comparisons method ( )ijZ

is determined as follows [24]: 

( ) ( ) ( )max min 1 , 1 ,
ij ikik

ij
i j k

ij jk jk

Z ZZ
K Z D Z D Z

Z Z Z 

        
   =           

        

 (16) 

where the components of Z-number ( ) ( )1 ,Z A B= are fuzzy singletons 1A=  , 1B = . 
Definition 9. For Z-numbers Z , Z  holds. 

( ) ( )( ) ,  1,1  ,  1,1) (Z Z ZZ if D D    (17) 

where D  is distance defined above, (1,1) is a fuzzy singletons-based Z-number [24]. One can easily 
prove that ≤ is a partial order as it poses the following properties:  
𝑍 ≤ 𝑍 (reflexivity), If 𝑍 ≤ 𝑍′ and 𝑍′ ≤ 𝑍 then 𝑍 = 𝑍′ (antisymmetric) 
If 𝑍 ≤ 𝑍′ and 𝑍′ ≤ 𝑍′′ then 𝑍 ≤ 𝑍′′ (transitivity) 

III. Case Study Example: Strategic vendor selection problem

The strategic vendor selection problem is a critical aspect of supply chain management and 
procurement, involving the evaluation and selection of suppliers that best meet an organization's 
strategic objectives. This problem is inherently multi-criteria and dynamic, as it must consider 
various factors such as cost, quality, delivery performance, technological capability, and more, 
which may change over time. Main steps in strategic vendor selection are problem definition, criteria 
identification, dynamic and multi-criteria approach utilization, data collection, applying 
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appropriate MCDM methodologies to handle the complexity and dynamics of the vendor selection 
process and incorporating Z-numbers to manage uncertainty and reliability in vendor evaluation. 
Problem definition includes defining the strategic goals and objectives of the vendor selection 
process, identifying the criteria that will be used to evaluate potential vendors. Suppose a company 
which wants to select strategic vendor. Decision maker uses dynamic fuzzy multi-attribute decision 
making approach by using Z-numbers for estimation alternatives and criteria [25]. Vendor selection 
is a multi-faceted decision-making process that involves evaluating potential suppliers based on 
various criteria to ensure they align with an organization's strategic goals and operational 
requirements [26].  

Statement of the problem: Suppose, linguistic scale is employed to estimate the performance of 
the vendors A , B , C  in the years 2021, 2022, and 2023 according to the criteria 1C , 2C , 3C , and 4C

with Z numbers. 1C is quality, 2C is flexibility, 3C is sustainability, and 4C is reliability. Quality
criteria include such characteristics as compliance with specifications-the degree to which the 
vendor’s products meet the required specifications and standards, defect rates- the frequency of 
defects or non-conformance in the supplied goods, certifications- quality certifications held by the 
vendor, which indicate adherence to recognized quality management systems. Flexibility is the 
vendor’s ability to respond to changes in demand, market conditions, or buyer requirements, to offer 
customized solutions tailored to the buyer’s specific needs, the capacity to scale operations up or 
down based on the buyer’s needs. Sustainability is the vendor’s practices related to environmental 
sustainability, such as waste management, carbon footprint, and energy use, also, vendor’s 
commitment to social responsibilities, including fair labour practices, community engagement, 
ethical sourcing, and vendor’s adherence to relevant laws and regulations concerning environmental 
and social standards. Reliability is historical performance data including reliability, consistency, and 
ability to meet commitments, the vendor’s reputation in the market, including feedback from other 
customers and industry recognition, and the vendor’s ability to identify, manage, and mitigate risks. 
Dynamic fuzzy multi-attribute decision making is used for selecting the best supplier. Dynamic 
fuzzy multi-attribute decision making refers to a decision-making process that deals with multiple 
criteria or attributes under conditions of uncertainty and vagueness, with the added complexity of 
decision elements changing over time. It is a powerful method for making decisions in environments 
where uncertainty and change are common. By combining fuzzy logic with dynamic weighting, it 
offers a flexible and robust approach to evaluating multiple alternatives over time. It allows decision-
makers to handle uncertainty and vagueness in complex, real-world problems, adapts to changes in 
information or preferences over time, making it more flexible than static models, provides a more 
nuanced and comprehensive framework for evaluating alternatives compared to traditional 
methods. Linguistic scales are often used in fuzzy logic to handle qualitative and imprecise 
information. These scales allow for the representation of subjective judgments using linguistic terms, 
which are then converted into fuzzy numbers for analysis and decision-making. Graphical 
representation of linguistic terms for restriction (first) component of Z-number defined by triangular 
fuzzy numbers that represented in figure 1.   

Figure 1: Linguistic terms for restriction (first) component of Z-number 

Graphical representation of linguistic terms for reliability (second) component of Z-number defined 
by triangular fuzzy numbers is shown in figure 2. 
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Figure 2:  Linguistic terms for reliability (second) component of Z-number 

Solution of the problem:  In dynamic environments, supplier performance and market conditions 
can change over time. Traditional static decision models may not be effective in such scenarios 
because they don't account for the fluctuations and uncertainties that affect the performance of 
suppliers and the broader market. Dynamic approaches allow companies to be more responsive to 
changing supplier conditions and market dynamics, leading to more informed, by accounting for 
variability and uncertainty, dynamic models help reduce risks associated with poor supplier 
performance or unfavourable market conditions. The model incorporates time-dependent changes 
by updating Z-numbers periodically based on new information or performance reviews. Below is 
represented steps of how Z-numbers can be applied in this context. 
Step 1: Construction decision matrices ( )1D t for 2021, ( )2D t for 2022, and ( )3D t for 2023. 
Construction of decision matrix ( )1D t for 2021 represented in table 1. 

Table 1: Decision matrix ( )1D t

Alternatives Criteria iC

1C 2C 3C 4C

A 5, 7, 9; 
0.5,0.6,0.7 

5, 7, 9; 
0.5,0.6,0.7 

3, 5, 7; 
0.3,0.4,0.5 

5, 7, 9; 
0.5,0.6,0.7 

B 3, 5, 7; 
0.4,0.5,0.6 

1, 3, 5; 
0.5,0.6,0.7 

3, 5, 7; 
0.4,0.5,0.6 

3, 5, 7; 
0.4,0.5,0.6 

C 5, 7, 9; 
0.5,0.6,0.7 

5, 7, 9; 
0.5,0.6,0.7 

3, 5, 7; 
0.5, 0.6,0.7 

5, 7, 9; 
0.5,0.6, 0.7 

Construction of decision matrix ( )2D t for 2022 year represented in table 2. 

Table 2: Decision matrix ( )2D t

  Alternatives Criteria iC

1C 2C 3C 4C

A 3, 5, 7; 
0.5,0.6,0.7 

3, 5, 7; 
0.5,0.6,0.7 

1, 3, 5; 
0.5,0.6,0.7 

5, 7, 9; 
0.3,0.4,0.5 

B 5, 7, 9; 
0.3,0.4,0.5 

3, 5, 7; 
0.5,0.6,0.7 

3, 5, 7; 
0.5,0.6,0.7 

3, 5, 7; 
0.5,0.6,0.7 

C 3, 5, 7; 
0.5,0.6,0.7 

5, 7, 9; 
0.3,0.4,0.5 

3, 5, 7; 
0.4,0.5,0.6 

5, 7, 9; 
0.3,0.4,0.5 

Construction of decision matrix ( )3D t for 2023 year represented in table 3. 
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Table 3: Decision matrix ( )3D t  

Alternatives Criteria iC

1C 2C 3C 4C

A 1, 3, 5; 
0.5,0.6,0.7 

3, 5, 7; 
0.5,0.6,0.7 

1, 3, 5; 
0.3,0.4,0.5 

1, 3, 5; 
0.5,0.6,0.7 

B 3, 5, 7; 
0.5,0.6,0.7 

1, 3, 5; 
0.5,0.6,0.7 

3, 5, 7; 
0.4,0.5,0.6 

3, 5, 7; 
0.4,0.5,0.6 

C 5, 7, 9; 
0.3,0.4,0.5 

3, 5, 7; 
0.5,0.6,0.7 

5, 7, 9; 
0.4,0.5,0.6 

3, 5, 7; 
0.4,0.5,0.6 

Step 2. Construction comparative decision matrix of criteria for determining weight of each criterion 
as shown in table 4. 

Table 4: Comparative decision matrix of criteria 

Criteria iC Criteria iC

1C 2C 3C 4C

1C 1, 1, 1; 
0.6, 0.7,0.8 

0.2,0.25,0.33; 
0.5, 0.6, 0.7 

1, 2, 3; 
0.4, 0.5, 0.6 

3, 4, 5; 
0.5, 0.6, 0.7 

2C 3, 4, 5; 
0.5,0.6,0.7 

1, 1, 1; 
0.6, 0.7, 0.8 

4.5, 5, 5.5; 
0.6, 0.7, 0.8 

3, 4, 5; 
0.5, 0.6, 0.7 

3C 0.33, 0.5,1; 
0.4, 0.5,0.6 

0.18,0.2,0.23; 
0.6, 0.7, 0.8 

1, 1, 1; 
0.6, 0.7, 0.8 

0.2,0.25,0.3; 
0.5, 0.6, 0.7 

4C 0.2,0.25,0; 
0.5, 0.6,0.7 

0.2,0.25,0.33; 
0.5, 0.6, 0.7 

3, 4, 5; 
0.5, 0.6, 0.7 

1, 1, 1; 
0.6, 0.7, 0.8 

When considering eigenvalues and eigenvectors in the context of Z-numbers, we deal with matrices 
whose entries are Z-numbers rather than real or complex numbers. The concept extends traditional 
linear algebra into the realm of uncertainty and fuzzy logic. Finding eigenvalues of Z-matrices 
involves solving the characteristic equation in the context of Z-numbers. This means extending the 
concept of determinants and characteristic polynomials to Z-numbers. The computational approach 
often involves the use of algorithms designed for fuzzy systems, where operations on Z-numbers 
are defined and used to compute the eigenvalues and eigenvectors. Once the eigenvalues are found, 
the corresponding eigenvectors are determined by solving the equation Zv v=  for each 
eigenvalue  . In this equation, Z  is n n  matrix,    is a scalar (eigenvalue), and v  is a vector 
(eigenvector).  

Using Z-lab program we determine eigenvalues and weights of criteria [27]. The values of eigen 
vectors are represented below. Weights of criteria determined by defining eigenvalues. 
For 1C - [[0.0447, 0.3966, 0.3967] [0.3923, 0.483, 0.4998]], 
For 2C - [[0.1124, 0.9971, 0.9977] [0.3988, 0.411, 0.4241]], 
For 3C - [[0.0299, 0.2653, 0.2655] [0.442, 0.4709, 0.4877]], 
For 4C - [[0.0266, 0.2357, 0.2362] [0.4348, 0.498, 0.5011]] 
Step 3. Calculation the time weight for each year. In dynamic fuzzy multi-attribute decision making, 
the decision-making process is influenced by the change of time. So, it is important to determine the  
weight of time. In dynamic fuzzy multi-attribute decision making, calculating the time weight for 
each year involves determining the importance or influence of each time period within the decision- 
making horizon. The time weight reflects how much each year's data impacts the final decision. Time 
weight is determined by using function (8)  where P  is size of periods, k  is observation of period, 
and  is argument collected from different P  periods  ( 0 1  ). ( )kt  show the importance 
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degrees of the arguments of the different periods and can reflect the change of the importance 
degrees of the periods. When size of periods ( P ) is 3 and 0.5 =  time weights for different years 
will be calculated as below.  

( )

0.5 1 0.5

3 3

0.5

11

0.28
1 1

k

P P

k

e ee e

t
e e

 




   
−−   

   
= = =

− −
, 

( )2 0.33t = , ( )3 0.39t =

Step 4. Determining weighted decision matrix. The weighted decision matrix is a powerful tool for 
making informed, transparent, and structured decisions. The weighted decision matrix is used to 
make more objective and transparent decisions, especially when multiple factors need to be 
considered, and it’s difficult to rank options based on intuition alone. This matrix helps compare 
alternatives more objectively by considering both the performance of each alternative for each 
criterion and the relative importance of the criteria. By assigning weights and scoring alternatives, 
decision-makers can more easily evaluate multiple options based on the criteria that matter most. 
Each criterion is assigned a weight to reflect its relative importance, and each option is scored against 
these criteria. The option with the highest total score is typically the best choice. A weighted decision 
matrix is determined by multiplying matrix ( )1D t , ( )2D t , ( )3D t into weights of criteria and time
weights. 

Weighted decision matrix of ( )1D t represented in table 5. 

Table 5: Weighted decision matrix of ( )1D t

Alternatives   Criteria iC

1C 2C 3C 4C

A 0.06, 0.78, 0.9;  
0.23, 0.32, 0.38 

0.16,1.95, 2.5; 
0.23, 0.28,0.32 

0.03,0.37, 0.52; 
0.17, 0.22, 0.28 

0.04, 0.46, 0.6; 
0.25, 0.33, 0.38 

B 0.04,0.56,0.7; 
0.19,0.27,0.33 

0.03, 0.84, 1.4;  
0.23, 0.28, 0.32 

0.03,0.37, 0.52; 
0.21, 0.27, 0.32 

0.02,0.33, 0.46; 
0.21, 0.28, 0.33 

C 0.06,0.78,1;  
0.23, 0.32, 0.38 

0.16, 1.95, 2.51; 
0.23, 0.28, 0.32 

0.03,0.37, 0.52; 
0.25, 0.31, 0.37 

0.04, 0.46, 0.6; 
0.25, 0.33, 0.38 

Weighted decision matrix of ( )2D t represented in table 6. 

Table 6: Weighted decision matrix of ( )2D t

Criteria iC

Alternatives 1C 2C 3C 4C

A 0.04,0.65,0.92; 
0.23,0.32, 0.38 

   0.11,1.65, 2.30; 
   0.23, 0.28, 0.32 

0.01, 0.26, 0.44; 
0.25, 0.31, 0.37 

0.04,0.54,0.7; 
0.16,0.23,0.28 

B 0.07,0.92,1.18; 
0.15,0.22, 0.28 

   0.11, 1.65, 2.3;  
   0.23, 0.28, 0.32 

0.03, 0.44, 0.61; 
0.25, 0.31, 0.37 

0.03,0.39,0.55; 
 0.25,0.33,0.38 

C 0.04,0.65,0.92; 
0.23,0.32, 0.38 

   0.19, 2.3, 2.4; 
   0.16, 0.2, 0.24 

0.03, 0.44, 0.61; 
 0.21, 0.27, 0.32 

0.04,0.54,0.7; 
0.16,0.23, 0.28 

Weighted decision matrix of ( )3D t represented in table 7. 
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Table 7: Weighted decision matrix of ( )3D t  

Criteria iC

Alternatives 1C 2C 3C 4C

A 0.02,0.46,0.77; 
 0.23,0.32,0.38 

   0.13,1.94,2.72; 
   0.23,0.28, 0.32 

 0.01,0.31,0.52;  
 0.17, 0.22, 0.28 

    0.01,0.28, 0.46; 
 0.25, 0.33, 0.38 

B 0.05,0.77,1.08; 
0.23,0.32, 0.38 

   0.04, 1.17, 1.95; 
   0.23, 0.28, 0.32 

 0.03,0.52, 0.72; 
 0.21, 0.27, 0.32 

    0.03,0.46, 0.64; 
    0.21, 0.28, 0.33 

C 0.09,1.08,1.39; 
0.15,0.22, 0.28 

   0.13,1.94, 2.72; 
   0.23, 0.28, 0.32 

0.06,0.72, 0.93; 
0.21, 0.27, 0.32 

    0.03,0.46, 0.64; 
    0.21, 0.28, 0.33 

Step 5. Aggregating decision matrices from different years is a way to combine decision-making data 
across multiple time periods to make more informed, long-term decisions. Aggregation of decision 
matrixes of different years represented in table 8. 

Table 8: Aggregated decision matrix 
Criteria iC

Alternatives 1C 2C 3C 4C

A 0.12,1.89,2.69; 
 0.01, 0.05, 0.05 

0.4, 5.54, 7.53; 
0.01, 0.03,0.04 

0.05,0.94,1.48;  
0.01, 0.02, 0.09 

0.09, 1.28, 1.76; 
0.01, 0.03, 0.06 

B 0.16,2.25, 3.04; 
0.11, 0.15, 0.16 

0.18,3.66,5.65; 
0.01, 0.03,0.04 

0.09,1.33,1.85; 
0.02,0.05, 0.07 

0.08, 1.18, 1.65; 
0.06, 0.08, 0.1 

C 0.19,2.51, 3.31; 
 0.01, 0.02, 0.05 

0.48, 6.19, 7.63; 
0.1, 0.2, 0.3 

0.12, 1.53,2.06; 
0.07, 0.09, 0.13 

0.11, 1.46, 1.94; 
0.01, 0.02, 0.05 

Step 6. Normalizing aggregated decision matrix. Normalizing an aggregated decision matrix is an 
important step in multi-criteria decision-making processes. Normalization ensures that all criteria 
are comparable, especially when different criteria are measured on different scales (e.g., cost in 
dollars, quality in ratings, time in hours). This process converts the values of each criterion to a 
common scale, typically between 0 and 1, so that each criterion contributes proportionally to the 
final decision. It eliminates issues caused by different scales of measurement for different criteria, 
ensures each criterion contributes proportionally to the decision, preventing any single criterion 
from dominating because of its scale. 

Normalized matrix represented as below. 

Z_E_1_1- [[0.5696, 0.78, 0.9982], [0.01, 0.05, 0.07]] 
Z_E_1_2- [[0.5422, 0.75, 0.9708], [0.01, 0.03, 0.04]] 
Z_E_1_3- [[0.0, 0.0, 0.0, 0.0], [0.48, 0.48, 0.48, 0.49]] 
Z_E_1_4- [[0.5643, 0.78, 0.9929], [0.01, 0.03, 0.06]] 

Z_E_2_1- [[0.59, 0.92, 1.0], [0.45, 0.48, 0.49]] 
Z_E_2_2- [[0.01, 0.21, 0.4274], [0.01, 0.03, 0.04]] 
Z_E_2_3- [[0.01, 0.012, 0.013], [0.48, 0.48, 0.49]] 
Z_E_2_4- [[0.59, 0.84, 1.0, 1.0], [0.45, 0.48, 0.48, 0.49]] 

Z_E_3_1- [[0.5488, 0.92, 0.9774], [0.01, 0.02, 0.05]] 
Z_E_3_2- [[0.532, 0.6392, 0.8534, 0.9606], [0.01, 0.02, 0.02, 0.03]] 
Z_E_3_3- [[0.5372, 0.75, 0.9657], [0.07, 0.09, 0.13]] 
Z_E_3_4- [[0.55, 0.76, 0.9827], [0.01, 0.02, 0.05]] 
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Table 9: Normalizing aggregated decision matrix 
Criteria iC

     Alternatives 1C 2C 3C 4C

A 0.57,0.78,0.99; 
0.01,0.05,0.07 

0.54,0.5, 0.97; 
 0.01, 0.03, 0.04 

0.01,0.012,0.013; 
0.48, 0.481, 0.49 

0.56, 0.78, 0.99; 
0.01, 0.03, 0.06 

B 0.59, 0.92, 1.0;  
0.45, 0.48, 0.49 

0.01,0.21,0.43; 
0.01, 0.03, 0.04 

0.01,0.012,0.013; 
0.48, 0.481, 0.49 

0.59, 0.92, 1.0; 
0.45, 0.48, 0.49 

C 0.55, 0.76, 0.98; 
0.01, 0.02, 0.05 

0.53,0.75,0.96;  
0.01, 0.02, 0.03 

0.54, 0.64, 0.96; 
0.07, 0.09, 0.13  

0.55, 0.76, 0.98; 
0.01, 0.02, 0.05 

Step 7. Using the SAW method, we get values for alternatives that are represented below. 
A = [[1.67, 2.32, 2.96], [0.001, 0.01, 0.02]] 
B = [[1.18, 2.05, 2.43], [0.001, 0.0011, 0.0012]] 
C = [[2.17, 3.03, 3.89], [0.001, 0.0011, 0.0012]] 
Step 8. Determining Hellinger distance for each alternative. 
Hellinger distance between Alternative A   and Z (1) is 2.1301350044600897 
Hellinger distance between Alternative B and Z (1) is 2.015349684037576 
Hellinger distance between Alternative  C and Z (1) is 2.2936502538885915 

2.13A = , 2.01B = , 2.29C =

Comparison of alternatives represent that alternative B  is best alternative. 

IV. Conclusion

The strategic vendor selection problem refers to the process of choosing suppliers or vendors 
that align with a company’s long-term strategic goals, rather than focusing solely on short-term 
needs like price or availability. Vendor selection is a critical decision that affects various aspects of 
an organization, including cost efficiency, product quality, innovation capacity, supply chain 
stability, and overall competitiveness. It requires a comprehensive and adaptive approach to handle 
the complexity and dynamics of modern supply chains. By integrating dynamic MCDM with Z-
numbers, organizations can better manage uncertainty, incorporate real-time data, and continuously 
refine their vendor selection process. This approach ensures that the chosen vendors align with the 
organization's strategic goals and can adapt to changing conditions over time. In most of the 
methods developed to solve MCDM problems, the evaluation of alternatives is done over a certain 
period. However, in some MCDM problems, considering only the current performance of the 
alternatives may cause errors. For this reason, dynamic MCDM model with uncertainty factor was 
developed in the study, which allows the evaluation of alternatives in different time periods. Z-
numbers theory was used to eliminate and express the uncertainty in the MCDM model and, it 
provides a closer evaluation to the human thinking structure. SAW methodology was used to select 
the most appropriate alternative. The proposed dynamic MCDM under model Z-information was 
applied as an example. The example showed that this model can be easily applied to MCDM 
problems and produce effective results. In today's competitive environment, selecting the right 
vendor is critical for the success of production systems. Dynamic fuzzy multi-attribute decision 
making utilization Z-numbers offers a sophisticated approach to handle the inherent uncertainties 
and complexities involved in this process. Dynamic fuzzy multi-attribute decision making approach 
is used to estimate the vendors  A , B , C   in the years 2021, 2022, and 2023 according to the criteria 

1C , 2C , 3C and 4C  with Z numbers.  1C  is technical capability, 2C is quality, and 3C  is customer 
support and 4C is reliability. Using Z-numbers in dynamic fuzzy multi-attribute decision making 
enhances the vendor selection process by effectively managing uncertainty and ensuring that 
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decisions are based on reliable information. Comparison of alternatives represent that alternative B

is best alternative for vendor selection.  

References 
[1] Aruldoss, M., Lakshmi, M.T., and Venkatesan, V.P. (2013). A survey on multi criteria

decision making methods and its applications, American Journal of Information Systems, 1: 31-43. 
[2] Velasquez, M., and Hester, P.T. (2013). An analysis of multi-criteria decision-making

methods, International Journal of Operations Research, 10(2): 56-66. 
[3] Ceballos, B., Lamata, M.T., and Pelta, D.A. (2016). A comparative analysis of multi-criteria

decision-making methods,  Progress in Artificial Intelligence, 5 (4): 315–322. 
[4] Saaty, T.L.  Decision Making with Dependence and Feedback, The Analytic Network Process,

RWS Publications, 1996. 
[5] Chen, Y., and Li, B. (2011). Dynamic Multi-Attribute Decision Making Model Based On

Triangular İntuitionistic Fuzzy Numbers, Scientia Iranica B, 18 (2): 268–274. 
[6] Xu, Z., and Yager, R.R. (2008). Dynamic Intuitionistic Fuzzy Multi-Attribute Decision

Making, International Journal of Approximate Reasoning, 48 (1): 246–262. 
[7] Su, Z., Chen, M., Xia, G., and Wang, L. (2011). An Interactive Method for Dynamic

Intuitionistic Fuzzy Multi-Attribute Group Decision Making, Expert Systems with Applications, 38 
(12): 15286–15295.  

[8] Fei L., and Feng Y. (2021). A dynamic framework of multi-attribute decision making under
Pythagorean fuzzy environment by using Dempster-Shafer theory, Engineering Applications of 

Artificial Intelligence, 101, 104213.  
[9] Gao Y., and Li D. (2019).  A consensus model for heterogeneous multi-attribute group

decision making with several attribute sets, Expert Systems with Applications, 125, (1): 69-80. 
[10] González-Prida, V., Barberá, L., Viveros, P., and Crespo A. (2012). Dynamic Analytic

Hierarchy Process: AHP method adapted to a changing environment, IFAC Proceedings Volumes, 45 
(31): 25-29. 

[11] Yang, P., Liu, X., and Xu, G. (2018). A dynamic weighted TOPSIS method for identifying
influential nodes in complex networks, Modern Physics Letters B, 32 (19). 

[12] Wang, J., Nie, R., Zhang, H., Chen, X. (2013). Intuitionistic Fuzzy Multi-Criteria Decision-
Making Method Based on Evidential Reasoning, Applied Soft Computing, 13 (4): 1823-1831. 

[13] Yang, Y., and Han, D. (2016). A new distance-based total uncertainty measure in the theory
of belief functions, Knowledge Based Systems, 94: 114-123. 

[14] Pang, B., and Bai, S. (2013). An integrated fuzzy synthetic evaluation approach for supplier
selection based on analytic network process, Journal of Intelligent Manufacturing, 24 (1): 163–174. 

[15] Chen, C.-T., Lin, C.-T., and Huang, S.-F. (2006). A fuzzy approach for supplier evaluation
and selection in supply chain management, International Journal of Production Economics, 102: 289–
301.  

[16] Hwang, C.L., and Yoon, K. Multiple attributes decision making methods and applications,
Springer-Verlag, 1981. 

[17] Kahraman, C., Cebeci, and U., Ulukan, Z. (2003). Multi-criteria supplier selection using
Fuzzy AHP, Logistics Information Management, 16 (6):382–394. 

[18] Aliyeva, K.R. (2019). Eigen solution of 2 by 2 Z-matrix, International Conference on Theory

and Application of Soft Computing, Computing with Words and Perceptions: 758-762. 
[19] Zadeh, L.A. (2011). A Note on a Z-Number, Journal of Information Sciences, 181: 2923-2932.
[20] Aliev, R.A., Alizadeh A.V., and Huseynov O.H. (2015). The arithmetic of discrete Z-

numbers, Information Sciences, 290 (1): 134-155. 

RT&A, No 1 (82) 
Volume 20, March 2025 

103

https://www.researchgate.net/journal/Progress-in-Artificial-Intelligence-2192-6360?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
https://www.sciencedirect.com/journal/expert-systems-with-applications
file:///C:/Users/BA%20Programs/Desktop/vol.%20125


Kamala Aliyeva 
APPLICATION OF FUZZY DYNAMIC GROUP MULTI-CRITERIA 
DECISION MAKING BASED ON Z-NUMBERS 
[21] Aliev R.A., Guirimov B. G., Huseynov O. H., and Aliyev, R. R. (2021). “A consistency-

driven approach to construction of Z-number-valued pairwise comparison matrices”, Journal of 

Fuzzy Systems, 18 (4), pp.37-49.  
[22] Xu Z. S. (2009). A method based on the dynamic weighted geometric aggregation operator

for dynamic hybrid multi-attribute group decision making, International Journal of Uncertainty 

Fuzziness and Knowledge-Based Systems, 17: 15-33.  
[23] Aliev R., Huseynov O., and Aliyeva K. (2016). Z-valued t-norm and t-conorm operators-

based aggregation of partially reliable information, Procedia Computer Science, 102: 12-17. 
[24] Aliyeva, K., Aliyeva, A., Aliyev, R., and Özdeşer M. (2023). Application of Fuzzy Simple

Additive Weighting Method in Group Decision-Making for Capital Investment, Axioms, 12 (8), 797.  
[25] Aliev, R.A., Aliev, R.R., Guirimov B., and Uyar K. (2007). Dynamic data mining technique

for rules extraction in a process of battery charging, Applied Soft Computing, 8 (3). 
[26] Weber, C.A., Current, J.R., and Benton, W.C. (1991). Vendor selection criteria and methods,

European Journal of Operational Research, 50: 2-18. 
[27] Aliyeva, K.R. (2019). Toward eigenvalues and eigenvectors of matrices of Z-numbers,

International Conference on Theory and Application of Soft Computing, Computing with Words and 

Perceptions: 309-317. 

RT&A, No 1 (82) 
Volume 20, March 2025 

104

https://www.sciencedirect.com/journal/procedia-computer-science
https://www.sciencedirect.com/journal/procedia-computer-science/vol/102/suppl/C


P. Kumar, L. P. Sapkota and V. Kumar
A NEW CLASS OF COS-G FAMILY OF DISTRIBUTIONS

A NEW CLASS OF COS-G FAMILY OF DISTRIBUTIONS
WITH APPLICATIONS

Pankaj Kumar
1, Laxmi Prasad Sapkota

∗2
and Vijay Kumar

3

•
1,3Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur, India

2Department of Statistics, Tribhuvan University, Tribhuvan Multiple Campus, Palpa, Nepal
1pankajagadish@gmail.com, 2laxmisapkota75@gmail.com, 3vkgkp@rediffmail.com

Abstract

This paper introduces a novel family of probability distributions, termed the Cos-G family, which is
derived from a trigonometric transformation approach. We present the general structural properties of
this family and focus on one of its unique members. This newly proposed distribution, formulated from
the inverse Weibull distribution, exhibits flexible hazard rate shapes, including reverse-J, increasing, and
inverted bathtub forms. We investigate its fundamental statistical properties and employ the maximum
likelihood estimation method to estimate its parameters. The performance of the estimation technique is
assessed through a Monte Carlo simulation, revealing that biases and mean square errors decrease as
sample size increases, ensuring reliable parameter estimation even for small samples. To illustrate its
practical applicability, we fit the suggested model to three real-world datasets and compare its performance
against existing models using various goodness-of-fit measures and model selection criteria. The results
confirm the superiority of the proposed model in capturing complex data structures.

Keywords: Cos-G distribution, Inverse Weibull, Moment, Estimation, Goodness of fit.

1. Introduction

Real-world events are frequently studied using statistical distributions. Both novel developments
for their application and the theory of statistical distributions are thoroughly researched. To
explain a variety of real-world phenomena, several families of distributions have been developed.
In fact, this fresh advancement in distribution theory is an ongoing practice. The majority of
probability distributions suggested in the literature have a lot of parameters, which gives the
model more adaptability. Some authors claim that it is challenging to acquire these estimates using
numerical resources [1]. For modeling actual data, it is better to develop models with a limited
number of parameters and a high level of flexibility. A team of scientists made the decision to use
trigonometric functions to seek novel distributions in order to achieve this objective. Trigonometric
models have gained popularity among scholars in recent years due to their adaptability and
ability to be understood mathematically. Souza et al. [2] suggested a new class of trigonometric
cosine distribution with a bathtub-shaped or increasing failure rate function called the Cos-G
Class of distribution with base parameters (ω > 0) among the various trigonometric G-family.
The cumulative distribution function (CDF) for the Cos-G class of distribution are

F(x; ω) = −

π
2 K(x;ω)∫

0

sin(t)dt =1 − cos
[π

2
K(x; ω)

]
; x ∈ ℜ.

Souza et al. [3] utilized a similar methodology to propose the Sin-G family of distributions
and include the Sin-Inverse Weibull distribution in the Sin-G class. Similarly, Souza et al. [4]
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introduced a new Tan-G class with an increasing failure rate function or bathtub-shaped failure
rate function, and focused on examining the Tan-BXII distribution as a member. A CDF exists for
both the Sin-G and Tan-G classes of distributions.

F(x; ω) =

π
2 K(x;ω)∫

0

cos(t)dt = sin
[π

2
K(x; ω)

]
; x ∈ ℜ.

F(x; ω) =

π
4 K(x;ω)∫

0

sec2(t)dt = tan
[π

4
K(x; ω)

]
; x ∈ ℜ.

where K(x; ω) is the CDF of any parent distribution and ω is the vector of parameters of the
parent distribution. The new sin-G family was created by [5], who also studied the sin-inverse
Weibull model in specific. The CDF of the novel sin-G family of distribution are

F(x; ω) =

π
4 K(x;ω)(K(x;ω)+1)∫

0

cos(t)dt = sin
[π

4
K(x; ω)(K(x; ω) + 1)

]
; x ∈ ℜ.

Also, Chesneau and Jamal [6] have defined the sine Kumaraswamy-G family of distributions as
having two extra parameters to this family. Muhammad et al. [7] have defined the exponentiated
sine-G family and analyzed the particular distribution as an exponentiated sine-Weibull distribu-
tion. Another trigonometric function-related probability model introduced by [8] is called arctan
generalized exponential distribution. Using the sine-G family of distribution [9] have developed a
new two-parameter model called sine Burr XII distribution. A new family of distributions related
to the Sine function was developed by [10] and used with medical data. As a result, we have
observed that the simple functions have a trigonometric distribution and are tractable formally
see [3]. Additionally, without the use of any extra parameters, the sine transformation can signifi-
cantly increase G(x) flexibility [6]. We are drawn to the cosine metamorphosis family because
of these appealing qualities. In this research, we created a new family of trigonometric models
using the cosine function, which we named the new class of cos-G family (NCC-G) of distributions.

This study is divided into several sections. In Section 2, we introduce the methodology of
model development and key functions of the family of distributions. Section 3 presents some
general properties of the NCC-G family, while Section 4 discusses methods of estimation. In
Section 5, we introduce a specific member of the NCC-G family and present a detailed study, and
in the application Section6, we provide the application of this model using three real datasets.
Finally, Section 7 contains the conclusion.

2. The NCC-G family of Distribution (NCC-G FD)

In this study, a new family of distributions called NCC-G is suggested using the T-X approach
as defined by [11]. Consider a baseline CDF, represented by G(x; ξ), and a vector of associated
parameters, denoted by ξ > 0. The ratio of G(x; ξ) and 1 + G(x; ξ) can be treated as a function of
the new family of distributions. For further information, refer to [12]. Mathematically it can be
expressed as G(x;ξ)

1+G(x;ξ) → 0 as G(x; ξ) → 0; G(x;ξ)
1+G(x;ξ) → 1

2 as G(x; ξ) → 1 The CDF F(x; ξ) of the
NCC-G family of distributions is defined as

F(x; ξ) = −

π
G(x;ξ)

1+G(x;ξ)∫
0

sin(t) = 1 − cos
[

π
G(x; ξ)

1 + G(x; ξ)

]
; x ∈ ℜ. (1)

Differentiating the Equation (1), the PDF f (x; ξ) of the family can be written as

f (x; ξ) = π sin
[

π
G(x; ξ)

1 + G(x; ξ)

]
g(x; ξ)

(1 + G(x; ξ))2 ; x ∈ ℜ. (2)
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2.1. Survival Function

The survival function of NCC-G FD is presented as

R(x; ξ) = 1 − F(x; ξ) = cos
[

π
G(x; ξ)

1 + G(x; ξ)

]
; x ∈ ℜ.

2.2. Hazard Function

The Hazard function of NCC-G FD can be expressed as

H(x; ξ) =
f (x; ξ)

R(x; ξ)
= π sin

[
π

G(x; ξ)

1 + G(x; ξ)

]
g(x; ξ)

(1 + G(x; ξ))2

[
cos

(
π

G(x; ξ)

1 + G(x; ξ)

)]−1

; x ∈ ℜ.

2.3. The Quantile Function

The quantile function is useful in statistical analysis and modeling, as it provides a way to
estimate percentiles and other summary statistics of a probability distribution. Suppose Q(p) is
the smallest value of X for which the probability that X ⩽ to that value is at least p. The quantile
function Q(p; ξ) of CDF F(x; ξ) of NCC-G FD can be obtained as

Q(p; ξ) = G−1
[

cos−1(1 − p)
π − cos−1(1 − p)

]
; p ∈ (0, 1) . (3)

Using equation (3) we can calculate the median, upper and lower quartile, quartile deviation
(QD), coefficient of QD, skewness, and kurtosis, which are presented in Table 1.

Table 1: Various measures based on quantiles of NCC-G FD

Statistics Expressions

Median G−1
[

cos−1(0.5)
π−cos−1(0.5)

]
Lower Quartile G−1

[
cos−1(0.75)

π−cos−1(0.75)

]
Upper Quartile G−1

[
cos−1(0.25)

π−cos−1(0.25)

]
QD 1

2

[
G−1

(
cos−1(0.25)

π−cos−1(0.25)

)
− G−1

(
cos−1(0.75)

π−cos−1(0.75)

)]
Coefficient of QD

[
G−1

(
cos−1(0.25)

π−cos−1(0.25)

)
−G−1

(
cos−1(0.75)

π−cos−1(0.75)

)]
[

G−1
(

cos−1(0.25)
π−cos−1(0.25)

)
+G−1

(
cos−1(0.75)

π−cos−1(0.75)

)]
Skewness ([13])

Q( 3
4 ;ξ)−2Q( 1

2 ;ξ)+Q( 1
4 ;ξ)

Q( 3
4 ;ξ)−Q( 1

4 ;ξ)

Kurtosis ([14])
Q( 7

8 ;ξ)−Q( 5
8 ;ξ)−Q( 1

8 ;ξ)+Q( 3
8 ;ξ)

Q( 3
4 ;ξ)−Q( 1

4 ;ξ)

3. Some Properties of NCC-G FD

3.1. Useful Expansion of NCC-G FD

Exponentiated distributions can be used to generate useful linear expansions. The CDF of
the exponentiated-G (Exp-G) distribution for more information see [3, 15, 16], exponentiated
distributions have well-known properties for a wide range of baseline CDF G(x; φ) with parameter
z > 0 is given by

Gz(x; φ) = [G(x; φ)]z ; x ∈ ℜ, where x ∈ ℜ. (4)
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The PDF corresponding to (4) can be presented as

gz(x; φ) = zg(x; φ) [G(x; φ)](z−1) , x ∈ ℜ.

We can express the density function of the NCC-G FD in linear form using the series expansions
shown below.

sin x =
∞

∑
n=0

(−1)n y2n+1

(2n + 1)!
= y − y3

3!
+

y5

5!
− y7

7!
+

y9

9!
− · · · ;−∞ < x < ∞.

(1 + y)p =
∞

∑
n=0

(
p
n

)
yn = 1 +

p
1!

y +
p(p − 1)

2!
y2 +

p(p − 1)(p − 2)
3!

y3 + · · · ; |y| < 1.

The PDF of NCC-G FD is

f (x, ξ) = g(x, ξ)
∞

∑
i=0

π2i+2(−1)i

(2i + 1)!
(1 + G(x, ξ))2i−1 (G(x, ξ))2i+1 . (5)

Further expanding Equation (5) using generalized binomial series expansion. The expression for
f (x; ξ) becomes

f (x, ξ) = g(x, ξ)
∞

∑
i=0

∞

∑
j=0

∆ij (G(x, ξ))2i+j+1, (6)

where ∆ij =
π2i+2(−1)i

(2i+1)!

(
2i − 1

j

)
.

3.2. Moments

The rth order moment (µ
′
r) about the origin for the NCC-G FD is

µ
′
r = E(Xr) =

∞∫
−∞

xr f (x)dx (7)

=
∞

∑
i=0

∞

∑
j=0

∆ij

∞∫
−∞

xr (G(x, ξ))2i+j+1 g(x, ξ)dx. (8)

Further moments can also be calculated using the quantile function for more detail see [17] as Let
G(x; ξ) = p ⇒ g(x; ξ)dx = dp; 0 ⩽ p ⩽ 1.

µ
′
r = E(Xr) =

∞

∑
i=0

∞

∑
j=0

∆ij

1∫
0

p2i+j+1Qr
G(p)dp, 0 < p < 1.

where G(x; ξ) = p and QG(p) is the function of quantile.

3.3. Moment Generating Function (MGF)

The MGF (MX(t)) for the NCC-G FD is

MX(t) =
∞

∑
k=0

tk

k!
µ
′
r =

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

tk

k!
∆ij

∞∫
−∞

xkg(x, ξ) (G(x, ξ))2i+j+1 dx

Let G(x; ξ) = p ⇒ g(x; ξ)dx = dp; 0 ⩽ p ⩽ 1.

MX(t) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

tk

k!
∆ij

∞∫
−∞

p2i+j+1Ql
G(p)dp, 0 < p < 1,

where G(x; ξ) = p and QG(p) is the quantile function of the baseline distribution.
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3.4. Incomplete Moments

The Incomplete moments of the NCC-G FD can be defined as Mr(y) =
y∫

0
xr f (x)dx. Therefore

incomplete moments for NCC-G FD are given by

Mr(y) =
∞

∑
i=0

∞

∑
j=0

y∫
−∞

∆ijxrg(x; ξ) (G(x, ξ))2i+j+1 dx. (9)

Alternately, Mr(y) may be defined in terms of quantile function as

Mr(y) =
∞

∑
i=0

∞

∑
j=0

∆ij

G(y)∫
0

p2i+j+1Qr
G(p)dp; 0 < p < 1.

3.5. Mean Residual Life

The mean residual life of the NCC-G FD can be defined as M̄(y) = 1
F(y)

[
µ −

y∫
−∞

x f (x)dx

]
− y.

Therefore, the mean residual life for NCC-G FD is given by

M̄(y) =
1

F(y)

µ −
∞

∑
i=0

∞

∑
j=0

∆ij

y∫
−∞

xg(x; ξ) {G(x; ξ)}2i+j+1 dx

− y.

Alternatively, M̄(y) may be calculated in term of quantile function as

M̄(y) =
1

F(y)

µ −
∞

∑
i=0

∞

∑
j=0

∆ij

G(y)∫
0

p2i+j+1QG(p)dp

− y.

3.6. Inequality Measure

Lorenz and Bonferroni curves are utilized in various fields such as insurance, econometrics, and
demography, among others, to analyze measures of inequality such as income and poverty.
i) Lorenz Curve

Lorenz curve is defined as LF(y) =
1
µ

y∫
−∞

x f (x)dx, where µ is the mean of x, hence Lorenz curve

for NCC-G FD is given by

LF(y) =
1
µ

∞

∑
i=0

∞

∑
j=0

∆ij

y∫
−∞

xg(x; ξ) (G(x, ξ))2i+j+1 dx. (10)

Alternatively, in terms of quantile function as

LF(y) =
1
µ

∞

∑
i=0

∞

∑
j=0

∆ij

G(y)∫
−∞

p2i+j+1QG(p)dp.

ii) the Bonferroni Curve
The Bonferroni curve is given by BF(y) =

LF(y)
F(y) . From Equation (10), the Bonferroni curve for the

NCC-G FD is obtained as

BF(y) =
1

µF(y)

∞

∑
i=0

∞

∑
j=0

∆ij

y∫
−∞

xg(x; ξ) (G(x, ξ))2i+j+1 dx.
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3.7. Entropy

Entropy is a concept used to describe the degree of variation or uncertainty associated with a
random variable. Its applicability is widespread and can be observed in various disciplines such
as probability theory, medicine, insurance, engineering, life sciences, etc. in general.
i) Renyi’s Entropy
Entropy, which serves as a measure of the amount of variation or uncertainty associated with a ran-
dom variable, finds its applications across several disciplines, including engineering, econometrics,
and financial mathematics. Renyi [18] proposed the concept of entropy as a metric for quantifying

variability and uncertainty, and it can be computed as follows: Rρ(X) = 1
1−ρ log

∞∫
−∞

{ f (x)}ρ dx ;

ρ > 0 and ρ ̸= 1. Applying Taylor™s series expansion [ f (x, ξ)]ρ can be obtained in the form

[ f (x; ξ)]ρ = πρ (g(x; ξ))ρ
[

sin
(

π
G(x; ξ)

1 + G(x; ξ)

)]ρ

(1 + G(x; ξ))−2ρ .

By considering the function of Taylor series
[
sin

(
π

G(x;ξ)
1+G(x;ξ)

)]ρ
at the point s = 1/4, we can write

[sin (πs)]ρ =
∞

∑
k=0

k

∑
r=0

ak

(
k
r

)
(−1)k−r

(
1
4

)k−r
sr,

where ak = 1
k!

[
{sin (πs)}ρ](k) |

s= 1
4

. We have selected s = 1
4 because {sin (πs)}ρ is infinitely

differentiable at this point and sin
(

π
4
)
= 1√

2
= cos

(
π
4
)

, which allows to have a more tractable
expression for ak at a given ρ

[ f (x; ξ)]ρ = πρ (g(x; ξ))ρ
∞

∑
k=0

k

∑
r=0

ak

(
k
r

)
(−1)k−r

(
1
4

)k−r
(G(x; ξ))r (1 + G(x; ξ))−(2ρ+r) (11)

Further expanding Equation (11) using generalized binomial series expansion. The expression for
[ f (x; ξ)]ρ becomes

[ f (x; ξ)]ρ = πρ
∞

∑
k=0

k

∑
r=0

∞

∑
m=0

(−1)m+k−rak

(
k
r

)(
1
4

)k−r ((2ρ+r)+m−1

m

)
(G(x; ξ))r+m (g(x; ξ))ρ (12)

Substituting [ f (x, ξ)]ρ into the expression for Rρ(X), the Renyi™s entropy for NCC-G family of
distribution is given by

Rρ(X) =
1

1 − ρ
log

 ∞

∑
k=0

k

∑
r=0

∞

∑
m=0

ψmkr

∞∫
−∞

(g(x; ξ))ρ (G(x; ξ))r+m dx

 ,

where ψmkr = (−1)m+k−r πρak

(
k
r

)(
1
4

)k−r
(
(2ρ+r)+m−1

m

)
.

ii) q-Entropy
The q-entropy is given by

H(ρ) =
1

1 − ρ
log

1 −
∞∫

−∞

{ f (x)}ρ dx

 ; ρ > 0 and ρ ̸= 1.

Substituting [ f (x, ξ)]ρ from Equation (12) into the expression for H(ρ), the q-Entropy for NCC-G
FD is given by

H(ρ) =
1

1 − ρ
log

1 −
∞

∑
k=0

k

∑
r=0

∞

∑
m=0

ψmkr

∞∫
−∞

(g(x; ξ))ρ (G(x, ξ))r+m dx

 ; ρ > 0 and ρ ̸= 1.
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iii) Shannon’s Entropy
The Shannon’s entropy for a random variable X with pdf f (x) is a special case of the Renyi’s
entropy when ρ ↑ 1. Shannon entropies are defined as ηX = E(− log f (x)). For the NCC-G family
of distribution is given by

ηX = E

[
− log

{
∞

∑
i=0

∞

∑
j=0

∆ijg(x, ξ) (G(x, ξ))2i+j+1)

}]
.

4. Estimation Method

4.1. Maximum Likelihood Estimation (MLE)

The parameters of the NCC-G FD are estimated in this section using the method of maximum
likelihood. Given random sample x1, ..., xn of size n with parameters vector ξ from the NCC-G
FD, let u = ξT be (p × 1) parameter vectors, then the log density and total log-likelihood function
respectively, are given by

l(x; ξ) = log π + log
[

sin
{

π
G(x; ξ)

1 + G(x; ξ)

}]
− 2 log (1 + G(x; ξ)) + log g(x; ξ)

and

l(x, ξ) = n log π +
n

∑
i=1

log
[

sin
{

π
G(xi; ξ)

1 + G(xi; ξ)

}]
− 2

n

∑
i=1

log (1 + G(xi; ξ)) +
n

∑
i=1

log g(xi; ξ). (13)

Differentiating Equation (13) gives the score function’s components of V(u) =
(

∂l
∂ξ

)T
as follows,

∂l
∂ξ

= π
n

∑
i=1

cot
{

π
G(xi; ξ)

1 + G(xi; ξ)

}
G

′
k(xi; ξ)

(1 + G(xi; ξ))2 − 2
n

∑
i=1

G
′
k(xi; ξ)

(1 + G(xi; ξ))
+

n

∑
i=1

g
′
k(xi; ξ)

g(xi; ξ)
,

where g
′
k(xi; ξ) = dg(xi ;ξ)

dξ , g
′′
k (xi; ξ) = d2g(xi ;ξ)

d2ξ
, G

′
k(xi; ξ) = dG(xi ;ξ)

dξ and G
′′
k (xi; ξ) = d2G(xi ;ξ)

d2ξ
.

5. Special member of NCC-G FD

Generalization of several distributions can be made using the NCC-G FD. The special distribution,
a new class of cosine inverse Weibull distribution, is introduced in this section.

5.1. New class Cos inverse Weibull (NCC-IW) istribution

The CDF and PDF of the Inverse Weibull (IW) distribution are respectively given by

G(x) = 1 − exp(−αx−β; x > 0, α, β > 0

and
g(x) = αβx−β−1exp(−αx−β

Hence using the CDF and PDF of IW, the CDF and PDF of the NCC-IW distribution are given by

F(x; α, β) = 1 − cos
[

π
exp(−αx−β)

1 + exp(−αx−β)

]
; x > 0 (14)

f (x; α, β) = παβx−(β+1) sin
[

π
exp(−αx−β)

1 + exp(−αx−β)

]
exp(−αx−β)(

1 + exp(−αx−β)
)2 ; x > 0 (15)
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The reliability and hazard functions, respectively, are given by

R(x; α, β) = cos
[

π
exp(−αx−β)

1 + exp(−αx−β)

]
; x > 0.

and

H(x; α, β) = παβx−(δ+1) exp(−αx−β)(
1 + exp(−αx−β)

)2 sin
[

π
exp(−αx−β)

1 + exp(−αx−β)

] [
cos

(
π

exp(−αx−β)

1 + exp(−αx−β)

)]−1

.

The quantile function for the NCC-IW distribution is presented below

QX(p) =
[
− 1

α
log

(
cos−1(1 − p)

π − cos−1(1 − p)

)]− 1
β

, p ∈ (0, 1)
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Figure 1: Shapes of PDF and HRF of NCC-IW distribution

5.2. Linear Expansion

Using Equation (6), Equation (15) can be expressed in linear form as

f (x; ξ) =
∞

∑
i=0

∞

∑
j=0

Ωijx−(β+1) exp
{
−(2i + j + 2)αx−β

}
, (16)

where Ωij =
π2i+2αβ(−1)i

(2i+1)!

(
2i − 1

j

)
.

5.3. Moments

Using the PDF defined in Equation (16), the rth order non-central moment (µ
′
r) for the NCC-IW

distribution can be presented as

µ
′
r =

∞

∑
i=0

∞

∑
j=0

Ω∗
ij

Γ
(

β−r
β

)
[α{(2i + j) + 2}]

β−r
β

; ∀β > r, (17)

where Ω∗
ij =

π2i+2α(−1)i

(2i+1)!

(
2i − 1

j

)
and Γ(.) is the gamma function.
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5.4. Skewness and Kurtosis

Using the Equation (17) we can obtain the first four (r = 1, 2, 3, 4) non-central moments as:

Mean = µ
′
1 =

∞

∑
i=0

∞

∑
j=0

Ω∗
ij [α{(2i + j) + 2}]−

β−1
β Γ

(
β − 1

β

)
; ∀ β > 1,

µ
′
2 =

∞

∑
i=0

∞

∑
j=0

Ω∗
ij

Γ
(

β−2
β

)
[α{(2i + j) + 2}]

β−2
β

; ∀ β > 2,

µ
′
3 =

∞

∑
i=0

∞

∑
j=0

Ω∗
ij

Γ
(

β−3
β

)
[α{(2i + j) + 2}]

β−3
β

; ∀ β > 3,

and

µ
′
4 =

∞

∑
i=0

∞

∑
j=0

Ω∗
ij

Γ
(

β−4
β

)
[α{(2i + j) + 2}]

β−4
β

; ∀ β > 4.

Similarly, we can calculate the central moments using the above non-central moments as

µ1 = µ
′
1,

µ2 = µ
′
2 − µ

′2
1 ,

µ3 = µ
′
3 − 3µ

′
1µ

′
2 + 2µ

′3
1 ,

and
µ4 = µ

′
4 − 4µ

′
3µ

′
2 + 6µ

′
2µ

′2
1 − 2µ

′4
1

Therefore skewness and kurtosis for the NCC-IW distribution are β1 =
µ2

3
µ3

2
and β2 = µ4

µ2
2

respec-

tively.

5.5. MGF

The MGF (MX(t)) for the NCC-IW distribution is

MX(t) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

tkΩ∗
ij

k!

Γ
(

β−r
β

)
[α{(2i + j) + 2}]

β−r
β

; ∀ β > r. (18)

5.6. Incomplete moments

The incomplete moments for NCC-IW distribution are given by

Mr(y) =
∞

∑
i=0

∞

∑
j=0

Ωij

y∫
0

xr−(δ+1) exp
{
−(2i + j + 2)αx−β

}
dx

=
1
β

∞

∑
i=0

∞

∑
j=0

Ωij

γ
(

β−r
β , (2i + j + 2)αy−β

)
{(2i + j + 2)α}

β−r
β

.

where γ(.) incomplete gamma function.
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5.7. Mean Residual Life

The mean residual life for the NCC-IW distribution is given by

M̄(y) =
1

F(y)

µ −
∞

∑
i=0

∞

∑
j=0

Ωij

y∫
0

x−β exp
{
−(2i + j + 2)αx−β

}− y

=
1

F(y)

µ − 1
β

∞

∑
i=0

∞

∑
j=0

Ωij

γ
(

β−1
β , (2i + j + 2)αy−β

)
{(2i + j + 2)α}

β−1
β

− y.

5.8. Entropy

i) Renyi™s Entropy The Renyi™s entropy for NCC-IW distribution is given by

Rρ(X) =
1

1 − ρ
log

 ∞

∑
k=0

k

∑
r=0

∞

∑
m=0

ψkrm (αβ)ρ

∞∫
0

x−ρ(β+1) exp(−(r + m + ρ)αx−β)dx


=

1
1 − ρ

log

 ∞

∑
k=0

k

∑
r=0

∞

∑
m=0

ψkrm
(αβ)ρ

β

Γ
({

(ρ−1)(β+1)
β + 1

})
{(r + m + ρ)α}

(ρ−1)(β+1)
β +1


where ψmkr = (−1)m+k−r πρak

(
k
r

)(
1
4

)k−r
(
(2ρ+r)+m−1

m

)
.

ii) q-Entropy
The q-Entropy for NCC-IW distribution is given by

H(ρ) =
1

1 − ρ
log

1 − ψkrm (αβ)ρ

∞∫
0

x−ρ(β+1) exp(−(r + m + ρ)αx−β)dx


=

1
1 − ρ

log

1 − ψkrm
(αβ)ρ

β

Γ
({

(ρ−1)(β+1)
β + 1

})
{(r + m + ρ)α}

(ρ−1)(β+1)
β +1

 ;

where ρ > 0, ρ ̸= 1 and ψkrm = (−1)m+k−r πρak

(
k
r

)(
1
4

)k−r
(
(2ρ+r)+m−1

m

)
.

iii) Shannon’s Entropy
The Shannon entropy for the NCC-IW distribution is given by

ηX = E

[
− log

{
∞

∑
i=0

∞

∑
j=0

Ωijx−(β+1) exp
{
−(2i + j + 2)αx−β

}}]
.

5.9. Inequality Measure

i) Lorentz Curve: The Lorenz curve for NCC-IW distribution is given by

LF(y) =
αβ

µ

∞

∑
i=0

∞

∑
j=0

Ωij

y∫
−∞

x−β exp(−α(2i + j + 2)x−β)dx

=
α

µ

∞

∑
i=0

∞

∑
j=0

Ωij

γ
(

β−1
β , (2i + j + 2)αy−β

)
{(2i + j + 2)α}

β−1
β

.
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ii) Boneferroni Curve
The Bonferroni curve for the NCC-IW distribution is given by

BF(y) =
1

µF(y)

∞

∑
i=0

∞

∑
j=0

Tij

y∫
−∞

x−β exp(−α(2i + j + 1)x−β)dx

=
1

δµF(y)

∞

∑
i=0

∞

∑
j=0

Ωij

γ
(

β−1
β , (2i + j + 2)αy−β

)
{(2i + j + 2)α}

β−1
β

.

5.10. Parameter estimation of NCC-IW distribution

Our current focus is on determining the parameters of the NCC-IW model through the MLE
method. The objective is to compute the MLEs for the parameters α and β. To achieve this, we
will examine the log-likelihood of a vector X = (x1, ..., xn)T of size n composed of independent
random variables from the NCC-IW distribution.

l(x; α, β) = n log(παβ)− (β + 1)
n

∑
i=1

log xi +
n

∑
i=1

log sin

[
π

exp(−αx−β
i )

1 + exp(−αx−β
i )

]

− 2
n

∑
i=1

log
(

1 + exp(−αx−β
i )

)
− α

n

∑
i=1

x−β
i (19)

Partially differentiating the Equation (19) with respect to β and α yields the components of the

score function V(u) =
(

∂l
∂β , ∂l

∂α

)T
as follows

∂l
∂β

=
n
β
−

n

∑
i=1

log xi + πα
n

∑
i=1

x−β
i log(xi) exp(−αx−β

i )(
1 + exp(−αx−β

i )
)2 cot

[
π

exp(−αx−β
i )

1 + exp(−αx−β
i )

]
+

2α
n

∑
i=1

x−β
i log(xi) exp(−αx−β

i )(
1 + exp(−αx−β

i )
) + α

n

∑
i=1

x−β
i log(xi).

and

∂l
∂α

=
n
α
−π

n

∑
i=1

x−β
i exp(−αx−β

i )(
1 + exp(−αx−β

i )
)2 cot

[
π

exp(−αx−β
i )

1 + exp(−αx−β
i )

]
+ 2

n

∑
i=1

x−β
i exp(−αx−β

i )(
1 + exp(−αx−β

i )
) −

n

∑
i=1

x−β
i .

The MLEs of β and α are obtained by maximizing l(x; α, β) in β and α, which can be done by
solving simultaneously the equation: ∂l

∂β = 0 and ∂l
∂α = 0.

5.11. Simulation Study

We used the maxLik R package developed by [19] to create samples from the quantile function
defined in Equation (14) for various parameter combinations of the NCC-IW distribution. The
MLEs were calculated for each sample using the maxLik() function with the BFGS algorithm.
This allowed us to test parameter estimation problems, such as the sharpness or flatness of
the likelihood function and provided estimates for the size and direction (underestimate or
overestimate) of the MLEs bias. We repeated the procedure 1000 times, with 25 samples of
sizes ranging from 10 to 250. We then calculated the bias and mean square error (MSE) for
each simulation. In addition, we provided lower confidence limit (LCL) and upper confidence
limit (UCL) estimated values with a 5% level of significance. The results of the experiment are
summarized in Tables 2 and 3, which show the bias and MSEs for each parameter, along with
the LB and UB for the MLEs. As the table shows, the MLE method consistently estimates the
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parameters of the proposed model. Moreover, as the sample size increases, the MLEs gradually
approach the actual values of α and β. In Figures 2 and 3, we have displayed a clear picture of
MSEs with 95% confidence bound (dark region) for α and β.
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Figure 2: MSE plots of α and β with 95% CI for initial values α = 0.5 and β = 1.25.
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Figure 3: MSE plots of α and β with 95% CI for initial values α = 0.75 and β = 1.5.

6. Application

Employing three real data sets, we demonstrate the applicability of the NCC-IW distribution in
this section. The data sets employed for the application of the suggested distribution are given
below:

6.1. Model Analysis

To analyze the data sets under study, we calculate several widely used goodness-of-fit statis-
tics. The fitted models are then compared using various measures, including the log-likelihood
value (-2logL), Akaike information criterion (AIC), Hannan-Quinn information criterion (HQIC),
Anderson-Darling (AD), Kolmogorov-Smirnov (KS) with p-values, and Cramer-von Mises (CVM).
For additional information see [1]. All the essential computations are carried out in R-software.
For the comparison of fitting capability we have selected some models such as inverse Weibull
(IW), arctan generalized exponential (ArcTGE) [8], arctan Lomax (ArcTLx) [20], arcsine exponen-
tial (ASE) [21], Tan Burr XII (TBXII) [4], New Cosine Weibull (NCW) [22], Exponentiated Cos
Weibull (EcosW) [7], arcsine exponentiated Weibull (ASEW) [23], Cos Weibull (CosW) [2] and
Sine inverse Weibull (Sin-IW) [3].
Data set I:
The dataset from [24] contains information on the relief times of 20 patients who were adminis-
tered an analgesic. An analgesic is a type of medication that is commonly used to reduce pain,
and the relief time refers to the duration for which the patients experience relief from their pain
after taking the medication. The data are "1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2,
1.4, 3, 1.7, 2.3, 1.6, and 2.0".
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Table 2: Bias, MSEs, and LCL and UCL for MLEs with initial values α = 0.5 and β = 1.25.

n biasα biasβ mseα mseβ LCLα UCLα LCLβ UCLβ

10 0.0904 0.1500 0.0444 0.4191 0.3381 1.0299 0.7585 2.5927
20 0.0445 0.0633 0.0143 0.0823 0.3761 0.7924 0.8920 1.9588
30 0.0248 0.0283 0.0079 0.0400 0.3893 0.7076 0.9577 1.7161
40 0.0194 0.0249 0.0056 0.0295 0.3918 0.6853 0.9747 1.6231
50 0.0152 0.0182 0.0040 0.0219 0.4117 0.6556 1.0243 1.5883
60 0.0136 0.0174 0.0034 0.0191 0.4155 0.6376 1.0242 1.5585
70 0.0126 0.0100 0.0027 0.0146 0.4284 0.6194 1.0481 1.512
80 0.0083 0.0138 0.0023 0.0140 0.4260 0.6108 1.0596 1.5091
90 0.0069 0.0141 0.0020 0.0119 0.4239 0.6032 1.0692 1.4905
100 0.0070 0.0074 0.0021 0.0105 0.4316 0.6074 1.0601 1.467
110 0.0072 0.0060 0.0017 0.0095 0.4308 0.5913 1.0866 1.4777
120 0.0037 0.0130 0.0014 0.0090 0.4359 0.5831 1.0944 1.4520
130 0.0060 0.0139 0.0014 0.0083 0.4393 0.5823 1.0997 1.4567
140 0.0062 0.0107 0.0013 0.0074 0.4405 0.5821 1.1054 1.4331
150 0.0058 0.006 0.0013 0.0068 0.4424 0.5814 1.1116 1.4269
160 0.0054 0.0102 0.0012 0.0062 0.4428 0.5776 1.1226 1.4222
170 0.0060 0.007 0.0011 0.0061 0.4505 0.5729 1.1146 1.4056
180 0.0032 0.0044 0.0010 0.0054 0.4455 0.5704 1.1236 1.4032
190 0.0041 0.0059 0.0010 0.0056 0.4487 0.5716 1.1212 1.4118
200 0.0031 0.0026 9.00E-04 0.0049 0.4472 0.5687 1.1261 1.3952
210 0.0044 0.0058 9.00E-04 0.0048 0.4493 0.5619 1.1206 1.3927
220 0.0033 0.0076 8.00E-04 0.0047 0.4526 0.5645 1.1295 1.4010
230 0.0046 -6.00E-04 8.00E-04 0.0047 0.4529 0.5606 1.1258 1.3934
240 0.0036 0.0042 7.00E-04 0.0041 0.4531 0.5606 1.1335 1.3816
250 0.0028 0.0014 7.00E-04 0.0040 0.4505 0.5561 1.1315 1.3801

Table 3: Bias, MSEs and LCL and UCL for MLEs with initial values α = 0.75 and β = 1.5.

n biasα biasβ mseα mseβ LCLα UCLα LCLβ UCLβ

10 0.1424 0.2518 0.0942 0.7713 0.5183 1.5550 0.9717 3.5167
20 0.0692 0.0882 0.0309 0.1166 0.5616 1.1901 1.0949 2.3295
30 0.0363 0.0789 0.0164 0.0774 0.581 1.0422 1.1612 2.1797
40 0.0294 0.0383 0.0121 0.0458 0.6083 1.0183 1.1821 2.0153
50 0.0227 0.0311 0.0088 0.0337 0.6022 0.9684 1.2209 1.9084
60 0.0193 0.0287 0.0071 0.0276 0.6224 0.9468 1.2437 1.8913
70 0.0162 0.025 0.0063 0.0240 0.6247 0.9314 1.2604 1.8680
80 0.0139 0.0238 0.0055 0.0206 0.6397 0.9192 1.2795 1.8384
90 0.0130 0.0131 0.0048 0.0175 0.6507 0.9126 1.2956 1.8022
100 0.0107 0.0176 0.0043 0.0175 0.6418 0.8926 1.2919 1.8124
110 0.0085 0.0112 0.0038 0.0137 0.6507 0.8873 1.3022 1.7490
120 0.0085 0.0098 0.0033 0.0126 0.652 0.8749 1.3022 1.7395
130 0.0071 0.0152 0.0031 0.0116 0.6577 0.8734 1.3151 1.7406
140 0.0091 0.0123 0.0033 0.0115 0.6556 0.8793 1.3232 1.7467
150 0.0065 0.0139 0.0025 0.0101 0.6637 0.8666 1.3344 1.7227
160 0.0075 0.0051 0.0024 0.0090 0.6693 0.8575 1.3315 1.7045
170 0.0074 0.0110 0.0025 0.0083 0.6709 0.8606 1.3356 1.7040
180 0.0080 0.0105 0.0022 0.0090 0.6712 0.8471 1.3412 1.7089
190 0.0053 0.0116 0.0021 0.0078 0.6685 0.8571 1.3481 1.6881
200 0.0052 0.0046 0.0021 0.0068 0.6694 0.8492 1.3471 1.6665
210 0.0040 0.0056 0.0019 0.0070 0.6731 0.8479 1.3615 1.6799
220 0.0055 0.0051 0.0019 0.0075 0.6758 0.8441 1.3438 1.6867
230 0.0055 0.0049 0.0017 0.0062 0.6799 0.8439 1.3583 1.6725
240 0.0049 0.0086 0.0018 0.0057 0.6770 0.8414 1.3603 1.6553
250 0.0055 0.0092 0.0016 0.0060 0.6822 0.8406 1.3621 1.6657
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Table 4: MLEs with SE (in parentheses) (dataset I)

Model Parameter(SE)
NCC-IW(α, β) 3.2906(0.5941) 3.9558(1.0140) –
IW(λ, θ) 4.0175(0.7060) 6.0224(2.0083) –
ArcTGE(α, λ, θ) 0.0000(1.5645) 19.3864(6.0429) 1.8579(0.2245)
ArcTLx(α, β, θ) 147.2664(44.0127) 0.2871(0.2782) 12.3869(9.6739)
ASE(θ) 127.8946(4.8432) – –
ASEW(λ, θ, υ) 1.0488(0.1284) 104.561(19.0921) 3.1656(0.1303)
NCW(λ, θ) 0.2505(0.0810) 2.2930(0.3402) –
TBXII(λ, ν, θ) 1.3946(0.1597) 10.3624(5.0171) 0.3937(0.2735)
ECosW(β, λ, θ) 0.2386(0.0486) 0.2789(0.0712) 2.7222(0.1824)
CosW(β, δ) 2.2183(0.3323) 0.5655(0.0471) –
SinIW(δ, θ) 5.3385(1.4594) 2.8386(0.4882) –

In Tables 4, 6, and 8, we have presented the estimated values of the parameters and their
corresponding standard error (SE in parentheses) of the models under study using the MLE
method. Similarly, in Tables 5, 7, and 9, we have presented the model selection and goodness of fit
statistics such as log-likelihood, AIC, HQIC, KS, AD, and CVM for all three data sets. It has been
observed that the suggested model NCC-IW has the least statistics as compared to IW, ArcTGE,
ArcTLx, ASE, ASEW, NCW, TBXII, ECosW, CosW, and Sin-IW. Hence NCC-G is more flexible
(even four trigonometric distributions having three parameters) and provides a good fit. Also, we
have displayed the graphical illustrations of the fitted models in Figures 5, 7, and 9. These figures
also verified that the NCC-G model can perform well as compared to candidate models.

Table 5: Some selection criteria and goodness-of-fit statistics (dataset-I)

Model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)
NCC-IW 31.1170 35.1170 35.5057 0.1148 0.9548 0.0306 0.9770 0.1772 0.9956
IW 30.8174 34.8174 35.2062 0.1020 0.9854 0.0266 0.9880 0.1545 0.9984
ArcGE 33.4131 39.4131 39.9962 0.1516 0.7473 0.0767 0.7169 0.4214 0.8256
ArcLmx 35.6262 41.6262 42.2094 0.1240 0.9182 0.0662 0.7806 0.5268 0.7175
ASE 154.7472 156.7472 156.9416 0.8863 0.0000 5.1247 0.0000 31.4397 0.0000
ASEW 31.1885 37.1885 37.7716 0.1170 0.9470 0.0363 0.9551 0.2096 0.9877
NCW 48.6870 52.6870 53.0757 0.1467 0.7829 0.1078 0.5521 0.7800 0.4940
Tan-BXII 31.0804 37.0804 37.6636 0.0919 0.9959 0.0231 0.9944 0.1377 0.9994
CosW 40.6035 46.6035 47.1867 0.1922 0.4508 0.1840 0.3022 1.0593 0.3267
NCosW 37.4854 41.4854 41.8742 0.1770 0.5576 0.1279 0.4681 0.7563 0.5118
Sin-IW 31.1572 35.1572 35.5460 0.1069 0.9763 0.0292 0.9813 0.1808 0.9949
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Figure 4: KS and Q-Q plots (dataset-I).
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Figure 5: Estimated PDF (left) and empirical vs estimated CDF (right) (dataset-I).

Data set-II
The following data set was obtained by [25] consisting of 128 observations on the time intervals,
measured in seconds, between the arrivals of vehicles at a specific location on a road. 0.2, 0.5, 0.8,
0.8, 0.8, 1.0, 1.1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.3, 1.4, 1.5, 1.5, 1.6, 1.6, 1.6, 1.7, 1.8, 1.8, 1.8, 1.8, 1.8, 1.9, 1.9,
1.9, 1.9, 1.9, 1.9, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.3, 2.4, 2.4, 2.5, 2.5, 2.5, 2.6, 2.6, 2.7, 2.8, 2.8, 2.9, 3.0, 3.0,
3.1, 3.2, 3.4, 3.7, 3.9, 3.9, 3.9, 4.6, 4.7, 5.0, 5.1, 5.6, 5.7, 6.0, 6.0, 6.1, 6.6, 6.9, 6.9, 7.3, 7.6, 7.9, 8.0, 8.3,
8.8, 8.8, 9.3, 9.4, 9.5, 10.1, 11.0, 11.3, 11.9, 11.9, 12.3, 12.9, 12.9, 13.0, 13.8, 14.5, 14.9, 15.3, 15.4, 15.9,
16.2, 17.6, 20.1, 20.3, 20.6, 21.4, 22.8, 23.7, 24.7, 29.7, 30.6, 31.0, 33.7, 34.1, 34.7, 36.8, 40.1, 40.2, 41.3,
42.0, 44.8, 49.8, 51.7, 55.7, 56.5, 58.1, 70.5, 72.6, 87.1, 88.6, 91.7, 119.8, 125.3´

Table 6: MLEs with SE (in parentheses) (dataset-II)

model Parameter(SE)
NCC-IW(α, β) 0.6748(0.0476) 2.0442(0.1524) –
IW( λ, θ ) 0.8183(0.0540) 2.6651(0.2527) –
ArcTGE( α, λ, θ ) 1.00E-04(0.3004) 0.6685(0.0737) 0.0475(0.0063)
ArcTLx( α, β, θ ) 1.00E-04(1.7292) 0.0833(0.0310) 1.6100(0.3969)
ASE( θ ) 11.6716(1.5853) – –
ASEW( λ, θ, υ ) 0.2832(0.0181) 36.6683(2.9617) 2.8476(0.1367)
NCW( λ, θ ) 0.3294(0.0389) 0.5770(0.0359) –
TBXII( λ, ν, θ ) 1.5673(0.3041) 2.7668(0.7182) 0.2870(0.0962)
ECosW( β, λ, θ ) 0.1949(0.0172) 0.4319(0.0000) 0.7179(1.00E-04)
CosW( β, δ ) 0.5566(0.0350) 0.1655(0.0220) –
SinIW( δ, θ ) 3.0753(0.2472) 0.5944(0.0385) –

Table 7: Some selection criteria and goodness-of-fit statistics (dataset-II)

model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)
NCC-IW 924.4949 928.4949 930.8125 0.0616 0.717 0.1390 0.4253 1.0806 0.3175
IW 921.1562 925.1562 927.4738 0.0604 0.7381 0.1323 0.4488 0.974 0.3711
ArcGE 948.3638 954.3638 957.8402 0.1481 0.0073 0.8221 0.0064 4.4936 0.0050
ArcLmx 929.2980 935.2980 938.7744 0.0976 0.1745 0.2488 0.1899 1.7906 0.1202
ASE 956.6371 958.6371 959.7959 0.1501 0.0063 0.6261 0.0191 4.0879 0.0079
ASEW 912.5793 918.5793 922.0557 0.0886 0.2680 0.1858 0.2969 1.1082 0.3051
NCW 998.8923 1002.892 1005.210 0.1207 0.0480 0.3327 0.1096 2.8599 0.0323
Tan-BXII 917.7461 923.7461 927.2225 0.0787 0.4057 0.2086 0.2516 1.2355 0.2544
ECosW 937.7763 943.7763 947.2527 0.1170 0.0603 0.4531 0.0523 2.8386 0.0332
CosW 927.9831 931.9831 934.3006 0.1162 0.0632 0.3467 0.1003 2.1999 0.0716
Sin-IW 916.8895 920.8895 923.2071 0.0868 0.2903 0.1819 0.3056 1.1174 0.3010
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Figure 6: KS and Q-Q plots (dataset-II).
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Figure 7: Estimated PDF (left) and empirical vs estimated CDF (right) (dataset-II).

Data set-III
We have used the real data reported by [26] and it represents the failure time of 30 items
"0.602, 0.603, 0.603, 0.615, 0.652, 0.663, 0.688, 0.705, 0.761, 0.770, 0.868, 0.884, 0.898, 0.901, 0.911,
0.918, 0.935, 0.953, 0.983, 1.009, 1.040, 1.097, 1.097, 1.148, 1.296, 1.343, 1.422, 1.540, 1.555, 1.653"

Table 8: MLEs with SE (in parentheses) (dataset-III).

Model Parameter(SE)
NCC-IW(α, β) 3.178(0.4814) 0.4482(0.1032) –
IW(λ, θ) 3.8881(0.555) 0.4275(0.1108) –
ArcTGE( α, λ, θ ) 4.2E-07(1.3892) 31.5836(5.4017) 4.168(0.1055)
ArcTLx( α, β, θ ) 143.7539(4.3514) 0.3264(0.2077) 18.9209(10.5266)
ASE( θ ) 194.3346(5.9316) – –
ASEW( λ, θ, υ ) 1.2673(0.1458) 41.0829(6.893) 5.4445(0.3188)
NCW( λ, θ ) 1.172(0.1733) 2.662(0.3434) –
TBXII(λ, ν, θ) 0.7768(0.1457) 7.3693(3.3169) 0.6354(0.5186)
ECosW( β, λ, θ ) 0.1726(0.0315) 2.368(0.0046) 3.2934(5.00E-04)
CosW( β, δ ) 2.5699(0.3352) 1.0907(0.0648) –
SinIW( δ, θ ) 0.8297(0.1375) 2.7635(0.3757) –
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Table 9: Some selection criteria and goodness-of-fit statistics (dataset-III).

Model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)
NCC-IW 8.7135 12.7135 13.6100 0.1608 0.4197 0.0992 0.5920 0.6056 0.6413
IW 7.6494 11.6494 12.5459 0.1432 0.5700 0.0793 0.6995 0.5146 0.7306
ArcGE 7.2658 13.2658 14.6105 0.0901 0.9679 0.0479 0.8924 0.3760 0.8712
ArcLmx 12.3954 18.3954 19.7402 0.1262 0.7260 0.0542 0.8542 0.5154 0.7297
ASE 224.6097 226.6097 227.0579 0.9413 0.0000 8.6137 0.0000 62.4475 0.0000
ASEW 6.4640 12.4640 13.8087 0.1141 0.8293 0.0561 0.8419 0.4091 0.8385
NCW 26.5153 30.5153 31.4118 0.1328 0.6649 0.0797 0.6969 0.7164 0.5440
Tan-BXII 8.9087 14.9087 16.2535 0.1074 0.8792 0.0536 0.8575 0.4021 0.8456
ECosW 12.0969 18.0969 19.4416 0.1238 0.7477 0.1053 0.5622 0.7074 0.5514
CosW 9.8726 13.8726 14.7692 0.1004 0.9230 0.0741 0.7304 0.5449 0.7001
Sin-IW 7.1457 11.1457 12.0422 0.1111 0.8526 0.0567 0.8383 0.4210 0.8265
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Figure 8: KS and Q-Q plots (dataset-III).

x

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

NCC−IW
IW
ArcTGE
ArcTL
ASE
ASEW
NCW
TBXII
ECosW
CosW
SinIW

0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

x

C
D

F

Empirical
Fitted

Figure 9: Estimated PDF (left) and empirical vs estimated CDF (right) (dataset-III).
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Figure 10: Countour plots for three data sets under study respectively.

7. Conclusion

A new family of distributions, known as the Cos-G family, has been developed by transforming
the cosine function based on the ratio of CDF G(x) and 1 + G(x) of a baseline distribution. The
general properties of this distribution family have been described. To create a member of this
family with a hazard function that is increasing, decreasing, or inverted bathtub-shaped, the
Inverse Weibull distribution was used as a baseline distribution. The resulting distribution, called
NCC-IW, was analyzed for its statistical properties, and its parameters were estimated using
the MLE method. The estimation procedure was evaluated through a Monte Carlo simulation,
which showed that the biases and mean square errors decrease as the sample size increases,
even for small samples. The NCC-IW distribution was then applied to three real data sets, and
using model selection criteria and goodness-of-fit test statistics, it was shown to outperform other
existing models with more parameters. This suggests that the Cos-G family and its member
distribution have wide applications in fields such as medical science, reliability engineering, and
survival analysis, and can lead to the development of new models in the future.
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Abstract

In this paper we introduced Exponentiated Log - Uniform distribution as a generalisation of the
Log - Uniform distribution and its properties are studied. We provide graphical representations of
its density function, cumulative distribution function, hazard rate function, and survival function.
And derive various statistical properties such as moments, mean deviations, and quantile function of
the new distribution. We also obtain the probability density functions of the order statistics of the
Exponentiated Log-Uniform Distribution.To estimate the parameters of the distribution and the stress
strength parameters, we use the maximum likelihood method, and validate the estimates of the model
parameters through a simulation study. Our findings reveal that the Exponentiated Log-Uniform
Distribution exhibits the least bias and that the values of the mean square error decrease as the sample
size increases, indicating the effectiveness of this distribution in modeling real-world data. We applied the
Exponentiated Log-Uniform distribution to a real data set and compared it with Exponentiated Quasi
Akash Distribution and Exponentiated Weibull Distribution. It was found that the new distribution
was a better fit than the other distributions based on the values of the AIC, CAIC, BIC, HQIC, the
Kolmogorov-Smirnov (K-S) goodness-of-fit statistic and the p-values.

Keywords: Log - Uniform distribution, Exponentiated Log - Uniform distribution, Stress strength
Reliability

1. Introduction

Statisticians are constantly pushing the boundaries of statistical analysis by exploring new fam-
ilies of distributions. Their goal is to increase the flexibility of existing distributions, which
allows for the creation of compound distributions that can better analyze a wide range of data
sets.The Log-Uniform distribution is a continuous probability distribution where the logarithm of
a random variable is uniformly distributed [9].

One of the most attractive features of the Log-Uniform distribution is its scale-invariance prop-
erty. This means that the distribution remains the same, regardless of the units of measurement
used.The exponentiated family has become a fundamental concept in mathematical statistics and
machine learning.

Ahmed [2] introduced a new version of the Exponentiated Burr X distribution, Exponentiated
Transmuted Exponential distribution was proposed by Al-Kadim [3] which is more adaptable
than other distributions, Alzaghal [4] derived Exponentiated TX family of distributions. The Beta
Exponentiated Weibull distribution was derived by Cordeiro [5]. Ahmad Dar [6] introduced Expo-
nentiated Quasi Akash distribution. Gupta and Kundu [8] proposed Exponentiated Exponential
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family. Hassan [10] derived a new generalization of Ishita distribution and obtained properties of
the distribution along with applications of the proposed model. The Exponential distribution and
its applications was proposed by Jowett [11]. The Exponentiated Kumaraswamy distribution and
its log-transform was studied by Lemonte [15]. Exponentiated weibull distribution is studied by
Pal and Ali [16]. Ramires [17] introduced Exponentiated Uniform distribution: An interesting
alternative to truncated models.

If X is a random variable with a Log Uniform distribution, then Log(X) is Uniformly distributed.
A random variable X is said to have a Log-Uniform distribution if its probability density function
is given by:

f (x) =


1

x

[
ln(b)−ln(a)

] ; if , a ≤ x ≤ b, 0 < a < b, a, b ∈ R

0, otherwise

(1)

where a and b are the parameters of the distribution and they are location parameters that define
the minimum and maximum values of the distribution on the original scale and ln is the natural
Log function (the logarithm to base e).

The Cumulative distribution function of the distribution is given by:

F(x) =

{ ln(x)−ln(a)
ln(b)−ln(a) ; if , a ≤ x ≤ b, 0 < a < b, a, b ∈ R

0, otherwise
(2)

The exponentiated family of distributions is a set of distributions that can be derived by raising a
positive real number to the cumulative distribution function (cdf) of a parent distribution.

The Cumulative distribution function of the family is given by:

F(x) = (H(x))β; β > 0 (3)

where H(x) is the distribution function of a random variable X.
The corresponding probability density function (pdf) is given by:

f (x) = βh(x)(H(x))β−1 (4)

where H(x) and h(x) are cdf and pdf of the parent distribution and β > 0 is a shape parameter.

2. Exponentiated Log-uniform Distribution

On introducing Log-Uniform distribution to Exponentiated family of distributions we obtain a
new distribution called the Exponentiated Log-Uniform distribution.

The distribution function has the form:

F(x) = (H(x))β; β > 0 (5)

where H(x) is the cdf of the base distribution. Therefore the cdf of Exponentiated Log-uniform
Distribution is given by

F(x) =


(

ln( x
a )

ln( b
a )

)β
, if β > 0, a ≤ x ≤ b, 0 < a < b, a, b ∈ R

0, otherwise
(6)

where a and b are the parameters of the distribution and they are location parameters and β is a
shape parameter.
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Figure 1: Plot of cdf of Exponentiated Log-Uniform distribution

The probability density function of the distribution is given by:

f (x) =

β 1
xln( b

a )

(
ln( x

a )

ln( b
a )

)β−1
, if β > 0, a ≤ x ≤ b, 0 < a < b, a, b ∈ R

0, otherwise
(7)

Figure 2: Plot of pdf of Exponentiated Log-Uniform distribution

The Survival function of Exponentiated Log-Uniform distribution is,
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S(x) =

(
ln( b

a )
)β

−
(

ln( x
a )
)β

(
ln( b

a )
)β

;β > 0, a ≤ x ≤ b, 0 < a < b, b ∈ R (8)

Figure 3: Plot of survival function of Exponentiated Log-Uniform distribution

The failure rate function of Exponentiated Log-Uniform distribution is,

h(x) =
β(ln( x

a ))
β−1

x((ln b
a )

β − (ln( x
a ))

β)
;β > 0, a ≤ x ≤ b, 0 < a < b, b ∈ R (9)

Figure 4: Plot of hazard function of Exponentiated Log-Uniform distribution
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• Special Case:
If we put β = 1, then Exponentiated Log-Uniform distribution reduces to Log-Uniform
distribution.

2.1. Statistical Properties

Some structural properties of the Exponentiated Log-Uniform distribution have been evaluated in
this section.The properties like Moments, Quantile function, Mean Deviation and Order Statistics
are considered.

2.1.1 Moments

A distribution can have several moments, and shape of the distribution is determined by its
moments. The first moment is the mean of the distribution. Suppose X is a random variable
following Exponentiated Log-Uniform distribution with parameters a,b, β and then the rth

moment for a given probability distribution is given by:

µ
′
r = E(Xr) =

∫ b

a
xr f (x, a, b, β)dx (10)

µ
′
r =

∫ b

a
xrβ

(
ln( x

a )

ln( b
a )

)β−1(
1

xln( b
a )

)
dx (11)

=
β

(ln( b
a ))

β

∫ b

a
xr−1

(
ln(

x
a
)

)β−1

dx

E(Xr) = µ
′
r = ar

(
βΓβ

(−rln( b
a ))

β
−

βΓ(β,−rln( b
a ))

(−rln( b
a ))

β

)
(12)

• On substituting r=1 on equation 12 results in mean of the distribution.

2.1.2 Quantile Function

The quantile function is important as it can be used to generate random numbers and to find
quartiles, median, measures of skewness and kurtosis.
The Quantile function is given by,

x = Q(p) = F−1(p), 0 < p < 1 (13)

The Quantile function of Exponentiated Log-Uniform distribution is obtained by inverting
distribution function.

p =

(
ln( x

a )
)β

(
ln( b

a )
)β

Thus the quantile function is given by,

x = Q(p) = ae
p

1
β

(
ln( b

a )

)
(14)

• The second quartile (Median) of exponentiated log-uniform distribution is obtained by
putting p = 1

2 in 14

Q2 = m = ae

(
( 1

2 )
1
β ln( b

a )

)
(15)
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• The rth moment is defined as

µ
′
r = E(Xr) =

∫ b

a
xr f (x, a, b, β)dx

Which can be written in terms of the quantile function as

mu
′
r =

∫ 1

0
(Q(u))rdu

2.1.3 Mean Deviation

The mean deviation is a measure of amount of scatter in a random variable. Let X follows
Exponentiated Log-Uniform distribution with mean µ and meadian M.

• Mean Deviation from the Mean is given by,

δ1(x) =
∫ b

a
|x − µ| f (x)dx = 2µ(F(µ)− 1) + 2T(µ) (16)

where µ is the mean of the distribution and

T(µ) =
∫ b

µ
x f (x)dx (17)

T(µ) =
∫ b

µ
xβ

1
xln( b

a )

( ln( x
a )

ln( b
a )

)β−1

dx

T(µ) =
aβ

(ln( b
a ))

β

(
(ln( µ

a ))
βΓ(β, (−ln( µ

a )))

(−ln( µ
a ))

β
−

(ln( b
a ))

βΓ(β,−ln( b
a ))

(−ln( b
a ))

β

)
(18)

• Similarly,the Mean Deviation about Median is,

δ2(x) =
∫ b

a
|x − M| f (x)dx = 2T(M)− µ (19)

where M is the median of the distribution and µ is the mean of the distribution and

T(M) =
∫ b

M
x f (x)dx (20)

T(M) =
aβ

(ln( b
a ))

β

(
(ln(M

a ))
βΓ(β, (−ln(M

a )))

(−ln(M
a ))

β
−

(ln( b
a ))

βΓ(β,−ln( b
a ))

(−ln( b
a ))

β

)
(21)

The mean deviation about mean is obtained by substituting the mean, cdf and T(µ) in (16).
The mean deviation about median is obtained by substituting the mean, cdf and T(M) in
(19).

2.1.4 Order Statistics

Let X(1),X(2),X(3),...,X(n) denote the order statistics of a random sample X1,X2,X3,...,Xn drawn
from the continuous distribution with pdf fX(x) and cdf FX(x), then the pdf of rth order statistics
X(r) is given by,

fX(r)
(x) =

n!
(r − 1)!(n − r)!

f (x)[F(x)](r−1)[1 − F(x)](n−r) (22)
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Using the equations (6) and (7) the probability density function of rth order statistics X(r) of
Exponentiated Log-Uniform distribution is given by,

fX(r)
(x, β, a, b) =

n!
(r − 1)!(n − r)!

β

(
1

xln( b
a )

)(
ln( x

a )

ln( b
a )

)β−1((
ln( x

a )

ln( b
a )

)β)(r−1)(
1−

(
ln( x

a )

ln( b
a )

)β)(n−r)

(23)
Then the probability density function of first order statistics X(1) of Exponentiated Log-Uniform
distribution is given by,

fX(1)
((x, β, a, b) = nβ

(
1

x ln( b
a )

)(
ln( x

a )

ln( b
a )

)(β−1)
1 −

(
ln( x

a )

ln( b
a )

)β
(n−1)

(24)

and the probability density function of nth order X(n) of Exponentiated Log-Uniform distribution
is given as:

fx(n)((x, β, a, b) = nβ

(
1

x ln( b
a )

)(
ln( x

a )

ln( b
a )

)(β−1)
( ln( x

a )

ln( b
a )

)β
(n−1)

(25)

2.2. Maximum Likelihood Estimation

In this section, we discuss the method of maximum likelihood(ML) for the estimation of the
unknown parameters a, b, β of Exponentiated Log-Uniform distribution. Let X1,X2,X3,...,Xn be
the random sample of size n drawn from Exponentiated Log-Uniform distribution, the likelihood
function is given by,

L(xi; β, a, b) =
n

∏
i=1

β
( 1

xiln( b
a )

)( ln( xi
a )

ln( b
a )

)β−1

The log-likelihood function is given by,

lnL(xi; β, a, b) = nlnβ − nβ(ln(ln(
b
a
))) + (β − 1)

n

∑
i=1

(ln(ln(
xi
a
))−

n

∑
i=1

ln(xi) (26)

∂lnL
∂a

=
nβ

aln( b
a )

− β − 1
a ∑n

i=1 ln( xi
a )

= 0 (27)

∂lnL
∂b

=
−nβ

bln( b
a )

= 0 (28)

∂lnL
∂β

=
n
β
− nln(ln(

b
a
)) +

n

∑
i=1

ln(ln(
xi
a
)) = 0 (29)

Solving this system of equations, in a, b, β gives the MLEs of a, b, β as â,b̂,β̂.

2.3. Stress Strength Reliability

In this section, the procedure of estimating reliability of R = P(X2 < X1) model is considered.
The expression R = P(X2 < X1) measures the reliability of a component in terms of probability.
The random variables X1 representing the stress experienced by the component does not exceed
X2 which represents the strength of the component. If stress exceeds strength, the component
would fail and vice-versa.
In order to estimate the stress-strength parameter, considering two random variables X and Y
with Exponentiated Log-Uniform (β1, a, b) and Exponentiated Log-Uniform (β2, a, b) distributions
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respectively. We assume that X and Y are independent random variables and the stress-strength
parameter is obtained in the form,

R = P(Y < X) =
∫

X<Y
f (x, y)dxdy =

∫ ∞

0
f (x; β1, a, b)F(x; β2, a, b)dx (30)

where f (x, y) is the joint probability density function of random variables X and Y, having
Exponentiated Log-Uniform distribution.so that

R =
∫ b

a
β1

1
xln( b

a )

( ln( x
a )

ln( b
a )

)β1−1( ln( x
a )

ln( b
a )

)β2

dx

On simplification we get,

R =
β1

β1 + β2
(31)

To compute the maximum likelihood estimate of R, we need to compute the maximum likelihood
estimate of β1 and β2. Suppose X1, X2, ..., Xn is random sample of size n from the Exponentiated
Log-Uniform (β1, a, b) and Y1, Y2, ..., Ym is an independent random sample of size m from Expo-
nentiated Log-Uniform (β2, a, b). The likelihood function of the combined random sample can be
obtained as follow:

L =
n

∏
i=1

f (xi; β1, a, b)
m

∏
i=1

f (yi; β2, a, b) (32)

L =
n

∏
i=1

β1

( 1
xiln( b

a )

)( ln( xi
a )

ln( b
a )

)β1−1 m

∏
i=1

β2

( 1
yiln( b

a )

)( ln( yi
a )

ln( b
a )

)β2−1

(33)

The log-likelihood function is,

lnL = nlnβ1 − nβ1(ln(ln(
b
a
))) + (β1 − 1)

n

∑
i=1

(ln(ln(
xi
a
))−

n

∑
i=1

ln(xi)

+ mlnβ2 − mβ2(ln(ln(
b
a
))) + (β2 − 1)

m

∑
i=1

(ln(ln(
yi
a
))−

m

∑
i=1

ln(yi)

(34)

The maximum likelihood estimate (MLE) of β1 and β2 can be obtained as the solution of,

∂lnL
∂β1

=
n
β1

− nln(ln(
b
a
)) +

n

∑
i=1

ln(ln(
xi
a
)) = 0 (35)

∂lnL
∂β2

=
m
β2

− mln(ln(
b
a
)) +

m

∑
i=1

ln(ln(
yi
a
)) = 0 (36)

From the equation (36) and (37),we obtain,

β̂1 =
n

nln(ln( b
a ))− ∑n

i=1 ln(ln( xi
a ))

(37)

β̂2 =
m

mln(ln( b
a ))− ∑m

i=1 ln(ln( yi
a ))

(38)

The corresponding ML estimate of R is computed from (32) by replacing β1 and β2 by their
ML estimates.

R̂ =
β̂1

β̂1 + β̂2
(39)
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3. Simulation Study and Data Analysis

3.1. Simulation Study

Simulation studies are an important tool for statistical research. Here we take distinct combi-
nations of parameters a, b, β with sample size n. Bias and the mean square error(MSE) of the
parameter estimates are obtained using the following equations.
If θ̂ = T(X) is an estimator, then the bias of θ̂ is the difference between its expectation and the
’true’ value:

Bias(θ̂) = Eθ(θ̂)− θ (40)

An estimator T(X) is unbiased for θ if Eθ(T(X)) = θ for all θ, otherwise it is biased.
The MSE of an estimator θ̂ is

MSE = Eθ

[
(θ̂ − θ)2] (41)

The simulation is done by using different true parameter values. The chosen true parameter
values are as follows:

• a = 0.12, b = 12, β = 0.5

As the n increases, MSE decreases for the selected parameter values given in table 1.
Moreover, the bias is close to zero as the sample size increases. Thus, as the sample size
increases the estimates tend to be closer to the true parameter values.

Table 1: Simulation study at a = 0.12, b = 12,β = 0.5

n Parameter Estimate Bias MSE

a 0.1354 0.154 0.00238
30 b 8.9662 3.0338 9.2039

β 0.4904 0.5096 0.2596
a 0.12038 0.0824 0.00133

75 b 12.009 0.962 0.0565
β 0.4209 0.0790 0.0842
a 0.12005 0.04732 0.000276

100 b 11.438 0.5520 0.0315
β 0.3717 0.012827 0.0624
a 0.1200081 0.02019 0.0001108

500 b 11.867 0.1328 0.01762
β 0.4572 0.004270 0.0128
a 0.120006 0.01650 0.00007403

1000 b 11.961 0.03891 0.001513
β 0.49096 0.00904 0.00550

Comparing the performance of the estimators in Table 1, we can verify that the bias and MSE
values decreases as the sample size increases.

3.2. Data Analysis

Here we consider the data set represents the strength of glass of the aircraft window reported
by Fuller et al. (1994) and we fit these data to Exponentiated Log-Uniform distribution and
compare the results with the Exponentiated Quasi Akash Distribution and Exponentiated Weibull
Distribution.
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Table 2: Strength of glass of the aircraft window

18.83 20.80 21.657 23.03 23.23 24.05 24.321 25.50
25.52 25.80 26.69 26.77 26.78 27.05 27.67 29.90
31.11 33.20 33.73 33.76 33.89 34.76 35.75 35.91
36.98 37.08 37.09 39.58 44.045 45.29 45.381

Table 3: AIC, CAIC, BIC,and HQIC statistics of the fitted model in data set

Distribution AIC CAIC BIC HQIC

Exponentiated Log-Uniform Distribution 196.3994 197.2883 200.7014 197.8017
Exponentiated Quasi Akash Distribution 214.165 215.054 218.467 215.567
Exponentiated Weibull Distribution 214.0852 214.9741 218.3871 215.4875

From the table 3, it has been observed that the Exponentiated log-uniform Distribution
possesses the lesser AIC, CAIC, BIC,and HQIC values as compared to Exponentiated Quasi
Akash distribution and Exponentiated Weibull distribution. To check the model goodness of
fit we had considered the Kolmogorov-Smirnov (K-S) test (goodness-of-fit) statistics for the
strength of glass of the aircraft window data. Since the p-value of fitted model is highest than the
other distributions we have considered. Therefore the results indicate, that the Exponentiated
Log-Uniform distribution performed better than other distributions.

4. summary and conclusions

In this study, we introduce a new distribution, called the Exponentiated Log-Uniform Distribution,
which is generated using an exponentiated technique based on the two-parameter Log-Uniform
distribution as the base distribution. We provide graphical representations of its density function,
cumulative distribution function, hazard rate function, and survival function. And derive
various statistical properties such as moments, mean deviations, and quantile function of the
new distribution. We also obtain the probability density functions of the order statistics of the
Exponentiated Log-Uniform Distribution.

To estimate the parameters of the distribution and the stress strength parameters, we use
the maximum likelihood method, and validate the estimates of the model parameters through a
simulation study. Our findings reveal that the Exponentiated Log-Uniform Distribution exhibits
the least bias and that the values of the mean square error decrease as the sample size increases,
indicating the effectiveness of this distribution in modeling real-world data.

Furthermore, we apply the Exponentiated Log-Uniform Distribution to a real data set and
compare it with Exponentiated Quasi Akash distribution and Exponentiated Weibull distribution.
Our results indicate that the new distribution outperforms these models based on various criteria
such as the Akaike information criterion (AIC), the corrected Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan information criterion (HQIC), the Kolmogorov-
Smirnov (K-S) goodness-of-fit statistic, and the p-values obtained for the models.
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Abstract 

This paper describes the role of queuing theory in supermarket or shopping complex. Generally, a 
supermarket is a place where people are gathered to purchase the daily requirement products and 
here, a queue represents the customers/items in ascending or descending order. An interesting 
aspect of queuing process resides in the measures of its system’s performance especially in terms of 
average service rate and system’s utilization. Simulation is a powerful and versatile tool for 
modeling facilities in supermarket. So, queuing process with simulation provide the average service 
rate and it helps in predicting queue lengths as well as waiting durations when multiple items are 
manufactured and distributed using first come first serve discipline. M/M/s model and poisson 
process are used to explore the supermarket with server arrival rate and service rate. 

Keywords: Queues availability, service discipline, simulation and production 
analysis.  

I. Introduction

In the queuing system like post office, bus stand, supermarket, bank etc. customers arrive 
at service facility to receive the service. The service facility has one or more servers to attend the 
customers. If all servers are already busy to attend the customers then arrival of new customer join 
the queue until a server is free. The first come first serve pattern is used to provide the services to 
the customers. If a customer is served then he leaves the system and can not rejoin the queue. It is 
viewed that queuing theory is the subfield of 

 probability theory with mathematics
 operation research with engineer
 operation management with business
 performance analysis with computer science
 performance analysis in electrical engineering

Queuing theory is the part of operation research that examined the situations related with 
multiple items/products in queue. It can help organizations to manage the balance between 
waiting time and resource utilization. The first paper on queuing theory related with theory of 
probabilities and telephone conversations was published by Erlang [7]. He examined the problem 
of determining how many telephone circuits were necessary to provide phone service that would 
prevent customers from waiting too long for an available circuit. In developing a solution to this 
problem, he began to realize that the problem of minimizing waiting time was applicable to many 
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fields, and began developing the theory further. Baskett et al. [1] described the joint equilibrium 
distribution of queue sizes in a network of queues containing N service centers and R classes of 
customers. It is assumed that the equilibrium probabilities exist and are unique. Here, four types of 
service centers are considered to model central processors, data channels, terminals and routing 
delays. Reddy et al. [13] analyzed a bulk queue with N-policy multiple vacations and setup times. 

Chakravarthy [4] discussed on disaster queue system with markovian arrivals and 
impatient customers. Arrivals occurring during the time the system undergoes repair are stored in 
a buffer of finite capacity. These customers can become impatient after waiting a random amount 
of time and leave the system. Jain and Jain [9] evaluate the repairable queuing system model with 
multiple breakdown. Igwe et al. [8] evaluate the performance of queue management in 
supermarkets subject to average service rate using first come first serve discipline. Zhang and Liu 
[15] analyzed the queue with server breakdown, working vacations and vacation interruption
using the supplementary variable method.

Jhala and Bhathawala [10] analyzed applications of queuing theory in supermarket to 
provide the facility to the customers and conclude that single queue multi server is better in 
comparison to multi queue multi server. Here, The waiting time of customers waiting in the queue 
is reduced almost 3 times to the previous one. We also proved that expected total cost is less in 
case of single queue multi server as compared to multi queue multi server model. Saraswat [13] 
evaluated the effects of a single counter markovian queuing model with multiple inputs. 
Chakravarthy and Kulshrestha [3] described a queuing model with backup server in the absence of 
the main server to continue the process. Bura [2] examined the queuing system model with low 
quality of services. Generally, customers are impatient due to long waits in queue but here, it is 
considered that customers are not impatient due to long waits but they are impatient due to the 
poor quality of service. Daş et al. [6] examined the two stage stochastic model for an industrial 
symbiosis network under uncertain demand. It is analyzed that the profitability of these volunteer 
companies is critical as it affects the sustainability of these networks. 

Divya and Indhira [7] explained the literature survey on queuing model with working 
vacation. Narmadha and Rajendran [12] examined the literature review on development of 
queuing networks. Here, development is a process of gradual change that takes place over many 
years, during which a theory slowly progress and attain a good state. Yadav et al. [14] described 
the applications of simulation and queuing theory in scooter industry. 

One of the expected gains from studying queuing systems is to review the efficiency of the 
models in terms of utilization and waiting length. Hence, increasing the number of queues so 
customers will not have to wait longer when servers are too busy. In queuing theory, 
Little's theorem, states that the long term average number L of customers in a stationary system is 
equal to the long term average effective arrival rate λ multiplied by the average time T that a 
customer spends in the system. Mathematically, it is expressed as 

 L= λ*T. 
This relationship has been shown to be valid for a wide class of queuing models. Consider 

the example of a supermarket where the customer’s arrival rate (λ) doubles but the customers still 
spend the same amount of time (T) in the bill paying area. These facts double the number of 
customers (L). By the same logic, if the customer arrival rate (λ) remains the same but the customer 
service time doubles. These will also double the total number of customers in the system. This 
indicates that in order to control the three variables, managerial decisions are only required for any 
two of the three variables. Three fundamental relationships can be derived from Little’s theorem as 

 L increases if λ or T increases.
 λ increases if L increases or T decreases.
 T increases if L increases or λ decreases.
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II. Assumptions

To describe the performance of the supermarket, there are following assumptions 
 All similar items are grouped in a particular sequence.
 There should be multiple queues to provide the services to the customers.
 There should be some spare service channels to provide the services when any working

channel failed.
 Daily items availability and selling records should be maintained.
 The average number of waiting customers and average number of available service

facilities are analyzed by using simulation.
 Arrivals time follow a poisson probability distribution at an average rate of

λ customers per unit of time.
 Service times are distributed exponentially with an average of p customers per unit time.
 Service rate is independent of line length.
 The average arrival rate is greater than average service rate.
 First come first serve discipline is utilized for services.

III. Notations

There are following notations 
 n  = number of costumers in the system
 nP = probability of n customers in the system

  = Average customer arrival rate
  = Average number of customers served per unit time at the place of service
 Average service completion time
  = Average inter arrival time
 0P = Probability of no customers in the system
 s = Number of service channels
 N  = Maximum number of customers allowed in the system
 sL  = Average number of customers in the system

 qL = Average number of customers in the queue

 L = Average length of non-empty queue
 sW = Average waiting time in the system

 qW = Average waiting time in the queue

 wP = Probability that an arriving customer has to wait

 For achieving a steady-state condition and analytical results to be valid, we must have
 <1.

IV. Supermarket Analysis

A Supermarket has three salesmen at the sales counters if the service time for each customer is 
exponential with a mean of 5 minutes and if people arrive in the poisson fashion at the rate of 20 
an hour. Now, using the M/M/s queuing model and determine the following 
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Figure 1: Queuing System at Supermarket 

Solution: From the given data, get 
 Mean service time (1/) = 5 minutes=1/12 hour
 Service Rate ()= 1/ mean service time = 1/(1/12) = 12 customers per hour
 Arrival Rate (λ) = 20 customers per hour
 Number of server (s) = 3

Now, calculate the following values 

(a) Traffic Intensity (  )
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Now calculate the sum: 
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Adding these values, get 
 Sum = 71.477.038.166.11   

Now, calculate 
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(c) Average number of customers in the system (L)
.
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 Thus, 70.204.166.1 L  

(d) Average time in the system (W)

 1354.0
20

7.2



L

W  hours   8.12 minutes 

(e) Average number of customers in the queue (Lq)

04.166.17.2 

L

LLq  

(f) Average time in the queue (Wq)

 05.0
20

04.1



qL

W  hours   3.1 minutes 

V. Discussion

In the present model, first come first serve discipline is used to provide the services to the 
customers. If large number of customers arrived together then there are multiple counters to 
provide the services to customers to reduce the length of queue in one counter. Here, number of 
entry gate is one and number of exit gates is three to facilitate the customers. It is analyzed that the 
probability of queue existence depends on the utilization of products during the day. The 
utilization is directly proportional to the average number of customers. So, the average number of 
customers increases as the utilization increases. 

Thus, from the above study it is clear that utilization of system is 0.55 and probability of all 
idle customers is 0.15. Average number of customers in the system is less than average number of 
customers in the queue and average time in the system is more than average time in the queue.  

VI. Conclusion

From the above study, it is clear that servers are utilized about 55% of time and it means that there 
is some spare capacity available. The increase in the number of servers will reduce the time of 
customers have to wait in line before been served. So, it will increase the efficiency of the 
supermarket due to the utilization of their services to the customers as and when required.  
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Abstract

We proposed a new model called the Alpha Power Transformed Weibull-Lomax (APTWL) distribution
which extends the Weibull Lomax distribution and have an increasing, decreasing and bathtub shapes
for the hazard rate function. Various structural properties of the new distribution are derived including
moments, probability weighted moments, generating and quantile function. The Renyi and q entropies
are also obtained. Statistical inference is presented for the APTWL distribution using the method of
maximum likelihood estimation to estimate the parameters of proposed distribution. The potentiality of
the new model is illustrated by means of three real life datasets. The results of the analysis of the datasets
show the superiority of APTWL distribution over some compared distributions.

Keywords: Alpha power transformation, Hazard function, Likelihood estimation, Lomax distri-
bution, Weibull Lomax distribution

1. Introduction

The Lomax distribution also known as the Pareto Type II distribution is a continuous distribution
that is used to model extreme events that follow a power law distribution. It is named after
K.S Lomax [12] who first introduced. It is a heavy tailed distribution. That is, the extreme
events are more likely to occur in other distributions like the normal distribution. It is often
used to model phenomena like city sizes, earthquake magnitudes and financial returns. The
Lomax distributions has applications in various fields including income and wealth inequality,
acturial science, biological and medical sciences, engineering, longevity and reliability modeling,
economics, insurance and geology. Overall, the Lomax distribution is a useful tool for modeling
and analyzing extreme events.

Various authors extend the classical distributions to make them applicable in various fields.
For example, Marshall-Olkin Extended Lomax (MOEL) was introduced by Ghitany et al. [7],
Exponentiated Lomax (EL) was studied by Abdul-Moniem and Abdel-Hameed [1], Beta Lomax
(BL) was examined by Lemonte and Cordeiro [11], Gamma Lomax (GL) was presented by Cordeiro
et al. [4], Power Lomax (PL) was studied by Rady et al. [17] and Weibull Power Lomax(WPL)
distribution was introduced by Hussain et al. [8]. The Weibull Lomax (WL) distribution was
recently introduced and its mathematical and statistical features were examined by Tahir et al.
[19].

Weibull-Lomax(WL) distribution which is introduced by Tahir et al [19] which extends the
Lomax distribution has increasing and decreasing shapes for the hazard rate function. It has wider
application in areas such as engineering, survival and lifetime data, hydrology and economics
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(income inequality).
The cdf of WL distribution is given by,

F(x) = 1 − exp

{
−α

{[
1 +

(
x
β

)]α

− 1
}b
}
· (1)

The pdf of WL distribution is given by,

f (x) =
abα

β
[1 +

x
β
]bα−1

{
1 − [1 +

x
β
]−α

}b−1
exp

{
−α([1 +

x
β
]−α − 1)b

}
· (2)

where x > 0; a > 0 and b > 0 are two parameters.
We are motivated to do this work for developing distribution which follow increasing, decreas-

ing and constant failure rates. The main aim of this study is to provide another extension of the
Weibull Lomax distribution introduced by Tahir et al.[19] using the Alpha power transformation
defined by Mahdavi and Kundu [13].

Mahdavi and Kundu [13] proposed a new class of distributions called the Alpha Power
Transformation (APT) family. It is introduced to analyse lifetime data obtained from systems that
exhibit variety of monotonic and non-monotonic failure patterns.
The cdf of the APT family is defined by,

FAPT(x) =
αG(x) − 1

α − 1
, i f α > 0, α ̸= 1 (3)

= G(x), i f α = 1·

The corresponding pdf of APT family is,

fAPT(x) =
log α

α − 1
α

G(x)
g(x), i f α > 0, α ̸= 1 (4)

= g(x), i f α = 1·

2. Alpha Power Transformed Weibull Lomax Distribution

2.1. Probability Density Function (pdf) and Cumulative Distribution Function
(cdf)

The Alpha Power Transformed Weibull Lomax (APTWL) distribution is obtained by using
Weibull Lomax distribution as baseline distribution in alpha power transformation which is
proposed by Mahdavi and Kundu [13]. Inserting equation (1) in (3), we get the five parameter
APTWL cdf which is given by,

F(x) =
α

1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}
− 1

α − 1
· (5)

And the corresponding pdf is obtained by inserting (2) in (4) and is given by,

f (x) =
log α

α − 1
abθ

β

(
1 +

x
β

)bθ−1
{

1 −
(

1 +
x
β

)−θ
}b−1

exp

−a

{[
1 +

(
x
β

)]θ

− 1

}b


α
1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}
· (6)

where x > 0; α > 0 is the additional shape parameter.
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Figure 1 and Figure 2 provides plots of the pdf for some selected values of parameters. It is clear
from the graph that the APTWL densities appears to be right Skewed and flexible heavy tailed
distribution.

Figure 1: pdf plot for α = 0.5, β = 0.75, θ = 0.5

Figure 2: pdf plot for α = 3, β = 5, θ = 4

2.2. Quantile Function

Quantile functions are used in statistical analysis to summarize distributions and are essential
in constructing box plots, quantile-quantile plots and in statistical methods (Mood et.al.) [16].
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Quantile Function can be obtained by taking the inverse of the cumulative distribution function
of a distribution. For q ∈ (0, 1) ,the quantile function of x is obtained by,

xq = β


([

− 1
α

log
{

1 −
{
(log α)−1 log [q(α − 1) + 1]

}}] 1
b
+ 1

) 1
θ

− 1

 · (7)

The root of equation (7) which is xq, gives the unique solution for every value of q ∈ (0, 1)
for a particular combination of parameter values of (α,β,θ,a,b). If q = 0.5, the median of APTWL
distribution denoted by x0.5 can be obtained from equation (7) with its expression given as

x0.5 = β


([

− 1
α

log
{

1 −
{
(log α)−1 log [0.5 (α − 1) + 1]

}}] 1
b
+ 1

) 1
θ

− 1

 · (8)

2.3. Reliability Function

The reliability function is a fundamental concept in reliability engineering used to model
and analyze the longevity and performance of systems and components over time. It is crucial
for determining maintenance schedules, warranty analysis, and risk assessment(Elsayed) [6].
Reliability function can be obtained from,

R(x) = 1 − F(x)

= (α − 1)−1

α − α
1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
} · (9)

2.4. Hazard Function

The hazard function provides insights into the risk of failure at any given time point which
helps to understand the dynamics of the failure process. It is a crucial concept in survival analysis
and reliability engineering (Kalbfleisch and Prentice) [9]. The hazard function is the probability of
failure in an infinitely small time period between x and x + dx given that the subject has survived
up to time x. The hazard function is defined by,

h(x) =
f (x)
R(x)

=

log α
α−1

abθ
β

(
1 + x

β

)bθ−1
{

1 −
(

1 + x
β

)−θ
}b−1

exp

{
−a
{[

1 +
(

x
β

)]θ
− 1
}b
}

(α − 1)−1
α

1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}

α − α
1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}


· (10)

Figure 3 and Figure 4 shows that hazard rate shapes can take different shapes such as constant,
increasing and decreasing shape.
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Figure 3: hrf plot for α = 1.5, β = 1.5, θ = 1.5

Figure 4: hrf plot for α = 3, β = 0.5, θ = 1.5

3. Properties

3.1. Moments

Moments are applied in various statistical methods including parameter estimation, hypothesis
testing and in the method of moments for deriving estimators (DeGroot and Schervish) [5].
The rth moment of a random variable X is obtained as follows,

µ
′
r = E[Xr]
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µ
′
r =

∫ ∞

0
xr log α

α − 1
abθ

β

(
1 +

x
β

)bθ−1
{

1 −
(

1 +
x
β

)−θ
}b−1

exp

−a

{[
1 +

(
x
β

)]θ

− 1

}b


α
1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}

dx· (11)

Using the power series expansion αk = ∑∞
j=0

(logα)j

j! kj in equation (11) and then applying binomial

expansion (1 − z)β = ∑∞
i=0(−1)i (β

i ) zi we get,

µ
′
r =

∞

∑
i,j,k=0

(−1)i+1 ak(ij+1)+2 bθ (log α)j+1

i! k! (j − 1)! β(α − 1)

∫ ∞

0
xr

[(
1 +

x
β

)−θ
]− 1

θ −b−bk(ij+1)

[
1 −

(
1 +

x
β

)−θ
](b−1)+bk(ij+1)

·

Put y =
(

1 + x
β

)−θ
and then integrating we get,

µ
′
r =

r

∑
m=0

∞

∑
i,j,k=0

(−1)i+m+1 ak(ij+1)+2 βr b(log α)j+1( r
m)

i! k! (j − 1)! (α − 1)

B(
1
θ
(m − r)− b − bk(ij + 1), b + bk(ij + 1))· (12)

3.2. Moment Generating Function

The moment generating function(mgf) of a random variable X is defined by Mx(t) = E
[
etx],

for values of t in some neighborhood of zero for which this expectation exists (DeGroot and
Schervish) [5]. It is an alternate method for analyzing results instead of working directly with
the pdf and cdf of a random variable X. We obtain the moment generating function of a random
variable X of the APTWL distribution as,

MX(t) =
∞

∑
r=0

tr

r!
µ
′
r

=
r

∑
m=0

∞

∑
i,j,k,r=0

(−1)i+m+1 ak(ij+1)+2 βr−1 trb(log )j+1( r
m)

i! k! r! (j − 1)!(α − 1)

B(
1
θ
(m − r)− b − bk(ij + 1), b + bk(ij + 1))· (13)

3.3. Probability Weighted Moments

Probability Weighted Moments (PWMs) are a set of statistical measures used to summarize the
probability distribution of a random variable. It is used to derive estimators of the parameters
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and quantiles of generalized distributions. The (h,s)th PWM of X is given by,

ρh,s = E
[

Xh F(x)s
]

=
∫ ∞

0
xh log α

α − 1
abθ

β

(
1 +

x
β

)bθ−1
{

1 −
(

1 +
x
β

)−θ
}b−1

exp

−a

{[
1 +

(
x
β

)]θ

− 1

}b


α
1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
} α

1−exp

{
−a
{[

1+
(

x
β

)]θ
−1
}b
}
− 1

α − 1


s

·

(14)

Using the power series expansion and binomial expansion in equation (14), we get,

ρh,s =
s

∑
i=0

∞

∑
j,k=0

(−1)k+s−i
(

s
i

) (
j
k

)
abθ(log α)j+1(i + 1)j

j! β (α − 1)s+1

∫ ∞

0
xh
(

1 +
x
β

)bθ−1

{
1 −

(
1 +

x
β

)−θ
}b−1

exp

(k + 1)

{
−a
(

1 +
x
β

)θ

− 1

}b
 dx·

Put y =
(

1 + x
β

)−θ
and then integrating, we get,

ρh,s =
s

∑
i=0

∞

∑
j,k,m,n=0

(−1)n+k+s−i
(

s
i

)(
j
k

)(
h
m

)
an+1 βh b (log α)j+1 (i + 1)j (k + 1)n

(α − 1)(s+1) j! n!

B
(

1
θ
(m − h)− b(1 + n)− 1 , b(1 + n)

)
· (15)

3.4. Renyi Entropy and q Entropy

The Renyi and q entropies are two important measures in information theory for examining
the unpredictability associated with random variables that follow a lifetime distribution. The
entropy of a random variable X is a measure of the uncertain variation.
The Renyi entropy is defined by,

δR(ω) = (1 − ω)−1 log
[∫ ∞

0
( f (x))ω dx

]
·

By applying the binomial expansion and exponential expansion in the pdf, we get,

δR(ω) = (1 − ω)−1 log

[
aω

(
bθlog α

β(α − 1)

)ω ∞

∑
i,j,k=0

(−1)i+k
(

j
i

)
jk

(ωlog α)i

j! k!

∫ ∞

0

(
1 +

x
β

)ω(bθ−1)

{
1 −

(
1 +

x
β

)−θ
}ω(b−1) {(

1 +
x
β

)
− 1
}bk

dx·

Put y =
(

1 + x
β

)−θ
and then integrating, we get,

δR(ω) = (1 − ω)−1 log

[
aω+k β1−ω θω−1

(
b log α

α − 1

)ω ∞

∑
i,j,k=0

(−1)i+k
(

j
i

)
jk (ω log α)j

j! k!

B
(

1
θ
(ω − 1)− b(ω + k) , 1 + bk + ω(b − 1)

)
· (16)
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The q entropy Hq( f ) is defined by,

Hq( f ) =
1

q − 1
log
[
1 − Iq( f )

]
where Iq( f ) =

∫
R

f q(x)dx·

Hq( f ) =
1

q − 1
log

[
1 − aq+k β1−q θq−1

(
b log α

α − 1

)q ∞

∑
i,j,k=0

(−1)i+k
(

j
i

)
jk (q log α)j

j! k!

B
(

1
θ
(q − 1)− b(q + k) , 1 + bk + q(b − 1)

)
· (17)

3.5. Order Statistics

In a random sample of size n drawn from the APTWL distribution, we estimate the density of
the ith order statistic Xi:n, say fi:n(x). We have (for i = 1,...,n),

fi:n(x) =
1

B(i, n − i + 1)
Fi−1(x) [1 − F(x)]n−i f (x) (18)

Now we can write,

F(x)i+j−1 =
1

(α − 1)i+j−1

α

{
1−exp

{
−a
[(

1+ x
β

)θ
−1
]b
}}

− 1


i+j−1

(19)

Using the binomial expansion (1 − z)β = ∑∞
i=0(−1)i (β

i ) zi in equation (18) and then applying

power series expansion αk = ∑∞
j=0

(logα)j

j! kj we get,

F(x)i+j−1 =
1

(α − 1)i+j−1 (−1)i+j+k−1
∞

∑
m,k=0

(
i + j − 1

k

)
(log α)m
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∞

∑
t=0

(−1)t
(

m
t

)

exp

−at

{(
1 +

x
β

)θ

− 1

}b
 (20)

Substituting equation (20) in equation (18), we get,

fi:n(x) =
f (x)

B(i, n − i + 1)
(log α)m km (at)s

m! αi+j−1

n−i

∑
j=0

∞

∑
m,k,t,s=0

(−1)i+j+k+t+s−1
(

n − i
j

) (
i + j − 1

k

)
(

m
t

) {(
1 +

x
β

)θ

− 1

}bs

(21)

4. Estimation

4.1. Maximum Likelihood Estimation

We consider the estimation of the unknown parameters of the APTWL distribution by the
maximum likelihood method. The maximum likelihood approach is the most commonly used
of the several parameter estimating techniques which have been validated in the literature. Let
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x1, x2, x3, ..., xn be a sample of size n from the APTWL distribution. The log likelihood (ll) function
is given by

ll = n log (
log α

α − 1
) + n log a + n log b + n log θ − n log β + (bθ − 1)

n

∑
i=1

log (1 +
x
β
) +

(b − 1)
n

∑
i=1

log
{

1 − (1 +
x
β
)−θ

}
+

n

∑
i=1

{
−a
(

1 +
x
β

)θ

− 1

}b

+

log α
n

∑
i=1

1 − exp

{
−a
(

1 +
x
β

)θ

− 1

}b
 · (22)

Differentiating ll with respect to each parameter a,b,α,β and θ and setting the result equals to
zero, we obtain maximum likelihood estimates (MLEs).

∂ll
∂a

=
n
a
−

n

∑
i=1

[
(1 +

x
β
)θ − 1

]b {
1 + log α e[−a(1+ x

β )−1]b
}
· (23)

∂ll
∂b

=
n
b

+ θ
n

∑
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log(1 +
x
β
) +

n

∑
i=1

log
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β
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}

− a
n
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{
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x
β
)θ − 1

}b
[

log
{
(1 +

x
β
)θ − 1

}
− log α e−a ∑n
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{
(1+ x

β )
θ−1

}b
]
· (24)
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log α
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1
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1
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· (25)
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− 1
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∂θ
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log(1 +
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β
) + b − 1) θ
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∑
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(1 +
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)θ log
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(1 +
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− a b
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β
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[
1 − log α e−a ∑n
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(1+ x

β )
θ−1

}b
]
· (27)

Solving equation (23),(24),(25),(26) and (27) by equating to zero, we can find the maximum
likelihood estimates of a,b,α, β and θ.

5. Simulation

In this section a small simulation study to illustrate the efficiency of the ML estimators
of APTWL distribution is given. We generate data from the APTWL distribution using the
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Table 1: Simulation study at a=2 , b=2 ,α = 2, β = 2, θ = 2

n Parameters Means Bias MSE

100

a=2 1.10565 0.89434 0.91377
b=2 2.39277 -0.39277 0.16138
l=2 1.02928 0.97071 0.94228

p =2 1.01551 1.01550 1.00138
t=2 1.29873 0.70126 0.49176

500

a=2 1.75194 0.24805 0.06152
b=2 2.38924 -0.38924 0.15151
l=2 1.21045 0.78954 0.62337

p =2 1.27939 0.72060 0.51926
t=2 1.38891 0.61109 0.47937

2000

a=2 2.17948 0.17948 0.03221
b=2 2.03179 -0.03179 0.00101
l=2 1.23165 0.76834 0.61244

p =2 2.39977 -0.39977 0.15982
t=2 2.35516 -0.35515 0.12613

Table 2: Simulation study at a=0.5 , b=0.5 ,α = 0.5, β = 0.5, θ = 0.5

n Parameters Means Bias MSE

100

a=0.5 0.81558 -0.31558 0.11254
b=0.5 0.60494 -0.10494 0.03801
l=0.5 2.87124 -2.37124 6.35831

p =0.5 0.13112 0.36887 0.13789
t=0.5 0.33607 0.16392 0.03643

500

a=0.5 0.75076 -0.25076 0.07087
b=0.5 0.55669 -0.05669 0.00539
l=0.5 2.49185 -1.99184 4.46373
p=0.5 0.14258 0.35741 0.13791
t=0.5 0.38565 0.11435 0.01722

2000

a=0.5 0.63824 -0.13824 0.04047
b=0.5 0.48755 0.01244 0.00071
l=0.5 2.42174 -1.92174 4.08359

p =0.5 0.24247 0.25752 0.08332
t=0.5 0.40056 0.09943 0.01081

quantile function given in Eq.(7).The behaviour of the parameters of the APTWL distribution
was investigated by conducting simulation studies with the aid of R software. Data sets were
generated from the APTWL distribution with a replication number m = 1000; random samples
of sizes n = 100, 500 and 2000 were further selected. The simulation was conducted for two
different cases using varying true parameter values. The selected true parameter values are
a = 2, b = 2, α = 2, β = 2, θ = 2 and a = 0.5, b = 0.5, α = 0.5, β = 0.5, θ = 0.5 for the first and
second cases respectively.

It can be understood from the table 1 and table 2 that mean square error (MSE) reduces for all
the selected parameter values as the sample size increases. Also bias reduces as the sample size
increases. Hence as sample size increases, the estimates tend towards the true parameter values.

6. Applications

In this study, three lifetime datasets are fitted to demonstrate the adaptability and usefulness
of the APTWL distribution. We have fitted the APTWL distribution to the dataset using MLE and
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compared the proposed APTWL distribution with Weibull Lomax distribution(WL), Exponenti-
ated Lomax distribution(EL), Gamma Lomax distribution(GL), Power Lomax distribution(PL)
and Weibull Power Lomax distribution(WPL). The Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) are the goodness of fit statistics that were employed to
compare the performances. AIC and BIC are computed as follows:

AIC = -2ll + 2k
BIC = -2ll + k log (n),

where ll is the log likelihood function, k is the parameter number and n is the sample size. We use
optim package in R to estimate parameters. Smaller values of the AIC and BIC statistics indicates
better model fittings.

6.1. First data set: Strengths of 1.5 cm glass fibres

The glass fibres data set analyzed by Smith and Naylor [18] was used for this comparison. The
data set originate from 63 observations of strengths of 1.5cm glass fibres primitively obtained by
workers at the UK National Physical Laboratory as reported by Bourguignon et al.[2]. The data
set is presented below:
0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42,
1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61,
1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81,
1.82, 1.84, 1.84, 2.00, 2.01, 2.24.

The parameter estimates values are shown in Table 3 and the performances of the APTWL
distribution with the other competing distributions are shown in Table 4.

Table 3: MLE for the strengths of 1.5 cm glass fibres

Distribution M.L.ESTIMATES
α β a b λ

APTWL 12.7181 2.7532 0.0147 2.1803 4.9414
WL 5.956 6.0375 0.17 3.5281 -
EL 0.0355 74.871 0.0355 - -
GL 18304.4 20.9077 1312.05 - -
PL 4.5151 16.196 - - 77.3271
WPL 62.1361 0.8587 0.019 1.65 63.7374

Table 4: AIC and BIC measures

Distribution -2loglik AIC BIC
APTWL -26.0325 36.03849 46.75417
WL -30.6798 38.6798 47.2524
EL -31.95475 69.9095 76.33891
GL -24.5296 55.05919 61.4886
PL -32.775 38.6151 39.0218
WPL -35.1032 36.48121 47.19688

Table 4 compare the APTWL model with the WL, EL, GL, PL and WPL models. We note
that the APTWL model gives the lowest values for the AIC and BIC values among all fitted
models. So, the APTWL model could be chosen as the best model.

Figure 5 shows the histogram of the data and the estimated pdfs for the fitted models. It
is obvious that the APTWL distribution fits the histogram better than the other distributions
suggesting that it might be the best model for the given set of data.
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Figure 5: Estimated pdfs for the first data set

6.2. Second data set: Remission times of bladder cancer patients

We consider a dataset corresponding to remission times (in months) of a random sample of 128
bladder cancer patients given in Lee and Wang [10]. The observations are as follows:
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57,
5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28,
9.74, 14.76, 6.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83,
34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01,
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62,
7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76,
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07,
3.36, 6.93, 8.65, 12.63, 22.69.

For data set 2, the parameter estimates values are shown in Table 5 and further discrepancy
criteria for the competing distributions are shown in Table 6.

Table 5: MLE for the remission times of 128 bladder cancer patients

Distribution
M.L.ESTIMATES

α β a b λ

APTWL 8.35054 5.78478 87.7104 1.22317 0.04308
WL 0.25661 1.57945 2.42151 1.86389 -
EL 4.5857 24.7414 1.5862 - -
GL 4.754 20.581 1.5858 - -
PL 2.07012 1.4276 - - 34.8626
WPL 62.1361 0.8587 0.0190 1.6500 63.7374
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Table 6: AIC and BIC measures

Distribution -2loglik AIC BIC
APTWL -406.8466 817.6932 823.3972
WL -410.811 829.622 841.03
EL -407.5037 821.0074 829.5635
GL -407.5165 821.0331 829.5891
PL -409.74 825.48 834.036
WPL -407.0033 824.0066 838.2667

The APTWL model is compared with the WL, EL, GL, PL and WPL models in Table 6. It is
evident that out of all the fitted models, the APTWL model provides the lowest values for the
AIC and BIC values. Thus the APTWL model may be selected as the optimal model.

The histogram of the data and the estimated pdfs for the fitted models are displayed in Figure
6. It is clear from Figure 6 that the APTWL distribution provides a better fit to the histogram and
therefore could be chosen as the best model for the data set.

Figure 6: Estimated pdfs for the second data set

6.3. Third data set: Breaking stress of carbon fibers

For the third data set, we consider the uncensored data which consist of 100 observations on
breaking stress of carbon fibers (in Gba) from Nichols et al. [15]. The data are:
3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9,
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56,
3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68,
1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,
1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89,
2.88, 2.82, 2.05, 3.65.

For data set 3, the parameter estimates values are shown in Table 7 and further discrepancy
criteria for the competing distributions are shown in Table 8.
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Table 7: MLE for the breaking stress of carbon fibers (in Gba)

Distribution
M.L.ESTIMATES

α β a b λ

APTWL 4.7392 0.1325 2.1899 5.4454 0.2104
WL 0.15361 2.57945 4.46252 0.56295 -
EL 8.9648 8.2838 14.2225 - -
GL 1.6499 6.1510 6.9435 - -
PL 1.6240 3.1692 - - 29.4556
WPL 0.6134 1.4387 1.2636 2.2953 2.5218

Table 8: AIC and BIC measures

Distribution -2loglik AIC BIC
APTWL “141.1817 292.3634 305.3892
WL -143.1656 294.7656 306.1296
EL -146.652 300.7922 308.6077
GL -143.6743 293.3486 301.1642
PL -144.0012 296.914 304.7295
WPL -141.3484 292.6968 305.7226

Figure 7: Estimated pdfs for the third data set

Table 8 compares the APTWL model with the WL, EL, GL, PL, and WPL models. It is clear
that the APTWL model provides the lowest values for the AIC and BIC values among all the
fitted models. As a result, the APTWL model might be chosen as the best one.

The histogram of the data and the estimated pdfs for the fitted models are displayed in Figure
7. Figures 7 affirm the results of the analysis that the APTWL distribution is more suitable for the
data than the other competing distributions.
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7. Conclusion

In this paper we introduced a new model called the Alpha Power Transformed Weibull-Lomax
(APTWL) distribution which has bathtub, decreasing, and increasing shapes for the hazard rate
function. We derived the structural characteristics of the new distribution including moments,
probability weighted moments, generating function and quantile function. Additionally, the
Renyi and q entropies are obtained. The APTWL distribution is statistically inferred with the
parameters estimated by maximum likelihood estimation. We use three real life datasets for
analysing the new model. The new model provides consistently a better fit than the other models
namely Weibull Lomax (WL) distribution, Exponentiated Lomax (EL) distribution, Gamma Lomax
(GL) distribution, Power Lomax (PL) distribution and Weibull Power Lomax (WPL) distribution.
The proposed model will attract wider application in areas such as engineering, survival and
lifetime data, economics (income inequality) and others.
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Abstract

In this article, the two extreme values [-1,1] is proposed with it’s uncertain submerging values
[-0.5,0.5] as the Alternate Quadra Submerging Polar (AQSP) Fuzzy Graph. The AQSP Fuzzy graph
COVID-19 vaccines survey model has been analyzed to find the highest and the lowest membership and
the non-membership value of the five influencing factors effectively. The notion of the AQSP fuzziness
has been considered from the various points of view, in the specification of variables with the multiple
input of single output rule. The self-reporting nature of the collected survey data of the COVID - 19
Booster shots acceptance and the non-acceptance values between [-1,0] and [0,1] converges precisely with
the level of fixation [-0.5.0] and [0,0.5] alternatively by using the uncertain values in decision making
process of the human behaviours in mathematical Analysis.

Keywords: Alternate Quadra - Submerging Polar Fuzzy Graph, AQSP Fuzzy Sub-merging Polar
Relations, AQSP Fuzzy Submerging level of Fixation and AQSP Fuzzy Regular, Totally Regular,
Strong and Complete graphs.

1. Introduction

The origin expression of fuzzification was first introduced by L.A. Zadeh [30] in his well-known
concept ’Fuzzy sets’. The fuzzy arena is rising exponentially in the arena of fuzzy graph which
is extended by A. Rosenfeld [22] who introduced the ’fuzzy graph’ in 1975. He originated the
fuzzy relation by considering fuzzy sets and functions as a structure of fuzzy graph. And in
1973 Kauffman [13] presented the first definition of fuzzy graph. Different types of fuzzy graph
analogues and concepts were hosted by many fuzzy mathematicians. Fuzzy set theory and
operations on fuzzy graph with several properties are introduced and defined by Klir[14] and
Yuan[29] in and M.S.Sunitha.[26] Many important perceptions on fuzzy graphs were presented
by Moderson and NagoorGani A,[17] Nair. Akram[1] has proposed fuzzy graphs concepts. J.N.
Moderson[16] presented the fuzzy line graph.

In this analysis of AQSP fuzzy graph COVID 19 vaccine survey, we find the membership
value of conflict feelings and frustration which is vague and uncertain is measured precisely.
To highlight human beings, alternate conflict feelings, attitudinal behavior with an alternate
equal association of membership and non - membership principles are polarized in alternate
quadrant. The concept, level of fixation is defined as [-0.5,0] and [0, 0.5] will precise the many
submerging level of uncertain human behavior with an Alternate Quadra values as the level
of presumption along with the level of membership values in the given fuzzy graph which is
denoted as{ [0,0],[0,1],[1,1],[1,0] } and { [0,0],[-1,0],[-1,-1],[0,-1] } of fuzzy sets. This mid-sub merg-
ing alternate quadra - values can be used to describe the increasing or decreasing level towards
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destination of certain values, which is consistent with mid-submerging uncertain fuzzified values
in AQSP Fuzzy graphs are{ [0,0],[0,0.5],[0.5,0.5],[0.5,0] } and { [0,0],[-0.5,0],[-0.5,-0.5],[0,-0.5] }.The
submerging alternate quadrant sets with equal opposite polarized reaction which implement the
destination of the mind to decide whether to accept or not accept the Booster shot in future. The
fixed level of confidence in AQSP fuzzy graph, indicates all possible preferential membership
and non-membership values of reaching certain level of precise value which is reliable.

2. Preliminaries

2.1. Fuzzy Graph [22]

Let ϑ is a non-empty set. A fuzzy graph G : (ϑ, σ, µ) matching to the crisp graph G∗ : (σ∗, µ∗)
is a non-empty set ϑ together with pair of functions σ : ϑ→ [0, 1] where σ is a fuzzy subset of ϑ
and µ : ϑ× ϑ→ [0, 1], µ is a symmetric fuzzy relation on σ, for all values of x, y ∈ ϑ, such that
µ (x, y) ≤ min (σ (x) , σ (y))∀x, y ∈ ϑ

2.2. Partial Fuzzy Sub Graph [23]

The fuzzy graph ϕ = (ϑ1, α, β) is called a partial fuzzy subgraph of G : (ϑ, σ, µ) i f α ≤ σ and
β ≤ µ. In precise mod, ϕ = (ϑ1, α, β) is called a fuzzy subgraph of G : (ϑ, σ, µ) persuaded
by by ϑ1 if ϑ1 ⊆ ϑ and α(x) = σ(x) ∀ x ∈ ϑ1 with β (x, y) = µ (x, y) ∀ x, y ∈ ϑ1. The fuzzy
graph G : (ϑ, σ, µ) is trivial if |ϕ| = 1.

2.3. Alternate Quadra Sub - merging Polar(AQSP) Fuzzy Graph [5]

An Alternate Quadra - Submerging Polar (AQSP) Fuzzy Graph G = (σAQSP, µAQSP) is a fuzzy
graph with crisp graph G∗ = (σ∗AQSP , µ∗AQSP ) is given as V = (σP (x) , σN (x) , ρP (x) , ρN (x))
which is the membership value of vertices along with the uncertain membership value of edges is
given as, E = V ×V = (µP (x, y) , µN (x, y) , γP (x, y) , γN (x, y)).

Here the vertex set V is defined with the given condition in a unique method which is an
alternate contrast submerging polarized uncertain transformation.Here σP = V → [0, 1] , σN =
V → [−1, 0] , ρP = d

∣∣ 0.5, σP (x)
∣∣ and ρN = −d

∣∣−0.5, σN (x)
∣∣ . Here (-0.5, 0.5) is the fixation

of uncertain alternate contrast polarized submerging transformation into certain consistent prefer-
able position. And the edge set E satisfies the following sufficient conditions.

(i) µP (x, y) ≤ min (σP (x) , σP (y) ), (ii) µN (x, y) ≥ max (σN (x) , σN (y) )

(iii) γP (x, y) ≤ min
(
ρP (x) , ρP (y)

)
(iv) γN (x, y) ≥ max (ρN (x) , ρN (y) ),

∀(x, y) ∈ E. By definition, µP = V × V → [0, 1]× [1, 0], µN = V × V → [−1, 0]× [0,−1]
and the submerging mappings, γP = V ×V → [0, 0.5]× [0.5, 0],

γN = V × V → [−0.5, 0] × [0,−0.5], which denotes the impact of the alternate quadrant
polarized fuzzy mapping. The maximum of submerging presumption to be at the level of
confidence [0, 0.5] ⊆ [0, 1] and the minimum of submerging presumption level of confidence is
[−0.5, 0] ⊆ [−1, 0] extension of the graph with its membership and non - membership values
portrait the unique level of submerging destination in an AQSP fuzzy graph.

Also it must satisfy the condition, −1 ≤ σP (x) + σN (x) ≤ 1 and |ρP (x) + ρN (x) | ≤ 1
with constrains 0 ≤ σP (x) + σN (x) +

∣∣ρP (x) + ρN (x)
∣∣ ≤ 2 such that the uncertain status of

submerging presumption, transform into its precise consistent level with fixation mid - value 0.5,
which implies that level of confidence 0.5 in an AQSP as the valuable membership of its position
which is real and valid in the fuzzification. The example of AQSP fuzzy graph is given in the
Figure.1.
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Figure 1: AQSP Fuzzy Graph

2.4. Complement of Fuzzy Graph [17]

Let G = (ϑ, σ, µ) be a fuzzy graph corresponding to the crisp graph. The complement of
uncertain graph G is defined as Ḡ : σ̄, µ̄ where, σ̄ = σ, µ̄ = µ and the definition is given as
µ̄ (x, y) = σ (x) ∧ σ (y)− µ (x, y) ∀ x, y ∈ σ.

2.5. Complete Fuzzy Graph [17]

Let G = (σ, µ) is called as complete fuzzy graph with underlying crisp graph G∗ = (σ∗, µ∗)
such as µ (x, y) = min (σ (x) , σ (y)) ∀ x, y ∈ V with given fuzzy node and edge sets.

2.6. Strong Fuzzy Graph [17]

Let fuzzy graph is a pair of functions G : (σ, µ) where σ is a uncertain fuzzy subset of X, µ is a
symmetrical uncertain fuzzy relation on σ, where σ : X → [0, 1] and µ : X× X → [0, 1] such that,
µ (x, y) = min (σ (x) , σ (y)), x, y ∈ E with satisfying membership values constrain in edge set
is called as strong fuzzy graph.

2.7. Intersection of two fuzzy graphs [18]

Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be two fuzzy graphs with V1 ∩V2 = ∅ and then
G∗1 = (V1, E1) and G∗2 = (V2, E2) such that G∗ = G∗1 ∩G∗2 = (V1 ∩V2, E1 ∩ E2 ) be the intersection
of crisp graph of G∗1 and G∗2 . Then the intersection of G1 ∩ G2 is defined as (σ1 ∩ σ2, µ1 ∩ µ2 )
of the crisp graph G∗1 and G∗2 ,

(i) (σ1 ∩ σ2) (x) = σ1 (x) i f x ∈ V1 ∩ V̄2

(ii) (σ1 ∩ σ2) (x) = σ2 (x) i f x ∈ V2 ∩ V̄1

(iii) (µ1 ∩ µ2) (x, y) = µ1 (x, y) i f x, y ∈ E1 ∩ Ē2

(iv) (µ1 ∩ µ2) (x, y) = µ2 (x, y) i f x, y ∈ E2 ∩ Ē1.
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3. Classifications of AQSP Fuzzy Graphs

3.1. Order of AQSP Fuzzy graph

Let G = (σAQSP , µAQSP) be an AQSP Fuzzy graph with vertex set V, then the order of G is
defined as, O

(
GAQSP

)
= (∑x∈V σP(x), ∑x∈V σN(x), ∑x∈V ρP(x), ∑x∈V ρP(x)).

3.2. Size of AQSP Fuzzy graph

Let G = (σAQSP , µAQSP) be an AQSP Fuzzy graph with edge set E, then the size of G is defined
as S

(
GAQSP

)
= (∑(x,y)∈V µP(x, y), ∑(x,y)∈V µN(x, y), ∑(x,y)∈V γP(x, y), ∑(x,y)∈V γN(x, y)).

3.3. Degree of AQSP Fuzzy graph

Let G = (σAQSP , µAQSP) be an AQSP Fuzzy graph ,then the degree of a vertex ’x’ is defined
with an example presented in Figure.2,
degG (x) = (∑x 6=y µP (x, y)), (∑x 6=y µN (x, y)), (∑x 6=y γP (x, y)), (∑x 6=y γN (x, y)).

3.4. AQSP Partial Fuzzy Sub graph

The fuzzy graph S : (ρ, ϑ) is called a partial AQSP fuzzy sub graph of the AQSP fuzzy graph,
G =

(
σAQSP , µAQSP

)
if ρ ⊆ σ and γ ⊆ µ if vertex set ρ (x) ≤ σ (x) ∀ x ∈ V and the edge set

of membership value is, γP (x, y) ≤ µP (x, y) then the non - membership value such as,
γN (x, y) ≥ µN (x, y) for all values of (x, y) ∈ E ⊆ v× v.

In a unique way an AQSP membership values are defined and compared with the fixation
(-0.5, 0.5) level of confidence. If the sufficient condition of fuzzy sub graph is defined with the
membership and non - membership values such as,

ρ (x) = σ (x) ∀ x ∈ ρ∗ and γ (x, y) = µ (x, y) ∀ (x, y) ∈ γ∗ satisfied then it is obvious
S : (ρ, γ)is a fuzzy sub graph of G = (σAQSP , µAQSP) and it is denoted as |(σ, ρ)| = 1. Figure.2
represents The AQSP Partial fuzzy graph.

Figure 2: AQSP Partial Fuzzy Sub graph G = (σAQSP , µAQSP)
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4. Regular and Totally Regular AQSP fuzzy graph

4.1. Regular AQSP Fuzzy graphs

Let G = (σAQSP , µAQSP) be the given AQSP fuzzy graph. If dG (v) = k ∀ v ∈ V if each vertex
has same degree of k- elements then G is called as the regular AQSP Fuzzy graph, is of degree k
(or) a k - regular AQSP fuzzy graph. An AQSP fuzzy Regular graph is shown in Figure.3. Here
dG (v1) = dG (v2) = dG (v3) = { 1.4, −1.2, 0.4, −0.2}.

Figure 3: Regular AQSP Fuzzy graph G = (σAQSP , µAQSP)

4.2. Totally Regular AQSP Fuzzy graphs

Let G = (σAQSP , µAQSP)be an AQSP fuzzy graph. Then the AQSP fuzzy graph total degree of
each vertex x ∈ V and T [dG (x)] is denoted as with the constraints.

(∑(x,y)∈E(µ
p(x, y) + σP(x)) + ∑(x,y)∈E(µ

p(x, y) + σN(x))
+ ∑(x,y)∈E(ρ

p(x, y) + ρP(x)) + ∑(x,y)∈E(ρ
p(x, y) + ρN(x))).

Here each vertex of G = (σAQSP , µAQSP) has the same total degree ’k’ then the AQSP is said
to be a totally regular AQSP fuzzy graph with degree ’k’. The following illustration presents in
Figure.4, implement that the AQSP is totally regular fuzzy graph of G∗ =

(
σ∗AQSP , µ∗AQSP

)
.

Figure 4: Totally Regular AQSP Fuzzy graph G = (σAQSP , µAQSP)
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4.3. Example of Totally Regular AQSP Fuzzy graphs

Let v1 = v2 = v3 = v4 = (0.8,−0.7, 0.3,−0.2)
v1v2 = v3v4 = (0.7,−0.6, 0.2,−0.1) and v2v3 = v1v4 = (0.8,−0.7, 0.3,−0.2), is totally

regular and regular AQSP. The AQSP fuzzy graph in Figure.3 with vertex and edge set, shows
that it is regular and regular AQSP fuzzy graph .

v1 = v2 = v3 = v4 = (0.8,−0.7, 0.3,−0.2)
v1v2 = v3v4 = (0.7,−0.6, 0.2,−0.1) and
v2v3 = v1v4 = (0.8,−0.7, 0.3,−0.2),
But the example in Figure.4 shows that it’s only regular AQSP fuzzy graph. And it is not

totally regular AQSP fuzzy graph .

4.4. Theorem of Totally Regular AQSP Fuzzy graphs

Let G = (σAQSP, µAQSP) be an AQSP fuzzy graph with underlying crisp graph
G∗ = (σ∗AQSP, µ∗AQSP) and V = (σP(a), σN(a), ρP(a), ρN(a)) is a constant function if and only if
the following conditions are equivalent.

(i) G = (σAQSP, µAQSP) is a regular AQSP fuzzy graph.
(ii) G = (σAQSP, µAQSP) is a totally regular AQSP fuzzy graph.
Proof.
Let G = (σAQSP, µAQSP) be a regular AQSP fuzzy graph. Suppose V is a constant function.
Then degG(a) = c ∀ a ∈ V where c is a constant.
Here σP(a) = c1, σN(a) = c2, ρP(a) = c3 and ρN(a) = c4 ∀ a ∈ V.
(i) =⇒ (ii)
Consider, G = (σAQSP, µAQSP) be a regular AQSP Fuzzy graph, then ,
degGσP(a) = k1, degGσN(a) = k2,
degGρP(a) = k3 and degGρN(a) = k4 ∀ a ∈ V.
Now,
tdegG(σ

P(a)) = degG(σ
P(a) + σP(a)), tdegG(σ

N(a)) = degG(σ
N(a) + σN(a),

tdegG(ρ
P(a)) = degG(ρ

P(a) + ρP(a)), and
tdegG(ρ

N(a)) = degG(ρ
N(a) + ρN(a)∀ a ∈ V .

Hence ,
tdegG(σ

P(a)) = k1 + c1,
tdegG(σ

N(a)) = k2 + c2,
tdegG(ρ

P(a)) = k3 + c3 and
tdegG(ρ

P(a)) = k3 + c3 ∀ a ∈ V.
Thus , G = (σAQSP, µAQSP) is a totally regular AQSP fuzzy graph.
(ii) =⇒ (i)
Suppose that G = (σAQSP, µAQSP) is a totally regular AQSP fuzzy graph,
tdegG(σ

P(a)) = t1,
tdegG(σ

N(a)) = t2,
tdegG(ρ

P(a)) = t3, and
tdegG(ρ

N(a)) = t4 ∀ a ∈ V. Otherwise,
degG(σ

P(a) + σP(a) = t1, degG(σ
N(a) + σN(a) = t2,

degG(ρ
P(a) + ρP(a) = t3 and degG(ρ

N(a) + ρN(a) = t4 ∀ a ∈ V.
The other notion of the result such as,
degG(σ

P(a)) + c1 = t1 ,
degG(σ

N(a)) + c2 = t2 ,
degG(ρ

P(a)) + c3 = t3 and
degG(ρ

N(a)) + c4 = t4 ∀ a ∈ V or,
degG(σ

P(a) = t1 − c1, degG(σ
N(a) = t2 − c2,

degG(ρ
P(a) = t3 − c3 and degG(ρ

N(a) = t4 − c4 ∀ a ∈ V.
Theis implies that G = (σAQSP, µAQSP) is a regular AQSP Fuzzy graph.
Hence it is obvious that (i) and (ii) are equivalent.
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5. Strong AQSP fuzzy graph

A fuzzy graph G = (σAQSP , µAQSP) is said to be a strong AQSP fuzzy graph if it satisfies the
following conditions.

(i) µP (x, y) = min (σP (x) , σP (y) ),

(ii)µN (x, y) = max (σN (x) , σN (y) )

(iii)γP (x, y) = min (ρP (x) , ρP (y) ) ,

(iv)γN (x, y) = max (ρN (x) , ρN (y) ) for x, y ∈ µAQSP.
Figure.5. is an illustration of the Strong AQSP Fuzzy graph.

Figure 5: Strong AQSP Fuzzy graph G = (σAQSP , µAQSP)

5.1. Theorem of the Strong AQSP Fuzzy graph

If G1×G2 is strong AQSP fuzzy graphs then at least G1 = (σAQSP, µAQSP) or G2 = (σAQSP, µAQSP)
must be strong.
Proof. Consider that G1 = (σAQSP, µAQSP) and G2 = (σAQSP, µAQSP) are not strong AQSP fuzzy
graphs. Then there exists (u1, v1) ∈ E1 and (u2, v2) ∈ E2 such that, for membership and non -
membership values of AQSP fuzzy graph is given with the conditions,

µ
p
1 (u1, v1) < ∧ ((σP

1 )(u1), (σP
1 )(v1)), µ

p
2 (u1, v1) < ∧ ((σP

2 )(u1), (σP
2 )(v1))

µN
1 (u1, v1) > ∨ ((σN

1 )(u1), (σN
1 )(v1)), µN

2 (u1, v1) > ∨ ((σN
2 )(u1), (σN

2 )(v1))
∀ (u1, v1) ∈ E1 , ∀ (u2, v2) ∈ E2. And for submerging membership and
non - membership values of AQSP fuzzy graph is,
γ

p
1 (u1, v1) < ∧ ((ρP

1 )(u1), (ρP
1 )(v1)), γ

p
2 (u1, v1) < ∧ ((ρP

2 )(u1), (ρP
2 )(v1))

γN
1 (u1, v1) > ∨ ((ρN

1 )(u1), (ρN
1 )(v1)), γN

2 (u1, v1) > ∨ ((ρN
2 )(u1), (ρN

2 )(v1))
Consider membership and non - membership values of AQSP fuzzy graph,

µP
2 (u2, v2) ≤ (µ

p
1 (u1, v1)) < ∧ (σP

1 (u1), σP
1 (v1)) ≤ σP

1 (u1) (1)

µN
2 (u2, v2) ≥ (µN

1 (u1, v1)) > ∨ (σP
1 (u1), σN

1 (v1)) ≥ σN
1 (u1) (2)

Consider submerging membership values of AQSP fuzzy graph,

γP
2 (u2, v2) ≤ (µ

p
1 (u1, v1)) < ∧ (ρP

1 (u1), ρP
1 (v1)) ≤ ρP

1 (u1) (3)
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γN
2 (u2, v2) ≥ (µN

1 (u1, v1)) > ∨ (ρP
1 (u1), ρN

1 (v1)) ≥ ρN
1 (u1) (4)

Let us assume that,
E = {(u1, v1), (u1, v2)/u1 ∈ V1, u2, v2 ∈ E2}∪ {(u1, w), (v1, w)/w ∈ V2, u1, v1 ∈ E1}

Consider (u, u2), (u, v2) ∈ E we have,
(µP

1 × µP
2 )((u1, u2), (u1, v2)) = ∧(σP

1 (u1), µP
2 (u2, v2))

(µP
1 × µP

2 )((u1, u2), (u1, v2)) < ∧(σP
1 (u1), σP

2 (u2), σP
2 (v2)) and

(σP
1 × σP

2 )(u1, u2) = ∧(σP
1 (u1), σP

2 (u2)), (σP
1 × σP

2 )(u1, v2) = ∧(σP
1 (u1), σP

2 (v2))
Therefore,
∧((σP

1 × σP
2 )(u1, u2), (σP

1 × σP
2 )(u1, v2)) = ∧(σP

1 (u1), σP
2 (u2), σP

2 (v2)) Hence, the membership
and non - membership value of AQSP fuzzy graph is,

(i) (µP
1 × µP

2 )((u1, u2), (u1, v2)) < ∧ ((σP
1 × σP

2 )(u1, u2), (σP
1 × σP

2 )(u1, v2))
(ii) (µN

1 × µN
2 )((u1, u2), (u1, v2)) > ∨ ((σN

1 × σN
2 )(u1, u2), (σN

1 × σN
2 )(u1, v2)) Similarly we get

for the submerging membership / non - membership value of AQSP fuzzy graph is,
(iii) (γP

1 × γP
2 )((u1, u2), (u1, v2)) < ∧ ((ρP

1 × ρP
2 )(u1, u2), (ρP

1 × ρP
2 )(u1, v2))

(iv) (γN
1 × γN

2 )((u1, u2), (u1, v2)) > ∨ ((ρN
1 × ρN

2 )(u1, u2), (ρN
1 × ρN

2 )(u1, v2))
Therefore, G1 × G2 is not strong AQSP fuzzy graph, it is a contradiction. Hence G1 × G2 is

strong AQSP fuzzy graph, then at least G1 or G2 must be strong AQSP fuzzy graph.

6. Complement of a Strong AQSP fuzzy graph

Complement of a strong AQSP fuzzy graph G = (σAQSP, µAQSP) of
G∗ = (σAQSP, µAQSP) is a strong AQSP fuzzy graph G = (σAQSP, µAQSP) on G∗ = (σ∗AQSP, µ∗AQSP),
σAQSP = (σP(x), σN(x), ρP(x), ρN(x)) and
µAQSP = ((µP(x), (µN(x), (γP(x), (γ̄N(x)) are defined by with the conditions,

(i) V = V
(ii) σP(x) = σP(x), σN(x) = σP(x),

ρP(x) = ρP(x), ρN(x) = ρN(x) ∀ x ∈ V,
(iii)

µP(x, y) =

{
0 i f µP(x, y) > 0,
∧(µP(x), µP(y)) i f µP(x, y) = 0,

µN(x, y) =

{
0 i f µN(x, y) > 0,
∨(µN(x), µN(y)) i f µN(x, y) = 0,

γP(x, y) =

{
0 i f γP(x, y) > 0,
∧(γP(x), γP(y)) i f γP(x, y) = 0,

γN(x, y) =

{
0 i f γN(x, y) > 0,
∨(γN(x), µN(y)) i f γN(x, y) = 0,

6.1. Theorem of the AQSP Fuzzy Bijective Map

Let G1 = (σAQSP , µAQSP) and G2 = (σAQSP , µAQSP) be AQSP fuzzy graphs. Then the
G1 = (σAQSP , µAQSP) = G2 = (σAQSP , µAQSP) if and only if G1 = (σAQSP , µAQSP) ≈ G2 =
(σAQSP , µAQSP).

Proof. Consider that G1 = (σAQSP , µAQSP) and G2 = (σAQSP , µAQSP) isomorphic, There exists
a bijective map φ : v1 → v2 satisfying the AQSP fuzzy graph with submerging membership and
non - membership values. σP

1 (x) = σP
2 (x) , σN

1 (x) = σN
2 (x),
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ρP
1 (x) = ρP

2 (x) , ρN
1 (x) = ρN

2 (x) ∀ x ∈ V.
µP

1 (x, y) = µP
2 (φ(x), φ(y)), µN

1 (x, y) = µN
2 (φ(x), φ(y)),

γP
1 (x, y) = γP

2 (φ(x), φ(y)), γN
1 (x, y) = γN

2 (φ(x), φ(y)) ∀ x, y ∈ E.
By definition of complement of AQSP fuzzy graph we have,
µ1

P(x, y) = ∧(σP
1 (x), σP

1 (y)) = ∧(σ1φ(x), σ1φ(y)) = µ1
P(φ(x), φ(y)),

µ1
N(x, y) = ∨(σN

1 (x), σN
1 (y)) = ∨(σ1φ(x), σ1φ(y)) = µ1

N(φ(x), φ(y)),
γ1

P(x, y) = ∧(ρP
1 (x), ρP

1 (y)) = ∧(ρ1φ(x), ρ1φ(y)) = γ1
P(φ(x), φ(y)),

γ1
N(x, y) = ∨(ρN

1 (x), ρN
1 (y)) = ∨(ρ1φ(x), ρ1φ(y)) = γ1

N(φ(x), φ(y))
∀ x , y ∈ E1. Hence, G1 = (σAQSP , µAQSP) ≈ G2 = (σAQSP , µAQSP).

The converse is true is shown in Figure. 11 as an example.

7. Complete AQSP fuzzy graph

An AQSP fuzzy graph G = (σAQSP , µAQSP) is said to be a complete AQSP fuzzy graph if the
necessary and sufficient conditions are satisfied. Figure.6. represents the complete AQSP fuzzy
graph in the following.

(i) µP (x, y) = min (σP (x) , σP (y) ), (ii)µN (x, y) = max (σN (x) , σN (y) )
(iii)γP (x, y) = min (ρP (x) , ρP (y) ), (iv)γN (x, y) = max (ρN (x) , ρN (y) ).

∀ (x, y) ∈ µ∗AQSP.

7.1. Theorem

Let G1 = (σAQSP, µAQSP) and G2 = (σAQSP, µAQSP) be complete AQSP Fuzzy graphs, then
G1 ∩ G2 is also a complete AQSP Fuzzy graph.

Proof. If (x1, y1), (x2, y2) ∈ E, since G1 = (σAQSP, µAQSP) and
G2 = (σAQSP, µAQSP) are complete AQSP Fuzzy graphs, then ,
for the membership value of AQSP fuzzy graph is,
(µP

1 ∩ µP
2 )((x1, y1), (x2, y2)) = µP

1 (x1, x2) ∧ µP
2 (y1, y2),

= σP
1 (x1) ∧ σP

2 (x2) ∧ σP
2 (y1) ∧ σP

2 (y2),
= σP

1 (x1) ∧ σP
2 (y1) ∧ σP

1 (x2) ∧ σP
2 (y2),

= σP
1 ∩ σP

2 (x1, y1) ∧ σP
1 ∩ σP

2 (x2, y2).
Similarly for the non - membership values of AQSP fuzzy graph is ,
(µN

1 ∩ µN
2 )((x1, y1), (x2, y2)) = µN

1 (x1, x2) ∧ µN
2 (y1, y2),

= σN
1 (x1) ∨ σN

2 (x2) ∨ σN
2 (y1) ∨ σN

2 (y2),
= σN

1 (x1) ∨ σP
2 (y1) ∨ σN

1 (x2) ∨ σN
2 (y2),

= σN
1 ∩ σN

2 (x1, y1) ∨ σN
1 ∩ σN

2 (x2, y2).
For the submerging AQSP fuzzy graph membership value is,
(γP

1 ∩ γP
2 )((x1, y1), (x2, y2)) = γP

1 (x1, x2) ∧ γP
2 (y1, y2),

= ρP
1 (x1) ∧ ρP

2 (x2) ∧ ρP
2 (y1) ∧ ρP

2 (y2),
= ρP

1 (x1) ∧ ρP
2 (y1) ∧ ρP

1 (x2) ∧ ρP
2 (y2),

= ρP
1 ∩ ρP

2 (x1, y1) ∧ ρP
1 ∩ ρP

2 (x2, y2).
For the submerging non - membership values of AQSP fuzzy graph is,
(γN

1 ∩ γN
2 )((x1, y1), (x2, y2)) = γN

1 (x1, x2) ∧ γN
2 (y1, y2),

= ρN
1 (x1) ∧ ρN

2 (x2) ∨ ρN
2 (y1) ∨ ρP

2 (y2),
= ρN

1 (x1) ∨ ρN
2 (y1) ∨ ρN

1 (x2) ∨ ρN
2 (y2),

= ρN
1 ∩ ρN

2 (x1, y1) ∨ ρN
1 ∩ ρN

2 (x2, y2).
Hence, G1 ∩ G2 is complete AQSP Fuzzy graph is proved.
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Figure 6: Complete AQSP Fuzzy Graph

8. AQSP Fuzzy Graph COVID - 19 Vaccines Survey Analysis from

different college Teaching and Non - Teaching staff and Students

In this application of AQSP Fuzzy graph, the determination of accepting/non - accepting Booster
shot in future is a Decision - making problem in the experience of COVID - 19 Vaccine, which
is taken by willingness/compulsion of each person in pandemic time. If a person ’A’ wants to
decide in taking booster shot after taking one or two doses during pandemic time was influenced
by five influencing factors (IF) which we considered for survey vertices such as, v1 = Government,
v2 = Health care Authorities, v3 = Family Members, v4 = Personal Interest, v5 = Social Media. Each
influencing factor has some common alternate conflict fuzzification attitude, that we considered
as s1(σ, ρ) =Gender, s2 (σ, ρ) =Age, s3(σ, ρ) = Number of Doses, s4( σ, ρ) = Weightage of IF,
s5 (σ, ρ) = Effects of Vaccines. Here the Influencing factor cannot be measured specifically,
since it depends on the decision maker with attitudinal submerging conflict feelings which we
considered as edges, v1v2 = Positive and Negative effects, v1v3 = Reduction of Risk, v1v4 =
Compulsion and Willingness, v1v5 = Immunity, v2v3 = Necessity of Booster, v2v4 = Behavioral
feelings, v2v5 = Psychological proses, v3v4 = Conflict thoughts, v3v5 = Acceptance and non -
acceptance of Booster Shotter and v4v5 = Essential age group to receive Booster Shotter.

The edge is drawn between the apexes if they have at minimum of communal and attitudinal
conflict feelings of accepting / not accepting of third dose booster shot. Thus, each node has
multiple attributes compressing the feelings of uncertainty.

Table 1: Tabular representation of Impact on FIVE Influencing Factors with Vertices of AQSP Fuzzy Graph.

Vertices Influencing Factors (IF) Recurrences AQSP fuzzy values

v1 Government (36%) (1.0,-0.8,0.5,-0.3)
v2 Health care Authorities (11.4%) (0.9,-0.8,0.4,-0.3)
v3 Family Members (15.6%) (1.0,-0.9,0.5,-0.4)
v4 Personal Interest (36.2%) (1.0,-1.0,0.5,-0.5)
v5 social media (0.8%) (0.5,-0.7,0.0,-0.2)

(i) (µ, γ)P si ≤ ( (σ, ρ) (x) ∧ (σ, ρ) (y)) , ∀ (x, y) ε µP
(x,y).

(ii) (µ, γ)N si ≥ ( (σ, ρ) (x) ∨ (σ, ρ) (y)) , ∀ (x, y) ε µN
(x,y).

We get the score values and functions of the AQSP Fuzzy Graph using the constrain,

1
n ( 1

SP
AQSP

∑ θP
x − 1

SN
AQSP

∑ θN
x ).
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Table 2: Tabular representation of AQSP Survey Analysis of Attitudinal Conflict Feelings .

Vertices Sequences Recurrences AQSP fuzzy values

Gender Female (85.7%) (0.9, −0.6, 0.4, −0.1)

Male (14.3 %)

Age < 40 (89.1%) (1.0, −0.8, 0.5, −0.3)

> 40 (10.4 %)

No. of doses Two (89.7%) (0.9, −0.5, 0.4, 0.0)

One (4.8 %)

Booster (8%)

None (0.6 %)

Weightage of (IF) Agree (60.5%) (0.9, −0.8, 0.4, −0.3)

Not Agree (40 %)

Effects of Vaccines High (69.9%) (0.7, −0.6, 0.2, −0.1)

Low (30 %)

Immunity level High (71.8 %) (1.0, −0.8, 0.5, −0.3)

Low (35.8 %)

Necessity of Booster Strongly Agree (52.7 %) (0.8, −0.5, 0.3, 0.0)

Strongly Disagree (47.2 %)

Behavioral feelings Desire (52.3 %) (0.8, −0.5, 0.3, 0.0)

Non desire (47.6 %)

Psychological Conflict feelings Positive (65.3%) (0.5, −0.7, 0.0, −0.2)

Negative (34.6 %)

Submerging thought process Less Immunity (48.7%) (1.0, −0.8, 0.5, −0.3)

More Immunity (51.3 %)

Acceptance of Booster Agree (37.8%) (0.5, −0.7, 0.0, −0.2)

Not Agree (62.2 %)

Merits/Demerits(Booster) Merits (72%) (1.0, −0.6, 0.5, −0.1)

Demarits (28 %)

Neccessity of Booster Important (53.3%) (0.8, −0.6, 0.3, −0.1)

Not Important (46.7 %)

Essential Age(Booster) < 40 (56.9 %) (0.9, −0.7, 0.4, −0.2)

> 40 (43.1 %)
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Table 3: Tabular representation of Combinataric Factors in Boost Shotter survey analysis in AQSP Fuzzy graphs.

Variables (σ, ρ)si v1 v2 v3 v4 v5

Gender s1(σ, ρ) 0.575 0.550 0.600 0.625 0.425

(0.9,−0.6, 0.4,−0.1)

Age s2(σ, ρ) 0.600 0.575 0.675 0.700 0.500

(1.0,−0.8, 0.5,−0.3)

No. of Doses s3(σ, ρ) 0.550 0.525 0.575 0.600 0.525

(0.9,−0.5, 0.4, 0.0)

Weightage of IF s4(σ, ρ) 0.625 0.600 0.650 0.675 0.475

(0.9,−0.8, 0.4,−0.3)

Effects of Vaccines s5(σ, ρ) 0.525 0.500 0.550 0.575 0.375

(0.7,−0.6, 0.2,−0.1)

Average Score si(σ, ρ) 0.585 0.560 0.550 0.575 0.375

9. AQSP fuzzy graphs Multi input with single output Method

Influencing Factor represents the vertex set of AQSP fuzzy graph = (IF)
Attitudinal Feelings is the edge set of AQSP fuzzy graph = (AF)
(i)Total score weightage (IF) = ∑ (IFi (Āi)) + (IF + (σ,ρ)s1

10 ) , αcut = S1

(ii)Total score weightage (AF)= ∑ (AFi (Āi)) + (AF + (µ,γ)si
10 ) , αcut = IF5

A (σ, ρ)→ B (µ, γ) = IAQSP ((σ, ρ) , (µ, γ) ) =

{
1 (σ, ρ) ≤ (µ, γ)

(µ, γ) (σ, ρ) ≥ (µ, γ)

A (σ, ρ) = [0.9, 0.7, 0.8, 1.0, 0.6] ,

B (µ, γ) = [0.8, 0.9, 1.0, 1.0, 0.7, 0.8, 0.6, 1.0, 0.6, 0.6]

RAQSP[A (σ, ρ) , B (µ, γ)] = (σ,ρ)→ (µ,γ)

RAQSP =


0.9
0.7
0.8
1.0
0.6

 [
0.8, 0.9, 1.0, 1.0, 0.7, 0.8, 0.6, 1.0, 0.6, 0.6

]

RAQSP =


0.8 1.0 1.0 1.0 0.7 0.8 0.6 1.0 0.6 0.6
1.0 1.0 1.0 1.0 1.0 1.0 0.6 1.0 0.6 0.6
0.8 1.0 1.0 1.0 0.7 1.0 0.6 1.0 0.6 0.6
0.8 1.0 1.0 1.0 0.7 0.8 0.6 1.0 0.6 0.6
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0


A′ (σ, ρ) = [0.7, 0.6, 0.8, 1.0, 0.5], B′ (µ, γ) = A′ TM

◦RAQSP
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[0.7, 0.6, 0.8, 1.0, 0.5] TM
◦


0.8 1.0 1.0 1.0 0.7 0.8 0.6 1.0 0.6 0.6
1.0 1.0 1.0 1.0 1.0 1.0 0.6 1.0 0.6 0.6
0.8 1.0 1.0 1.0 0.7 1.0 0.6 1.0 0.6 0.6
0.8 1.0 1.0 1.0 0.7 0.8 0.6 1.0 0.6 0.6
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0


B′ (µ, γ) = ∨(A′(x) ∧ R(A, B))

B′ (µ, γ)=


∨(0.7, 0.6, 0.8, 0.8, 0.5) ∨(0.7, 0.6, 0.8, 1.0, 0.5)
∨(0.7, 0.6, 0.8, 1.0, 0.5) ∨(0.7, 0.6, 0.8, 1.0, 0.5)
∨(0.7, 0.6, 0.7, 0.7, 0.5) ∨(0.7, 0.6, 0.8, 0.8, 0.5)
∨(0.6, 0.6, 0.6, 0.6, 0.5) ∨(0.7, 0.6, 0.8, 1.0, 0.5)
∨(0.6, 1.0, 0.6, 0.6, 0.5) ∨(0.6, 1.0, 0.6, 0.6, 0.5)


B′ (µ, γ) = [0.8, 1.0, 1.0, 1.0, 0.7, 0.8, 0.6, 1.0, 0.6, 0.6]
B′ (µ, γ) = [0.6 1.0], Using AQSP Fuzzy graph MISO method, we get the result of the

following,
Highest Influencing Factor = v4 (Personal Interest)
Lowest Influencing Factor = v5 (social media)
Acceptance/ Non acceptance of Booster shot AQSP fuzzy membership and non - membership

value = [0.6 , 1.0]

10. Conclusion

Fuzzy graph remains an essential mathematical tool to solve the complex uncertain problems. Its
applications are renowned in the evolving fields of Engineering Mathematics, Control Engineering,
Real Analysis, Topology, Operations Research, Optimization, Data Science and Computer Science.
Specially, Fuzzy graph modules provides a more generalized notion to resolve the problems with
vagueness. Based on the study and analysis of the various fuzzy graph modules, a new fuzzy
graph Alternate Quadra Submerging Polar Fuzzy Graph (AQSP) has been proposed. This novel
method enables to precisely identify the membership, the non-membership values that improves
and drives the decision-making analysis in the uncertain situations. Specifically, the application
of the AQSP fuzzy graph is based on the behavioral transformation of the human beings due
to the various influencing factors. It has been proved that the potential association between the
influencing factors and the attitudinal human feelings lead to take a concrete decision of either the
acceptance or the non-acceptance of the booster shot. In future, the AQSP fuzzy graph method
can be further explored for the possibilities of its applications in the interdisciplinary fields of
Artificial intelligence, Approximate reasoning, and Machine learning process to be precise in the
identification of the membership or non-membership values due to the uncertain thought process
of the human behaviors. Furthermore, the AQSP Fuzzy soft graph and the Matrix representations
of the AQSP fuzzy graphs can be further analyzed and explored for the identification and the
evaluation of the reliable values in the uncertain situations.
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Abstract

Effective management of production inventory for deteriorating items with dynamic demand patterns
is crucial for businesses operating in today’s competitive markets. This paper proposes a comprehensive
model that addresses the complexities arising from the dual storage locations, item deterioration, and
demand dependencies on both time and selling price. To optimize the decision variables associated with
production and inventory control, we employ the Flower Pollination Optimization (FPO) algorithm,
a nature-inspired meta-heuristic known for its ability to efficiently navigate complex search spaces.
The two-storage production inventory model integrates the dynamics of item deterioration over time,
capturing the real-world challenges faced by supply chain managers. The demand for items is modeled
to be sensitive to both temporal variations and changes in selling prices, reflecting the intricate nature
of market dynamics. Our approach leverages the FPO algorithm to explore and exploit the solution
space, allowing for the identification of optimal or near-optimal strategies for production quantities, order
quantities, and inventory levels. The FPO algorithm mimics the pollination process in nature, striking a
balance between exploration and exploitation to efficiently search for solutions in a highly dynamic and
nonlinear environment. The proposed model and optimization approach are validated through extensive
simulations and sensitivity analyses. The results demonstrate the effectiveness of the FPO algorithm in
finding robust solutions that enhance inventory management, mitigate deterioration-related losses, and
adapt to varying demand scenarios. This research contributes to the field of supply chain optimization by
offering a novel perspective on tackling the challenges associated with dual storage, item deterioration,
and demand dependencies. The findings provide valuable insights for practitioners seeking advanced
strategies for optimizing their production inventory systems in the face of evolving market conditions.

Keywords: Production Inventory Model, Deteriorating Items, Two-Storage, Shortages, Time and
Selling Price Dependent Demand, Flower Pollination Optimization.

1. Introduction and related work

In the realm of supply chain management, the effective control and optimization of inventory
systems play a pivotal role in ensuring the success and sustainability of businesses. As markets
become increasingly dynamic and customer demands evolve, the complexities associated with
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managing production inventory for deteriorating items intensify. This is particularly true in
scenarios where the demand for items is not only influenced by temporal variations but also
by changes in selling prices. To address these challenges, we propose a two-storage production
inventory model that accounts for the intricacies of dual storage locations, item deterioration,
and demand dependencies on time and selling price. The management of deteriorating items
presents a unique set of challenges due to the perishable nature of certain goods over time.
Incorporating this deterioration factor into inventory models is crucial for avoiding unnecessary
losses and ensuring that products reaching customers are of the highest quality. Moreover, the
consideration of time-dependent demand recognizes the influence of various temporal factors,
such as seasonality or market trends, on the overall demand pattern. Adding an additional layer
of complexity, our model acknowledges the impact of selling prices on demand. Price elasticity is
a well-established concept in economics, and understanding how changes in selling prices affect
the demand for items is vital for making informed decisions in a competitive marketplace.To
address the optimization problem inherent in this multifaceted inventory management model,
we turn to the Flower Pollination Optimization (FPO) algorithm. FPO, inspired by the pollination
process in flowers, offers a nature-inspired meta-heuristic that excels in navigating complex and
dynamic search spaces. By mimicking the pollination behavior of flowers, the FPO algorithm
strikes a balance between exploration and exploitation, making it well-suited for finding optimal
or near-optimal solutions in intricate and non-linear environments.

This research aims to contribute to the field of supply chain optimization by proposing a
novel approach to managing production inventory in the face of deteriorating items with time
and selling price dependent demand. Through extensive simulations and sensitivity analyses,
we evaluate the effectiveness of the FPO algorithm in optimizing production quantities, order
quantities, and inventory levels. The outcomes of this study provide valuable insights for
practitioners seeking advanced strategies to enhance their production inventory systems, adapt to
changing market conditions, and minimize losses associated with item deterioration.

Supply chain management can be defined as: "Supply chain management is the coordination
of production, storage, location and transport between players in the supply chain to achieve the
best combination of responsiveness and efficiency for a given market. Many researchers in the
inventory system have focused on a product that does not overcome spoilage. However, there
are a number of things whose meaning doesn’t stay the same over time. Yadav et al. [1-10]
developed the deterioration of these substances plays an important role and cannot be stored for
long. Yadav, et al. [11-20] studied deterioration of an object can be described as deterioration,
evaporation, obsolescence and loss of use or restriction of an object, resulting in less inventory
consumption than under natural conditions. When raw materials are put in stock as a stock
to meet future needs, there may be a deterioration of the items in the arithmetic system which
could occur for one or more reasons, etc. Storage conditions, weather or humidity. Yadav, a.
al. [21-53] explore the inach generally states that management has a warehouse to store the
purchased warehouse. However, for various reasons, management may buy or lend more than it
can store in the warehouse and call it OW, with an extra number in a rented warehouse called
RW near OW or just off it. Yadav and swami. [54-61] developed an inventory costs (including
maintenance costs and depreciation costs) in RW are generally higher than OW costs due to
additional costs of running, equipment maintenance, etc. Reducing inventory costs will cost-
effectively utilize RW products as quickly as possible. Actual customer service is only provided
by OW, and to reduce costs, RW stock is cleaned first. Such arithmetic examples are called
two arithmetic examples in the shop. Yadav and Kumar [62] established the management of
the supply of electronic storage devices and integration of environmental and nerve networks.
Yadav, A.S. [63-65] analysize of seven supply chain management measures to improve inventory
of electronic storage devices by submitting a financial burden using GA and PSO and supply
chain management analysis to improve inventory and inventory of equipment using genetic
computation and model design and chain inventory analysis from bi inventory and economic
difficulty in transporting goods by genetic computation. Swami, et. al. [66-68] developed
inventory policies for inventory and inventory needs and miscellaneous inventory costs based
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on allowable payments and inventory delays An example of depreciation of various types of
goods and services and costs by keeping a business loan and inventory model with pricing
needs low sensitive, inventory costs versus inflationary business expense loans. Gupta, et. al.
[69- 70] established the objectives of the Multiple Objective Genetic Algorithm and PSO, which
include the improvement of supply and deficit, inflation and a calculation model based on a
genetic calculation of the scarcity and low inflation of PSO. Singh, et. al. [71, 72] studied an
example with two stock depreciation on assets and inventory costs when updating particles
and an example with two inventories of property damage and inventory costs in inflation and
soft computer techniques. Kumar, et. al. [73-75] delayed control of alcohol supply and particle
refinement and green cement supply system and inflation by particle enhancement and electronic
inventory system and distribution center by genetic computations. Chauhan and Yadav [76-77]
depreciation example at two stores and warehouses based on inventory using one genetic stock
and one vehicle stock for demand and inflation inventory with two distribution centers using
genetic stock. Pandey, et. al. [78] analysize of marble Improvement of industrial reserves based on
genetic technology and improvement of multiple particles. Ahlawat, et. al. [79] studied the white
wine industry in supply chain management through nerve networks. Singh, et. al. [80] examines
the best policy to import damaged goods immediately and pay for conditional delays under the
supervision of two warehouses. The study by Yadav et al. [81] focuses on enhancing inventory
management for degrading commodities within the framework of green technology investment,
accounting for factors including selling price, carbon emissions, and time-sensitive demand. It
emphasizes sustainable practices in inventory models by fusing conventional economic principles
with environmental factors. Using an interval number technique, Yadav, Yadav, and Bansal [82]
examine a two-warehouse inventory management model for degrading commodities in order
to take demand and cost uncertainty into consideration. Their analytical optimization methods
demonstrate how spending money on preservation technology can save waste and increase
inventory efficiency. With an emphasis on a two-warehouse system to maximize inventory
levels, Yadav, Yadav, and Bansal [83] offer an inventory model that tackles the deterioration of
commodities during storage. Their strategy emphasizes how crucial it is to successfully control
degradation costs in order to raise total inventory efficiency.

2. Assumptions and notations

2.1. Assumptions

The following assumptions were used in the formulation of the mathematical model.

1. The unit production cost is a function of the rate of production.

2. The rate of production is considered to be decision variable.

3. The demand rate is a function of time and selling price, which is D(t, p) = (α + βt −
γt2)p−λ; α > 0, β ∈ [0, 1), γ ∈ [0, 1).

4. The rate of deterioration is constant and different for both the warehouses.

5. The OW has limited capacity of W units and the RW has unlimited capacity.

6. Deterioration units can’t be repaired or replaced.

7. The RW is located near the OW and thus the transportation cost between them is negligible.

8. The inventory cost (including carrying cost and deterioration cost) in RW is higher than
that in OW.

9. Shortages are not allowed.

10. The holding cost is constant for both the warehouses.
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2.2. Notations

Table 2 is provided a description of the notations utilised for the constructed mathematical model.

Table 1: Notations

Notation Units Description

α Constant Coefficient of demand function
β Constant Coefficient of demand function
γ Constant Coefficient of demand function.
θ1 Constant Deterioration rate in OW.
θ2 Constant Deterioration rate in RW.
P – Production rate.
p $/Units Selling price of product.
U capability constraint The owned warehouse capacity
SUCi $/unit Set-up cost
CD $/Units Deterioration cost.
h $/Units Holding cost.
TVC $/Units The function for total inventory cost.

3. Mathematical Model Formulation

The mathematical model for a production inventory system handling decaying products with
two-storage includes time-dependent and selling price-dependent demand. Assume that I(t)
reflects the inventory level at time t and that there are two storage facilities: one for immediate
sales and another for buffer stock. The demand function D(p(t),t) is influenced and altered by the
selling price p(t). The degradation rate affects the inventory’s usefulness, therefore manufacturing
costs, storage costs, and potential revenue loss due to spoiling must all be balanced. The objective
is to minimize the total cost, which includes holding costs, production expenses, and lost revenue
due to deterioration, subject to constraints on inventory levels, demand, and production rates.
(See Fig. 1).

Figure 1: A graphical depiction of the two-warehouse production inventory model.
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The inventory level is characterized by the following differential equations:

dIi1(t)
dt

+ θ1 Ii1(t) = P − (α + βt − γt2)p−λ; t ∈ [0, ti1] (1)

with the boundary condition (B.C.) Ii1(0) = 0.

dIi2(t)
dt

+ θ2 Ii2(t) = P − (α + βt − γt2)p−λ; t ∈ [ti1, ti2] (2)

with the boundary conditions (B.C.) Ii2(ti1) = 0.

dIi3(t)
dt

+ θ2 Ii3(t) = −(α + βt − γt2)p−λ; t ∈ [ti2, ti3] (3)

with the boundary conditions (B.C.) Ii3(ti3) = 0.

dIi4(t)
dt

+ θ1 Ii4(t) = −(α + βt − γt2)p−λ; t ∈ [ti3, ti4] (4)

with the boundary conditions (B.C.) Ii4(ti4) = 0.

dIi5(t)
dt

+ θ1 Ii5(t) = 0; t ∈ [ti1, ti3] (5)

with the boundary conditions (B.C.) Ii5(ti1) = W.
The solutions of the differential Eqs. (1) -(5) are (6) -(10), respectively:

Ii1(t) =
{

1
θ3

1

(
2γ

Pλ
+ Pθ2

1 −
2αθ2

1
Pλ

+
βθ1

Pλ

)
− 1

θ3
1

[
e−tθ1

(
2γ

Pλ
+ Pθ2

1 −
2αθ2

1
Pλ

+
βθ1

Pλ

)]
+

γt2

Pλθ1
− t(2γ + βθ1)

Pλθ2
1

}
(6)

Ii2(t) =
{

1
θ3

2

(
2γ

Pλ
+ Pθ2

2 −
2αθ2

2
Pλ

+
βθ2

Pλ

)
− e−tθ2 e−ti1θ2

[
1
θ3

2

(
2γ

Pλ
+ Pθ2

2 −
2αθ2

2
Pλ

+
βθ2

Pλ

+
γt2

i1
Pλθ2

− ti1(2γ + βθ2)

Pλθ2
2

)]
+

γt2

Pλθ2
− t(2γ + βθ2)

Pλθ2
2

}
(7)

Ii3(t) =
(−αθ2

2 + βθ2 + 2γ)

Pλθ3
2

+
γt2

Pλθ2
− t(2γ + βθ2)

Pλθ2
2

− eθ2(ti3−t)
[
(−αθ2

2 + βθ2 + 2γ)

Pλθ3
2

+
γt2

i3
Pλθ2

− ti3(2γ + βθ2)

Pλθ2
2

]
(8)

Ii4(t) =
(−αθ2

1 + βθ1 + 2γ)

Pλθ3
1

+
γt2

Pλθ1
− t(2γ + βθ1)

Pλθ2
1

− eθ1(ti4−t)
[
(−αθ2

1 + βθ1 + 2γ)

Pλθ3
1

+
γt2

i4
Pλθ1

− ti4(2γ + βθ1)

Pλθ2
1

]
(9)

Ii5(t) = Weθ1(ti1−t) (10)

Therefore, the relevant costs of the production inventory system are as follows.

1. Set up costs for the cycle :
SUCi = CSU (11)
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2. Holding costs in RW for the cycle :

HCRW = h
[ ∫ ti2

ti1

Ii2(t)dt +
∫ ti3

ti2

Ii3(t)dt
]

HCRW =

{
he−θ2ti2

6θ4
2

[
12γeθ2ti1 − 12γeθ2ti2 − 6αθ2

2eθ2ti1 + 6αθ2
2eθ2ti2 + 6βθ2eθ2ti1

− 6βθ2eθ2ti2 + 3βθ3
2t2

i1eθ2ti1 − 3βθ3
2t2

i1eθ2ti2 + 6γθ2
2t2

i1eθ2ti1 − 6γθ2
2t2

i1eθ2ti1

− 2γθ3
2t3

i1eθ2ti1 + 2γθ3
2t3

i1eθ2ti1 − 12γθ2t3
i1eθ2ti1 + 12γθ2t3

i1eθ2ti1 + 6Pθ2
2 Pλeθ2ti1

− 6Pθ2
2 Pλeθ2ti1 + 6αθ3

2ti1eθ2ti2 − 6αθ3
2ti1eθ2ti2 − 6βθ2

2ti1eθ2ti1 + 6βθ2
2ti1eθ2ti1

− 6Pθ3
2 Pλti1eθ2ti1 + 6Pθ3

2 Pλti1eθ2ti1

]
+

he−θ2ti2

6Pλθ4
2

[
12γeθ2ti2 − 12γeθ2ti3 − 6αθ2

2eθ2ti2

+ 6αθ2
2eθ2ti3 + 6βθ2eθ2ti2 − 6βθ2eθ2ti3 + 3βθ3

2t2
i2eθ2ti2 − 3βθ3

2t2
i eθ2ti3

+ 6γθ2
2t2

i2eθ2ti2 − 6γθ2
2t2

i3eθ2ti3 − 2γθ3
2t3

i2eθ2ti2 + 2γθ3
2t3

i3eθ2ti3 − 12γθ2t3
i2eθ2ti2

+ 12γθ2t3
i3eθ2ti3 + 6Pθ2

2 Pλeθ2ti2 − 6Pθ2
2 Pλeθ2ti3 + 6αθ3

2ti2eθ2ti2 − 6αθ3
2ti3eθ2ti3

− 6βθ2
2ti2eθ2ti2 + 6βθ2

2ti3eθ2ti3 − 6Pθ3
2 Pλti2eθ2ti2 + 6Pθ3

2 Pλti3eθ2ti3

]}
(12)

3. Holding costs in OW for the cycle :

HCOW = h
[ ∫ ti1

t0

Ii1(t)dt +
∫ ti3

ti1

Ii5(t)dt +
∫ ti4

ti3

Ii4(t)dt
]

HCOW = h
{

he−θ1ti1

6Pλθ4
1

[
12γeθ1ti4 − 12γeθ1ti4 − 6αθ2

1eθ1ti3 + 6αθ2
1eθ2ti4 + 6βθ1eθ2ti3

− 6βθ1eθ2ti4 + 3βθ3
1t2

i3eθ1ti4 − 3βθ3
1ti3eθ1ti3 + 6γθ2

1t2
i3eθ1ti3 − 6γθ2

1t2
i4eθ2ti4

− 2γθ3
1t3

i3eθ1ti3 + 2γθ3
1t3

i4eθ1ti4 − 12γθ1t3
i3eθ1ti3 + 12γθ1t3

i4eθ1ti4 + 6Pθ2
1 Pλeθ1ti3

− 6Pθ2
1 Pλeθ1ti4 + 6αθ3

1ti3eθ1ti3 − 6αθ3
1ti4eθ1ti4 − 6βθ2

1ti3eθ1ti4 + 6βθ2
1ti3eθ1ti4

− 6Pθ3
1 Pλti3eθ1ti3 + 6Pθ3

1 Pλti4eθ1ti4

]
+

ti1

θ3
1

(
2γ

Pλ
+ Pθ2

1 −
2αθ2

1
Pλ

+
βθ1

Pλ

)
− W

(
eθ1(ti1−ti3) − 1

θ1

)
+ P

(
eθ1(ti1) − 1

θα2
1

)
−

t2
i1(2γ + βθ1)

2pλθ2
1

+
γt3

i1
3pλθ1

− α(e−θ1ti1 − 1)
pλθ2

1
+

β(e−θ1ti1 − 1)
pλθ3

1
+

2γ(e−θ1ti1 − 1)
pλθ4

1

}
(13)

4. Deterioration costs in RW for the cycle :

DCRW = CDθ2

[ ∫ ti2

ti1

Ii2(t)dt +
∫ ti3

ti2

Ii3(t)dt
]
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DCRW = CDθ2e−θ2ti2

{
1

6θ4
2

[
12γeθ2ti1 − 12γeθ2ti2 − 6αθ2

2eθ2ti1 + 6αθ2
2eθ2ti2

+ 6βθ2eθ2ti1 − 6βθ2eθ2ti2 + 2γθ3
2t3

i2eθ2ti2 − 12γθ2t3
i1eθ2ti1 + 3βθ3

2t2
i2eθ2ti2

− 3βθ3
2ti2eθ2ti2 + 6γθ2

2t2
i1eθ2ti1 − 6γθ2

2t2
i2eθ2ti2 − 2γθ3

2t3
i1eθ12ti2 + 12γθ2t3

i2eθ2ti2

+ 6Pθ2
2 Pλeθ2ti1 − 6Pθ2

2 Pλeθ2ti2 + 6αθ3
2ti1eθ2ti1 − 6αθ3

2ti2eθ2ti2 − 6βθ2
2ti1eθ2ti1

+ 6βθ2
2ti2eθ1ti2 − 6Pθ3

2 Pλti1eθ1ti1 + 6Pθ3
2 Pλti2eθ2ti42

]
+

1
6Pλθ4

2

[
12γeθ2ti2

− 12γeθ2ti3 − 6αθ2
2eθ2ti2 + 6αθ2

2eθ2ti3 + 6βθ2eθ2ti2 − 6βθ2eθ2ti3

− 2γθ3
2t3

i2eθ2ti2 + 2γθ3
2t3

i3eθ2ti3 − 12γθ2t3
i2eθ2ti2 + 12γθ2t3

i3eθ2ti3

+ 6αθ3
2ti2eθ2ti2 − 6αθ3

2ti3eθ2ti3 − 6βθ2
2ti2eθ2ti2 + 6βθ2

2ti3eθ2ti3

]}
(14)

5. Deterioration costs in OW for the cycle :

DCOW = CDθ1

[ ∫ ti1

t0

Ii1(t)dt +
∫ ti3

ti1

Ii5(t)dt +
∫ ti4

ti3

Ii4(t)dt
]

DCOW = CDθ1

{
e−θ1ti3

6Pλθ4
1

[
12γeθ1ti3 − 12γeθ1ti4 − 6αθ2

1eθ1ti3 + 6αθ2
1eθ1ti4

+ 6βθ1eθ1ti3 − 6βθ1eθ1ti4 + 3βθ3
1t2

i3eθ1ti3 − 3βθ3
1ti4eθ1ti4 + 6γθ2

1t2
i3eθ1ti3

− 6γθ2
1t2

i4eθ1ti4 − 2γθ3
1t3

i3eθ1ti3 + 2γθ3
1t3

i4eθ1ti4 − 12γθ1t3
i3eθ1ti3

+ 12γθ1t3
i4eθ1ti4 + 6αθ3

1ti3eθ1ti3 − 6αθ3
1ti4eθ1ti4 − 6βθ2

1ti3eθ1ti4

+ 6βθ2
1ti3eθ1ti4

]
+

ti1

θ3
1

(
2γ

Pλ
+ Pθ2

1 −
2αθ2

1
Pλ

+
βθ1

Pλ

)
− W

(
eθ1(ti1−ti3) − 1

θ1

)
+ P

(
eθ1(ti1) − 1

θα2
1

)
−

t2
i1(2γ + βθ1)

2pλθ2
1

+
γt3

i1
3pλθ1

− α(e−θ1ti1 − 1)
pλθ2

1
+

β(e−θ1ti1 − 1)
pλθ3

1
+

2γ(e−θ1ti1 − 1)
pλθ4

1

}
(15)

6. Production cost for the cycle :

PCi = no(P)
[ ∫ ti1

0
Pdt +

∫ ti2

ti1

Pdt
]

PCi = P2noti2 (16)

Therefore, the present worth of total variable cost for the cycle

TVC =
1
T
[SUCi + HCRW + HCOW + DCRW + DCOW + PCi] (17)

Note that for the detailed version of Equation (17), see Appendix A.

4. Flower Pollination Optimization Methodology

Flower Pollination Optimization (FPO) is a naturalistic approach to solving complex optimization
issues by modeling flower pollination. FPO takes inspiration from the biological mechanisms of
pollination, which involve the transport of pollen from flowers to pollinators and the subsequent
reproduction of plants, to effectively explore and exploit the search space (see Fig. 2). In many
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fields, including artificial intelligence, finance, and engineering, this method excels at determining
the optimal solutions to continuous and discrete optimization problems. The algorithm details
of the FPO technique which were brought al. multi-purpose optimization level (Darwin, [83])
after gaining the first literature (Yang, [82]) and Investigation of Artificial Intelligence Based
Optimization Algorithms. Okula, et, al., [84] are as follows:

Algorithm:

Step 1: (Installation Phase): Randomly distribute N-flower particle (potential solution variables)
in solution space. Assign algorithm values, specify the transition probability parameter (go).
Perform the necessary arrangements for the problem to be solved.
Step 2: Calculate the objective function value (fitness) according al. position of the flowers -
particles (potential solution variables). Find out what’s best.
Step 3: Repeat the following steps throughout the iterative process (eg until you reach a certain
number of iterations or until you reach a desired value in the objective function): (For each
particle; for each purpose function size).
Step 3.1: (Global - Local Pollination Phase): Generate a random value. If the value produced is
less than the value of equation and Levy Flights (step vector: L). If the value produced is equal to
or greater than the value of go, uniform distribution in the range [0, 1]. Run the local pollination
process in the context.14
Step 3.2: Calculate the purpose function value (fitness) according al. updated position of flowers -
particles (potential solution variables).
Step 3.3: Update the global best value (and hence the variable position) if the best objective at
that time is found to be better than the function value.
Step 4: Iteration - At the end of the cycle the value (s) obtained according al. global best position
is considered to be the optimum value (s).

Figure 2: Flowchart for the Flower Pollination Optimization.
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5. Graphical representation

The primary objective of the graphical representations of the suggested model is a flowchart listing
the key components. To demonstrate how to manage inventory for things that are deteriorating,
it begins with two storage systems. The diagram highlights the relationship between time,
selling price, and demand, showing how these factors dynamically change inventory levels.
The flowchart also demonstrates the Flower Pollination Algorithm approach, which shows how
potential solutions are developed and improved to cut costs and boost the efficacy of inventory
management. All things considered, the complex relationships revealed in the model and the
optimization technique employed are well communicated by this visual aid.

Figure 3: Relation between Demand rate and time using different values of p.

Figure 4: Relation between Demand rate and time using different values of α.
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Figure 5: Relation between Demand rate and time using different values of β.

Figure 6: Relation between Demand rate and time using different values of γ.

Following are a few insights drawn from the graphical representation’s observations.

1. If the selling price parameter p are increased, the total average inventory cost (TVC) rises
due to the higher demand rate (see Fig. 3).

2. If the parameters α and β are increased, the total average inventory cost (TVC) rises quickly
due to the extended running time of the warehouses. Simultaneously, both the cycle length
and the product price decrease (see Fig. 4 and Fig. 5).

3. If the demand rate parameter (γ) increases, the total average inventory cost (TVC) rises
rapidly due to the higher amount of product waste (see Fig. 6).
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6. Conclusion

In this study, we presented a comprehensive approach to address the challenges associated with
managing a two-storage production inventory model for deteriorating items with time and selling
price dependent demand. The complexities of dual storage locations, item deterioration, and
dynamic demand patterns were considered, reflecting the real-world intricacies faced by supply
chain managers. To optimize decision variables and navigate the complex solution space, we
employed the Flower Pollination Optimization (FPO) algorithm, a nature-inspired metaheuristic
known for its efficacy in solving complex optimization problems.

The proposed model demonstrated its relevance by integrating the impact of item deterioration
over time, allowing for a more accurate representation of inventory dynamics. The consideration
of time-dependent demand and selling price dependencies further enriched the model, capturing
the nuances of market fluctuations and consumer behavior. Our choice of the FPO algorithm
proved effective in finding solutions that strike a balance between exploration and exploitation.
By simulating the pollination process in flowers, the FPO algorithm efficiently explored the
solution space, leading to robust strategies for production quantities, order quantities, and
inventory levels. The adaptability of FPO to dynamic and non-linear environments was crucial in
addressing the intricate nature of the proposed inventory model. Through extensive simulations
and sensitivity analyses, we validated the effectiveness of our approach, showcasing its ability
to enhance inventory management, mitigate deterioration-related losses, and adapt to varying
demand scenarios. The findings contribute valuable insights for supply chain practitioners
seeking advanced strategies to optimize their production inventory systems in the face of evolving
market conditions. As we conclude, it is important to emphasize the practical implications of our
research. The proposed model and optimization approach offer a forward-looking perspective on
addressing the challenges in dual storage inventory systems. The integration of FPO provides a
powerful tool for decision-makers to refine their inventory strategies, ultimately improving overall
supply chain efficiency and resilience. While this study has provided significant contributions,
there are opportunities for further research. Future investigations could explore the applicability
of the proposed model in different industry contexts and evaluate the performance of other
meta-heuristic algorithms for comparison. Additionally, incorporating more nuanced factors such
as supply chain disruptions or sustainability considerations could enrich the model further.

In conclusion, this research contributes to advancing the field of supply chain optimization by
proposing an innovative solution to a complex inventory management problem. The integration
of a two-storage production inventory model with FPO optimization provides a robust framework
for addressing real-world challenges and paves the way for more resilient and adaptive supply
chain strategies.
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Abstract 

     Modern machines and equipment’s have a complex mechatronic structure consisting of 

various components, and their reliability depends on a large number of random factors that arise 

during design, production and operation, which are often impossible to predict. Each element of the 

modern machines is characterized by different performance criteria and corresponding failures. 

Various statistical models of failure distribution are widely used to quantify the reliability of machines 

and devices. The choice of a statistical model and its parameters is important for a proper assessment 

of reliability. The chosen statistical model should reflect the actual distribution of failures fairly 

correctly. In presented article is proposed a new failure distribution for reliability prediction of 

mechatronic components of modern machines and human-machine systems. A large number of 

sudden failures of modern complex technical facilities containing electronic and mechatronic 

structural elements seriously affect its λ-characteristic.  

      Various studies have already shown that the failure behavior of complex systems cannot always 

be characterized by the "bathtub curve". This is especially true for modern complex machines, which, 

among other things, consist of numerous electronic components for which no wear and fatigue 

failures are assumed. For this reason, an alternative service life distribution for the description failure 

behavior of modern mechatronic components and human-machine systems is proposed. This is about 

the failure curves, which are initially characterized by a low or high failure rate and then tend to a 

constant failure rate.  

      To determine the reliability indexes are provided analytical formulas. Methods for estimating the 

parameters of this distribution are presented based on failure statistic. To determine distribution 

parameters, statistical data on failures of the technical system are sufficient only in the first period of 

its operation. This is one of the main advantages of the presented distribution. On the example of 

practical cases, the hypothesis of compliance of the proposed theoretical distribution to the actual 

statistical data on failures of various mechatronic systems and human-machine system was tested. 

Keywords: failure distribution, reliability indexes, failure rate, mechatronic 
components, human-machine system  

I. Introduction

Modern machines and equipments have a complex mechatronic structure consisting of various 
components, and their reliability depends on a large number of random factors that arise during 
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design, production and operation, which are often impossible to predict. Each element of the modern 
machines is characterized by different performance criteria and corresponding failures. Various 
statistical models of failure distribution are widely used to quantify the reliability of machines and 
devices. The choice of a statistical model and its parameters is important for a proper assessment of 
reliability. The chosen statistical model should reflect the actual distribution of failures fairly 
correctly. Currently, dozens of different statistical models are used to assess the reliability of 
machines and their structural elements [1-6]. Each of the existing distribution has certain advantages 
and disadvantages. When choosing a statistical failure model for any technical system, it is necessary 
to take into account the operating conditions, the type and nature of failures, the design features of 
the unit, and other factors.  [1] it was proposed to use the Weibul distribution to assess the reliability 
of transmission mechanisms. However, the need for different price perception of the Weibul 
distribution parameters at different stages of operation creates certain difficulties in calculations.  
      The conducted research shows that the laws of dependence of failure rate on time in modern 
mechatronic systems and human-machine systems depend on many factors. A large number of 
sudden failures of modern complex technical facilities containing electronic and mechatronic 
structural elements seriously affect its λ-characteristic. 

II. Problem statement

The investigations show that the failure behavior according to Table 1, which are characteristic of 
complex machines and mechatronic components, occur most frequently in today's mechanical 
engineering [7]. Therefore, the description of these failure behavior by statistical distributions is of 
interest. The failure behavior according to the pattern "B" can of course be well described with the 
exponential distribution. The other two failure behavior, can in principle be described with the 
Weibull distribution, but with different parameters for the two ranges [1].  

Table 1: Failure behavior for random failures 

Failure behavior Overall 
Characteristic 

Ra
nd

om
 fa

ilu
re

s 

A 

complex 
machines with 
high-stress tests 
after 
commissioning 

B 

Well-designed 
complex 
machines 

C 

Electronic 
components and 
complex 
components after 
repair 

      For this reason, an alternative service life distribution for the description of the three above-
mentioned failure behavior types of modern mechatronic components and human-machine systems 
is proposed in the present work. The failure rate is described in the following form: 
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𝜆(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽𝑡],       (1) 
where λ - the failure rate in the range of random failures; α - the shape parameter characterizes the 
value of the failure rate at the beginning of the first range: 

𝛼 =
𝜆0

𝜆
.            (2) 

The parameter β describes the duration of the characteristic early failure time tf (Fig.1). It has been 
determined by calculations that by α=2 and λ=0,25 results β≈4/tf. As follows from the figure, by α=1 
results in exponential distribution that determines the failure behavior according to the pattern "B" 
(Tab. 1) describes. With the presented distribution, the failure behavior according to the patterns "A" 
(for 0<α<1) and "C" (for α>1) can be described very well. 
      If, in the case of a failure behavior, the failures begin only from a point in time t0, such a course 
can be described with a corresponding four-parameter distribution (Fig. 2). For the failure rate in 
this case, the following applies 

 𝜆(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽(𝑡−𝑡0)].            (3) 

Figure 1: Course of the failure rate in the three-parameter distribution 

Figure 2: Course of the failure rate in the four-parameter distribution 

III. Analytical determination of the remaining failure functions

By integration according to [1], the analytical formulas for the remaining failure functions of the 
three-parameter and four-parameter distribution (survival probability R (t), failure probability F (t) 
and density function f (t)) can be determined. Table 2 provides formulas for determining the failure 
functions of a three-parameter distribution. 
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Table 2: Analytical formulas for the failure functions of the three-parameter distribution 
Fa

ilu
re

 fu
nc

tio
ns

 

Failure rate   𝜆(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽𝑡] 

Survival 
probability 𝑅(𝑡) = exp(−∫𝜆(𝑡)𝑑𝑡

𝑡

0

) = exp [
𝜆

𝛽
(𝛼 − 1)(𝑒−𝛽𝑡 − 1) − 𝜆𝑡] 

Failure 
probability 

𝐹(𝑡) = 1 − 𝑅(𝑡) = 1 − exp [
𝜆

𝛽
(𝛼 − 1)(𝑒−𝛽𝑡 − 1) − 𝜆𝑡] 

Failure density 
function 

𝑓(𝑡) = 𝜆(𝑡) ⋅ 𝑅(𝑡) = 𝜆[1 + (𝛼 − 1)𝑒−𝛽𝑡] ⋅ exp [
𝜆

𝛽
(𝛼 − 1)(𝑒−𝛽𝑡 − 1) − 𝜆𝑡] 

     In Figure 3, the graphical curves of the distribution failure functions (survival probability R(t) and 
failure density function f(t)) for different shape parameters α are shown. As can be seen from the 
figure, different density functions can be generated with the presented lifetime distribution in 
contrast to the exponential distribution. Depending on the shape parameter α, the density function 
changes significantly. For α≥1, there is a decreasing density function, as with the exponential 
distribution. For α<1, the density function for decreasing α-values starts at lower failure densities, 
then reaches a steep maximum and finally falls flat.  
      Other statistical measures of the present distribution (mathematical expectation, variance, etc.) 
can only be calculated using numerical methods, since the resulting integral expressions cannot be 
solved analytically. A significant advantage of the illustrated distribution is that the parameters of 
the distribution can be determined by an incomplete test during the period of early failures. In this 
way, the testing effort of lifetime tests can be significantly reduced.  

Figure 3: Distribution failure functions 
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IV. Determination of the distribution parameters

The parameters of the distribution can be determined by lifetime tests or failure statistics for an order 
statistics for m test specimens of the size n. For the test specimens i under consideration of the size 
n, let the failure times, ordered according to their size be t1,i, t2,i, t3,i, ..., tk,i.... A value of the failure rate 
corresponds to each failure times. According to the definition of the failure rate, these can be 
determined in the following form[1]: 

   𝜆1,𝑖 =
1

𝑛⋅𝑡1,𝑖
,     𝜆2,𝑖 =

1

(𝑛−1)(𝑡2,𝑖−𝑡1,𝑖)
,..., 𝜆𝑘,𝑖 =

1

(𝑛−𝑘+1)(𝑡𝑘,𝑖−𝑡𝑘−1,𝑖)
,...        (4) 

For the entire order statistics, the average values of the failure times and failure rates can be 
determined according to the respective rank to: 

𝑡1 =
1

𝑚
∑ 𝑡1,𝑖

𝑚

𝑖=1
,  𝑡2 =

1

𝑚
∑ 𝑡2,𝑖

𝑚

𝑖=1
, ..., 𝑡𝑘 =

1

𝑚
∑ 𝑡𝑘,𝑖

𝑚

𝑖=1
,...      (5) 

𝜆1 =
1

𝑚
∑ 𝜆1,𝑖

𝑚

𝑖=1
,  𝜆2 =

1

𝑚
∑ 𝜆2,𝑖

𝑚

𝑖=1
,..., 𝜆𝑘 =

1

𝑚
∑ 𝜆𝑘,𝑖

𝑚

𝑖=1
 ,...         (6) 

      By entering the obtained pairs of values in the graph (Fig. 4), it is possible to assess in a first  
approximation whether the investigated failure behavior corresponds to the present distribution. 
The failure times tf is called the characteristic early failure time when the difference λ (tf) -λ (tf+1) is 
very small. Thus, we can approximately assume that the parameter λ≈λ(tf+1), and the failure rate 
tends to this value. The shape parameter α can be determined approximately in the following form: 

𝛼 =
𝜆0

𝜆
≈

𝜆(𝑡1)

𝜆(𝑡𝑓+1)
.  (7) 

In this case, it is assumed that the value of the failure rate at the beginning of the first range λ0 is 
equal to λ (t1). 

Figure 4: The graph for determining the distribution parameters 

      For the determination of the parameter β, formula (1) for the failure time t = tf is represented in 
the form: 

𝜆(𝑡𝑓) − 𝜆 = 𝜆(𝛼 − 1)𝑒−𝛽⋅𝑡𝑓 . (8)

RT&A, No 1 (82) 
Volume 20, March 2025 

193



Iftikhar Chalabi 
A FAILURE DİSTRIBUTİON FOR RELIABILITY PREDICTION 

By logarithmizing, one obtains: 

 ln[𝜆(𝑡𝑓) − 𝜆] = ln[𝜆(𝛼 − 1)] − 𝛽 ⋅ 𝑡𝑓 .            (9) 

It follows from this 

𝛽 =
1

𝑡𝑓
ln

𝜆(𝛼−1)

𝜆(𝑡𝑓)−𝜆
.  (10) 

      Suppose that for α >1, the condition λ(tf)-λ=e-4·λ≈0,018 λ pays off at the time tf. Then, based on 
the expression (10), we get: 

𝛽 =
1

𝑡𝑓
(4 + ln(𝛼 − 1)).            (11) 

 By analogy, one can write for the case α < 1: 

𝛽 =
1

𝑡𝑓
(4 + ln(1 − 𝛼)).  (12) 

     The parameters of the distribution can also be determined by three pairs of values (tL,λL), (tM,λM), 
(tN,λN) (Figure 5). For this, the following system of equations must be solved: 

 {
𝜆[1 + (𝛼 − 1)𝑒−𝛽⋅𝑡𝐿] = 𝜆𝐿

𝜆[1 + (𝛼 − 1)𝑒−𝛽⋅𝑡𝑀] = 𝜆𝑀

𝜆[1 + (𝛼 − 1)𝑒−𝛽⋅𝑡𝑁] = 𝜆𝑁

     (13) 

Figure 5: Determination of distribution parameters based on three test results 

V. Application and evaluation

In order to evaluate the possibility of applying the proposed distribution, it is necessary to consider 
some practical cases.  
      In [8], the results of tests for the service lifetime of submersible electric motors of oil field 
equipment PED-32 and PED-45 were presented. The sample size was n=197 failures during 1548 
days of testing.  The class number was determined by the formula of Sturgess and after rounding it 
was taken K=8. Thus, the class length was taken h=193,5 days. Statistical data on failures were 
presented in Table 3. As can be seen from the table, the actual values of failure rates correspond to 
the case “A” of the proposed distribution (Tab. 1), since in the first period these values gradually 
increase, and then remain almost constant during normal operation. Only in the last period, the 
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failure rate increases sharply. This is due to the fact that by the end of the test period, the number of 
serviceable electric motors remains very small. This has little effect on the reliability of the electric 
motors in question during the first period and normal operation. Therefore, this difference can be 
ignored. 
      Based on the calculations of the distribution parameters using the formulas (7) and (12), the 
following results were obtained:  λ=0,003 day-1; α=0,3; β=0,012 day-1.  
      Figure 5 shows a histogram of the failure rate of a submersible electric motor of oilfield 
equipment based on test results and a curve of changes in the values of this parameter according to 
the present distribution. 
      The test of the hypothesis about the conformity of the present theoretical distribution to the actual 
statistical data on failures was carried out according to the χ2-Pearson criteria. According to [9], the 
measure of the discrepancy between the theoretical and empirical probability density functions can 
be determined by the expression below: 

   𝜒2 = ∑
(𝑛𝑖−𝑛𝑝𝑖)

2

𝑛𝑝𝑖
.8

𝑖=1         (14) 

Here pi is the theoretical probability of a random variable falling into each of the intervales. 

Table 3: Statistical data on failures of submersible electric motors 

N-r of
classes

Lifetime 
intervals, in 

days 

Number of 
failures, ni 

Number of operable 
motors in the middle of 

the interval, Ni 

Actual survival 
probability 

Ri=Ni/N 

Actual failure rate 
𝜆𝑖 =

𝑛𝑖
𝑁𝑖 ∙ ∆𝑡

1 

2 

3 

4 

5 

6 

7 

8 

0 – 193,5 

193,5- 387 

387- 580,5

580,5- 774 

774- 967,5

967,5- 1161 

1161- 1354,5 

1354,5- 1548 

58 

62 

34 

17 

12 

6 

4 

4 

168 

108 

60 

34 

20 

11 

6 

2 

0,85 

0,55 

0,31 

0,17 

0,1 

0,06 

0,03 

0,01 

0,0018 

0,003 

0,003 

0,0026 

0,0031 

0,0028 

0,0034 

0,01 

Total 197 

Figure 6: Histogram of the failure rate of the submersible electric motor according  to the 

test results and the curve of the values change according to the proposed distribution. 
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      The results of calculation based on the χ2-Pearson test were presented in Table 4. The critical value 
χα2 for the significance level α=0,80 and degrees of freedom m=K-1=8-1=7 is χα2=3,82 [9]. Since the 
calculated χ2=3,18 is less than χα2 at a high level of significance, we can safety conclude that the 
proposed distribution is well suited for describing the actual distribution of failures of the tested 
submersible electric motors of oilfield equipment.  

Table 4: The results of calculation based on the χ2 test for the summersible electric motors 

Nr. 
Lifetime, 

t, days 
Theoretical 

survival 
probability, R(t) 

Theoretical 
failure frequency 

pi=R(ti-1)-R(ti) 

Number 
of failures, 

ni 

(𝑛𝑖 − 𝑛 ∙ 𝑝𝑖)
2

𝑛 ∙ 𝑝𝑖

1 
2 
3 
4 
5 
6 
7 
8 
9 

0 
193,5 
387 

580,5 
774 

967,5 
1161 

1354,5 
1548 

1,0 
0,655 
0,372 
0,209 
0,117 
0,065 
0,037 
0,02 

0,005 

0,345 
0,283 
0,163 
0,092 
0,052 
0,028 
0,017 
0,015 

58 
62 
34 
17 
12 
6 
4 
4 

1,461 
0,70 

0,111 
0,070 
0,301 
0,042 
0,126 
0,369 

Total n=197 3,18 

      The following case from practice for the application of the present distribution realates to traffic-
related mortality. Statistical data on traffic-related mortality in Germany in 2002 show the 
dependency of the human failure rate on age as shown in Figure 7 [10]. Since the right to drive a car 
is allowed from the age 18, here you can take t0=18 year.  
      As can be seen from Figure 7, the traffic-related mortality at t=t0=18 year, is equal to λ0=0,00032 
dead/(year·person). Over time, due to increased experience of drivers, the mortality decreases and 
takes a constant minimum value – λ=0,000052 dead/(year·person). The parameter α is determined 
based on the formula (7): α=6,15.  For α >1, from the condition λ(tf)-λ=e-4·λ≈0,018 λ pays the time tf. 
Since λ(tf)≈1,018 λ=0,000053 dead/(year·person), according to the graph in Fig. 7, we get tf≈33 year. 
      Using the formula (12), the following value for β was obtained:  β=0,171 day-1. 

Figure 7: Traffic-related mortality in Germany in 2002 

     After determining all distribution parameters, it is possible to calculate other indexes of reliability 
of a man-machine system using present distribution. A graph of the human survival probability for 
this case is presented in Figure 8. 
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Figure 8: Traffic-related human survival probability on age 

VI. Conclusions

The presented new theoretical distribution can be applied to describe the failures of various modern 
mechatronic components and human-machine systems. Using the presented distribution, reliability 
prediction in many cases can produce more effective results. This model can also be applied to assess 
the reliability of the human-machine system. To determine distribution parameters, statistical data 
on failures of the technical system are sufficient only in the first period of its operation. This is one 
of the main advantages of the presented distribution. Using the example of practical cases, a 
hypothesis was tested on the conformity of the present distribution to the actual statistical data on 
failures of various technical systems. Based on the obtained positive results, we can conclude that 
the proposed distribution can be successfully applied to describe the actual distribution of failures 
and assess the reliability of various modern mechatronic machines and human-machine system. 
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Abstract 

The reliability of water supply systems plays a crucial role in ensuring sustainable water use, 

minimizing economic losses, and preventing failures in critical infrastructure. This paper proposes 

a mathematical approach to modeling the reliability of water systems based on probability theory 

and Markov processes. The main types of failures, their impact on operational characteristics, and 

economic consequences are examined. A simulation of the water supply network is conducted, 

considering the probabilistic characteristics of failures and recovery processes. The analysis of 

results demonstrates that the implementation of predictive monitoring methods and the 

optimization of maintenance strategies significantly enhance the resilience of water supply systems. 

The developed model can be applied in the planning of modernization and management of water 

supply infrastructure to improve its efficiency and economic feasibility. 

Keywords: water supply reliability, mathematical modeling, probability theory, 
Markov processes, fault tolerance, economic efficiency. 

I. Introduction

The reliability of water supply systems plays a crucial role in ensuring the sustainable 
development of cities and industrial facilities. Disruptions in water supply can lead to significant 
economic losses, a decline in the population’s quality of life, and failures in critical infrastructure 
operations. Modern water systems are exposed to various risk factors, including the physical 
deterioration of pipelines, insufficient equipment modernization, and external environmental 
influences, making the task of enhancing their reliability particularly relevant. 

Failures in water supply systems have a substantial economic impact, increasing emergency 
recovery costs, reducing industrial production efficiency, and imposing additional financial 
burdens on municipal budgets. From a social perspective, water supply disruptions can lead to 
deteriorating sanitary and hygienic conditions and a lower level of public comfort, especially in 
regions with limited access to alternative water sources [1]. 

The reliability assessment of water systems is traditionally conducted using mathematical 
modeling, probabilistic analysis, and simulation modeling. In recent years, researchers have 
increasingly focused on intelligent failure prediction methods based on big data analysis and 
machine learning applications. However, despite the development of numerous approaches, the 
integration of reliability models with economic parameters—allowing for the consideration of both 
technical and financial aspects of system operation—remains insufficiently explored. 

This study aims to develop a reliability model for water supply systems that accounts not 
only for the technical characteristics of the infrastructure but also for the economic consequences of 
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failures. The research examines reliability forecasting principles, analyzes the main types of 
failures, and assesses their impact on operational costs [2]. The proposed model will enable the 
optimization of water resource management and enhance the resilience of water supply systems to 
potential disruptions. 

Research in the field of water supply system reliability covers a wide range of approaches, 
including analytical, statistical, and simulation methods. Classical reliability assessment methods 
are based on failure analysis, probabilistic models, and reliability theory for engineering systems. 
One of the most common approaches is the calculation of the system's availability factor, which is 
defined as the ratio of the time of failure-free operation to the total duration of operation, including 
downtime periods. This method allows for a quantitative assessment of the impact of failures on 
the operational performance of the network. 

Modern mathematical models of water supply reliability use probabilistic processes, 
including Markov chains and Monte Carlo network models. For example, the application of 
Markov processes allows for accounting for the transient states of the system when failures of 
varying criticality occur, enabling the prediction of the system's behavior in dynamic conditions. In 
studies dedicated to simulation modeling, the importance of considering the spatial distribution of 
consumers and the hydraulic characteristics of the network is emphasized, as different sections of 
the system have varying degrees of wear and load. 

Economic aspects of water system reliability are also actively studied in the scientific 
literature. Cost analysis related to failures typically includes direct costs for repair and restoration, 
as well as indirect losses caused by reduced water supply quality and potential social 
consequences [3]. Some studies propose optimization models that link system reliability with the 
economic efficiency of investments in modernization. For example, a comparison of different 
maintenance strategies shows that proactive monitoring and predictive maintenance can reduce 
long-term operational costs despite higher initial investments. Table 1 presents comparative data 
on various reliability management methods in terms of their effectiveness and economic feasibility. 

Table 1.: Comparative data on different reliability management methods in terms of their effectiveness and 

economic feasibility 

Reliability Management 

Method 
Mean Time Between 

Failures (hours) 
Average Annual 

Operational Costs ($) 
Availability Factor 

Reactive Maintenance 8,500 1,200,000 0.89 
Planned Maintenance 11,000 900,000 0.94 
Predictive Maintenance 14,500 750,000 0.98 

Among the technological solutions aimed at enhancing the reliability of water supply 
systems, intelligent monitoring systems based on real-time data analysis stand out. The 
implementation of sensor networks and Internet of Things (IoT) technologies significantly 
improves the accuracy of pipeline condition diagnostics, while machine learning helps identify 
potential failures before they actually occur. Several contemporary studies highlight that the 
integration of digital technologies not only improves system reliability but also optimizes 
maintenance costs. Thus, modern research demonstrates the importance of a comprehensive 
approach to ensuring water supply reliability, where mathematical modeling, economic analysis, 
and advanced technological solutions play a key role. 

II. Formulation of the problem

The reliability of water supply systems is determined by several key parameters, including 
Mean Time Between Failures (MTBF), the probability of failure at a specific moment in time, and 
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the Availability factor [4]. These indicators allow for a quantitative assessment of the 
infrastructure's performance and the development of strategies for its optimal operation. 

As an example, consider a municipal water supply system consisting of a pumping station, a 
network of main pipelines, and a distribution system. If the mean time between failures of the 
pumping station is 10,000 hours and the mean time to repair (MTTR) is 50 hours, the system’s 
availability can be calculated as: 

𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
=

10000

10000 + 50
≈ 0.995 

This means the system will be operational 99.5% of the time. However, if the number of 
failures increases and the repair time grows, the availability factor decreases, leading to significant 
water losses and higher operational costs. 

Failures in water supply can be classified by their nature and consequences. Hydraulic 
failures are related to pressure losses, leaks, and pipe blockages; mechanical failures are associated 
with wear of pumps, valves, and connectors; while technological failures are caused by 
breakdowns in automated control systems, sensors, or software. For instance, a rupture in a 500 
mm diameter main pipeline may result in a loss of 5-10 thousand cubic meters of water per hour, 
requiring urgent intervention and significant repair costs. 

The economic consequences of failures are expressed in direct and indirect losses. Direct 
costs include repair expenses, equipment replacement, and labor wages, while indirect costs cover 
business losses, fines for violating environmental regulations, and damage to consumers. To assess 
these consequences, simulation modeling in Colab can be used, analyzing the statistics of 
emergency situations. For example, if the failure probability of the pumping station is 2% per year, 
and the average damage from a single failure is $50,000, the expected annual losses can be 
estimated as: 

𝑃 × 𝐶 = 0.02 × 50000 = 1000 (𝑑𝑜𝑙𝑙𝑎𝑟𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟) 
More complex models can account for the dynamic behavior of failures using Markov 

processes or Monte Carlo methods. To visualize the relationship between losses and equipment 
reliability, a graph can be constructed using Python (Figure 1). This graph demonstrates how the 
increasing probability of failures affects annual losses. Thus, mathematical modeling allows 
predicting risks and determining optimal maintenance strategies to minimize financial costs. 

Figure 1: Expected economic losses at different failure probabilities 
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III. Problem solution

Development of a Water Supply System Reliability Model 

When modeling the reliability of a water supply network, it is important to consider the 
probability of equipment failures, the impact of external factors, and the economic consequences. 
The mathematical foundation can be based on probability theory and Markov processes, which 
allow describing the system's behavior over time [5-7]. 

Mathematical Reliability Model 

To analyze the reliability of a water supply system, we consider the water pipeline network 
as a collection of elements with probabilistic failure characteristics. Let the system consist of n 
elements, each of which can be in one of two states: operational (S1) or failed (S0). 

The probability of the system being in an operational state can be expressed using the 
exponential distribution of time to failure: 

𝑃(𝑡) = 𝑒−𝜆𝑡 
where λ is the failure rate. If the elements operate independently, the overall probability of system 
failure will depend on the network structure. For example, for series-connected nodes: 

𝑃𝑠𝑦𝑠(𝑡) = ∏ 𝑒−𝜆𝑖𝑡

𝑛

𝑖=1

For parallel connection: 

𝑃𝑠𝑦𝑠(𝑡) = 1 − ∏(1 − 𝑒−𝜆𝑖𝑡)

𝑛

𝑖=1

Markov Reliability Model 

Suppose that the water supply network can be in one of several states: fully operational, 
partially degraded, or failed. Let X(t) represent the number of operational nodes at time t. The 
dynamics of transitions between states are described by a Markov process with a transition 
probability matrix: 

[
 
 
 
 

−𝜆1 𝜆1

𝜇1 −(𝜆2 + 𝜇1)
0 𝜇2

 

0 …
𝜆2 …

−(𝜆3 + 𝜇2) …
  
0
0
0

⋮    ⋮  ⋮
  0   0  0

⋱ ⋮
𝜇𝑛−1 −𝜆𝑛]

Failure Simulation Modeling 

For a more precise analysis, simulation modeling can be applied. In this case, the Monte 
Carlo method is used, where random failure events with exponential distribution are generated. 
During the simulation, the mean time to failure-free operation, the average number of failures over 
a period, and the recovery costs are evaluated. 

An example of code for simulating the reliability of a water pipeline considering failures and 
repairs is provided below (figure 2). 

The graph shows the distribution of failure and repair times. Analyzing this data allows for 
forecasting the probability of system failure and calculating optimal maintenance intervals. 

Economic Component of the Model 

Incorporating economic parameters into the model allows for considering repair costs and 
downtime losses. For example, if a failure of a component leads to financial losses of Closs per 
hour of downtime, and the repair requires an expenditure of Crepair, the average annual costs can 
be expressed as: 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑟𝑒𝑝𝑎𝑖𝑟 ∙ 𝑁𝑟𝑒𝑝𝑎𝑖𝑟 + 𝐶𝑙𝑜𝑠𝑠 ∙ 𝑇𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒  
where Nrepair is the average number of repairs per year, and Tdowntime is the total downtime. 
Including these parameters in the model helps justify preventive maintenance strategies and the 
optimal allocation of budget resources. 
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Figure 2: Distribution of failure and repair times in water network nodes 

The developed model enables the evaluation of the reliability of water supply systems, 
considering probabilistic failures, state transitions, and financial consequences. Simulation 
modeling confirms that increasing the intensity of repairs reduces overall downtime but increases 
maintenance costs. Thus, the proposed approach allows finding a balance between system costs 
and reliability. 

Analysis of Results 

To verify the proposed reliability model, a real medium-sized water supply network was 
chosen, which provides drinking water to an urban area with a population of approximately 
500,000 people. The analysis considered the main nodes of the system, including pumping stations, 
trunk and distribution pipelines, as well as reservoirs and shut-off valves. The focus was on 
failures related to pipeline wear, pump equipment breakdowns, and malfunctioning automated 
control systems. 

The conducted modeling allowed for the determination of the mean time between failures 
for various system components and their failure probabilities [8-9]. For instance, the calculation 
showed that the trunk pipelines with a diameter of 600 mm have a failure probability of 0.0025 per 
year, while pumping stations demonstrate higher failure rates – up to 0.015 per year. The data 
analysis identified critical areas of the network where failure concentration exceeded acceptable 
standards, indicating the need for timely preventive measures and equipment upgrades. 

To assess the effectiveness of the proposed reliability enhancement strategies, a comparative 
evaluation of different operational scenarios was conducted. Three options were considered: the 
baseline (current operation without changes), preventive (regular maintenance and planned 
equipment replacement), and intelligent (application of predictive monitoring and digital twins). 
The results are presented in Table 2. 

Table 2. Impact of operational strategies on reliability indicators 

Operational strategy 
Mean time between 

failures (years) 
Failure probability 

per year 
Reduction in repair 

costs (%) 
Baseline 8.2 0.012 0 
Preventive 12.5 0.0065 22 
Intelligent 16.8 0.0032 37 
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As seen from the calculations, the introduction of preventive measures increases the mean 
time between failures by 52%, while the use of an intelligent approach, based on predictive 
analytics and automated control, reduces the failure probability by more than three times 
compared to the current system state. 

From an economic perspective, the implementation of the intelligent system led to a 37% 
reduction in annual costs for emergency repairs and downtime [10-12]. Data visualization (Figure 
3) shows the relationship between operational costs and the system's reliability level under
different management strategies.

The analysis demonstrates that improving the reliability of the water supply system leads to 
a reduction in economic losses associated with unscheduled repairs, water losses, and disruptions 
in consumer supply. This confirms the feasibility of applying predictive monitoring and 
implementing digital technologies for water resource management. 

Figure 3. Impact of reliability level on operating costs 

In the context of ensuring the reliability of water supply systems, a strategic approach to 
maintenance, predictive monitoring, and the implementation of intelligent technologies plays a 
key role [13]. The application of modern management methods allows for minimizing failure risks 
and improving operational efficiency. 

One of the most effective solutions is the optimization of maintenance strategies. Traditional 
preventive methods are often based on scheduled maintenance plans, which do not always 
account for the actual condition of the equipment [14-15]. The introduction of risk-based and 
predictive maintenance based on data analysis helps reduce unplanned downtime and lower 
operational costs. The table 3 presents a comparative analysis of different maintenance strategies. 

Table 3. Comparative characteristics of different maintenance strategies 
Approach Advantages Limitations 

Scheduled Preventive 
Maintenance 

Ease of implementation, 
reduced failure probability 

High operational costs, potential for 
unnecessary repairs 

Reactive Maintenance Minimal preventive costs High risk of emergency failures and 
significant financial losses 

Predictive Maintenance 
(Data-Based) 

Minimization of unplanned 
shutdowns, cost reduction 

Requires the implementation of 
sensors and data processing systems 
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Predictive monitoring using digital technologies is also becoming a crucial element in 
ensuring a reliable water supply. The deployment of pressure, flow, and vibration sensors enables 
real-time infrastructure condition tracking. Machine learning algorithms for data analysis provide 
the ability to detect potential failures in advance and reduce the likelihood of breakdowns. 

Intelligent water supply management systems integrated with digital platforms optimize 
network performance through automatic flow redistribution, leakage prevention, and timely 
detection of critical equipment conditions. The implementation of such solutions enhances 
resilience, reduces water losses, and lowers operational costs. Collectively, these measures form a 
comprehensive approach to water system reliability management, ensuring their efficient and 
uninterrupted operation. 

IV. Conclusions

The conducted study has identified key factors affecting the reliability of water supply 
systems and proposed a mathematical model that accounts for the probability of failures and their 
economic consequences. The simulation results demonstrate that considering fault tolerance in the 
planning and operation of water systems significantly reduces the risks of supply disruptions and 
associated financial losses. 

The developed approach can be used to optimize maintenance strategies and infrastructure 
modernization. The implementation of digital monitoring technologies and failure prediction 
opens up opportunities to enhance the reliability of water systems by accurately identifying critical 
network elements and enabling timely decision-making. 

Further research may focus on expanding the model by incorporating climatic factors, 
changes in water consumption, and the impact of external influences on infrastructure. The 
integration of machine learning methods and the Internet of Things (IoT) into reliability 
management systems also represents a promising direction for improving the efficiency of water 
supply systems. 
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Abstract 

This paper focuses on the Bayesian estimation of the shape parameter for the Inverse Topp-Leone (ITL) 

distribution. To achieve this, we employ both the extended Jeffrey’s prior and the gamma prior, 

facilitating the derivation of posterior distributions for the shape parameter. The Bayesian estimators 

are calculated under various loss functions, including the squared error loss function (SELF), entropy 

loss function (ELF), precautionary loss function (PLF), and Linex loss function (LLF), each chosen to 

address different practical scenarios and estimator biases. In addition to the Bayesian approach, we also 

explore maximum likelihood estimation (MLE) to provide a comparative benchmark. The performance 

of these estimators is assessed and compared based on mean squared error (MSE) across multiple 

sample sizes, allowing for a detailed evaluation of estimator robustness and accuracy. A real-world 

dataset is then analyzed to further demonstrate the relative efficiency of each estimator under the 

different loss functions, providing practical insights into the applicability of each estimation approach 

for the ITL distribution. This analysis offers a comprehensive perspective on the versatility and 

precision of Bayesian and classical estimation methods for the ITL model. 

Keywords: Bayesian analysis, Jeffery’s prior, Gamma prior, Maximum likelihood 

estimation, Loss functions 

I. Introduction

Topp-Leone distribution belongs to the distribution family which has support  1,0 . It indicates the j-

shape form of density function along with bathtub shape of its hazard function. This distribution is 

used for the analysis of failure data. The probability density function of Topp-Leone is given by 

     0,10;212, 11     xxxxxg (1) 

 Since the Topp-Leone distribution is newly formulated distribution proposed by Topp and 

Leone [20]. This distribution has been studied by several authors such as Nadarajah [12], Ghitney et al 

[6, 7], Genc [8], Al-Zahrani [5], MirMostafaee [11], Vicari et al. [21]. Recently Hassan et al. [9] explored 
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the inverse of Topp-Leone distribution. Researchers have extensively explored and generalized a 

variety of probability distributions. For instance, Rather and Ozel [17, 18] investigated the weighted 

Power Lindley distribution, and also examined the length-biased Power Lindley distribution, 

providing insights into its properties and applications. In addition, Rather et al. [19] introduced the 

exponentiated Ailamujia distribution and discussed its real-life applications. Qayoom and Rather [13] 

conducted a comprehensive study of the Weighted Transmuted Mukherjee-Islam distribution, 

analysing its statistical properties. Qayoom and Rather [14] also explored a new generalization of the 

Transmuted Mukherjee-Islam distribution. More recently, Qayoom et al. [15] presented an extension 

of the Lindley distribution, examining its practical utility in real-world scenarios. 

Let X follows the probability distribution function of Topp-Leone distribution, then the 

transformation 1
1


X
Y is said to follow inverse of Topp-Leone distribution having probability 

density function (p.d.f) as 
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Figure 1: p.d.f plot of ITLD under different values of parameters 

Figure 1, illustrates some possible shapes of p.d.f for varying parameters. The corresponding 

cumulative distribution function (c.d.f) of (2) is given by 
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II. Maximum Likelihood Estimation

Let nyyy ,...,, 21 be random samples from inverse Topp-Leone distribution given by (2), then the 

likelihood function becomes 
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The log-likelihood function is 
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III. Bayesian Estimation of Inverse Topp-Leone Distribution

Bayesian estimation is a highly effective approach for estimating the parameters of distribution 

models. This method incorporates prior knowledge to determine the posterior distribution of a 

lifetime distribution’s parameters. From a Bayesian perspective, selecting an appropriate prior is 

flexible, as no single prior can be universally preferred; the choice depends on the available 

information about the parameter. When little prior knowledge about the parameter is available, a 

non-informative prior is typically chosen to minimize bias. However, when sufficient prior 

information is available, using an informative prior enhances the accuracy of the estimation. The goal 

of the current study is to derive a Bayesian estimation of the parameter for the inverse Topp-Leone 

distribution, specifically employing an extended Jeffreys prior and a gamma prior. In recent years, 

Bayesian estimation methods have gained considerable attention. For instance, Ahmad et al. [2] 

investigated Bayesian parameter estimation for the two-parameter exponentiated gamma 

distribution, while Mudasir et al. [10] focused on the weighted Erlang distribution. Raqab and Madi 

[16] explored Bayesian estimation for the exponentiated Rayleigh distribution. Recently, Ahmad et al.

[3] examined Bayesian parameter estimation for the inverse Ailamujia distribution using various loss

functions. In this study, both extended Jeffreys and gamma priors are considered. The extended

Jeffreys prior is a non-informative prior, useful when interpretive information about the parameters is

limited, while the gamma prior provides a more informative approach when substantial parameter

knowledge is available. This Bayesian framework aims to enhance parameter estimation accuracy for

the inverse Topp-Leone distribution, with relevance across various applied fields.

IV. Posterior Distribution of Inverse Topp-Leone Distribution

Suppose  nyyyy ,..,, 21 denotes the n recorded values of (2). Then its likelihood function is given

by 
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We assume the prior distribution of  to be extended Jeffery’s prior proposed by Alkutubi [4], is 

given by 

      RcIg c ,

RT&A, No 1 (82) 
Volume 20, March 2025 

208



A. Aijaz, Fathima Bi, M. Alam, A. A. Rather, D. Qayoom, Asgar Ali

COMPARATIVE BAYESIAN ANALYSIS OF THE INVERSE …

Where   
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The posterior distribution of   under the assumption of extended Jeffrey’s prior i.e  
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Where K is independent of  
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Hence the posterior distribution of  is given by 
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I. Estimation under square error loss function

The squared error loss function is defined as    21
ˆ,ˆ   cl for some constant 1c . The risk function 

is given by 
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After solving the integral, we get 
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II. Estimation under entropy loss function

The entropy loss function is defined as     0;1)log(  bbl  ,
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Where  .  denotes the digamma function 
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III. Estimation under precautionary loss function

The entropy loss function is defined as    
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IV. Estimation under linex loss function

The linex loss function is defined as        1ˆˆexp,ˆ 11   bbl .The risk function is given by
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Now solving 
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V. Posterior Distribution of Inverse Topp-Leone Distribution under Gamma Prior

Suppose  nyyyy ,..,, 21 denotes the n recorded values of (2). Then its likelihood function is given

by 
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We assume the prior distribution of  to be gamma prior

 The posterior distribution of   under the assumption of gamma prior i.e.,  
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Hence the posterior distribution of  is given by 
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I. Estimation under square error loss function

The squared error loss function is defined as    21
ˆ,ˆ   cl for some constant 1c . The risk function

is given by 
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II. Estimation under entropy loss function

The entropy loss function is defined as     0;1)log(  bbl  ,
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After solving the integral, we get 
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Where  .   denotes the digamma function
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III. Estimation under precautionary loss function

The entropy loss function is defined as    
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IV. Estimation under linex loss function

The linex loss function is defined as        1ˆˆexp,ˆ 11   bbl .The risk function is given by
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VI. Simulation Analysis

This section is dedicated to the simulation analysis, we generate 1500N random samples of size n= 

50, 100 and 150 to represent a small, medium and large data set from inverse Topp-Leone distribution 

for specific values of 5.0 and 1. The shape parameter is estimated with maximum likelihood 

estimation and Bayesian using extended Jeffery’s prior and gamma prior. For extended Jeffrey’s prior 

we chose 5.0c and 1 and the value of loss function 06.01 b and 0.09. In case of gamma prior we 

chose 0.1,5.0a  and 0.1,5.0b with loss function 06.01 b and 0.09. R software is used for 

simulation analysis in order to examine and compare the efficiency of the estimates for different 

sample sizes with different values of loss functions. The results are presented in table 1 and 2. 

Table 1: Mean Square Error for̂  Using Jeffery’s Prior

ŝ  Square error loss function, ê   Estimation under Entropy, 

p̂ Estimation under Precautionary, l̂ Estimation under LINEX

In table 1, Bayes estimation with squared error loss function under extended Jeffery’s prior the lesser 

values in most cases. Moreover, when sample size increase from 50 to 150, the mean square error 

decreases quite significantly. 

n ̂ C 
ŝ ê p̂ l̂

1b  0.06 1b 0.09 

50 0.5 0.5 0.01019658 0.01019497 0.01019739 0.01019656 0.01019654 

1.0 0.01006666 0.01006506 0.01006746 0.01006662 0.0100666 

1 0.5 0.1605382 0.1605446 0.160535 0.1605383 0.1605383 

1.0 0.1591694 0.1591759 0.1591662 0.1591696 0.1591697 

100 0.5 0.5 0.01003337 0.01003257 0.01003377 0.01003335 0.01003335 

1.0 0.01002572 0.01002492 0.01002612 0.0100257 0.0100257 

1 0.5 0.1603843 0.1603875 0.1603827 0.1603844 0.1603844 

1.0 0.1602739 0.1602771 0.1602723 0.160274 0.160274 

150 0.5 0.5 0.01001125 0.01001071 0.01001151 0.01001123 0.01001123 

1.0 0.01004535 0.01004483 0.01004563 0.01004535 0.01004533 

1 0.5 0.1600195 0.1600216 0.1600184 0.1600195 0.1600196 

1.0 0.1600716 0.1600738 0.1600706 0.1600717 0.1600717 
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Table 2: Mean Square Error for̂  Using gamma Prior

In table 2, Bayes estimation with squared error loss function under gamma prior the lesser values in 

most cases. Moreover, when sample size increase from 50 to 150, the mean square error decreases 

quite significantly. 

VII. Application

In this section we provide a real life data sets through which the efficiency of the estimators and 

posterior risks of different loss function has been obtained. 

The data of 40 patients suffering from blood cancer(leukaemia) from one ministry of health 

hospitals in Saudi Arabia (see Abouammah et al. [1]).  

By using different loss functions, the Bayesian estimates and posterior risks of the posterior 

distribution through both priors are as follows where posterior risks are in parenthesis. 

Table 3: Bayes Estimation and Posterior Risks Using Jeffery’s Prior 

n ̂ a b 
ŝ ê p̂ l̂

1b  0.06 1b 0.09 

50 0.5 0.5 0.5 0.02337317 0.02337461 0.02337391 0.0233732 0.0233732 

0.5 1.0 0.02335441 0.02335582 0.02335512 0.02335444 0.02335444 

1 0.5 0.5 0.2494094 0.2494161 0.2494127 0.2494095 0.2494096 

0.5 1.0 0.4267061 0.4267121 0.4267091 0.4267061 0.4267062 

100 

0.5 0.5 0.5 6.735e-06 6.7374e-06 6.7365e-06 6.7356e-06 6.7356e-06 

0.5 1.0 7.1562e-06 7.1517e-06 7.1540e-06 7.1561e-06 7.1561e-06 

1 0.5 0.5 0.2500997 0.250103 0.2501014 0.2500998 0.2500998 

0.5 1.0 0.2490105 0.2490138 0.2490121 0.2490105 0.2490104 

150 0.5 0.5 0.5 4.5992e-06 4.6011e-06 4.6002e-06 4.59938e-06 4.59938e-06 

0.5 1.0 4.6406e-06 4.6426e-06 4.6416e-06 4.64060e-06 4.64060e-06 

1 0.5 0.5 0.2502639 0.2502661 0.250265 0.2502639 0.2502639 

0.5 1.0 0.2497457 0.2497479 0.2497468 0.2497457 0.2497457 

̂ C 
ŝ ê p̂ l̂

1b  0.06 1b 0.09 

1.0 0.5 0.5836 

(0.0085) 

0.5690 

(3.622) 

0.5908 

(8.616) 

0.5833 

(0.0350) 

0.5832 

(0.0525) 

1.0 0.5690 

(0.0083) 

0.5544 

(3.597) 

0.5763 

(8.403) 

0.5688 

( 0.0341) 

0.5686 

(0.0512) 

1.5 0.5544 

(0.0080) 

0.5398 

(3.571) 

0.5617 

(8.191) 

0.5542 

(0.0332) 

0.5541 

(0.0499) 

2.0 0.5 0.5836 

(0.0085) 

0.5690 

(3.622) 

0.5908 

(8.616) 

0.5833 

(0.0350) 

0.5832 

(0.0525) 

1.0 0.5690 

(0.0083) 

0.5544 

(3.597) 

0.5763 

(8.403) 

0.5688 

(0.0341) 

0.5686 

(0.0512) 

1.5 0.5544 

(0.0080) 

0.5398 

(3.571) 

0.5617 

(8.191) 

0.5542 

(0.0332) 

0.5541 

(0.0499) 
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ŝ Square error loss function, ê Estimation under Entropy, p̂ Estimation under 

Precautionary, and l̂ Estimation under LINEX

Table 4: Bayes Estimation and Posterior Risks Using Gamma Prior 

Among other loss functions, it is evident from table 3 and table 4. That the square error loss function 

shows smaller Bayes posterior risk under the both assumptions (extended Jeffery’s prior and gamma 

prior). According to decision rule of less Bayes posterior risk, we accomplish that square error loss 

function is more useful than others. 

VIII. Conclusion

In this paper, we have initially obtained the Bayes posterior distribution and estimation of parameter 

of the inverse Topp-Leone distribution under both informative and non-informative priors. We have 

discussed different loss functions among them square error loss function provides less Bayes 

posterior risk. Eventually through simulation analysis and application, the performance of the 

estimators has been achieved. 
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Abstract 

This study presents a Bayesian spatial-temporal analysis for studying Dengue incidence in Tamil 

Nadu, aiming to provide insights into decision-making and risk assessment strategies. Statistical 

models that allow a more accurate depiction of true disease rates by borrowing information from 

neighboring regions will help mitigate the effects of sparsely populated regions and deliver better 

inference.  Perhaps the most conspicuous manner of modeling spatial dependence is to introduce 

spatially associated random effects within a Bayesian hierarchical setting. The Bayesian modeling 

and inferential framework are flexible and extremely rich in its capabilities to accumulate various 

scientific hypotheses and assumptions. The spatial and spatial temporal epidemiology is concerned 

with the description and analysis of spatial and spatial temporal variations in disease risk with respect 

to risk factors. As the primary aim of this work is to quantify the spatial disease pattern of dengue 

incidences apart from the mapping of disease modelling the disease and finding spatial 

clusters/hotpots is one important aspect in epidemiology is to find the temporal trends in or outside 

of clusters. In this study, a spatial-temporal trends model is fitted using the Leroux CAR prior’s set 

up for studying the spatial-temporal disease patterns with the estimation of the temporal trends with 

reference to dengue incidences in Tamil Nadu, India. 

Keywords: Spatial temporal, Bayesian modeling, Bayesian hierarchical modeling, 
Leroux CAR prior 

I. Introduction

In spatial epidemiology, the main interest is to describe the spread of a disease or infection through 
models that attempt to summarize the spatial and temporal effects. After detecting disease clusters, 
further analysis about those clusters leads to the finding of the temporal trend of the cluster. The 
Bayesian methodology is highly useful to study this behaviour which may be better than the classical 
procedure, because of the fact that the procedure of Bayesian inference combines prior distribution 
of model parameters and the data likelihood, for deriving the posterior distribution of parameters 
which portray the behaviour of the parameter in a better manner. The Bayesian hierarchical model 
that involves time and regional effects yield more information to the problem of study based on the 
neighbourhood structures of the regions and adjacent times.  
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But a model developed so would be quite complex in nature. However, the computational 
procedures based on MCMC methodology are very much useful to approximate the posterior 
distribution in Bayesian hierarchical models. In this article, a Bayesian model is used to describe the 
spatial patterns with the estimation of the temporal trends with reference to dengue incidences in 
Tamil Nadu, India. The spatio-temporal model was proposed to study the spatial and temporal 
patterns which allows for spatial temporal discontinuities between areas [12] by using this model 
the study has been made to address the climatic variability of dengue cases in Makassar Indonesia 
[1]. The rate of cases in neighborhood i and time j, mosquito density data, fixed scaling factors, 
lagged time for specific variables and different weighting functions between neighborhood effects 
which consists of economic value of the neighborhood, population density and travel distance 
between neighborhoods are included. The nearest-neighborhood effects, (local) and all between-
neighborhood effects (global) are compared in order to predict the association between mosquito 
density and human cases of dengue. Models that preferred were contains global between-
neighborhood effects and the covariates mosquito density and human cases of dengue and their 
interaction. In this study we have used the district wise dengue incidences data collected from the 
Government of Tamil Nadu over the period of 2007 – 2018. 

II. The Spatial and Temporal Models

The Bayesian methodology is highly useful to study this behaviour which may be better than the 
classical procedure, because of the fact that the procedure of Bayesian inference combines prior 
distribution of model parameters and the data likelihood, for deriving the posterior distribution of 
parameters which portray the behaviour of the parameter in a better manner. As already stated, a 
large number of models have been proposed for estimating the Spatio-temporal trends in disease 
risk and as our disease outcome variable is a count they have the general form,  

𝑌𝑖𝑡~Poisson(𝐸𝑖𝑡𝑅𝑖𝑡)  for 𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇 (1) 

   In(𝑅𝑖𝑡) = 𝛽0 + 𝛽1Rainfall𝑖𝑡 + 𝛽2Temperature𝑖𝑡 + 𝜓𝑖𝑡     (2) 

𝛽~𝑁(𝜇𝛽 , Σ𝛽)               (3) 

where the number of observed disease count is denoted by 𝑌 = (𝑌1, … , 𝑌𝑁)𝑖×𝑇, where 
𝑌𝑡 = (𝑌1𝑡 , … , 𝑌𝑖𝑡) denoted by 𝑖 × 1 column vector of observed disease count for all regions i for time t, 
𝐸𝑖𝑡  is the expected number of disease cases, 𝑅𝑖𝑡 is the relative risk of dengue disease in area i and 
time t. The vector of covariate regression parameters is denoted by 𝛽and a multivariate Gaussian 
prior is assumed with mean 𝜇𝛽 and diagonal dispersion matrix Σ𝛽, 𝜓𝑖𝑡  is the random effect for the 
study region i and time t. Taking 𝜓𝑖𝑡 = 𝜌𝑇𝜓𝑡−1 + 𝜖𝑡. The temporal autocorrelation is thus induced 
through the mean 𝜌𝑇𝜙𝑡−1, while spatial autocorrelation is induced by the variance 𝜏2𝑄(𝑊, 𝜌𝑠)−1. The
precision matrix is given by, 

𝑄(𝑊, 𝜌𝑠) =  𝜌𝑠(diag[𝑊1] − 𝑊) + (1 − 𝜌𝑠)𝐼      (4) 

where (1, 𝐼) is a 𝑁 × 1 vector of ones and the 𝑁 × 𝑁 identity matrix respectively. Hence, the spatial 
autocorrelation is induced by the neighbourhood matrix W defined above, and if 𝜔𝑖𝑗 = 1 then the 
random errors (𝜖𝑘𝑡 , 𝜖𝑗𝑡) are modelled as spatially autocorrelated, while if 𝜔𝑖𝑗 = 0 then (𝜖𝑖𝑡 , 𝜖𝑗𝑡) are 
assumed to be conditionally independent. Thus 𝜌𝑠, 𝜌𝑇 respectively control the levels of spatial and 
temporal autocorrelation, with values of 0 corresponding to independence while a value 1  
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corresponds to string autocorrelation. The precision matrix 𝑄(𝑊, 𝜌𝑠) corresponds to the conditional 
autoregressive (CAR) prior proposed by Leroux [15], given by, 

𝜖𝑖𝑡|𝜖−𝑖𝑡 , 𝑊~𝑁 (
𝜌𝑠 ∑ 𝜔𝑖𝑗𝜖𝑗𝑡

𝑁
𝑗=1

𝜌𝑠 ∑ 𝜔𝑖𝑗+1−𝜌𝑠
𝑁
𝑗=1

,
𝜏2

𝜌𝑠 ∑ 𝜔𝑖𝑗+1−𝜌𝑠
𝑁
𝑗=1

)   (5) 

With the temporal informative priors  𝜏2~Inverse Gamma(1, 0.01) 𝜌𝑠 , 𝜌𝑇~Uniform(0, 1) and     𝜖−𝑖𝑡 =

(𝜖1𝑡 , … , 𝜖𝑖−1𝑡 , 𝜖𝑖+1𝑡 , … , 𝜖𝑁𝑡). If 𝜌𝑠 = 1 the model simplifies to the intrinsic CAR prior proposed Besag 
et al.,[3] and if 𝜌𝑠 = 0 the errors 𝜖𝑘𝑡 are independent and normally distributed with mean zero and 
a constant variance 𝜏2. 

III. Results

The analysis was performed using the model assumed in the previous section. As the primary aim 
of this work is to quantify the spatial disease pattern of dengue incidences risk over time the spatially 
autoregressive model is used.  The MCMC samples are generated from the three independent 
Markov chains and each chain was run for 20,000 samples. To check whether the Markov chains are 
converged the trace plot of the samples for each parameter are observed and since the samples show 
no trend in their means or variances, convergence is assured. These trace plots are presented in 
Figure:1 

Figure 1: Trace plots of the MCMC samples from each chain 

The Gelman and Rubin diagnostic [7] is used as an additional check for testing the between to within 
chain variation reduction in the MCMC samples. It is observed that the samples are well mixed both 
separately and then jointly as the values of the point estimates are less than 1.1. 
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Table1: Gelman-Rubin statistic 

MCMC Chain Point Estimates Upper Credible Interval 
Chain 1 1.04 1.13 
Chain 2 1.07 1.25 
Chain 3 1.04 1.14 

Table 2: Posterior Quantities for Selected Parameters and DIC of the 

 Autoregressive CAR Model (Chain 1) 

Model paramters Median 2.5% 97.5% n.effective Geweke.diag
Intercept 26.1415 14.3764 39.2920 22.9 -0.2
Rainfall 0.0001 -0.0006 0.0007 29.3 1.5

Temperature -6.7187 -10.6279 -3.1630 22.3 0.1
tau2 2.2096 1.8642 2.6795 231.0 -1.5
rho.S 0.9083 0.8233 0.9542 200.0 -2.0
rho.T 0.6794 0.5806 0.7782 91.1 -2.0

DIC=2365.255 
The above Table.2 provides the parameter summaries and posterior median point estimates with 
95% credible intervals.  The Deviance Information Criterion is given at the bottom. It is observed 
that the covariate temperature has a negative relationship with dengue incidences and all other 
covariates have a positive relationship. The spatial and temporal parameters  𝜌𝑠 and 𝜌𝑇 exhibit the 
presence of spatial and temporal autocorrelation after adjusting for the effects of covariates. It is 
observed that the condition for convergence according to Geweke diagnostic [8] is satisfied as the 
corresponding values lie between -2 to +2.  

Table 3: Posterior Median Relative Risk for Covariates 

Credible Interval 50% 2.5% 97.5% 
Temperature 1.0 0.999 1.002 

Rainfall 1.004 0.780 1.437 

The estimated relative risk of the covariates obtained from MCMC samples for the regression 
parameters 𝛽1 and 𝛽2 are obtained and given in Table.3 It is seen that the covariate temperature is 
not significantly related to dengue incidence risk as 95% credible interval consist of the null risk of 
1. A similar thing is observed for the variable rainfall.

Figure 2: Posterior Median and 95% Credible Interval for the Temporal Trend in Dengue 
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With reference to Spatio-temporal trends in disease risk, the following graph (Figure: 2) has been 
plotted based on posterior risk distributions, in which the samples of fitted values are divided by 
the fixed expected number of disease cases.  

Table 4: Posterior Median and 95% credible interval for the 

Temporal Trend in Dengue Disease Risk. 

Year Median 
Lower Credible 

Interval 
Upper Credible 

Interval 

2007 0.0133 0.0119 0.0147 
2008 0.0171 0.0152 0.0192 
2009 0.0168 0.0154 0.0184 
2010 0.0137 0.0124 0.0152 
2011 0.0417 0.0391 0.0445 
2012 0.2014 0.193 0.2101 
2013 0.1064 0.1015 0.1115 
2014 0.0437 0.0412 0.0463 
2015 0.0155 0.0719 0.0794 
2016 0.0475 0.0448 0.0504 
2017 0.5473 0.5252 0.5712 
2018 0.0505 0.0477 0.0535 

To estimate the average temporal trend, the average risk across the study areas for each year is 
estimated which yields the posterior distribution of spatial averages for each year. The 
corresponding posterior median and 95% credible intervals are given in the following Table 4. The 
estimated temporal trend in disease risk is plotted in the following Figure 3. The figure clearly shows 
a downward trend in dengue incidences over 12 years study period. The peaks of risk are observed 
in 2012 and 2017. 

Figure 3: Estimated temporal trend in Temporal Trend in Dengue incidence risk as measured by The Spatial 

Interquartile Range 
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The measure of variations in disease risk over the study region called “Total Inequality” is measured 
by the interquartile range (IQR) variation for each year and is given in Table 4. and the corresponding 
plot is given in Figure 3 The figure clearly shows that the total inequality in Dengue incidences when 
using the interquartile range has increased over the years till 2017 and decreased in 2018 which 
suggest that the population is becoming uneven in terms of later years. 

Table 4: Inter Quartile Ranges 

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

IQR 0.008 0.013 0.009 0.005 0.015 0.142 0.096 0.036 0.078 0.038 0.475 0.038 

The spatial pattern is computed in two ways, the one is with reference to the posterior median risk 
surface and the one is the posterior exceedance probability. The maps of posterior exceedance 
probability and the median risk have been generated and shown in figures: 4 and 5. 

Figure 4: Estimated (Posterior Median) Risk Surface for 

2017 
Figure 5: The Posterior Exceedance Probabilities that 

the risk in 2017 is greater than 1 

From figure: 5, it is observed that the areas of highest risk are found in Chennai and the next level of 
higher risk is observed in Tirunelveli. Moderate levels of risk are found in Coimbatore, Thoothukudi, 
Madurai, Theni, Salem and Thiruvallur. Lower levels of risk are found in Tiruppur, Tiruchirapalli, 
Thanjavur, Ramanathapuram and Kanyakumari. The Posterior Exceedance Probabilities map shows 
that the majority of areas have zero probability of exceeding the risk of 1, except the areas Chennai 
and Tirunelveli. 
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IV. Discussion

Spatial-temporal disease mapping is a familiar approach for studying disease patterns in an effective 
manner. In this article, a spatial-temporal trends model is fitted using the Leroux CAR prior’s set up 
for studying the spatial-temporal disease patterns of Dengue incidences are over the 12 years. 
From the analysis, a downward trend of dengue incidences is observed and the peaks of risk is 
observed in 2012 and 2017. Areas of highest risk are found in Chennai and the next level of higher 
risk is observed in Tirunelveli. Moderate levels of risk are found in Coimbatore, Thoothukudi, 
Madurai, Theni, Salem and Thiruvallur. These results are observed both spatially and temporally. If 
sufficient preventive measures are taken up by the health authorities on the areas quoted above the 
disease incidences may get lower and even null. 
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Abstract

This paper provides a case study that illustrates how integer programming may be used to optimize
resource allocation. With the known population median of the study variable acting as auxiliary data, an
exponential ratio estimator is shown for estimating the finite population mean under stratified random
sampling. The objective is to minimize a cost function within specific bounds. Using integer programming
techniques and the Lagrange multiplier approach, we transform the proposed problem into an optimization
problem with a linear cost function. This allows us to propose an optimal way for minimizing total costs
while maintaining desired accuracy levels. We found that the suggested estimator performed better than
methods involving stratified random sampling. Additionally, a numerical example is given to verify the
theoretical conclusions for real-world applications. We go over how the problem was formulated, how
to use LINGO software to solve it, and the results. It is advised to choose the estimator with the lowest
MSE in real-world stratified random sampling situations. The strategy shows significant cost savings
and efficient use of resources. The effectiveness of the recommended approach is demonstrated by testing
the methodology on both simulated and real-world datasets.

Keywords: linear cost function, integer programming, optimization, resource allocation, lingo
software, cost minimization

1. Introduction

The problem of effectively estimating the mean of a study variable in the presence of auxiliary
information using different sample procedures has been attempted several times in the literature
on sampling theory. The problem of creating effective estimators has been thoroughly researched
by a number of authors. Regression estimators, products, and ratios are common examples.
Stratified random sampling is the suggested sample design for collecting data from a variety of
populations due to its low cost and high efficiency. Allocating resources optimally is essential for
increasing productivity and cutting expenses in operations research and management science.
Because stratified random sampling can yield estimates that are more accurate than those obtained
from plain random sampling, it is a widely used technique in statistical surveys. In order to
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maximize estimate precision within budgetary limits, sample sizes must be distributed among
different strata. Conventional methods, like Cochran [1] suggested, make use of continuous
optimization techniques, which might not be useful when sample sizes have to be integers.
In order to determine the best integer solutions for sample size allocation in stratified random
sampling, this work investigates the application of Lagrange multipliers and integer programming.
Numerous studies have been conducted on the use of simple random sampling [1, 2, 5].

In order to increase estimate precision, a number of scholars have concentrated on maximizing
sample size allocation using auxiliary information [2, 5]. Cochran [4] has discussed a number of
sampling strategies, including stratified sampling, systematic sampling, simple random sampling,
and others. In the topic of survey sampling, Cochran’s work is essential since it offers thorough
instructions on various methods. In order to increase the efficiency of population parameter
estimation, Bahl and Tuteja [6] presents ratio and product-type exponential estimators. Under
some circumstances, the suggested techniques perform better in basic random sampling than
conventional estimators. The application of optimization theory to large-scale systems is covered
in [3], with a focus on computational and mathematical methods for complex system optimization.
Neyman [7] contrasted two techniques: purposive selection, which is a non-probabilistic approach,
and stratified sampling, which is a probabilistic approach. In order to guarantee representative
samples, author suggested stratified sampling. The optimization problem has been expanded to
include linear cost functions in more recent research [8, 10]. By adding integer restrictions to the
optimization issue, this work expands on these foundations and offers a more useful solution for
real-world scenarios. Shi et al. [9] examines methods based on optimization, fusing theoretical
underpinnings with real-world applications. In order to determine the best integer solutions
for sample size allocation in stratified random sampling, [10] investigates the application of
Lagrange multipliers and integer programming. In stratified sampling, [11] suggest a technique
for calculating the interquartile range under a nonlinear cost function. Their method guarantees
accurate and economical estimations for all stratified populations. While the method for creating
effective stratum borders in stratified sampling while taking survey expenses into consideration is
developed in [12]. The technique lowers the overall cost of the survey while improving sampling
efficiency. Recently In stratified sampling, the study [14] suggests the best method for determining
the population mean under a linear cost function. Comparing the results to current estimators,
they show increased cost-effectiveness and accuracy. In [15], a linear cost function is used to
present an efficient and cost-effective estimator for the population mean in stratified sampling.
Superior efficiency is demonstrated by the approach, which has been confirmed using real-world
data. In order to minimize a cost function under predetermined limits, a resource allocation issue
is studied using integer programming techniques. We employ LINGO software to determine the
best option and show that this strategy works.

2. Material and Methods

The methodology and optimization strategies employed in this work to create and assess an
enhanced median based ratio estimator in stratified random sampling under cost functions are
described in this part. The integer programming technique and langrage’s multiplier technique
were used to solve the optimization issue. Furthermore, the suggested estimator’s mathematical
characteristics, such as its bias and mean squared error (MSE), are calculated and contrasted with
those of other estimators.

I. Study Design

• The study variable (Y) and auxiliary variable (X) are used to split the population into four
strata. In order to guarantee that the sample sizes are integer values optimized using integer
programming and langrage’s multiplier technique, a stratified random sampling design
is utilized. The suggested optimization method is validated using the real-world dataset,
which is derived from census data. Under the restriction of decreasing the overall survey
cost while preserving precision, the ideal sample sizes for each stratum are determined.
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Four strata are given in the population, one for each research variable (Y) and auxiliary
variable (X).

II. Problem Formulation

• The optimization problem is formulated as follows:

• Minimize the objective function:

Minimize
4

∑
I=1

ci
ni

(1)

Subject to the constraints:

c1 = 2, c2 = 3, c3 = 4, c4 = 5

c0 = 500

2 ≤ nh ≤ Nh

h = 1, 2, 3, 4.

The suggested approach was used to ascertain the ideal sample sizes using actual data
from [https://censusindia.gov.in/census.website/data/census-tables]. The find-
ings suggest that when compared to conventional techniques, the integer programming and
langrage’s methodology produces a more economical use of resources.

3. Solution Techniques

In this instance, a real population from the literature [13] is used to compare the effectiveness of
the suggested median-based estimator by [13] with existing estimators. The number of households
and the square kilometers of villages and cities, which provide information on study variables
and auxiliary variables, respectively, are significant features.

The Neyman allocation is then used to divide the population into four non-crossover strata,
and a numerical depiction is finished.

nh = n
NhSh

∑k
h=1 NhSh

where i = 1, 2, p.

Table 1: Data statistics (source: [13])

Population (N = 645; h = 4)
H Nh nh Ȳh Mh C2

yh Cymh C2
mh Syh Symh λh θh

1 237 4.13025 116.236 116.81 0.31485 0.20065 0.14554 65.2218 2724.33 0.2379 1.37869
2 164 5.78153 307.603 292.295 0.18397 0.14238 0.30406 131.936 12801 0.16687 0.46825
3 90 16.8718 547.444 548.77 1.64244 2.49501 3.84895 701.592 749552 0.04816 0.64823
4 154 68.2164 757.1 727.165 4.79469 6.20317 8.78042 1657.81 3415068 0.00817 0.70648
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Table 2: MSE values of different estimators

Estimators MSE

µ0(st) Stratified 50064.21813
µp(st) Bahl and Tuteja 1991 298413.7926
µpe(st) Bahl and Tuteja 1991 156446.8056

µ1(st) Kadilar and Cingi 2004 73914.17572
µ2(st) Kadilar and Cingi 2004 73610.17851
µ3(st) Kadilar and Cingi 2004 73581.24647
µ4(st) Kadilar and Cingi 2004 73764.64679
µ5(st) Kadilar and Cingi 2004 73585.78191
µ6(st) Kadilar and Cingi 2004 73794.12042
µ7(st) Kadilar and Cingi 2004 73599.63542
µ8(st) Kadilar and Cingi 2004 73841.96289
µ9(st) Kadilar and Cingi 2004 73572.84621
µ10(st) Kadilar and Cingi 2004 73824.07952
µ11(st) Kadilar and Cingi 2004 73291.58656
µ12(st) Kadilar and Cingi 2004 46271.34602

µsubr(st) Subramani 2016 17357.5585
µCR(st) Cochran estimator 1940 8660.837079

µ∗∗(st) Yadav 2019 6020.730985
µprop(st) Estimator 4267.075487

Figure 1: Standard MSE
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Table 3: PRE of different estimators

Estimators PRE

µ0(st) Stratified 100

µCR(st) Cochran estimator 1940 578.0529

µp(st) Bahl and Tuteja 1991 16.77678

µpe(st) Bahl and Tuteja 1991 32.00079

µ1(st) Kadilar and Cingi 2004 67.7329

µ2(st) Kadilar and Cingi 2004 68.01263

µ3(st) Kadilar and Cingi 2004 68.03937

µ4(st) Kadilar and Cingi 2004 67.87021

µ5(st) Kadilar and Cingi 2004 68.03518

µ6(st) Kadilar and Cingi 2004 67.8431

µ7(st) Kadilar and Cingi 2004 68.02237

µ8(st) Kadilar and Cingi 2004 67.79914

µ9(st) Kadilar and Cingi 2004 68.04714

µ10(st) Kadilar and Cingi 2004 67.81557

µ11(st) Kadilar and Cingi 2004 68.30827

µ12(st) Kadilar and Cingi 2004 108.197

µsubr(st) Subramani 2016 288.4289

µ∗∗(st) Yadav 2019 831.5306

µprop(st) Estimator 1173.268

Figure 2: Standard PRE
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The comparison of the proposed estimator with existing estimators utilizing stratified random
sampling, Tables 2 and 3 unequivocally demonstrate that the proposed estimator has the greatest
PRE and the lowest MSE value and their graphs were also given as Figure 1 and 2.

4. Cost Function

The main factor that influences of the number of samples across strata is survey expenditure. [8]
introduced linear cost and fixed total cost C0 of the survey as a linear function of nh; h = 1, 2, . . . , L.

C0 =
L

∑
h=1

chnh (2)

where ch denotes the cost per unit of measuring each characteristic in the hth stratum.; h =
1, 2, . . . , L. In this instance, our goal is to determine the fixed linear cost function’s least mean
square error. Thus, the optimization issue for the proposed estimator in [9] may be described as
follows:

Minimize MSE(tpr(st))

subject to
L

∑
h=1

chnh ≤ C0

2 ≤ nh ≤ Nh

and nh are integers; h = 1, 2, . . . , L.

Using the cost function, the mean square error will now be

µ̂P(st)min
=

L

∑
h=1

Ȳ2
h

(
1 − fh

nh

)
[C2

yh
+ θ2

hC2
mh − 2θhCymh ]. (3)

Integer Programing and Lagrange’s Multiplier Technique
Integer Programing:
With a constant linear cost function and actual data, we get the least mean square error. This
allows the optimization issue to be stated as follows:

Minimize
507.3364037

n1
+

10707.94895
n2

+
6113.182684

n3
+

131645.0146
n4

Subject to
L

∑
h=1

chnh ≤ C0

c1n1 + c2n2 + c3n3 + c4n4 ≤ C0

2n1 + 3n2 + 4n3 + 5n4 ≤ 500

Bounds on variables:

2 ≤ nh ≤ Nh

and nh are integers; h = 1, 2, 3, 4

2 ≤ n1 ≤ 237, 2 ≤ n2 ≤ 164

2 ≤ n3 ≤ 90, 2 ≤ n4 ≤ 154

The Lagrange multiplier method produces an optimality criterion in some applications.
Additionally, the conditions are suitable to set a minimum or maximum. Therefore, the most
optimal n value may be found using the Lagrange multiplier method.
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The Lagrange function is so defined as:

L(x, λ) = f (x)− λg(x),

where L = Lagrangian, λ = Lagrange multiplier, f (x) = Function, x = integer.
Now

L(nh, λ) = MSE + λ

(
L

∑
h=1

Chnh − C0

)

L =
L

∑
h=1

Ȳ2
h

(
1 − fh

nh

)
[C2

yh
+ θ2

hC2
mh − 2θhCymh ] + λ

(
L

∑
h=1

Chnh − C0

)
. (4)

Now let us partially differentiate the above equation (4) with respect to nh, we get

dL
dnh

= 0

d
(

∑L
h=1 Ȳ2

h

(
1− fh

nh

)
[C2

yh
+ θ2

hC2
mh − 2θhCymh ] + λ

(
∑L

h=1 Chnh − C0

))
dnh

= 0

Then

nh =

√
Ȳ2

h (1 − fh)(C2
yh
+ θ2

hC2
mh − 2θhCymh)

λCh
.

Again, differentiate the equation (4) with respect to λ, we get

dL
dλ

= 0

d
(

∑L
h=1 Ȳ2

h

(
1− fh

nh

)
[C2

yh
+ θ2

hC2
mh − 2θhCymh ] + λ

(
∑L

h=1 Chnh − C0

))
dλ

= 0

Using the value of equation (4) after differentiating above equation, we get

√
λ =

√
Ȳ2

h (1 − fh)(C2
yh
+ θ2

hC2
mh − 2θhCymh)Ch

C0
. (5)

Now putting the value of equation (5) in equation (4) to find out the value of nh, we get

nh =
C0

√
Ȳ2

h (1 − fh)(C2
yh
+ θ2

hC2
mh − 2θhCymh)√

(Ȳ2
h (1 − fh)(C2

yh
+ θh

2C2
mh − 2θhCymh))C

2
h

nh =
C0

Ch
.

5. Empirical Study with Cost Function

In this part, we prove the efficiency of the proposed estimator using the real data set. The
actual population as reported by the Indian census conducted in Lucknow, Uttar Pradesh,
is taken into account in the data set (https://censusindia.gov.in/census.website/data/
census-tables). The data N = 645, h = 4, which were used to apply the recommended
estimator, contain information on the number of households and the area in square kilometers
of certain cities and villages, respectively. These details provide information on the auxiliary
variable and the variable under investigation. The population is then split up into four distinct,
non-overlapping strata. Integer programming and Lagrange multiplier approaches have been
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used in numerical illustration. A reference to the data summary may be found in Table 1. When
variables in an optimization problem have to handle integer values, the problem is known as
integer programming. If all of the functions are linear, then an integer linear programming
problem can be considered. Now, using real data and a fixed linear cost function, we can calculate
the least mean square error. Next, the following is a description of the optimization scenario:

Problem Formulation of Proposed Estimator
Objective Function

µ̂P(st)min
=

k

∑
h=1

Ȳ2
h δh[C2

yh
+ θh

2C2
mh − 2θhCymh ]

Limited population factor will be ignored,

µ̂P(st)min
=

k

∑
h=1

Ȳ2
h

1
nh

[C2
yh
+ θ2

hC2
mh − 2θhCymh ].

The objective is to minimize the cost function defined as:

Minimize
507.3364037

n1
+

10707.94895
n2

+
6113.182684

n3
+

131645.0146
n4

Subject to
L

∑
h=1

chnh ≤ C0

c1n1 + c2n2 + c3n3 + c4n4 ≤ C0

2n1 + 3n2 + 4n3 + 5n4 ≤ 500

Bounds on variables:

2 ≤ nh ≤ Nh

and nh are integers; h = 1, 2, 3, 4

2 ≤ n1 ≤ 237, 2 ≤ n2 ≤ 164

2 ≤ n3 ≤ 90, 2 ≤ n4 ≤ 154

We apply integer programming techniques along with the Lagrange multiplier approach
to solve this optimization issue. To determine the best integer values for the sample sizes, the
LINGO program is used. Integer variables are used in the model formulation to represent
resource allocations, together with an objective function to minimize costs and restrictions to
guarantee workable solutions. The variables’ ideal values were determined to be n1, n2, n3, and
n4.

These numbers show effective resource allocation by minimizing the cost function while
meeting all restrictions.
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Table 4: Optimized MSE and PRE of different estimators using integer programming

Population (N, h) = (645, 4)

Estimators n1 n2 n3 n4 n MSE PRE

µ0(st) Stratified 5 9 37 63 114 37811.71301 100

µp(st) Bahl and Tuteja 1991 4 6 26 74 110 254647.4931 14.84864922

µpe(st) Bahl and Tuteja 1991 5 6 28 72 111 132124.2009 28.6183097

µ1(st) Kadilar and Cingi 2004 4 6 26 74 110 62734.46491 60.27263173

µ2(st) Kadilar and Cingi 2004 4 6 26 74 110 62470.09829 60.52769892

µ3(st) Kadilar and Cingi 2004 4 6 26 74 110 62444.95167 60.55207345

µ4(st) Kadilar and Cingi 2004 4 6 26 74 110 62606.61364 60.3957167

µ5(st) Kadilar and Cingi 2004 4 6 26 74 110 62439.33502 60.55752034

µ6(st) Kadilar and Cingi 2004 4 6 26 74 110 62632.11269 60.37112814

µ7(st) Kadilar and Cingi 2004 4 6 26 74 110 62460.7517 60.53675624

µ8(st) Kadilar and Cingi 2004 4 6 26 74 110 62675.90102 60.32895002

µ9(st) Kadilar and Cingi 2004 4 6 26 74 110 62437.71155 60.55909492

µ11(st) Kadilar and Cingi 2004 4 6 26 74 110 62233.04837 60.75825305

µ12(st) Kadilar and Cingi 2004 4 5 28 73 110 38419.51093 98.41799671

µsubr(st) Subramani 2016 4 16 36 60 116 12234.51456 309.0577304

µCR(st) Cochran estimator 1940 2 3 18 83 106 7361.991722 513.6071112

µ∗∗(st) Yadav19 5 20 15 74 114 4412.062967 857.0075561

µprop(st) Estimator 7 26 17 68 118 2779.875899 1360.194282

Figure 3: Optimized MSE integer programming
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Figure 4: Optimized PRE integer programming

In Table 4 the optimized MSE and PRE using integer programing technique is give along with
their graphs in Figure 3 and 4.

Table 5: MSE and PRE comparison of different estimators (standard vs integer)

Estimators MSE Optimized MSE PRE Optimized PRE

µ0(st) Stratified 50064.21813 37811.71301 100 100

µp(st) Bahl and Tuteja 1991 298413.7926 254647.4931 16.77678 14.84864922

µpe(st) Bahl and Tuteja 1991 156446.8056 132124.2009 32.00079 28.6183097

µ1(st) Kadilar and Cingi 2004 73914.17572 62734.46491 67.7329 60.27263173

µ2(st) Kadilar and Cingi 2004 73610.17851 62470.09829 68.01263 60.52769892

µ3(st) Kadilar and Cingi 2004 73581.24647 62444.95167 68.03937 60.55207345

µ4(st) Kadilar and Cingi 2004 73764.64679 62606.61364 67.87021 60.3957167

µ5(st) Kadilar and Cingi 2004 73585.78191 62439.33502 68.03518 60.55752034

µ6(st) Kadilar and Cingi 2004 73794.12042 62632.11269 67.8431 60.37112814

µ7(st) Kadilar and Cingi 2004 73599.63542 62460.7517 68.02237 60.53675624

µ8(st) Kadilar and Cingi 2004 73841.96289 62675.90102 67.79914 60.32895002

µ9(st) Kadilar and Cingi 2004 73572.84621 62437.71155 68.04714 60.55909492

µ10(st) Kadilar and Cingi 2004 73824.07952 62653.90433 67.81557 60.35013047

µ11(st) Kadilar and Cingi 2004 73291.58656 62233.04837 68.30827 60.75825305

µ12(st) Kadilar and Cingi 2004 46271.34602 38419.51093 108.197 98.41799671

µsubr(st) Subramani 2016 17357.5585 12234.51456 288.4289 309.0577304

µCR(st) Cochran estimator 1940 8660.837079 7361.991722 578.0529 513.6071112

µ∗∗(st) Yadav19 6020.730985 4412.062967 831.5306 857.0075561

µprop(st) Estimator 4267.075487 2779.875899 1173.268 1360.194282
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Figure 5: MSE Comparison (standard vs integer)

Figure 6: PRE Comparison (standard vs integer)

In Table 5 the comparison of MSE and PRE of existing estimator and proposed estimator using
integer programming technique is given with their graphs as Figure 5 and 6.

RT&A, No 1 (82) 
Volume 20, March 2025 

237



Bhatt Ravi Jitendrakumar, Monika Saini, Ashish Kumar, Yashpal Singh Raghav
OPTIMIZATION OF RESOURCE ALLOCATION USING SAMPLING

Table 6: Optimized MSE and PRE of different estimators using lagrange’s multiplier technique

Population (N, h) = (645, 4)

Estimators n1 n2 n3 n4 n MSE PRE

µ0(st) Stratified 4 61 24 43 131 37800.05 100

µp(st) Bahl and Tuteja 1991 4 6 25 74 110 254555.8 14.8

µpe(st) Bahl and Tuteja 1991 4 6 27 73 111 132051 28.6

µ1(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.7 110 62716.0 60.3

µ2(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.7 110 62452.1 60.5

µ3(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.8 110 62427.6 60.6

µ4(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.7 110 62588.4 60.4

µ5(st) Kadilar and Cingi 2004 4.3 5.5 26.3 73.9 110 62418.1 60.6

µ6(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.8 110 62614.9 60.4

µ7(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.7 110 62442.7 60.5

µ8(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.7 110 62658.1 60.3

µ9(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.8 110 62420.4 60.6

µ10(st) Kadilar and Cingi 2004 4.4 5.7 26.3 73.8 110 62635.5 60.3

µ11(st) Kadilar and Cingi 2004 4.3 5.7 26.2 73.9 110 62220.1 60.8

µ12(st) Kadilar and Cingi 2004 3.9 5.7 29.2 71.6 110 38373.7 98.5

µsubr(st) Subramani 2016 4.0 16.6 35.1 60.4 116 12230.5 309.1

µCR(st) Cochran estimator 1940 2.0 3.4 18.0 82.8 106 7360.1 513.6

µ∗∗(st) Yadav19 5.4 20.5 14.6 73.9 114 4410.8 857.0

µprop(st) Estimator 6.8 25.3 16.6 68.8 118 2778.996 1360.2

Figure 7: Optimized MSE lagrange’s multiplier
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Figure 8: Optimized PRE lagrange’s multiplier

Similarly in Table 6 the optimized MSE and PRE using language’s multiplier technique is give
along with their graphs as Figure 7 and 8.

Table 7: MSE and PRE comparison of different estimators (standard vs lagrange’s)

Estimators MSE Optimized MSE PRE Optimized PRE

µ0(st) Stratified 50064.21813 37800.05 100 100

µp(st) Bahl and Tuteja 1991 298413.7926 254555.8 16.8 14.8

µpe(st) Bahl and Tuteja 1991 156446.8056 132050.8 32.0 28.6

µ1(st) Kadilar and Cingi 2004 73914.17572 62715.97 67.7 60.3

µ2(st) Kadilar and Cingi 2004 73610.17851 62452.11 68.0 60.5

µ3(st) Kadilar and Cingi 2004 73581.24647 62427.61 68.0 60.6

µ4(st) Kadilar and Cingi 2004 73764.64679 62588.4 67.9 60.4

µ5(st) Kadilar and Cingi 2004 73585.78191 62418.13 68.0 60.6

µ6(st) Kadilar and Cingi 2004 73794.12042 62614.93 67.8 60.4

µ7(st) Kadilar and Cingi 2004 73599.63542 62442.74 68.0 60.5

µ8(st) Kadilar and Cingi 2004 73841.96289 62658.06 67.8 60.3

µ9(st) Kadilar and Cingi 2004 73572.84621 62420.37 68.0 60.6

µ10(st) Kadilar and Cingi 2004 73824.07952 62635.47 67.8 60.3

µ11(st) Kadilar and Cingi 2004 73291.58656 62220.05 68.3 60.8

µ12(st) Kadilar and Cingi 2004 46271.34602 38373.67 108.2 98.5

µsubr(st) Subramani 2016 17357.5585 12230.45 288.4 309.1

µCR(st) Cochran estimator 1940 8660.837079 7360.138 578.1 513.6

µ∗∗(st) Yadav19 6020.730985 4410.764 831.5 857.0

µprop(st) Estimator 4267.075487 2778.996 1173.3 1360.2
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Figure 9: MSE Comparison (standard vs lagrange’s)

Figure 10: PRE Comparison (standard vs lagrange’s)

In Table 7 the comparison of MSE and PRE of existing estimator and proposed estimator using
langrage’s multiplier technique is given with their graphs as Figure 9 and 10.

6. Discussion and Conclusion

In this study, we optimized a new median-based ratio estimator for restricted population means
estimation under stratified random sampling. Up to the first level of approximation, bias and
MSE formulas are created for the suggested estimators. The suggested estimator was compared
theoretically to existing estimators. We determined the conditions in which the suggested
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estimator performs better than the traditional estimators. We compare the performance of
the proposed estimator quantitatively, considering a real population. The suggested estimator
consistently performs better than the existing estimators under stratified random sampling
with cost function, both theoretically and numerically. Considering these results, we advise
future research to employ the proposed estimator for effective population mean estimation when
supplementary data is available. The results indicate a significant reduction in costs through
optimal resource allocation. The integer programming and langrage’s approach ensures that
solutions are both feasible and practical. This methodology can be applied to similar problems
in various industries for improved operational efficiency. The problem was successfully solved
with the help of LINGO software, which offered a workable solution with either minimizing
cost or maximizing precision. To further improve resource allocation tactics, future study might
investigate more intricate models and other optimization methodologies.
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Abstract 

The failure of a component depends on many parameters, such as complexity, time, design, reliability 

of components, and operating conditions. If failure depends on the stress of a component, such 

reliability models are called stress dependent models. There are many types of stresses that occur in 

the body, like tensile, compressive, shear, and bending. Shear stress develops in a body when a pair of 

opposite forces act across the section tangentially. In structural design, the choice of section shapes 

for different components is crucial for efficiency, strength, and stability. That’s why C –sections are 

used as purlins. C-sections have a shape that allows for effective load distribution. In this paper, 

reliability analysis has been conducted over the C-section by applying load and finding the shear 

stress in the flange and web of C-section. It is observed from the computations that reliability 

decreases as the load and overall depth of the section increase. Reliability increases as the thickness 

and width of the web increase.  

 Keywords: Reliability, Normal distribution, Confidence interval, Shear stress, 

 Hazard rate function.   

I. Introduction

Reliability is the ability of the structure to meet the construction requirements set under specified 

conditions during the service life, according which it is designed. It refers to the capacity, 

serviceability and durability of construction and according to them different techniques of reliability 

can be defined.Many researchers have worked on stress-dependent models. Hong and Zhou [1] 

evaluated the reliability of RC columns. Val [2] studied the deterioration of strength of RC beams 

due to corrosion and its influence on beam reliability. Abubakar and Edrche [3] analyzed the 

reliability of simply supported steel beams using FORM. Breccolotti and Materazzi [4] described the 

structural reliability of eccentrically loaded sections in RC columns constructed by  
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recycled aggregate concrete. Hariprasadetal.[5] analyzed the reliability for symmetrical columns  

with eccentric loading from a Lindley distribution. Satyanarayana et al[6] analyzed the  reliability 

over I-Section of Beam due to Uniform Distribution of Load. Yakoob Pasha et al[7] described  the 

reliability comparison of the shafts when shear stress follow the different distributions. Yakoob 

Pasha et al[8] analysed the reliability values using normal distribution. Wisconsin Electric Power 

Company [9] discussed the confidence intervals on operating basis earth quake and safe shut down 

earth quake. 

II. Methodology

Reliability function is defined as the probability of success for the intended time t.  𝑅(𝑥) = 1 − 𝐹(𝑥) 

= 𝑃(𝑇 > 𝑥)  where T is a random variable denoting the failure time and X is random variable.The 

Hazard function ℎ(𝑥)is defined as the limit of the failure rate as the interval approaches zero. Thus, 

the hazard function is the instantaneous failure rate and is defined as ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
=

𝑓(𝑥)

1−𝐹(𝑥)
where 

𝑓(𝑥) =
𝑑𝐹(𝑥)

𝑑𝑥
. The reliability of an item is defined under stated operating and environmental 

conditions. This implies that any change in these conditions can effect. The failure rate of almost all 

components is stress dependent. A component can be influenced by more than one kind of stress. 

For such cases, a power function model is used 𝑧(𝑡) = ℎ(𝑡)𝜎1
𝑎𝜎2

𝑏, where a, b are positive constants, 

𝜎1𝑎𝑛𝑑𝜎2are stress ratios for two different kinds of stresses, and z(t) is the failure rate at rated stress 

conditions.The normal distribution takes the well-known bell shape. This distribution is 

symmetrical bout its mean value. The probability density function for a normally distributed stress 

𝜒and normally distributed strength ξ is given by 
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Let us define 𝑦 = 𝜉 − 𝜒. It is well known that the random variable 𝑦is normally distributed 

with mean   y  and standard deviation   22 y

The reliability 𝑅can be expressed in terms of 𝑦as 
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I. Shear stress at top of the Flange

The shear stress at top the flange in C section is 
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Then the reliability at top of the flange is 
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Reliability Computations 
The reliability at the top of the flange is computed when B mean strength of the section varies for 

F=1000KN, D=150mm, d=20mm and depicted in the Figure 2. 

Figure 2: Reliability Vs Strenth 
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The reliability at the top of the flange is computed when d mean strength of the section varies for 

F=1000KN, B=150mm, D=150mmand depicted in the Figure3. 

Figure 3: Reliability Vs Thickness of web 

The reliability at the top of the flange is computed when F mean strength of the section varies for 

B=150mm, D=150mm, d=20mmand depicted in the Figure 4. 

Figure 4: Reliability Vs Load 
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From figure 2, it is observed that if the strength increases then the reliability increases.From figure3, 

if the thickness of web increases then reliability increases to some extent and after that reliability 

decreases (i.e, from d=62mm).From figure4, if load increases then reliability decreases.  

II. Shear stress at the Bottom of the Flange and Junction of Top of the Web
The Shear stress at the bottom of the flange and junction of top of the web in C section is 
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Then the reliability at top of the flange is 
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Reliability Computations 
The reliability at the top of the flange is computed when B mean strength of the section varies for 

F=1000KN, D=150mm, d=20mm and depicted in the Figure 5. 

Figure 5: Reliability Vs Strenth 
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The reliability at the top of the flange is computed when d mean strength of the section varies for 

F=1000KN, B=150mm, D=150mmand depicted in the Figure 6. 

Figure 6: Reliability Vs Thickness of web 

The reliability at the top of the flange is computed when F mean strength of the section varies for 

B=150mm, D=150mm, d=20mmand depicted in the Figure 7. 

Figure 7: Reliability Vs Load 
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From figure 5, it is observed that if the strength increases then the reliability increases.From figure6, 

if the thickness of web increases then reliability increases to some extent and after that reliability 

decreases (i.efrom d=62mm).From figure7, if load increases then reliability decreases. 

III. Shear stress at Neutral Axis
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Reliability Computations 
The reliability at the top of the flange is computed when B mean strength of the section varies for 

F=1000KN, D=150mm, d=20mm and depicted in the Figure 8. 

Figure 8: Reliability Vs Strenth 
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The reliability at the top of the flange is computed when d mean strength of the section varies for 

F=1000KN, B=150mm, D=150mmand depicted in the Figure 9. 

Figure 9: Reliability Vs Thickness of web 

The reliability at the top of the flange is computed when F mean strength of the section varies for 

B=150mm, D=150mm, d=20mmand depicted in the Figure 10. 

Figure 10: Reliability Vs Load 
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From figure 8, it is observed that if the strength increases then the reliability increases. From figure9, 

if the thickness of web increases then reliability increases to some extent and after that reliability 

decreases (i. e, from d=62mm). From figure10, if load increases then reliability decreases.  

III. Confidence intervals

The confidence intervals for strength, thickness of web and load applied on C-section are used to 

observe the maximum reliability. For this, let us consider a large sample of size 40,50 and 50 for 

strength, thickness of web and load respectively. For this the strength values are considered from 50 

mm to 440mm, thickness of web values are from 2mm to 149mm and loadfrom100 KN to 485200 

KN. The confidence intervals will be find at different levels, 90%, 95%, 99% for both strength and 

load. The data never takes negative values and the distribution of data is skewed.  

The statistical formula is

n

x
z






Here μ=μζ mean of population strength, the sample mean is x

Table 1 

The confidence intervals for strength, at90% is (214.5934, 275.4065), at 95% is (208.7710, 281.2290), 

and at99% is (197.4031, 292.5968). The confidence intervals for thickness of web, at 90%is(51.3185, 

99.6815),at 95% is(47.129, 103.8710),and at 99% is (37.6328, 113.3672).The confidence intervals for 

load, at 90% is (209076.5956,276223.4044), at 95% is (202647.6458, 282652.3542), and at 99% is 

(189993.8399, 295306.1601). 

IV. Conclusion

The reliability is analysed at the top of the flange, bottom of the Flange and Junction of Top of the 

Web and at neutral axis. It increases with an increase in width at top of the flange, if the thickness of 

web increases then reliability increases to some extent and after that reliability decreases. The 

reliability decreases when the load 𝐹increases. The confidence intervals for both strength, thickness 

of web and load give a maximum reliability. 

Strength Thickness 

of Web 

Load 

Sample 

Mean 

245 75.5 242650 

S.D 116.9045 103.9447 144316.1 

Size   40   50   50 
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Abstract 

 

Extreme events in financial time series are characterized by their low probability yet high impact 

and they pose significant challenges in financial risk management. This study aims to model and 

forecast extreme events, with a particular emphasis on Value at Risk (VaR) estimation. It explores 

the concept of conditional Extreme Value Theory (EVT) for modeling volatility series to estimate 

VaR by integrating Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models 

with EVT, forming the GARCH-EVT approach. An automated algorithm was developed to 

optimize both model selection and threshold determination, ensuring accurate estimation of VaR. 

This automated procedure enhances the model selection process by identifying the optimal GARCH 

model and the most appropriate EVT threshold, addressing the complexities inherent in modeling 

extreme events. The comprehensive backtesting procedures are used to assess the effectiveness and 

precision of the algorithm in forecasting VaR, along with a simulation that evaluates both in-sample 

and out-of-sample performance of the model and candidate thresholds across various methods. The 

automated GARCH-EVT approach demonstrates effectiveness in accurately estimating VaR, 

providing a reliable and efficient method for extreme risk assessment in financial markets. This 

method streamlines the process of model selection and threshold optimization, contributing to 

improved risk management in financial markets. 

 

Keywords: Extreme events, Value at Risk (VaR), GARCH models, Threshold 

selection, Backtesting, Risk management. 

  

 

I. Introduction 
 

Extreme events in financial time series, such as sudden market crashes or dramatic price 

movements, pose considerable challenges for risk management strategies. These events are often 

rare but have significant financial consequences. To effectively manage such risks, accurate Value 

at Risk (VaR) estimation is critical. VaR is a standard tool for risk management, adopted by 

financial institutions like banks, investment funds, and corporations worldwide. VaR is 

determined by the quantile of the gain and loss distribution of the financial positions and it is 

defined as the maximum possible loss over a time horizon with a given confidence level [22]. 

Specifically, VaR has emerged as one of the most popular risk management methods. This may 

also be utilized to estimate the tail probability. The literature also emphasizes the significance of fat 

tails in calculating and predicting VaR [8], [28]. However, traditional VaR models, which often rely 
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on normal distribution assumptions, may underestimate the likelihood and impact of extreme 

events. The limitation of this approach is evident as the assumption of normality for the 

underlying distribution is unrealistic. In practice, the financial data exhibit the properties of 

asymmetry and heavy tails. Consequently, there has been growing interest in alternative methods 

for VaR estimation, particularly for capturing extreme tail behavior and volatility clustering. An 

alternative way is a non-parametric historical simulation (HS) approach that calculates empirical 

quantiles from past data without assuming a specific distribution. Parametric models, such as 

those in the GARCH type model, the entire return distribution under conditional normality, 

capturing volatility dynamics. On the other hand, the extreme value approach based on VaR 

estimation is superior to traditional parametric and non-parametric methods in identifying 

extreme risk [2]. The conventional time series models often assume constant volatility, which fails 

to adequately account for periods of varying volatility in financial returns. This limitation can lead 

to misleading conclusions and ineffective risk management strategies.  

To address these shortcomings, Engle [15] introduced the Autoregressive Conditional 

Heteroskedasticity (ARCH) model, which was later extended by Bollerslev [7] into the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model. GARCH models effectively 

capture essential properties of financial time series, such as volatility clustering, where large price 

changes tend to occur in clusters, reflecting the time-varying nature of risk. However, while 

GARCH models allow for dynamic volatility forecasting, they often assume symmetric responses 

to shocks. This limits their ability to fully capture the asymmetry typically observed in financial 

returns, where negative shocks have a more significant impact on volatility than positive ones 

known as the leverage effect. As a result, while GARCH models provide valuable insights into 

volatility dynamics, their limitations necessitate the exploration of more advanced models that can 

accommodate asymmetrical volatility behavior and better reflect the complexities of financial 

markets. The GARCH models with alternative distributions, such as the Student-t or skewed-t, can 

offer some improvement, as shown by Giot and Lauren [21]. Nevertheless, these models may still 

struggle to capture extreme tail events. Recently, EVT has been widely used in VaR estimation for 

capturing the effect of market behavior under extreme circumstances. EVT has gained popularity 

in risk management due to its ability to model extreme tail events, which are critical for assessing 

financial risk. The financial crises of the 1990s and beyond have improved interest in modeling 

extreme events [18]. Embrechts et al. [14], and Reiss and Thompson [30] provide a theoretical 

framework for EVT in the context of finance and risk management to model the behavior of 

extreme events. Beirlant et al. [6] discuss how extreme value models are used to capture tail 

behavior, while Gilli and Kellezi [19] applied EVT to stock market indices for calculating VaR. Bali 

[4] demonstrated that EVT outperforms traditional models, such as those based on normal and 

skewed-t distributions, in accurately estimating the VaR of financial assets. However, EVT has two 

key limitations: it typically assumes independent and identically distributed data, and it does not 

account for time-varying volatility.  

McNeil and Frey [26] proposed the GARCH-EVT approach, or conditional EVT to overcome these 

limitations, which combines the strengths of both GARCH and EVT models. This two-stage 

procedure effectively captures both time-varying volatility and tail behavior. In the first stage, 

GARCH models are used to estimate the conditional volatility and obtain standardized residuals. 

In the second stage, EVT is applied to the residuals to model extreme tail events. Several studies 

have demonstrated the superiority of conditional EVT for VaR estimation. Bali and Neftci [3] 

showed that conditional EVT outperforms GARCH models with skewed distributions when 

applied to U.S. short-term interest rates. Marimoutou et al. [25] explore the daily Brent oil price 

and compare the performance of unconditional and conditional EVT models with the conventional 

GARCH model and historical simulation. Allen et al. [1] found that conditional EVT produced 

fewer violations in out-of-sample backtesting using stock indices. Karmakar and Shukla [23] 

confirmed the effectiveness of conditional EVT for estimating VaR for daily stock indices in six 
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countries. By integrating time-varying volatility with extreme tail modeling, the GARCH-EVT 

approach offers a more accurate and robust measure of risk compared to traditional methods. 

Zhang et al. [33] utilized extreme value analysis to investigate the tail risk behavior of the high-

frequency returns of the four most popular cryptocurrencies estimating VaR and expected shortfall 

with varying thresholds.  

This study proposes an automated framework for Value at Risk forecasting with conditional 

extreme value theory. The algorithm automates key steps, including stationarity checks, ARCH 

effect testing, GARCH model fitting, residual distribution analysis, threshold selection for EVT, 

and VaR forecasting. Various GARCH models are considered to capture volatility dynamics, while 

EVT is applied to model extreme tail behavior. A novel dual-phase threshold (DPT) selection 

technique is introduced to enhance the accuracy of EVT threshold estimation. The framework 

generates in-sample and out-of-sample VaR forecasts, and performance is validated through 

backtesting using unconditional and conditional coverage tests. This automated approach provides 

a robust, data-driven solution for risk management by addressing both volatility clustering and 

extreme events. The paper is organized as follows: section 2 presents a theoretical framework of 

conditional extreme value theory, section 3 describes the proposed algorithmic approach for the 

GARCH-EVT framework, section 4 describes the data analysis of cryptocurrencies, section 5 shows 

the simulation results, and section 6 provides the summary and conclusion of the study. 

 

II. Methodologies 
 

I. Volatility Models 

Volatility models are used to estimate and forecast the variance or volatility of a time series, 

especially in financial data like stock returns, interest rates, exchange rates, etc. Volatility is a 

measure of how much the price of an asset fluctuates over time and is commonly used to assess 

risk. Higher volatility often indicates higher risk, as it increases the likelihood of significant price 

changes either upward or downward. The Autoregressive Conditional Heteroskedasticity (ARCH) 

model is designed for modeling time-varying volatility in financial time series. It assumes that the 

variance of the error term (or the residuals) at time t depends on the squared values of previous 

error terms. This is particularly useful for capturing volatility clustering, where periods of high 

volatility are followed by more high volatility, and periods of low volatility are followed by more 

low volatility. The ARCH model is defined as 𝑟𝑡 =  𝜇 + 𝜖𝑡; where, 𝑟𝑡 is the observed returns at time 

t,  𝜇 is the constant mean, 𝜖𝑡 is the error term or innovation. The conditional variance 𝜎𝑡
2 at time t 

depends on past squared residuals 𝜖𝑡−𝑖
2  for 𝑖 = 1,2, … , 𝑞, 

    𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2𝑞
𝑖=1 ; 𝜖𝑡~𝑁(0, 𝜎𝑡

2)                  (1) 

where 𝑞 is the order of the ARCH model, 𝜔 > 0 is the constant or intercept, 𝛼𝑖 ≥ 0 are the ARCH 

coefficients, concerning the current volatility to post residuals. 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model extends ARCH 

model by including lagged conditional variances in the variance equation. It is used to analyze 

time-series data where the variance of the error term is assumed to be serially auto-correlated. The 

GARCH models are utilized when the variance of the error term changes, indicating the presence 

of heteroskedasticity. Let 𝑟𝑡 be the return series, 𝜇 is the mean and 𝜖𝑡 the innovation or error term. 

The GARCH (p, q) model can be specified in terms of the mean and variance equation as follows 

𝑟𝑡 =  𝜇 + 𝜖𝑡, 𝜖𝑡 = 𝜎𝑡𝑧𝑡 
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                  𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑗𝜖𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1 ; 𝜖𝑡~𝑁(0, 𝜎𝑡

2)              (2) 

where, 𝜔 > 0 is the constant or intercept term, 𝛼𝑖 ≥ 0 for 𝑖 = 1,2, … , 𝑞 are the ARCH parameters 

that measure the impact of past squared innovations, 𝛽𝑗 ≥ 0 for 𝑗 = 1,2, … , 𝑝 are the GARCH 

parameters that measure the impact of past conditional variances, and 𝜎𝑡
2 is the conditional 

variance at time t, which is updated based on both the previous squared innovations and lagged 

variances. In this study, several GARCH-type specifications are considered namely the standard 

GARCH (SGARCH) by Bollerslev [7], Integrated GARCH (IGARCH) by Engle and Bollerslev [16], 

Exponentiated GARCH (EGARCH) by Nelson [27], GJR-GARCH by Glosten et al. [20], and 

Asymmetric Power ARCH (APARCH) by Ding et al., [13] to model the time-varying volatility. 

Let 𝑟𝑡 be the return at time t and 𝜖𝑡 = 𝑟𝑡 − 𝜇, where 𝜇 is the conditional mean. The standard 

GARCH (1,1) model is described as follows 

𝑟𝑡 =  𝜇 + 𝜎𝑡𝑧𝑡 

     𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + 𝛽𝜎𝑡−1
2                 (3) 

where, 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝛼 + 𝛽 < 1 to ensure stationarity, 𝑧𝑡 the innovations are iid random 

variables with zero mean and unit variance, 𝜎𝑡
2 is the conditional variance at time t representing 

the time-varying volatility, 𝛼 measures the impact of past residuals 𝜖𝑡−1
2  on current volatility, 𝛽 

measures the persistence of volatility from one period to the next. The GARCH (1,1) models tend 

to be more flexible, efficient, and significant than higher-order models in the out-of-sample 

analysis. The GARCH model converges to the Integrated GARCH model, where the long-term 

volatility bears an infinite process. 

The IGARCH model is the special version of the SGARCH (1,1) model where the persistence 

parameter 𝛼 + 𝛽 = 1, implying that volatility follows a unit root GARCH process. Thus, the 

conditional variance in the IGARCH (1,1) is 

                         𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + (1 − 𝛼)𝜎𝑡−1
2               (4) 

by taking  𝛽 = 1 − 𝛼 in (3) with parameter restriction 𝜔 > 0, 𝛼 ≥ 0, 1 − 𝛼 ≥ 0 respectively. 

Both the SGARCH and IGARCH models assume that positive and negative shocks affect the 

conditional variance symmetrically. These models impose non-negative constraints on all 

coefficients, limiting their ability to account for the negative correlation often observed between 

returns and volatility. To address these limitations, certain long-memory GARCH-type models 

have been developed. These models are designed to capture key characteristics such as asymmetry 

and fat tails in return distributions, which enhance their ability to model volatility and improve the 

accuracy of Value-at-Risk calculations. 

The Exponential GARCH (EGARCH) model allows for asymmetric effects of positive and negative 

shocks on volatility. The conditional variance equation is logarithmic, ensuring non-negativity 

without imposing parameter restriction. 

               ln(𝜎𝑡
2) = 𝜔 + 𝛼

𝜖𝑡−1

𝜎𝑡−1
+ 𝛾 (|

𝜖𝑡−1

𝜎𝑡−1
| − 𝐸 [

𝜖𝑡−1

𝜎𝑡−1
]) + 𝛽 ln(𝜎𝑡−1

2 )           (5) 

where, 𝛾 captures the asymmetric effect of positive and negative shocks on volatility. If 𝛾 ≠ 0, then 

positive and negative shocks have different impacts on volatility. 

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model captures leverage effects, where 

negative shocks increase volatility more than positive shocks of the same magnitude.  
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    𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + 𝛾𝜖𝑡−1
2 𝐼(𝜖𝑡−1 < 0) + 𝛽𝜎𝑡−1

2               (6) 

where, 𝐼(𝜖𝑡−1 < 0) is an indicator function that takes the value 1 when 𝜖𝑡−1 is negative and 0 

otherwise; 𝛾 represents the additional impact of negative shocks on volatility. 

The Asymmetric Power ARCH (APARCH) model generalizes GARCH by allowing for power 

transformations of the conditional standard deviations and incorporating asymmetry. 

                        𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜖𝑡−1| − 𝛾𝜖𝑡−1)

𝛿 + 𝛽𝜎𝑡−1
𝛿                (7) 

where, 𝛿 controls the power transformation of volatility and 𝛾 captures the asymmetry of positive 

shocks and negative shocks. 

For every GARCH-type model, the innovation process 𝑧𝑡 can follow one of several distributions: 

symmetric, skewed, or heavy-tailed distributions to better capture the characteristics of financial 

returns, such as symmetry, asymmetry, and fat tails. These distributions include: normal, Student’s 

t distribution, skewed normal, skewed Student’s t, generalized error, and skewed generalized error 

distribution. The parameters for all GARCH-type models can be estimated using maximum 

likelihood, as it is a reliable and efficient method that produces valid asymptotic standard errors in 

spite of non-normality. Model selection is performed using information criteria, specifically the 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

II. Extreme value theory 

Extreme value theory is the statistical framework for analyzing and modeling extreme events in 

the tail of the probability distributions. The two main approaches in EVT are block maxima and 

peaks over threshold approaches.  In block maxima, the data is divided into non-overlapping 

blocks or periods of equal sizes and select the maximum value of each block, which is then 

modeled using generalized extreme value (GEV) distribution. The peaks over threshold (POT) 

approach focuses on values that exceed a specified learning threshold and then modeled using a 

generalized Pareto (GP) distribution. The main challenge in this framework is to select an 

appropriate threshold for effectively identifying extreme values.  The POT method is widely 

recognized for its effectiveness in characterizing extreme events in the dataset. The cumulative 

distribution function of the GP distribution with shape parameter 𝜉 and scale parameter 𝜎 has the 

following representation. 

                       𝐺𝜉,𝜎(𝑦) = {
1 − (1 + 𝜉 (

𝑦

𝜎
))

−1 𝜉⁄

;  𝑖𝑓 𝜉 ≠ 0

1 − 𝑒−(
𝑦

𝜎
)                     ;  𝑖𝑓 𝜉 = 0

                                           (8) 

where, i)  𝑦 ≥ 0 when 𝜉 ≥ 0 and 0 ≤ 𝑦 ≤ −𝜎 𝜉⁄  when 𝜉 < 0 and  ii) 𝜎 > 0 when 𝜉 = 0.  

The parameter 𝜉 plays a crucial role in characterizing the tail behavior of the distribution. When 

𝜉 = 0, the distribution simplifies to the exponential distribution (light tail). When 𝜉 > 0, the 

distribution follows the ordinary Pareto distribution (heavy tail). When 𝜉 < 0, the distribution is 

characterized as a short-tailed Pareto distribution.  

Let 𝑌1, 𝑌2, … , 𝑌𝑛 be the excesses above the sufficient large threshold u, where 𝑌𝑖 = 𝑋𝑖 − 𝑢. Balkema 

and de Haan [5] and Pickands [29] justify that 𝐹𝑢(𝑦) ≈ 𝐺𝜉,𝜎(𝑦) provided that for large u. By setting 

𝑥 = 𝑢 + 𝑦, an approximation of 𝐹(𝑥), for 𝑥 > 𝑢, can be obtained as 

    𝐹(𝑥) = (1 − 𝐹(𝑢))𝐺𝜉,𝜎(𝑦) + 𝐹(𝑢)                (9) 
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and here 𝐹(𝑢) =
𝑛−𝑁𝑢

𝑛
 ; where n is the total number of observations, and 𝑁𝑢 the number of 

observations above the threshold. By using (4) in (5), we get the tail estimator. 

    �̂�(𝑥) = 1 −
𝑛

𝑁𝑢
(1 + 𝜉 (

𝑥−�̂�

�̂�
))

−1 �̂�⁄

                            (10) 

where, 𝜉 and �̂� are the estimated values obtained using the MLE. 

The Value at Risk is calculated by using the (6), we get 

    𝑉𝑎�̂�𝑝 = 𝑢 +
�̂�

�̂�
([

𝑛

𝑁𝑢
(1 − 𝑝)]

−�̂�

− 1)             (11) 

where, u is the threshold, 𝜉 is the estimated shape parameter and �̂� is the estimated scale 

parameter. 

The main difficulty of modeling with the POT method is setting the right threshold. It is important 

to find a good balance in setting the threshold to obtain a suitable balance between the variance 

and the bias of the model. A high threshold reduces sample size while also increasing uncertainty. 

At the same time, selecting a small truncation level increases both the sample size and the bias of 

the results [6].  

Method 1: (Threshold or Parameter Stability Method) The parameter stability plot, also called the 

threshold stability plot discussed by Coles [10] is a graphical method to study the stability of the 

parameter in GP distribution. This method is based on the stability property of the GP distribution. 

The scale parameter for a GP distribution over a threshold 𝑣 where 𝑣 ≥ 𝑢 is specified as  𝜎𝑣 = 𝜎𝑢 +

𝜉(𝑣 − 𝑢), where 𝜎𝑢 is the scale parameter at threshold u, and  𝜉 is the shape parameter.    If 𝜉 ≠ 0, 

the scale parameter changes as the threshold 𝑣 varies. To remove the scale parameter dependence 

on 𝑣, it is re-parameterized as 𝜎∗ = 𝜎𝑣 + 𝜉𝑢. In practice, estimates of 𝜉 and 𝜎∗ are plotted against 

different thresholds 𝑣, typically with symmetric confidence intervals. The resulting plot is defined 

by the locus of points: {(𝑢, 𝜎∗); 𝑢 < 𝑥𝑚𝑎𝑥} and {(𝑢, 𝜉𝑢); 𝑢 < 𝑥𝑚𝑎𝑥}. The different thresholds result in 

different samples of peak magnitudes and times of occurrence. The threshold should be set to the 

lowest value for which the parameter estimates are approximately stable or constant. The 

parameter stability plot shows how the shape and modified scale parameters of the GP change 

over a range of threshold values.  

Method 2: (Minimization of Asymptotic Mean Squared Error Method) The minimization of an 

asymptotic mean squared error (DAMSE) method is an algorithm developed by Cariro and Gomes 

[9] to identify the tail in data by minimizing the asymptotic mean squared error (AMSE) criterion 

concerning upper-order statistic k. The optimal number, 𝑘0 corresponds to the unknown threshold 

u for the tail index in relation to k. The procedure works as follows: Given the observed returns 

𝑟1, … , 𝑟𝑛, for the tuning parameters 𝜏 = 0 and 𝜏 = 1, the values of �̂�𝜏(𝑘) are calculated as:  

     �̂�𝜏(𝑘) ≔ − |
3(𝑊𝑘,𝑛

(𝜏)
−1)

(𝑊𝑘,𝑛
(𝜏)
−1)

|,              (12) 

which depend on the statistic: 

𝑊𝑘,𝑛
(𝜏) ≔

{
 
 

 
 (𝑀𝑘,𝑛

(1)
)
𝜏
−(𝑀𝑘,𝑛

(2)
/2 )

𝜏/2

(𝑀𝑘,𝑛
(2)
/2)

𝜏/2
−(𝑀𝑘,𝑛

(3)
/6)

𝜏/3  if 𝜏 ≠ 0

𝑙𝑛(𝑀𝑘,𝑛
(1)
)
𝜏
−𝑙𝑛(𝑀𝑘,𝑛

(2)
/2)

𝜏/2

(1/2)𝑙𝑛(𝑀𝑘,𝑛
(2)
/2)−(1/3)𝑙𝑛(𝑀𝑘,𝑛

(3)
/6)
 if 𝜏 = 0

  

Here, 𝑀𝑘,𝑛
(𝑗)

 is defined as: 𝑀𝑘,𝑛
(𝑗)
=

1

𝑘
∑ (log 𝑟𝑛−𝑖+1:𝑛 − log 𝑟𝑛−𝑘:𝑛)

𝑗 , 𝑗 = 1,2,3.𝑘
𝑖=1  
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To compute the optimal tail parameters: 

i. Consider 𝐾 = (𝑛(0.995), 𝑛(0.999) ) and compute the median of �̂�𝜏(𝑘) denoted as 𝐾𝜏,  

ii. Compute 𝐼𝜏 = ∑ (�̂�𝜏(𝑘) − 𝐾𝜏)
2

𝑘∈𝐾  for 𝜏 = 0,1.  

iii. Select the tuning parameter, 𝜏∗ = 0, if 𝐼0 ≤ 𝐼1, otherwise, select 𝜏∗ = 1.  

Next, work with �̂� = �̂�𝜏∗(𝑘) = �̂�𝜏∗(𝑘01)  and �̂� = �̂�𝜏∗(𝑘) = �̂�𝜏∗(𝑘01) for 𝑘01 = 𝑛
0.999 and the estimator  

�̂��̂�(𝑘) is computed as  

    �̂��̂�(𝑘) = (
𝑘

𝑛
)
�̂� 𝑑𝑘(�̂�)𝐷𝑘(0)−𝐷𝑘(�̂�)

𝑑𝑘(�̂�)𝐷𝑘(�̂�)−𝐷𝑘(2�̂�)
              (13) 

where, 𝑑𝑘(𝛼) =
1

𝑘
∑ (

𝑖

𝑘
)
−𝛼

𝑘
𝑖=1 , 𝐷𝑘(𝛼) =

1

𝑘
∑ (

𝑖

𝑘
)
−𝛼

𝑘
𝑖=1 𝑈𝑖 for any 𝛼 ≤ 0, with the scaled line spacing or 

thresholds,  

   𝑈𝑖 = 𝑖 ∑ (log 𝑟𝑛−𝑖+1:𝑛 − log 𝑟𝑛−𝑘:𝑛),
𝑘
𝑖=1  1 ≤ 𝑖 ≤ 𝑘 < 𝑛, 𝑛0.999.            (14) 

Finally, based on the estimators  �̂� and �̂� compute: �̂�0 = (
(1−�̂�)2𝑛−2�̂�

−2�̂��̂�2
)

1

1−2𝑝
 and estimate the shape 

parameter 𝜉 = 𝜉𝑘0,𝑛. 

Method 3: (Dual-Phase Threshold Selection - A Proposed Method) The dual-phase threshold (DPT) 

method can be used to find the optimum threshold based on the two-phase procedure (Sakthivel 

and Nandhini, [31] and [32]). The procedure is described as follows: 

Phase 1: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be an independent and identically distributed random sample of size n. 

The non-extremes are trimmed from X and sequential testing of the hypothesis is used to select the 

most appropriate threshold. The null hypothesis is:  𝐻0
(𝑖)

: The distribution of exceedances ni above 

the chosen threshold follows the GP distribution. The sequence of the null hypothesis 

𝐻0
(1)
, 𝐻0

(2)
, … , 𝐻0

(𝑘)
 is tested using goodness of fit tests.  For instance, the Kolmogorov-Smirnov (K-S) 

test and Cramer von Mises (CvM) test with significance level 𝛼 = 0.05 have been performed for 

this case. The test statistic 𝜔𝑖𝑗 and its p-values 𝑝𝑖𝑗 ∈ [0,1] for 𝑖 ∈ 1,2, … , 𝑘, 𝑗 ∈ 1,2, … , 𝑙 denotes the k 

hypothesis and l test criteria are evaluated. If the p-value 𝑝𝑖𝑗 >  𝛼, then 𝐻0
(𝑖)

 is accepted. Otherwise, 

it is rejected for any 𝑝𝑖𝑗 <  𝛼 can be represented as 𝐻0
(𝑟)
; 𝑟 ∈ 1,2, … , 𝑘 − 1 correspond to the 

threshold. If 𝐻0
(𝑟)

 is rejected, then the threshold 𝑢𝑟 is excluded and the values below 𝑢𝑟 are 

considered to be non-extremes. The refined threshold sequence 𝑢𝑟+1 < 𝑢𝑟+2 < ⋯ < 𝑢𝑘 is tested 

iteratively until all the null hypotheses are accepted, indicating the exceedances follow the GP 

distribution. To remove the non-extremes, if both the KS and CvM test yield, 𝑝𝑖𝑗 < 𝛼 at different 

thresholds, the trimming point 𝛿  is set as 𝛿 = {𝑢𝑖;max((𝑝𝐶𝑣𝑀, 𝑝𝐾𝑆 ) < 𝛼)}. The values 𝑋𝑖 < 𝛿 are 

excluded, and only 𝑋𝑖 > 𝛿 are used for selecting an appropriate threshold in the next phase. 

Phase 2: Consider a set of threshold values, starting from the trimming point 𝛿 obtained in phase 1, 

as the initial threshold and evaluated up to the 99th percentile with 0.01 increments. For each 

threshold 𝐴𝑖, where 𝑘 = 1,2, … ,𝑚, there exists an nk exceedances, and the p-value for each threshold 

is calculated based on multiple test criteria. The decision matrix D is created from the p-values of 

the test criteria evaluated across the threshold range. The matrix 𝐷 = (𝑑𝑖𝑗)𝑚×𝑛 represents the 

performance values 𝑑𝑖𝑗 of the ith threshold against the jth criterion, where  𝑚 is the number of 

thresholds 𝐴𝑖, and l is the number of test criteria 𝐶𝑗.  The matrix D is defined as: 

                                                                        𝐷 =

      𝐶1     𝐶2    …  𝐶𝑙 
𝐴1
𝐴2
⋮
𝐴𝑚

[

𝑑11   𝑑12  …  𝑑1𝑙
𝑑21   𝑑22  …  𝑑2𝑙
⋮          ⋮            ⋮   
 𝑑𝑚1 𝑑𝑚2  … 𝑑𝑚𝑙

]
             (15) 
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Here, 𝐴𝑗 represents the threshold and 𝐶𝑗 represents the criteria for 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑙. In 

multiple tests, the p-values can be smoothed to control the overall fluctuation rate of different test 

criteria. The normalized values are calculated as   

𝑝𝑖𝑗 =
𝑑𝑖𝑗

𝑚 +∑ (𝑑𝑖𝑗)
2𝑚

𝑖=1

 

where 𝑑𝑖𝑗 is the value of the jth criterion for the ith threshold, and m is the number of thresholds. 

The normalized decision matrix is  𝑝 = (𝑝𝑖𝑗)𝑚×𝑛.  The entropy values for each criterion can be 

calculated with cross-entropy defined as  

            𝐸𝑗 = −∑ (𝑝𝑖𝑗𝑙𝑜𝑔(𝑝𝑖𝑗))
𝑚
𝑖=1 − (1 − ∑ 𝑝𝑖𝑗

𝑙
𝑖=1 )(𝑙𝑜𝑔[1 − ∑ 𝑝𝑖𝑗

𝑙
𝑖=1 ])             (16) 

The relative significance of each criterion is given by 

𝑤𝑗 =
1 − 𝐸𝑗

∑ (1 − 𝐸𝑗)
𝑚
𝑗=1

 

This is the reasonable expression of normalized weighted value, ∑ 𝑤𝑗
𝑚
𝑗=1 = 1, for 𝑤𝑗 ∈ [0,1]. The 

evaluation indicator (V) can be calculated as  

        𝑉𝑗 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑑𝑖𝑗          (17) 

where, 𝑤𝑗 is the weight of each criterion 𝑑𝑖𝑗. The best threshold is chosen as 𝑢∗ = 𝑚𝑎𝑥(𝑉𝑗). This 

threshold u* is considered to be optimal, with exceedances above it modeled using the generalized 

Pareto distribution. The DPT method tests the multiple thresholds, adjusts p-values to control the 

error rate, and selects the most appropriate threshold. 

III. Conditional Extreme Value Theory 

The conditional extreme value theory called GARCH-EVT was proposed by McNeil and Frey [26] 

integrates GARCH and EVT to estimate Value at Risk. By filtering the returns with a GARCH 

model, it produces an i.i.d suitable for the EVT technique, and it captures both conditional 

heteroskedasticity and extreme tail behavior. The steps for GARCH-EVT VaR estimation: 

Step 1: Fit the GARCH-type model to return data by quasi-maximum likelihood. Estimate the one-

step ahead forecast of 𝜇𝑡+1 and 𝜎𝑡+1 from a fitted model and extract the standardized residuals 𝑧𝑡. 

Step 2: Consider the standardized residuals computed in step 1, and estimate the tail quantiles of 

the innovations using EVT. Then construct VaR:  The one-step ahead VaR measures for the 

dynamic volatility model described earlier can be formulated as: 

         𝑉𝑎𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑉𝑎𝑅𝑡(𝑧).              (18) 

The backtesting is employed to rigorously evaluate the predictive performance of the GARCH-

EVT model used for VaR forecasting. To quantitatively assess the performance of the model, a 

series of rigorous statistical tests are employed, including the Kupiec Unconditional Coverage 

(UC) test, and the Christoffersen Conditional Coverage (CC) test. 

IV. Rolling Window Method 

In the rolling window method, the dataset is divided into overlapping segments, with each 

segment containing an in-sample and an out-of-sample portion. Initially, the model is trained on 
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the in-sample data, which consists of a fixed number of observations, and the remaining data is 

used for out-of-sample forecasting. In this study, 80% of the data might be used for training called 

in-sample, and the next 20% for testing called out-of-sample. After fitting a GARCH-type model to 

the in-sample data, it produces one-step-ahead volatility forecasts and VaR estimates for the out-

of-sample segment. Then, the window shifts forward by a set number of observations (e.g., one 

day), removing the earliest observations and adding new ones. The model is re-estimated with the 

updated in-sample data, and fresh forecasts are made for the new out-of-sample period. This 

process is repeated continuously, ensuring each forecast is based on previously unseen data. The 

rolling window approach is effective for evaluating model performance over time, as it mimics 

real-world forecasting scenarios and prevents over-fitting, leading to more reliable out-of-sample 

predictions. 

 

III. Automated GARCH-EVT Algorithm 
 

The automated algorithm for GARCH-EVT forecasts Value at Risk by combining GARCH-type 

models with various advanced threshold selection methods. The procedure is as follows: 

Step 1: Data: Let 𝑌𝑡 , be the values of time series at the time = 1,2, … , 𝑛 .  

Step 2: Test for Normality: The Jarque-Bera test checks whether a time series follows a normal 

distribution by measuring skewness and kurtosis. A low p-value suggests non-normality, signaling 

potential risk from extreme events. 

Step 3: Calculate returns: The log return series, 𝑟𝑡 at time 𝑡 is log  (𝑟𝑡) = log (
𝑃𝑡

𝑃𝑡−1
); where, 𝑃𝑡 is the 

price at time 𝑡. 

Step 4: Stationarity Check: The Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-

Schmidt-Shin test (KPSS) test are used to check for stationarity in the series. If it shows stationarity 

then move on to step 5. Otherwise, transform the data and repeat this process. 

Step 5: Check for ARCH Effect: The ARCH-Lagrange Multiplier (ARCH-LM) test is used for testing 

the auto-correlation in the time series data. If there exists the ARCH effect in the series we proceed 

to step 6. Otherwise, end this process and proceed with conventional methods. 

Step 6: In-sample and Out-of-sample: Fixing of In-sample and Out-of-sample proportion for rolling 

window procedure to obtain better model and VaR forecasting. 

In-sample: 𝑅𝑖𝑛 = 𝑟𝑡[1: ⌊𝑝. 𝑘⌋] 

Out-of-sample: 𝑅𝑜𝑢𝑡 = 𝑟𝑡[( ⌊𝑝. 𝑘⌋ + 1): 𝑛] 

where, 𝑝 is the proportion of the data. 

Schematic Representation of GARCH-EVT Algorithm for Volatility Series 
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Step 7: Fitting of In-sample returns: Set In-sample returns as 𝑅𝑖𝑛 = {𝑟1, 𝑟2, … , 𝑟𝑘}. The iterative 

procedure through model types and residual distributions is as follows: 

For each GARCH model type 𝑀 = {𝑚1, 𝑚2, … ,𝑚𝑖}; 𝑚𝑖 ∈ 𝑀 with each residual distribution is 𝐷 =

{𝑑1, 𝑑2, … , 𝑑𝑗}; 𝑑𝑗 ∈ 𝐷, we implement the following procedure for optimal selection. 

(i) Specify the GARCH model: Create the GARCH specification 𝑆𝑖𝑗 with the variance model 𝑚𝑖, mean 

model ARMA(0,0) and distribution 𝑑𝑗 Respectively. 

(ii) Fit the GARCH model: Fit the 𝑆𝑖𝑗 to the data 𝑌 to obtain the best-fitted model 𝐹𝑖𝑗. Calculate AIC 

for 𝐹𝑖𝑗 to update the best model that is, 𝐹𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐹𝑖𝑗

(𝐴𝐼𝐶(𝐹𝑖𝑗)). If the fit fails, continue the 

iterative process until selecting the more suitable model. 

Step 8: Out-of-sample forecast: The rolling window forecast 𝑊𝑖 for 𝑖 = 1,2, … , 𝑛𝑜𝑢𝑡.  
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𝑊𝑖 = {𝑟𝑗| 𝑗 = 𝑖, 𝑖 + 1,… , 𝑛𝑖𝑛 + (𝑖 − 1)} 

Fit the Out-of-sample 𝑅𝑜𝑢𝑡 returns using the selected best GARCH model from step 7. Then extract 

residuals 𝑒𝑡, and conditional volatility 𝜎𝑡. 

Step 9: Threshold Selection: The threshold selection methods are 𝑢𝑖 = {𝑢1, 𝑢2, … , 𝑢𝑛}; for  𝑖 = 1, 2,… , 𝑛. 

Fit the GP distribution to the residuals of 𝑢𝑖 and to estimate the parameters. The CvM and K-S test 

can be used to evaluate the threshold-based estimates and choose the best suitable threshold 

selection method among 𝑢𝑖. The threshold selection methods used in this study are Threshold 

stability, DAMSE, DPT, and empirical thresholds like 90th percentile, 95th percentile. 

Step 10: Value at Risk Forecast: The Value at Risk for one step ahead forecast from out-of-sample is 

defined as   

𝑉𝑎𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑉𝑎𝑅𝑡(𝑧𝛼  ); 

where 𝜇𝑡+1 forecasted mean returns and 𝜎𝑡+1 forecasted volatility, 𝑧𝛼 be the quantile of GP 

distribution, 𝛼 is the significance level. 

Step 11: Backtesting: The Kupiec and Christoffersen test can be used for VaR backtesting. If the p-

value of the chosen model VaR forecast is greater than the level of significance 𝛼 = 0.05 or 0.01, 

then finalize the GARCH EVT model. Otherwise, conventional GARCH and EVT techniques can 

be suitable. 

 

IV. Data Analysis on Real-Time Applications 
 

In this study, the dataset consists of daily closing prices (in dollars) of two cryptocurrencies ZRX 

token and RSR token from 24 May 2022 to 25 August 2024 (825 observations). The data are 

available online at marketcap.com and the Kaggle website. Figure 1 shows the time series plots for 

the daily trading prices of cryptocurrencies. The sample period covers both stable and volatile 

phases, as well as price fluctuations and extreme jumps. The datasets of cryptocurrencies exhibit 

clear volatility clustering over time. A data adjustment process is used to achieve stationarity in the 

cryptocurrency return series, accounting for heteroskedasticity. Figure 2 shows the dynamic 

behavior of the log returns for all cryptocurrencies, highlighting the characteristic leptokurtosis 

resulting from time-varying volatility clustering, where high-volatility periods are followed by 

further high volatility and low-volatility periods are followed by low volatility. 

  
      (a) ZRX Token                           (b) RSR Token 

Figure 1: Time series plot for the cryptocurrency dataset 
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      (a) ZRX Token                           (b) RSR Token 

Figure 2: Return series for the cryptocurrency dataset 

Table 1 presents summary statistics for the cryptocurrencies and the results of statistical tests. The 

series shows excess kurtosis, indicating fat tails and non-normal distributions. Table 2 shows the JB 

test confirms that none of the cryptocurrencies follow a normal distribution. To assess stationarity, 

the KPSS test was applied, and the results rejected the null hypothesis, indicating that all return 

series are non-stationary at all levels. Additionally, the presence of significant ARCH effects was 

confirmed by using the ARCH-LM test and Box-Pierce test in cryptocurrency datasets. The results 

from these tests confirm the existence of significant ARCH effects in the analyzed datasets, 

highlighting the importance of using models that account for changing volatility in cryptocurrency 

datasets. 

Table 1: Descriptive statistics 

Data Min Q1 Median Mean Q3 Max Skewness Kurtosis 

ZRX  0.1476 0.2185 0.2887 0.3289 0.3715 1.3634 2.57713 9.0602 

RSR  0.0017 0.0026 0.0041 0.0045 0.0061 0.0128 0.5655 7.7823 

Table 2: Preliminary Tests 

Data JB Test KPSS test ARCH-LM test Box-Pierce test 

𝜒2 p-value KPSS p-value 𝜒2 p-value 𝜒2 p-value 

ZRX  3884.4 <0.05 2.1584 <0.05 803.44 <0.05 820.28 <0.05 

RSR  62.375 <0.05 2.2168 <0.05 766.85 <0.05 797.48 <0.05 

The results from the estimated GARCH-type models are presented in this section. The sample 

period is divided into two sub-sample periods called the in-sample period; it takes 80% from the 

starting point and the out-of-sample period covers the last 20% of the dataset. In-sample returns 

are used to estimate the parameters of the selected models, subject to the assumptions and 

constraints of each model. The calculated in-sample parameters are applied to forecast the 

volatilities for both in-sample and out-of-sample periods. We first estimate the SGARCH, 

EGARCH, GJR-GARCH, APARCH, and IGARCH models for our dataset. Table 3 presents the AIC 

values of the fitted GARCH type specifications under different types of error distributions such as 

normal, Student’s t, generalized error (GE), skew-normal, skew-t, and skew-generalized error 

(skew-GE) distribution. The student’s t distribution is suitable for both datasets based on the AIC 

values for all the GARCH-type models. The student t distribution accounts for heavy tails, which 

allows it to capture the extreme values effectively. The estimated results of GARCH-type models 

with the selected innovation student’s t distribution are presented in Table 4. The diagnostic 

results like minimum AIC, and BIC reveal that the IGARCH specifications for the ZRX dataset and 

APARCH specifications for the RSR dataset filter the serial autocorrelation, conditional volatility 

dynamics, and leverage effects in return series. Therefore we can apply the EVT methods to the iid 

residual series. For the ZRX dataset, we took the IGARCH-EVT approach and for the RSR dataset, 
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we took the APARCH-EVT approach to compute the one-step-ahead Value at Risk forecast for 

these cryptocurrencies. The forecast performance of these types of models should be evaluated for 

the out-of-sample period and using more accurate performance criteria. In this study, optimal POT 

thresholds are obtained by evaluating the five different threshold methods as 90th  percentile, 95th  

percentile, threshold stability (TS) method, minimization of an asymptotic mean squared error 

(DAMSE) method, and the proposed dual phase threshold (DPT) selection method and to estimate 

the GP distribution parameters for both the left and right tails. 

Table 3: In-Sample Estimated Results and Model Selection 

Models Normal t GE Skew-Normal Skew-t Skew-GE 

Data 1: ZRX Token 

SGARCH AIC -3.1327 -3.3519 -3.3175 -3.1373 -3.3497 -3.3160 

BIC -3.1063 -3.3188 -3.2844 -3.1043 -3.3100 -3.2763 

EGARCH AIC -3.1505 -3.3491 -3.3172 -3.1531 -3.3471 -3.3159 

BIC -3.1174 -3.3094 -3.2775 -3.1135 -3.3008 -3.2696 

GJR-GARCH AIC -3.1299 -3.3499 -3.3149 -3.1350 -3.3475 -3.3132 

BIC -3.0969 -3.3102 -3.2752 -3.0954 -3.3012 -3.2669 

APARCH AIC -3.1446 -3.3473 -3.3136 -3.1453 -3.3451 -3.3122 

BIC -3.1049 -3.3010 -3.2673 -3.0990 -3.2922 -3.2593 

IGARCH AIC -3.1291 -3.3536 -3.3174 -3.1331 -3.3514 -3.3161 

BIC -3.1093 -3.3272 -3.2909 -3.1067 -3.3183 -3.2830 

Data 2: RSR Token 

SGARCH AIC -2.8775 -3.0855 -3.0593 -2.8747 -3.0852 -3.0591 

BIC -2.8503 -3.0514 -3.0252 -2.8406 -3.0446 -3.0182 

EGARCH AIC -2.9452 -3.0912 -3.0649 -2.9425 -3.0897 -3.0633 

BIC -2.9111 -3.0503 -3.0240 -2.9016 -3.0420 -3.0156 

GJR-GARCH AIC -2.9188 -3.0926 -3.0677 -2.9162 -3.0915 -3.0665 

BIC -2.8848 -3.0517 -3.0268 -2.8754 -3.0438 -3.0188 

APARCH AIC -2.9125 -3.0941 -3.0697 -2.9105 -3.0938 -3.0689 

BIC -2.8716 -3.0464 -3.0220 -2.8628 -3.0392 -3.0144 

IGARCH AIC -2.8595 -3.0824 -3.0505 -2.8578 -3.0821 -3.0508 

BIC -2.8390 -3.0551 -3.0232 -2.8306 -3.0481 -3.0167 

To evaluate the out-of-sample performance of the VaR forecast models using the EVT approach, 

we implemented a rolling window scheme where 80% of the data was used for in-sample fitting of 

the GARCH-type model, while the remaining 20% was reserved for out-of-sample forecasting. 

Within each rolling window, we fitted the chosen best GARCH-type model from in-sample 

analysis and to extract residuals based on evaluating the AIC. This selection process allowed us to 

extract the residuals, ensuring that the thresholds for EVT analysis were derived from the most 

accurate representation of the underlying volatility dynamics. The one-step-ahead VaR is 

calculated at 95% and 99% confidence levels, which are essential for evaluating the performance of 

the GARCH-EVT approach in forecasting VaR. We consider both the left and the right tail of the 

return distribution. The reason is that the left tail represents losses for an investor with a long 

position on the index, whereas the right tail represents losses for an investor being short on the 

index.  
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Table 4: In-Sample: Estimated Values of the Selected Models 

Data 1: ZRX Token- Student t distribution 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 0.0006 

(0.0017) 

0.0008     

(0.0014)   

0.0009     

(0.0014)   

0.0009     

(0.0014) 

0.0006     

(0.0013) 

𝜔 0.0005 

(0.0001) 

-0.7151     

(0.2652) 

0.0003     

(0.0001)   

0.0006     

(0.0010) 

0.0003     

(0.0001) 

𝛼1 0.3011 

(0.0639) 

0.0207     

(0.0495) 

0.3451     

(0.1137)   

0.2886     

(0.0759) 

0.3454     

(0.0756) 

𝛽1 0.5875 

(0.0685) 

0.8818     

(0.0435) 

0.6575     

(0.0755) 

0.6769     

(0.0807) 

0.6545 

(0.0000) 

𝛾 - 0.4267     

(0.0835) 

-0.0938     

(0.1173) 

-0.0804     

(0.1023) 

- 

𝛿 - - - 1.7277     

(0.5162) 

- 

Shape  4.0116     

(0.5893) 

3.9221     

(0.5667) 

3.9463     

(0.5741) 

3.6521     

(0.4106) 

log L 1076.95 1153.05 1153.34 1153.45 1153.61 

AIC -3.1327 -3.3491 -3.3499 -3.3473 -3.3536 

BIC -3.1063 -3.3094 -3.3102 -3.3010 -3.3272 

𝑄(5)  
(p-value) 

0.8911 

(0.8838) 

0.7278   

(0.9175) 

0.7517   

(0.9128) 

0.7591   

(0.9113) 

0.7927   

(0.9045) 

𝑄2(5) 
(p-value) 

0.2218 

(0.9909) 

0.2890   

(0.9848) 

0.3192   

(0.9817) 

0.3116   

(0.9825) 

0.3907   

(0.9732) 

Data 2: RSR Token - Student t distribution 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 0.0011     

(0.0017)    

0.0018     

(0.0019)    

0.0017   

(0.0017) 

0.0015     

(0.0017) 

0.0013    

(0.0016) 

𝜔 0.0002     

(0.0001)    

-0.1385     

(0.0255)   

0.0001     

(0.0001)   

0.000001     

(0.000001) 

0.0001     

(0.0001) 

𝛼1 0.0798     

(0.0310)    

0.0753     

(0.0259)    

0.1013     

(0.0368) 

0.0067     

(0.0042) 

0.1095     

(0.0415) 

𝛽1 0.8623     

(0.0533)   

0.9759   

(0.0045) 

0.9164     

(0.0309) 

0.9307     

(0.0180) 

0.8904  

(0.0000)  

𝛾 - 0.1235     

(0.0522) 

-0.0862     

(0.0345) 

-0.4294     

(0.1752) 

- 

𝛿 - - - 3.4999     

(0.1193) 

- 

Shape 3.8293     

(0.5575) 

3.9752     

(0.5136)    

3.9360     

(0.5719) 

4.3291     

(0.6649) 

3.1781     

(0.3396) 

log L 1021.66 1024.55 1025.01 1026.52 1019.65 

AIC -3.0855 -3.0912 -3.0926 -3.0941 -3.0824 

BIC -3.0514 -3.0503 -3.0517 -3.0464 -3.0551 

𝑄(5)  

(p-value) 
1.1773 

(0.8184) 

1.4867   

(0.7432) 

1.1772   

(0.8184) 

1.4892   

(0.7425) 

1.1252  

(0.8307) 

𝑄2(5) 
(p-value) 

0.9295  

(0.7540) 

2.549   

(0.4956) 

0.9816   

(0.8638) 

1.3000   

(0.7889) 

0.7477   

(0.9136) 
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Table 5: Parameter estimates of the GP distribution for the selected threshold of returns 

Method Threshold 

(Excess) 

Estimates CvM KS 

Shape Scale Statistic p-value Statistic p-value 

Data 1: Left Tail  

90th Percentile 0.056 

(69) 

0.2346 

(0.1667) 

0.0307 

(0.0062) 

0.0849 0.6650 0.0826 0.7023 

95th Percentile 0.081 

(35) 

0.1466 

(0.1899) 

0.0386 

(0.0097) 

0.0561 0.8419 0.1121 0.7296 

TS 0.083 

(34) 

0.1838 

(0.2043) 

0.0362 

(0.0096) 

0.0629 0.7989 0.1151 0.6997 

 

DAMSE 0.072 

(40) 

0.0696 

(0.1568) 

0.0445 

(0.0098) 

0.0612 0.8090 0.1089 0.6752 

DPT 0.092 

(29) 

0.2990 

(0.2566) 

0.0304 

(0.0094) 

0.0327 0.9686 0.0964 0.9266 

Data 1: Right Tail 

90th Percentile 0.053 

(69) 

0.5141 

(0.1872) 

0.0232 

(0.0049) 

0.0611 0.8086 0.0804 0.7328 

95th Percentile 0.075 

(35) 

0.8237 

(0.3523) 

0.0212 

(0.0077) 

0.0962 0.6063 0.1233 0.6174 

TS 0.074 

(36) 

0.7726 

(0.3315) 

0.0223 

(0.0077) 

0.0303 0.9786 0.10315 0.9848 

DAMSE 0.037 

(113) 

0.3228 

(0.1162) 

0.0268 

(0.0039) 

0.0904 0.6346 0.0757 0.5303 

DPT 0.087 

(18) 

0.0064 

(0.2848) 

0.0913 

(0.0337) 

0.0275 0.986 0.0963 0.9903 

Data 2: Left Tail 

90th Percentile 0.062 

(66) 

0.1236 

(0.1354) 

0.0425 

(0.0077) 

0.0468 0.8967 0.0705 0.8756 

95th Percentile 0.090 

(31) 

0.0476 

(0.0129) 

0.1308 

(0.2119) 

0.0306 0.9759 0.0875 0.9430 

TS 0.09 

(33) 

0.1218 

(0.2081) 

0.0484 

(0.0131) 

0.0297 0.9784 0.0726 0.958 

DAMSE 0.084 

(39) 

0.1681 

(0.2038) 

0.0433 

(0.0112) 

0.0479 0.8915 0.0988 0.7938 

DPT 0.033 

(162) 

0.1903 

(0.0945) 

0.0318 

(0.0038) 

0.0164 0.9993 0.0321 0.9963 

Data 2: Right Tail 

90th Percentile 0.057 

(63) 

0.2532 

(0.1292) 

0.0361 

(0.0066) 

0.0517 0.8673 0.0666 0.9127 

95th Percentile 0.084 

(33) 

0.0411 

(0.0107) 

0.2982 

(0.1999) 

0.1252 0.4768 0.1609 0.3248 

TS 0.084 

(33) 

0.3080 

(0.2025) 

0.0403 

(0.0105) 

0.0322 0.9705 0.0869 0.9518 

DAMSE 0.077 

(40) 

0.2948 

(0.1876) 

0.0393 

(0.0095) 

0.0798 0.6953 0.1156 0.6170 

DPT 0.092 

(32) 

0.5680 

(0.2841) 

0.0254 

(0.0081) 

0.0322 0.9705 0.0869 0.9518 

 



 
K.M. Sakthivel and V. Nandhini  
AN ALGORITHM FOR CONDITIONAL EXREME VALUE THEORY 

RT&A, No 1 (82) 
Volume 20, March 2025   

268 
 

Table 5 presents the estimated parameters of the GP distribution, along with standard errors and 

goodness-of-fit results, including the CvM and KS tests with their p-values. It displays the 

threshold values and excesses above the threshold for each method. The evaluation of the CvM 

and K-S test results shows that the excess values from the DPT threshold method yield the best fit 

for the GP distribution compared to alternative methods like the 95th percentile, 99th percentile, TS 

method, and DAMSE. Additionally, the positive shape parameter, significantly different from zero 

for both datasets, indicates a heavy-tailed distribution with finite variance, confirming that the tail 

distribution of this cryptocurrency data belongs to the Fréchet class. 

 
(a) 95% VaR                                                       (b) 99% VaR 

Figure 3: The graph of VaR for IGARCH for the ZRS Token dataset 

 
(a) 95% VaR                                                       (b) 99% VaR 

Figure 4: The graph of VaR for APARCH for the RSR Token dataset 

Table 6: Backtesting: Kupiec and Christoffersen test Results 

Level of Significance  𝛼 = 0.05 (95%) 𝛼 = 0.01 (99%) 

Tails Left Tail Right Tail Left Tail Right Tail 

Data 1 IGARCH- DPT-VaR 

UC: Statistics 0.3584 3.4573 1.8685 0.3442 

UC: p- value 0.5494 0.0929 0.1716 0.5574 

CC: Statistics 0.3702 3.2357 1.8803 0.3528 

CC: p- value 0.8310 0.1775 0.3906 0.8418 

Data 2 APARCH- DPT-VaR 

UC: Statistics 0.3010 3.3166 1.8685 0.3302 

UC: p- value 0.5832 0.0686 0.1716 0.5656 

CC: Statistics 0.3133 3.3256 1.8803 0.3103 

CC: p- value 0.8549 0.1905 0.3906 0.8478 
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The graphical representation of the out-of-sample alongside calculated VaR for the return series of 

the two datasets is in Figures 3 and 4. The x-axis represents the period over which the returns and 

VaR are measured and the y-axis represents the out-of-sample returns. The black middle line 

denotes the actual out-of-sample returns of the cryptocurrencies and the fluctuation indicates the 

performance of the price over time. The red line represents the lower tail VaR indicating that the 

value below which a certain percent of the returns are expected to fall. The blue line represents the 

upper tail VaR, indicating that values above which a certain percentage of returns are expected to 

rise. The results in Table 6 show the performance of the unconditional coverage (UC) and 

conditional coverage (CC) tests for both IGARCH-EVT for the ZRX dataset and APARCH-EVT for 

the RSR dataset at the level of significance 𝛼 = 0.05 and 𝛼 = 0.01 indicate that the models perform 

well in terms of VaR estimation. For both models, the UC test p-values are greater than their 

significance level, suggesting that the null hypothesis of correct unconditional coverage cannot be 

rejected. In terms of CC tests, both models yield high p-values, confirming that the model 

accurately captures the dynamics of the return distributions. Overall, both models corresponding 

to its datasets demonstrate the performance in estimating VaR concerning both UC and CC across 

both left and right tails. 

 

V. Simulation Study 

 
The simulation of returns with time-varying volatility is crucial for understanding financial 

dynamics, particularly in assessing risk. This process allows for the modeling of more realistic 

return behaviors that account for fluctuations in market conditions. We have set the parameters, 

the mean return 𝜇 = 0, and 𝜎0 = 1 is the initial standard deviation. Let n be the number of 

observations and we have a time index 𝑡 = 1,2, … , 𝑛, representing each point in time. To introduce 

time-varying volatility, the standard deviation is calculated at each time step is defined as 

𝜎𝑡 = 𝜎0 × (1 + 0.5 sin (
2𝜋𝑡

100
)). 

This equation can be used to generate a standard deviation that fluctuates over time. The random 

returns at each time step 𝑟𝑡 are then generated from the normal distribution, represented as 

𝑟𝑡~𝑁(0, 𝜎𝑡). In this case, the mean return 𝜇 = 0, and the standard deviation 𝜎𝑡 changes at each time 

point according to the sinusoidal function. The cumulative returns 𝑅(𝑡), representing the sum of 

returns over time, are calculated as  

𝑅(𝑡) = ∑ 𝑟𝑖
𝑡
𝑖=1  . 

This cumulative process allows us to observe the total gain or loss of the simulated series over 

time. By simulating random returns with time-varying volatility, we gain insights into volatility 

clustering in financial markets, where large price movements tend to be followed by similar 

movements. This simulation is crucial for risk management and financial modeling, as it accurately 

reflects market behavior compared to constant-volatility models.  

We generated two different samples of size n=3000, 5000 respectively. In this simulation of returns, 

the rolling window procedure of in-sample and out-of-sample techniques was employed to find 

the best VaR forecast and determine the adequacy and efficiency of the proposed automated 

GARCH EVT algorithm.  
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Table 7: In-Sample Estimated Results and Model Selection 

Models Normal t GED Skew-Normal Skew-t Skew-GED 

Case 1: n=3000 

SGARCH AIC -2.1057 -2.2148 -2.1938 -2.1095 -2.2169 -2.1968 

BIC -2.0941 -2.2004 -2.1793 -2.0950 -2.1995 -2.1794 

EGARCH AIC -2.1450 -2.2543 -2.2246 -2.1464 -2.2579 -2.2290 

BIC -2.1305 -2.2370 -2.2072 -2.1291 -2.2377 -2.2087 

GJR-GARCH AIC -2.1429 -2.2394 -2.2177 -2.1477 -2.2429 -2.2227 

BIC -2.1285 -2.2220 -2.2003 -2.1304 -2.2226 -2.2025 

APARCH AIC -2.1426 -2.2437 -2.2182 -2.1449 -2.2468 -2.2214 

BIC -2.1253 -2.2234 -2.1980 -2.1246 -2.2237 -2.1982 

IGARCH AIC -2.1073 -2.2160 -2.1950 -2.1110 -2.2180 -2.1980 

BIC -2.0986 -2.2044 -2.1834 -2.0994 -2.2035 -2.1835 

Case 2: n=5000 

SGARCH AIC -2.8250 -2.9005 -2.8883 -2.8361 -2.9041 -2.8926 

BIC -2.8175 -2.8910 -2.8788 -2.8266 -2.8928 -2.8813 

EGARCH AIC -2.8622 -2.9225 -2.9116 -2.8717 -2.9278 -2.9173 

BIC -2.8527 -2.9111 -2.9003 -2.8603 -2.9145 -2.9040 

GJR-GARCH AIC -2.8567 -2.9158 -2.9062 -2.8672 -2.9211 -2.9123 

BIC -2.8473 -2.9044 -2.8948 -2.8558 -2.9078 -2.8990 

APARCH AIC -2.8561 -2.9193 -2.9075 -2.8633 -2.9241 -2.9114 

BIC -2.8447 -2.9193 -2.8942 -2.8500 -2.9089 -2.8962 

IGARCH AIC -2.8262 -2.9013 -2.8892 -2.8372 -2.9050 -2.8935 

BIC -2.8205 -2.8937 -2.8816 -2.8296 -2.8955 -2.8840 

Table 7 presents the AIC values of the fitted GARCH-type specifications under different types of 

error distributions. The skewed student’s t distribution is suitable for both cases based on the AIC 

values for all the GARCH-type models. The skewed student t distribution accounts for asymmetry 

and heavy tails, which allows it to capture the extreme values effectively. The estimated results of 

GARCH-type models with the selected innovation skewed student’s t distribution are presented in 

Table 8. The residuals of the selected models are approximately iid’s which is the requirement for 

the further process of applying EVT. For simulated returns, we select the EGARCH-EVT approach 

to compute the one-step-ahead Value at Risk forecast. The forecast performance of these types of 

models should be evaluated for the out-of-sample period and using more accurate performance 

criteria.   

The estimated values of parameters of the GP distribution, including their standard errors and the 

results of goodness-of-fit tests, specifically the CvM and KS tests, along with their p-values are 

shown in Table 9. Our analysis of the CvM and KS test results indicates that the excess values 

derived from the DPT threshold method yield the best fit for the GP distribution compared to 

alternative methods. Furthermore, the positive shape parameter indicates that the distribution is 

heavy-tailed. This means that there is a higher chance of observing extreme values (very large or 

very small). Heavy-tailed distributions are crucial in risk assessment, particularly in finance and 

insurance, as they can more accurately reflect the occurrence of rare but significant events. 
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Table 8: In-Sample: Estimated Values of the Selected Models 

Case 1: n=3000 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 -0.0002  

(0.0012) 

-0.0029  

(0.0013)  

-0.0015   

(0.0013)   

-0.0025   

(0.0013)  

-0.0002     

(0.0012) 

𝜔 0.0002    

(0.0001)  

-0.1883    

(0.0317)  

0.0002    

 (0.0001)   

0.0008     

(0.0005)   

0.0002     

(0.00003)    

𝛼1 0.2567    

(0.0273)  

-0.1584    

(0.0201)  

0.0832     

(0.0222) 

0.2383     

(0.0265)   

0.2577     

(0.0215) 

𝛽1 0.7422     

(0.0215) 

0.9624     

(0.0062) 

0.7739     

(0.0192)  

0.7924     

(0.0195)  

0.7422          

(0.0000)       

𝛾 - 0.3913    

(0.0349)  

0.2943     

(0.0421)   

0.4116     

(0.0641)   

- 

𝛿 - - - 1.4110     

(0.1847)   

- 

Skew 0.9285    

(0.0282) 

0.9066     

(0.0296) 

0.9122     

(0.0284)  

0.9123     

(0.0295)  

0.9285   

(0.0283)  

Shape 5.6529     

(0.6078)  

5.5375     

(0.6304)   

6.0268     

(0.6845)   

5.4114     

(0.6179)   

5.6431     

(0.5857)   

log L 2137.51 2178.01 2163.52 2168.31 2137.60 

AIC -2.2169 -2.2579 -2.2429 -2.2468 -2.2180 

BIC -2.1995 -2.2377 -2.2226 -2.2237 -2.2035 

𝑄(5)  
(p-value) 

2.614   

(0.4819) 

2.886   

(0.4282) 

3.267 

(0.3604) 

4.206  

(0.2295) 

2.620   

(0.4809) 

𝑄2(5) 
(p-value) 

1.2656   

(0.7972) 

5.0203 

(0.1515) 

4.8132   

(0.1686) 

42.898  

(6.868e-12) 

1.2502   

(0.8009) 

Case 2: n=5000 

Parameters SGARCH EGARCH GJR-GARCH APARCH IGARCH 

𝜇 -0.0002     

(0.0006) 

-0.0012    

(0.0005) 

-0.0008     

(0.0006) 

-0.0012    

(0.0005) 

-0.0002     

(0.0006) 

𝜔 0.00003 

(0.00001) 

-0.0975    

(0.0163) 

0.0001    

(0.00001)    

0.0003     

(0.0002) 

0.0001     

(0.00001)   

𝛼1 0.2159 

(0.0149) 

-0.1410    

(0.0166) 

0.1029     

(0.0162) 

0.2166    

(0.0157)   

0.2169     

(0.0124) 

𝛽1 0.7831 

(0.0149) 

0.9832    

 (0.0028) 

0.7960     

(0.0114)   

0.8162     

(0.0132) 

0.7830  

(0.0000)          

𝛾 - 0.3663     

(0.0232) 

0.2081     

(0.0279) 

0.3485     

(0.0547)   

- 

𝛿 - - - 1.4081     

(0.1810) 

- 

Skew 0.9173 

(0.0215) 

0.8986     

(0.0222) 

0.9025     

(0.0214)   

0.9039     

(0.0222)  

0.9172     

(0.0215) 

Shape 6.9561 

(0.6768) 

6.5902     

(0.7198) 

7.3866     

(0.7791) 

6.6791     

(0.7063) 

6.9376     

(0.6579) 

log L 4651.17 4689.94 4679.25 4685.02 4651.53 

AIC -2.9041 -2.9278 -2.9211 -2.9241 -2.9050 

BIC -2.8928 -2.9145 -2.9078 -2.9089 -2.8955 

𝑄(5)  
(p-value) 

3.8152 

(0.2780) 

4.4863   

(0.1993) 

0.4004   

(0.2536) 

4.4171   

(0.2064) 

3.8176   

(0.2777) 

𝑄2(5) 
(p-value) 

1.5662 

(0.7236) 

1.6791   

(0.6959) 

1.6405   

(0.7053) 

0.9894   

(0.8621) 

1.5529   

(0.7269) 
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Table 9: Parameter estimates of the GP distribution for a selected threshold of simulated returns 

Method Threshold 

(Excess) 

Estimates CVM KS 

Shape Scale Statistic p-value Statistic p-value 

Case 1: Left Tail 

90th Percentile 0.15 

(92) 

0.3934 

(0.1518) 

0.1104 

(0.0189) 

0.0672 0.7702 0.0788 0.5893 

95th Percentile 0.24 

(46) 

0.6624 

(0.2878) 

0.1033 

(0.0318) 

0.0988 0.7224 0.3728 0.8746 

TS 0.16 

(90) 

0.4254 

(0.1494) 

0.1054 

(0.1868) 

0.0539 

 

0.8536 0.0747 0.6683 

DAMSE 0.18 

(76) 

0.4169 

(0.1615) 

0.1153 

(0.0222) 

0.0758 0.7177 0.0935 0.4821 

DPT 0.06 

(342) 

0.5004 

(0.0827) 

0.0508 

(0.0048) 

0.0181 

 

0.9985 0.0213 

 

0.9978 

Case 1: Right Tail 

90th Percentile 0.14 

(101) 

0.6917 

(0.1663) 

0.0835 

(0.0151) 

0.0355 0.9555 0.0480 0.9740 

95th Percentile 0.21 

(51) 

0.1319 

(0.0362) 

0.7204 

(0.2565) 

0.0476 0.8924 0.0809 0.8649 

TS 0.15 

(95) 

0.6819 

(0.1693) 

0.0886 

(0.0164) 

0.0443 0.9106 0.0527 0.9415 

DAMSE 0.17 

(92) 

0.7839 

(0.2034) 

0.0836 

(0.0179) 

0.0349 0.9583 0.0684 0.8006 

DPT 0.11 

(173) 

0.7229 

(0.1319) 

0.0543 

(0.0077) 

0.0156 0.9995 0.0280 

 

0.9992 

Case 2: Left Tail  

90th Percentile 0.17 

(156) 

0.4495 

(0.1235) 

0.1743 

(0.0248) 

0.0257 0.9884 0.0325 0.9906 

95th Percentile 0.31 

(78) 

0.3273 

(0.1615) 

0.2778 

(0.0538) 

0.0501 0.8774 0.0745 0.7509 

TS 0.18 

(152) 

0.4516 

(0.1258) 

0.1757 

(0.0255) 

0.0279 0.9826 0.0342 0.99 

DAMSE 0.23 

(115) 

0.3732 

(0.1342) 

0.2237 

(0.0357) 

0.0327 0.9672 0.0481 0.9511 

DPT 0.14 

(189) 

0.4409 

(0.1097) 

0.1631 

(0.0208) 

0.0217 0.9952 0.0317 0.9912 

Case 2: Right Tail 

90th Percentile 0.15 

(165) 

0.3371 

(0.1166) 

0.1869 

(0.0257) 

0.0970 

 

0.6003 0.0620 0.5494 

95th Percentile 0.30 

(83) 

0.2106 

(0.1407) 

0.2685 

(0.0475) 

0.0434 0.8929 0.0618 0.7936 

TS 0.16 

(160) 

0.3258 

(0.1170) 

0.1922 

(0.0267) 

0.0941 0.6155 0.0642 0.5242 

DAMSE 0.21 

(118) 

0.2254 

(0.1205) 

0.2460 

(0.0369) 

0.0569 0.8339 0.0726 0.5572 

DPT 0.22 

(113) 

0.2062 

(0.1195) 

0.2567 

(0.0387) 

0.0345 0.9597 0.0585 0.8377 

The graphical representation of the out-of-sample returns and corresponding Value at Risk for the 

two simulated returns series are shown in Figures 5 and 6. The black line shows that the returns 

exhibit some volatility, with notable fluctuations around the mean. This behavior is typical in 

financial markets, where returns can vary significantly over time. The red and blue lines illustrate 
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the estimated Value at Risk levels. The area between these lines indicates the range of potential 

losses and gains that are considered acceptable within the specified confidence levels (lower and 

upper VaR). If the black line (out-of-sample returns) crosses below the red line (lower VaR), it 

indicates a loss exceeding the expected threshold, suggesting that the portfolio is experiencing a 

significant risk event. Conversely, if the black line crosses above the blue line (upper VaR), it 

suggests extremely positive returns, indicating potential gains exceeding expectations. 

 
(a) 95% VaR                                                       (b) 99% VaR 

Figure 5: The graph of VaR for EGARCH-EVT for n=3000 

 
(a) 95% VaR       (b) 99% VaR 

Figure 6: The graph of VaR for EGARCH-EVT for n=5000 

Table 10: Backtesting: Kupiec and Christoffersen test Results 

Level of Significance  𝛼 = 0.05 (95%) 𝛼 = 0.01 (99%) 

Tails Left Tail Right Tail Left Tail Right Tail 

Case 1: n=3000 Model: EGARCH-EVT-VaR 

UC: Statistics 0.2757 0.7944 0.4263 0.9624 

UC: P- value 0.5995 0.3728 0.5138 0.3265 

CC: Statistics 0.4022 0.8459 0.4263 0.9626 

CC: P- value 0.8179 0.8321 0.8080 0.6180 

Case 2: n=5000 Model: EGARCH-EVT-VaR 

UC: Statistics 2.4749 4.1465 1.6008 0.0463 

UC: P- value 0.1156 0.0517 0.2057 0.8296 

CC: Statistics 2.5152 4.1691 1.6218 0.0488 

CC: P- value 0.2843 0.1244 0.4492 0.9758 
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The UC and CC test results are displayed in Table 10 for the EGARCH-EVT model applied to 

simulated returns with sample sizes of n=3000 and n=5000 at significance levels of 𝛼 = 0.05 and 

𝛼 = 0.01. Specifically, the p-values from the UC tests exceed the significance levels for both sample 

sizes, indicating that we cannot reject the null hypothesis of correct unconditional coverage which 

suggests the model accurately estimates VaR. Similarly, the CC tests also yield high p-values, 

demonstrating that the models effectively capture the dynamics of the return distributions without 

overestimating or underestimating the risk. Overall, the EGARCH-EVT models show strong 

reliability and stability in estimating VaR, as evidenced by the favorable outcomes of both UC and 

CC tests across the left and right tails in the simulated datasets. We observe that the conditional 

EVT-based models give the best one-step-ahead VaR forecast according to the backtesting results. 

 

VI. Conclusion 

 
This paper developed an algorithm for the GARCH-EVT approach that allows us to model 

the tails of the time-varying conditional return distribution. In this study, we provide a framework 

to estimate and forecast the long position as well as short position VaR using this GARCH-EVT 

algorithm. Modeling the tail behavior of the returns is of utmost importance for both investors and 

policymakers. The GARCH-EVT approach is implemented in modeling the tail distribution of 

cryptocurrency returns and forecasting out-of-sample VaR. By employing a rolling window 

approach, we identified the best GARCH model through in-sample fitting, allowing us to extract 

reliable residuals for EVT analysis. The DPT method proved to be an effective strategy for selecting 

appropriate thresholds, significantly improving the fit of the GP distribution to the excess values. 

The evaluation of goodness-of-fit tests, such as the CvM and KS tests, further confirmed the 

superiority of the DPT method over alternative threshold selection approaches. Additionally, the 

positive shape parameter observed in the GP distribution analysis indicates the presence of heavy-

tailed behavior, underscoring the potential for extreme events. The backtesting results demonstrate 

the suitability of the heavy-tailed GARCH EVT models in forecasting out-of-sample VaR. The 

dual-phase threshold selection procedure is more adaptable in threshold selection for conditional 

EVT, which has been proved in this paper. Our application and simulation captures the heavy-

tailed behavior in daily returns and the asymmetric characteristics in distributions; we treat 

positive and negative returns separately. Overall, the GARCH EVT with DPT threshold provides a 

significant improvement in forecasting Value at Risk. 
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Abstract

In stratified random sampling, the sample size allocation is a problem which is tackled by many scientists
and survey practitioners. Generally the proportional allocation, Neyman allocation and cost based
allocation, are used to conduct sample surveys for gathering information from each strata. One can think
of risk imposed on the life of investigators which is yet not considered while sample size allocation to risky
strata. In this paper, the risk indicators stratum-wise are defined using police station records and hospital
records. Such indicators are used for the determination of sample size allocation. For optimization, the
Lagrange multiplier technique is used with two constants whose values need to be determined. An
algorithm is proposed and analysed for such using simulation. The outcome of analysis provides that
sample size allocation is directly proportional to the strata size and variability but inversely proportional
to the square root of risk indicators of the stratum (with varying values of constants). This paper opens a
new approach for the consideration of risk based sample size allocation and estimation in the setup of
stratified sampling.

Keywords: Simple Random Sampling (SRSWOR), Stratified Random Sampling, Stratum, Sample
survey, Lagrange Multiplier, Allocation to Strata, Risk data, Risk Indicators, Optimization, Vari-
ance of sample estimate.

1. Introduction

Sample surveys play important role in exploring the hidden characteristics of the whole popula-
tion without complete enumeration. The sample survey methodologies are used in areas and
regions where epidemic occurs. A survey is usually conducted to know about the patients health
conditions, rate of spread of disease, estimation of average number of deaths due to disease etc.
Where natural disaster happened, to collect facts about casualties, about root causes of natural
disaster are further possible field based studies.

Stratification is a sampling technique used in surveys in order to improve upon the precision
of the sample estimate. Several authors have developed optimal techniques to allocate sample
sizes to stratum (for the single variable under study) using Lagrange multiplier optimization
technique. There may be other situations such as war, naxalite movement, dense forest where
issue risk is involved on the field officers, who are involved in data collection for the conduct
of sample survey. The risk may be on life, infection due to disease or being unhealthy for short
duration. In this study, the problem of risk occurrence during the data collection, if so exit, is
considered in context to sample size allocation to each strata.

In literature, many studies exist, where the authors have considered the stratum size, vari-
ability and stratum cost of the data collection while surveying the population. Yadav and Verma
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[5] studied the exponential ratio-type estimators under the linear cost function in the set up
of stratified random sampling. Focus of study is on the estimation of population parameter
with the help of collected data using proposed method. A linear function is used to determine
the relation among sample sizes of each stratum. Yadav et al.[6] worked on the behaviour of
ratio-product-cum-exponential-cum-logarithmic type estimators with one auxiliary variable in
the stratified random sampling setup and analyzed such with the linear cost function using
numerical illustrations. Ghosh[1] suggested a new method of allocation of sample sizes for
stratum. In this, the author has taken the average of the optimum allocation for the different
characters individually. Khan et al.[2] used compromised allocation in multivariate stratified
sampling for an integral solution. Varshney [4] worked on an optimum allocation of sample sizes
in the presence of non-response factor under the multivariate stratified double sampling setup.
In such, authors have considered sample size allocation problem in stratified random sampling
for single character as well as for multiple characters with varying cost functions.

Koyuncu and Kalidar[8] suggested a new family of estimators for stratified random sampling
utilizing the information of the coefficient of kurtosis of the population and obtained efficient
conditions between the adopted and proposed families. Theoretical finding are supported by the
numerical examples with original data. Singh et al.[9] addressed the problem of various types of
estimation of the main variable parameter in the presence of non-response and measurement error
both incorporating the information of two auxiliary variables. In that, authors derived the opti-
mum strata weights using the suitable calibration technique. Bhushan et al.[10] developed efficient
classes of estimators in stratified sampling for combined ratio and separate ratio type estimators.
Such estimators are theoretically justified and compared over the conventional estimator, classical
ratio estimator and classical regression estimator using the simulation study. Tiwari et al.[11]
proposed a general class of estimators for estimating the population mean of study variable using
the support variable based correlated information. Members of such proposed class are identified
and compared in terms of efficiency. Kadilar and Chingi [16] derived some ratio-type estimators
and discussed their properties in the setup of stratified sampling. Aamir et al. [13] suggested a
generalised class of exponential-type estimators for population mean by taking the two auxiliary
variables for estimating the unknown means with the case of sub-sampling and non-response.
In such, authors derived the conditions under which proposed estimators are more efficient as
composed to other estimators. Cekim and Kalidar [12] suggested some estimators for estimating
the population variances in stratified sampling, in the form of in-function type estimators. Ahnad
et al.[17] proposed an improved family of estimators for estimating the population distribution
function. The main aim of such contribution was to develop an enhanced family of log ratio-
exponential based estimation procedure under stratified sampling. Zaman and Kalidar [15]
suggested exponential ratio and product type estimators the mean by considering the two phase
sampling setup in stratified sampling.

This paper considers the risk factor exposed on the life of survey workers over different
strata. A sample size allocation keeping the method is discussed considering a risk function with
computation of allocations variance optimal.

1.1. Risk in Survey Sampling

While data collection, using stratified sampling, some strata may have higher risk on the life of
surveyor while others may have a little. For example, a strata of a population is affected by the
nuxalite movement, next strata bears high rate of murders and killings, third one is affected by
the dangerous epidemics(like malaria, dengue, COVID-19 ). The strata-wise risk on the life of
investigators could be pre-estimated using police record and hospital records (for last one/five
years) as below:
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Strata I
(1) Deaths due to murder and mass killing=α11
(2) Deaths due to communal riots= α12
(3) Deaths due to epidemics and community diseases= α13

Strata II
(1) Deaths due to murder and mass killing=α21
(2) Deaths due to communal riots= α22
(3) Deaths due to epidemics and community diseases= α23

The minimum risk may be assumed as r0 which includes the normal risk of natural death during
the survey work.

1.2. Symbols used for analysis

Let a population of finite size N, divided into L stratum. Each stratum is of size Ni where
N1 + N2 + ... + NL = N holds and samples are taken from each strata of size ni such that
n = (n1 + n2 + ... + nL), where n denotes total size of sample.
Notations used for population parameters are:

Ȳ =
1
N

L

∑
i=1

Ni

∑
j=1

Yij, S2 =
1

N − 1

L

∑
i=1

Ni

∑
j=1

(Yij − Ȳ)2 (1.1)

Ȳi =
1
Ni

Ni

∑
j=1

Yij, S2
i =

1
Ni − 1

L

∑
j=1

(Yij − Ȳi)
2 (1.2)

where Yij is the jth observation of the ith strata in a population of size N.
Let a sample of size n is drawn by the SRSWOR sampling scheme keeping ni from each stratum,
then sample related notations are:

ȳ =
1
n

L

∑
i=1

ni

∑
j=1

yij, s2 =
1

n − 1

L

∑
i=1

ni

∑
j=1

(yij − ȳ)2 (1.3)

ȳi =
1
ni

ni

∑
j=1

yij, s2
i =

1
ni − 1

ni

∑
j=1

(yij − ȳi)
2 (1.4)

1.3. Risk Indicators

Define risk indicators ri as:

ri = (
Ti
Ni

), for ith strata (1.5)

At i = 1, r1(Risk) =
T1

N1
, f or strata I (1.6)

At i = 2, r2(Risk) =
T2

N2
, f or strata I I (1.7)

(1.8)

where,

Total : T1 = (α11 + α12 + α13) (1.9)

Total strata I Population = N1 (1.10)

Total : T2 = (α21 + α22 + α23) (1.11)

Total strata I Population = N2 (1.12)

(1.13)

These indicators are crude measures of the intensity of risk imposed on the life of field investiga-
tors who collect primary data through sample survey in a stratified population.
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1.4. Motivation

The proportional allocation is stratum size based and Neyman allocation is size + variability
based for ith stratum. There is one more method which is cost based allocation per stratum but
involvement of stratum risk is yet not considered by any author. In order to utilize the information
contained in the risk indicators ri, the problem of sample size determination is attempted in this
paper.

2. Mean Estimation approach in Stratified Sampling

The usual mean estimator under the stratified sampling is:

ȳst =
L

∑
i=1

Wi ȳi (2.1)

The variance for stratified random sampling is:

V(ȳst) =
L

∑
i=1

W2
i

{
1
ni

− 1
Ni

}
S2

i (2.2)

where Wi represents the weight of each stratum on the basis of its size i.e. Wi =
(

Ni
N

)
.

Figure 1: Sampling structure for L stratum based stratified sampling

3. Linear risk function

Consider the linear risk function for the stratified sampling:

r = r0 +
L

∑
i=1

niri (3.1)
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where,
r0: Minimum pre fixed risk exposed on life of investigators.
ri: Risk per unit in a stratum.
r∗: Total risk exposed on investigator while survey of entire population including natural death.
The objective of this paper is to determine the sample size from each stratum using the linear risk
function, keeping variance minimum. This objective can be achieved by optimizing following,

Minimize V(ȳst) (3.2)

subject to the conditions,

L

∑
i=1

rini = r∗ (3.3)

L

∑
i=1

ni = n (3.4)

For solution using the Lagrange multiplier technique defined and optimize the following function
ϕ

ϕ = V(ȳst) + λ1

(
L

∑
i=1

ni − n

)
+ λ2

(
L

∑
i=1

rini − r∗
)

(3.5)

where λ1, λ2 are constants called Lagrange multipliers. Differentiating ϕ with respect to ni, λ1,
λ2 and equating to zero, one can get,

ni =
WiSi√

λ1 + λ2ri
(3.6)

Summing (3.6) on both sides,

n =
L

∑
i=1

ni =
L

∑
i=1

[
WiSi√

λ1 + λ2ri

]
(3.7)

From (3.6) and (3.7), one get insights,

ni ∝ Ni (3.8)

ni ∝ Si (3.9)

ni ∝
1√

λ1 + λ2ri
(3.10)

where ri is risk related to ith strata.

4. Computational Algorithm for Optimal Variance along with choice

of λ1 and λ2

Step I : For given N, n calculate initial values Ni, Si, Ȳi and (NiSi) and ri of the population

Step II : Find V(ȳst) using Neyman allocation, which is based on ni ∝ Ni and ni ∝ Si with

expression ni =
{

nWiSi
∑ WiSi

}
. Find variance V(ȳst) using proportional allocation which is

based on criteria ni ∝ Ni only with expression ni = nWi

Step III : Find the risk ri and use risk function r∗ = ∑ rini.

Step IV : Set

ϕ = V(ȳst) + λ1

(
L

∑
i=1

ni − n

)
+ λ2

(
L

∑
i=1

rini − r∗
)

(4.1)

where λ1, λ2 are constants to determine under risk assumption.
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Step V : For risk based allocation of sample size ni,

ni ∝ Ni (4.2)

ni ∝ Si (4.3)

ni ∝
1√

λ1 + λ2ri
(4.4)

Step VI : Use simulation procedure to find values of λ1 and λ2 to optimize variance V(ȳst)

(a) Fix the values of λ1,

(b) Vary λ2 on x-axis of the graph and plot graph for variance, along with n1 and n1,

(c) Continue the process of creating graphs for different values of λ1,

(d) When variance line becomes parallel to x-axis then stop the simulation process.

(i) Choose that input-data set n1, n2, λ1, λ2 (producing parallel line)
(ii) Use values to get optimal solution.

5. Empirical Study

Consider following data of size N= 244 from 6th Minor Irrigation Census - Village Schedule -
Assam[7]. The crime data obtained from police station and hospitals as under(assumed data for a
year):

Strata I :

(a) Deaths due to bullet firing = 8

(b) Deaths due to riots = 11

(c) Deaths due to epidemic = 6
Total = 25
Total strata size= 127

Strata II :

(a) Deaths due to bullet firing = 11

(b) Deaths due to riots = 15

(c) Deaths due to epidemic = 10
Total = 36
Total strata size= 135

The basic data and basic computation is as under:

Table 1: Data for Strata (Source, please see [7])

i Ni Wi Ȳi S2
i ri

1 127 0.5205 703.74 883.83 19%
2 135 0.48 413 644.922 26%

Table 2: The proportional allocation provides

n1 n2 n V(ȳst)prop
72 108 180 804.5
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Figure 2: Variation when λ1=1 fixed

Fig.(2) reveals that, for fixed value of λ1 = 1, the variance of V(ȳst) has growing trend and
under risk consideration . It is observed that λ2 increases for fixed λ1.Moreover, V(ȳst) fluctuates
between between 800 to 1800. There is miled increase in n1 for increasing λ2.

Figure 3: Variation when λ1=2 fixed

Fig(3) is an indicator of the analysis of V(ȳst), as the value of λ2 increases for fixed value of
λ1 = 2, the value of V(ȳst) lies between 800 to 1000.

Figure 4: Variation when λ1=3 fixed

Fig.(4) opens starting avenue for decrease in V(ȳst) as the value of λ1 is increases, the V(ȳst)
reduces.
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Figure 5: Variation when λ1=4 fixed

Fig.(5) shows that the V(ȳst) line is tending to become parallel to the x-axis(on higher λ2 values).

Figure 6: Variation when λ1=10 fixed

Fig.(6) represents the similar pattern as observed in Fig.(5) to get V(ȳst).

Figure 7: Variation when λ1=100 fixed

Fig.(7) highlights that for higher values of λ1, the relation between V(ȳst) over the incrementing
values of λ2 is almost parallel to x-axis. Such indicates for V(ȳst) being almost independent to the
variation of λ2.
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Table 3: The Neyman allocation provides

n1 n2 n V(ȳst)Ney
71 119 180 803.5

Figure 8: Variation with respect to parameters

Fig.(8) depicts the relation between λ1 and V(ȳst). The value of V(ȳst) is gradually decreasing as
the values of λ1 increases from 1 to 19. After λ2 = 19 (approximately), there is no significant
change in V(ȳst).

6. Comparison and Discussion

On comparing the different types of allocations (Table 5) it is evident that allocations are very
close to each other and providing the optimal variance. The approach aimed at to utilize the

Table 4: The risk based allocation provides

n1 n2 n V(ȳst)risk
72 118 180 805.26

Table 5: Different allocation methods provides

Proportional
allocation provides

n1 n2 n V(ȳst)prop
72 108 180 804.5

Neyman allocation
provides

n1 n2 n V(ȳst)prop
71 119 180 803.5

Risk based
allocation

n1 n2 n V(ȳst)risk
72 108 180 805.26

crime record information of police station and hospital records of the strata during sample survey.
Such can be useful to determine the sample size allocation ni from the ith strata (i = 1, 2, 3, ..., L),
so that n = ∑L

i=1 ni remains intact. Risk indicators are suggested and defined using the crime
record and hospital records. The Lagrange multiplier technique provides two constants λ1 and λ2
whose values need to be computed using the available data. As evident in graphical pattern from
[fig(2) to fig(8)], the increasing values of λ1 provides the solution for best choice of n1 & n2 at the
situation when variance remain stable (independent of increasing λ2). An appendix added at the
end provides choice of λ1, λ2 and n1 , n2. At λ1=300, λ2=0.01 one gets n1=108, n2=72 with lowest
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variance 804.99 as displayed in the table(7) of appendix. When λ1 increases then λ2 decreases to
attain same level of optimality. For any arbitrary choice of λ1 the table(7) provides the value of
λ2 for quick selection. In general, 21 ≤ λ1 ≤ 40 and 0.1 ≤ λ2 ≤ 0.30 is the recommended rapid
selection of λ-values.

7. Conclusion

This paper presents a new idea of using the regional (strata) risk on the life of survey investigators
with the help of risk indicators. In literature, when stratified sampling is used, the problem of
sample size allocation appears that it could be resolved as per population strata size or as per
population strata variability. The proportional allocation is based on population strata sizes while
the Neyman allocation is based on size and variability both. Such allocations do not consider the
risk factor imposed on the life of investigator. If risk is high for a particular strata then smaller
sample size is required from that strata. The proposed risk based sample size allocation is like
ni ∝ Ni ,ni ∝ Si and ni ∝ 1√

λ1+λ2ri
incorporating two constants λ1 & λ2. An algorithm is proposed

in this paper showing how to compute λ1 and λ2 constants with minimizing the population
variability factor of the mean estimate. If 1 ≤ λ1 ≤ 10 then it is suggested to choose λ2 = λ1

200
as per table 7. Similarly when 10 ≤ λ1 ≤ 20 then recommended to choose λ2 = λ1

100 as per table
7, shown in appendix. Various graphs from (fig.(2) to fig.(8)) reveal that when variance line
becomes parallel to x-axis for set of values (λ1, λ2, n1, n2), such provide the optimal solution for
lowest variability due to the risk based sample size allocation. In general, one can work with
risk based allocations choosing 21≤ λ1 ≤ 40 and 0.1≤ λ2 ≤ 0.3 (table 7) to get nearly optimal
result. The crime data of all police stations and health data from hospitals can be utilized for
risk computation and accordingly can be used in risk based sample size allocation. The table 7
attached in appendix helps in rapid selection of λ2 for an arbitrary choice of λ1
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Appendix

Table 6: λ1 varies but λ2 f ixed

λ1 λ2 n1 n2 n V(ȳst)
1 0.01 109 71 180 805.469
2 0.01 108 72 180 805.134
3 0.01 108 72 180 805.063
4 0.01 108 72 180 805.037
5 0.01 108 72 180 805.024
6 0.01 108 72 180 805.017
7 0.01 108 72 180 805.012
8 0.01 108 72 180 805.009
9 0.01 108 72 180 805.007

10 0.01 108 72 180 805.005
11 0.01 108 72 180 805.004
12 0.01 108 72 180 805.003
13 0.01 108 72 180 805.002
14 0.01 108 72 180 805.001
15 0.01 108 72 180 805.001
16 0.01 108 72 180 805.000
17 0.01 108 72 180 805.000
18 0.01 108 72 180 805.000
19 0.01 108 72 180 804.999
20 0.01 108 72 180 804.999
21 0.01 108 72 180 804.999
22 0.01 108 72 180 804.999
23 0.01 108 72 180 804.998
24 0.01 108 72 180 804.998
25 0.01 108 72 180 804.998
26 0.01 108 72 180 804.998
27 0.01 108 72 180 804.998
28 0.01 108 72 180 804.998
29 0.01 108 72 180 804.998

λ1 λ2 n1 n2 n V(ȳst)
30 0.01 108 72 180 804.998
32 0.01 108 72 180 804.997
33 0.01 108 72 180 804.997
34 0.01 108 72 180 804.997
35 0.01 108 72 180 804.997
36 0.01 108 72 180 804.997
37 0.01 108 72 180 804.997
38 0.01 108 72 180 804.997
39 0.01 108 72 180 804.997
40 0.01 108 72 180 804.997
41 0.01 108 72 180 804.997
42 0.01 108 72 180 804.997
43 0.01 108 72 180 804.997
44 0.01 108 72 180 804.997
45 0.01 108 72 180 804.997
46 0.01 108 72 180 804.997
47 0.01 108 72 180 804.997
48 0.01 108 72 180 804.997
49 0.01 108 72 180 804.997
50 0.01 108 72 180 804.997
20 0.01 108 72 180 804.999
25 0.01 108 72 180 804.998
50 0.01 108 72 180 804.997

100 0.01 108 72 180 804.996
150 0.01 108 72 180 804.996
200 0.01 108 72 180 804.996
250 0.01 108 72 180 804.996
300 0.01 108 72 180 804.996
1000 0.01 108 72 180 804.996
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Table 7: λ1 and λ2 are varying

λ1 λ2 n1 n2 n V(ȳst)
1.00 0.50 118.94 61.06 180.00 863.32
2.00 0.49 116.89 63.11 180.00 843.62
3.00 0.48 115.43 64.57 180.00 832.17
4.00 0.47 114.34 65.66 180.00 824.95
5.00 0.46 113.48 66.52 180.00 820.12
6.00 0.45 112.79 67.21 180.00 816.75
7.00 0.44 112.23 67.77 180.00 814.30
8.00 0.43 111.76 68.24 180.00 812.49
9.00 0.42 111.36 68.64 180.00 811.11

10.00 0.41 111.01 68.99 180.00 810.03
11.00 0.40 110.71 69.29 180.00 809.19
12.00 0.39 110.45 69.55 180.00 808.51
13.00 0.38 110.22 69.78 180.00 807.96
14.00 0.37 110.02 69.98 180.00 807.51
15.00 0.36 109.83 70.17 180.00 807.14
16.00 0.35 109.67 70.33 180.00 806.84
17.00 0.34 109.51 70.49 180.00 806.58
18.00 0.33 109.38 70.62 180.00 806.36
19.00 0.32 109.25 70.75 180.00 806.17
20.00 0.31 109.14 70.86 180.00 806.02
21.00 0.30 109.03 70.97 180.00 805.88
22.00 0.29 108.93 71.07 180.00 805.77
23.00 0.28 108.84 71.16 180.00 805.67
24.00 0.27 108.76 71.24 180.00 805.58
25.00 0.26 108.68 71.32 180.00 805.50
26.00 0.25 108.61 71.39 180.00 805.44
27.00 0.24 108.54 71.46 180.00 805.38
28.00 0.23 108.48 71.52 180.00 805.33
29.00 0.22 108.42 71.58 180.00 805.29
30.00 0.21 108.36 71.64 180.00 805.25
31.00 0.20 108.31 71.69 180.00 805.21
32.00 0.19 108.25 71.75 180.00 805.18
33.00 0.18 108.21 71.79 180.00 805.16
34.00 0.17 108.16 71.84 180.00 805.13
35.00 0.16 108.12 71.88 180.00 805.11
36.00 0.15 108.08 71.92 180.00 805.10
37.00 0.14 108.04 71.96 180.00 805.08
38.00 0.13 108.00 72.00 180.00 805.07
39.00 0.12 107.97 72.03 180.00 805.05
40.00 0.11 107.93 72.07 180.00 805.04

RT&A, No 1 (82) 
Volume 20, March 2025 

289



Diwakar Shukla and Deepti Sahu
REFORMAT RISK OPTIMIZATION MODEL

DIGITAL INVENTORY: REFORMAT RISK
OPTIMIZATION MODEL FOR A LAPTOP

DIWAKAR SHUKLA1 AND DEEPTI SAHU2

•
1,2Department of Mathematics and Statistics

Dr. Harisingh Gour Viswavidyalaya, Sagar, M.P., India
1diwakarshukla@radiffimail.com

2deeptimaths2021@gmail.com

Abstract

In recent times, due to advancements in technologies specially in the computer world, people face
problem related to limited digital capacity of a digital devices. Many reasons exist such as unwanted or
unnecessary files stored in (a) System digital space (b) ROM space (c) Working space for users and (d)
Hard disk space. By the regular use of a laptop, user space and hard disk digital space get occupied because
of the creation of new files and new folders at every moment. Such a situation motivates for development
of a digital inventory model for digital space. This paper presents a digital inventory model which is
a useful tool for laptop reformat risk minimization. Users Categories are defined as per their intensive
professional involvements. Several graphs are drawn showing the output analysis and importance of the
study. Theoretical findings are supported by the numerical computations. It is found that reformat risk is
directly proportional to the growth of file/folder creation in either of categories.

Keywords: Digital Inventory, Mathematical Model, Memory Space, Digital Space Digital Files,
Reformat Risk, Digital devices, Risk Optimization, Users Category, Risk Computation, Random
Access Memory(RAM), Read Only Memory(ROM).

1. Introduction

The inventory management is a key factor in the supply chain of business for achieving the goal
of higher profit. Such is useful to maintain a continuous flow between production and demand.
Inventory of items keeps the market stable over the varying demand scenario and investors
are aware enough about the cost-profit ratio. With the emergence of Internet in late nineties
and drastic spread of the use of digital payments technologies, various companies have started
business of producing digital devices. Some most popular digital devices are (i) Mobile phones
(ii) Desktop computers (iii) Laptops (iv) tablets etc. Each digital device has memory spaces like
RAM, ROM, Hard disk, Memory card, SSD, Flash memory etc. The information in digital form
are stored in files and folders in the available digital spaces. A file is a basic unit used for digital
inventory. The collection of similar types and similar nature of files constitutes a folder. The basic
digital space unit is bit and 8 bits constitute a byte. The file sizes are usually measured in terms
of bytes like kilobytes (KB), Megabytes (MB), Gigabits (GB), terabytes (TB), petabytes (PB) etc. In
computer sciences literature, there exist basic and well-established rules of classification like (i)
System files storage space (ii) Application Program Storage space and (iii) User files storage space.
In term of specific terminologies such spaces are called memory spaces like (a) Internal memory
space and (b) External memory space. The operating system of a laptop needs a prefixed size
memory space allocation which is mandatory and cannot be reformatted unless corrupted. The
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software like Browsers, MS Office packages and downloaded programs are the part of application
software. These can be deleted or updated or reloaded by users from time to time. The creation
of Word files, Excel files, Power Point files, Photo files, Music files and videos are the part of
users- files. A digital storage of files in memory of a laptop can be assumed as a digital inventory
of files and folders.
A laptop is an excellent tool, but without systematic organization of files (or folders), the same
may be troublesome during files search. Every day users of electronic devices create large number
of files and delete the same too ( if not in use). Following are steps for file management:

• Review of files.

• File size and content evaluation.

• Shorting of files and allocation in appropriate folders.

• Folder indexing and folder organization.

• Safety of storage of files/folders.

• Storage of files/ folders at earmarked location.
Which file to delete and which file to store is a continuous process. When the creation
is faster than deletion, digital storage gets saturated after a duration and situation of
reformatting the laptop appears.

2. Literature Review

The problem of dealing with digital inventories have rare academic contributions in terms of
models as appeared after web search. The said way of thinking where the storing unit is a digital
file (or folder) and digital devices are like a warehouse it is a unique approach attempted in this
paper.

Govani[1]proposed a digital supply chain marketing model and operation interactions. Such
contributions provide comparisons between static and dynamic solutions of the procedure
involved in the supply chain while shifting from traditional to digital platforms.

Al-dulaime et al.[2]suggested inventory management based on the EOQ model for laptop
spare parts and analyzed such using XYZ technique. Excess inventory of spare parts and over
stocks provide the larger holding cost. The EOQ cost management model is suggested by the
author in the form of digital hardware inventory.

Muckstadt and Sapra[8] contributed on the thought provoking idea related to EOQ inventory
models advocating that such can be used in practice for prediction and profit maximization. For
example, inventory models can be effectively employed in automotive, pharmaceutical and retail
sectors of the economy for many years.

Chung[9] advocated for a new EOQ model under the situation of permissible delay in
payments. The cost function assumed convex and a theorem is developed for optimality of EOQ.
Dhoka and Chaudhary [10] discussed the complexities of managing supply chains that are affected
by many external factors like global effect, increase in product portfolio and decentralization. A
variety of inventory models and metrics are available today to monitor the supply chains. The
main focus of paper[10] is to study the volatility of supply chains and its impact on inventory.

Tersine et al.[11] contributed on the inventory reduction methods and technologies that hold
inventory by nature at idle. The intentional and negligent stockpiling inspires reform and heralds
the redesign of operating system. If the quest starts with immediate reduction of stocks, it ends
with complete system conversion.

Prameswari et al.[13] attempted for product inventory optimization using EOQ model ap-
proach by suggesting circular economy model which aims to minimize waste and maximize the
use of resources. The EOQ in the content is used as a tool to optimize product order quantities
using the circularity index.
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Di Nardo et al. [15] worked on stochastic dynamic optimization depending upon logistic
environment. Such contains a stock dynamic sizing optimization where the safety stock is
conceived to fill up to variation in demand. The contribution aims at to reduce the occurring
stock-out events using the link among wear out items rate downstream logistic demand.

Hemant [17] proposed to optimize an inventory model for a company who reduces inventory
cost and provides better inventory management system. Such contains quantitative approach as a
solution of the problem. Cotribution [17] suggested an idea of computing the appropriate order
quantity in dynamic form.

Turkolmez at al. [18] attemped the use of machine learning approch for resolving the pricing
of end-of-life remanufactured laptop. Some other useful contributions to the EOQ based inventory
models and their applications are due to Khan[7], Taha[12], Vandeput [14], Shah[16], Celik et
al.[19], Khedlekar et al.[3],[4],[5]and Shukla et al.[6]

2.1. Motivation

All the EOQ models consider the physical stock of items in the warehouse. The problem to
handle is when to fill the stock and when to vacate and sale. with when digital inventory the
optimization idea changes quite heavily.

This paper considers the digital inventory of files/folders and presents risk computation of
reformatting a laptop over time by presenting a model.

3. Symbols

• Sm- Maximum digital inventory space of laptop,

• S0- Initial minimum digital storage of laptop (when purchased),

• T - Total time,

• t - Reformat Time of the laptop(when entire digital space occupied),

• R - Rate of filling of digital storage at time t (rate of file/folder creation),

• R f - Reformat risk,

• ϕA - Area of representing unoccupied digital inventory space.

4. Formation of Model

4.1. Assumptions

• Let total digital inventory storage in laptop is Sm at a time t = 0 (when purchased from the
market).

• Assume that laptop initial storage already (captured by operating system files and necessary
user application programs files) is S0 at a time t = 0.

• R is the rate of creating files/folders by users at time t which is assumed constant over
t(R > 0) .

• It is assumed that there is no deletion of files by laptop user.

• T is the total life time of a laptop.

• t represents time when laptop digital inventory is completely filled and reformat is needed.
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Figure 1: Working process of occupancy of digital inventory space and reformat at time t

4.2. Optimization

Consider figure1 who represents the diagram of occupied and free digital inventory space. It is
clear that when area of △ABD increases then reformat risk decreases, So

Laptop reformat risk R f ∝
[

1
Area of △ABD

]
(1)

Maximum (total) digital inventory storage space = Sm at time t = 0. therefore, area of entire rect-
angle = Smt. Internal pre-occupied digital inventory storage = S0. Now S0t is area representing
the pre-occupied digital inventory space. Area of △DBC = 1

2 Rt2 which is occupied space. The
available digital inventory space is represented by

△ABD = ϕA = [Smt − S0t − 1
2

Rt2] (2)

for optimizing time of risk of reformat
∂ϕA
∂t

= 0

(Sm − S0 − Rt) = 0

topt =

(
Sm − S0

R

)
(3)

Using equation2

ϕAopt = Sm

(
Sm − S0

R

)
− S0

(
Sm − S0

R

)
− 1

2
R
(

Sm − S0

R

)2

=

(
Sm − S0

R

) [
Sm − S0−

1
2

Sm +
1
2

S0

]
=

(
Sm − S0

R

) [
1
2

Sm − 1
2

S0

]

[ϕA]opt =
(Sm − S0)

2

2R
(4)
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Equation4, provides the maximum area of storage space in which the reformat risk at time t is
minimum. By equation 2,

∂2ϕA
∂t2 = −R

Since R > 0 so,
∂2ϕA
∂t2 ≤ 0 for all t

Therefore the optimum value of topt =
(

Sm−S0
R

)
maximizes the area of △ABD.

Now reformat risk

R f = C
[

2R
(Sm − S0)2

]
where C is proportionality constant. (5)

4.3. Category of laptop users

Category I: Beginner laptop users.
For this category the value of C will be fixed as C = 25 and R varies.

Category II: Moderate laptop users.
The value of C will be fixed as C = 50 and R varies.

Category III: Professional laptop users.
For this category, one can choose C = 75.

Category IV: Expert IT professional.
For this, it is advised to choose C = 100.

Overall the constant C lies between 0 ≤ C ≤ 100. It helps to calculate the risk of reformatting
category-wise.

5. numerical simulation

The expression of laptop reformat risk has been computed using simulation at pre-fixed values
Sm = 10, S0 = 2 keeping variation over C = [25, 50, 75 and 100] and [1, 2, 3, ..., 30]. Detailed
descriptions of R f are given in tables and graphs attached herewith.
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Table 1: Risk calculation (R f )

(a) Risk calculation (R f ) for
Category I

Sm S0 C R R f
10 2 25 1 0.78125
10 2 25 2 1.5625
10 2 25 3 2.34375
10 2 25 4 3.125
10 2 25 5 3.90625
10 2 25 6 4.6875
10 2 25 7 5.46875
10 2 25 8 6.25
10 2 25 9 7.03125
10 2 25 10 7.8125
10 2 25 11 8.59375
10 2 25 12 9.375
10 2 25 13 10.15625
10 2 25 14 10.9375
10 2 25 15 11.71875
10 2 25 16 12.5
10 2 25 17 13.28125
10 2 25 18 14.0625
10 2 25 19 14.84375
10 2 25 20 15.625
10 2 25 21 16.40625
10 2 25 22 17.1875
10 2 25 23 17.96875
10 2 25 24 18.75
10 2 25 25 19.53125
10 2 25 26 20.3125
10 2 25 27 21.09375
10 2 25 28 21.875
10 2 25 29 22.65625
10 2 25 30 23.4375

(b) Risk calculation (R f ) for
Category II

Sm S0 C R R f
10 2 50 1 1.5625
10 2 50 2 3.125
10 2 50 3 4.6875
10 2 50 4 6.25
10 2 50 5 7.8125
10 2 50 6 9.375
10 2 50 7 10.9375
10 2 50 8 12.5
10 2 50 9 14.0625
10 2 50 10 15.625
10 2 50 11 17.1875
10 2 50 12 18.75
10 2 50 13 20.3125
10 2 50 14 21.875
10 2 50 15 23.4375
10 2 50 16 25
10 2 50 17 26.5625
10 2 50 18 28.125
10 2 50 19 29.6875
10 2 50 20 31.25
10 2 50 21 32.8125
10 2 50 22 34.375
10 2 50 23 35.9375
10 2 50 24 37.5
10 2 50 25 39.0625
10 2 50 26 40.625
10 2 50 27 42.1875
10 2 50 28 43.75
10 2 50 29 45.3125
10 2 50 30 46.875
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Table 2: Risk calculation (R f )

(a) Risk calculation (R f ) for
category III

Sm S0 C R R f
10 2 75 1 2.34375
10 2 75 2 4.6875
10 2 75 3 7.03125
10 2 75 4 9.375
10 2 75 5 11.71875
10 2 75 6 14.0625
10 2 75 7 16.40625
10 2 75 8 18.75
10 2 75 9 21.09375
10 2 75 10 23.4375
10 2 75 11 25.78125
10 2 75 12 28.125
10 2 75 13 30.46875
10 2 75 14 32.8125
10 2 75 15 35.15625
10 2 75 16 37.5
10 2 75 17 39.84375
10 2 75 18 42.1875
10 2 75 19 44.53125
10 2 75 20 46.875
10 2 75 21 49.21875
10 2 75 22 51.5625
10 2 75 23 53.90625
10 2 75 24 56.25
10 2 75 25 58.59375
10 2 75 26 60.9375
10 2 75 27 63.28125
10 2 75 28 65.625
10 2 75 29 67.96875
10 2 75 30 70.3125

(b) Risk calculation (R f ) for
category IV

Sm S0 C R R f
10 2 100 1 50
10 2 100 2 100
10 2 100 3 150
10 2 100 4 200
10 2 100 5 250
10 2 100 6 300
10 2 100 7 350
10 2 100 8 400
10 2 100 9 450
10 2 100 10 500
10 2 100 11 550
10 2 100 12 600
10 2 100 13 650
10 2 100 14 700
10 2 100 15 750
10 2 100 16 800
10 2 100 17 850
10 2 100 18 900
10 2 100 19 950
10 2 100 20 1000
10 2 100 21 1050
10 2 100 22 1100
10 2 100 23 1150
10 2 100 24 1200
10 2 100 25 1250
10 2 100 26 1300
10 2 100 27 1350
10 2 100 28 1400
10 2 100 29 1450
10 2 100 30 1500
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Figure 2: Risk calculation for category I

Fig.2 shows laptop reformat risk when Sm = 10, S0 = 2, C = 25.
As the term R increases, the reformat risk increases in a linear manner for the user category of
beginners.

Figure 3: Risk calculation for category II

Fig.3 reveals the same pattern (as in fig.2) when Sm = 10, S0 = 2, C = 50 for the category of
moderate users.
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Figure 4: Risk calculation for category III

Fig.4 reveals the linear growth of laptop reformat risk when Sm = 10, S0 = 2, C = 75, for the
category of IT-professional laptop users.

Figure 5: Risk calculation for category IV
Fig.5 reflects an increment in risk when Sm = 10, S0 = 2, C = 100, for the category of IT-
experts/coders.
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6. Conclusion

A digital inventory model is proposed in this paper assuming the digital files/folders creation
rate is constant over the time span with with no occurrence of detection of files/folders. The
model parameters like Sm (maximum available digital inventory) and S0 (pre-occupied digital
inventory) are kept constant throughout the analysis and computation. An expression for optimal
reformat time for a purchased laptop (using the proposed model) is derived. The users vary
in terms of their hours spent with laptops. Children spend less, business people provide more,
IT-Service providers have high-level associations with their laptops. Four categories with varying
constant C values are defined like; beginners, moderate users, professional users, and expert
users. The computation of reformat risk of a newly purchased laptop is performed using the
proposed digital inventory model.

Figures 2,3,4,5 along with tables 1a,1b, 2a, 2b reveal that compared reformat risk is a linear
function over time span in all four categories. The category of IT- Experts bears the highest risk
of laptop reformat than the category of beginners.
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Abstract 

A precise forecast of the one-day-ahead load is essential for the efficient management of modern 

power system operations. This paper proposes a univariate model for short term load forecasting 

(STLF) that improves the precision of the Pattern sequence forecasting (PSF) algorithm. An 

analysis was conducted to identify the underlying patterns in the electrical load data using K-

means clustering and hierarchical clustering algorithms. The results demonstrate the efficacy of 

hierarchical clustering. The limitations of the original PSF algorithm, particularly in its clustering 

and prediction phases are addressed using hierarchical clustering and a new weighted average 

formula. The proposed method was validated using real-time series datasets and its performance 

was compared with those of three pattern sequence-based forecasting models. The performance is 

further evaluated on two electricity demand data sets and compared with bench mark models. The 

uncertainty and reliability of the forecast model was assessed using an error variance metric. The 

results show the superior forecast accuracy of the model.  

Keywords: short-term load forecasting, hierarchical clustering, pattern sequence, 
time series, weighted average. 

1. Introduction

The growing concerns of society regarding sustainability, decarbonization, and environmental 
change have spurred technological advancements in electrification, electric vehicles, and 
renewable energy. These technological breakthroughs present substantial difficulties in the energy 
supply-demand balance, as electricity storage is difficult [1]. Consequently, electrical load 
forecasting is crucial for efficient electrical system management. Numerous load forecasting 
models have been proposed in the literature, depending on the time range of the future values to 
be predicted: short-term (intraday and day-ahead), medium-term (one week to several months 
ahead), and long-term (one or more years). Short-term load forecasts are critical for planning 
power system operations and for bidding strategies in deregulated electricity markets [2]. Load 
behavior is the fundamental driver of power pricing, therefore the level of accuracy in predicting 
future loads has a direct impact on the financial performance of energy businesses and other 
market participants [3]. 

Over the years, various techniques have been developed for Short Term Load Forecasting 
(STLF). These models include contemporary computational intelligence, machine learning, and 
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pattern recognition techniques in addition to traditional methods [4]. Among these, pattern 
recognition techniques leverage past data to identify load series patterns.  

In the short term, load patterns are highly autocorrelated. Univariate models analyse past 
load patterns to predict future loads and do not depend on external factors. Consequently, 
univariate models can prevent inaccuracies caused by faulty or noisy exogenous data and produce 
more reliable and robust forecasts in STLF. This study proposes a univariate model for STLF that 
relies solely on the historical load series and does not incorporate any other information. 
Pattern similarity is crucial in univariate models to ensure precise prediction. Understanding these 
patterns guarantees that the models capture the essential characteristics of the data, leading to 
more robust, interpretable, and applicable models across various domains [5]. Unsupervised 
learning techniques such as clustering reveal hidden patterns in data. This technique groups data 
points into meaningful clusters based on underlying patterns.  

The Pattern Sequence Forecasting (PSF) technique [6] utilized clustering technique to identify 
patterns in time series data and then applied them to generate predictions. Owing to its efficacy 
and interpretability, it has gained prominence in a multitude of applications [7-10]. 

The PSF has certain limitations, although its performance in electrical load forecasting is 
encouraging. Some previous studies have addressed the limitations of the PSF algorithm and 
proposed improvements and modifications that are useful in increasing the forecast accuracy of 
electrical load data and in treating missing values and outliers [11-12]. The current study suggests 
alterations to the original PSF algorithm in both the clustering and prediction stages to improve the 
precision of electrical load forecasting. We performed a comprehensive analysis of the proposed 
methodology using publicly accessible Pennsylvania - New Jersey - Maryland (PJM) market 
demand data and compared it with benchmark models to ascertain its effectiveness. 

The subsequent sections of the paper are organized as follows: Section 2 presents the original 
PSF algorithm, a literature review of the proposed PSF modifications, and scope for improvement. 
Section 3 outlines the proposed methodology. Section 4 reports and analyzes the performance of 
the proposed methodology. Section 5 summarizes the contributions of this study.  

2. Pattern Sequence Similarity algorithm: Variations and scope for refinement

2.1. Original PSF algorithm 

The PSF algorithm [6] can be divided into two phases: clustering and prediction. Phase one aims to 
assign each day, or a vector of 24 hours, to a cluster. The cluster pattern sequence prior to the day 
to be predicted was matched with the historical patterns, and future values were obtained by 
averaging the subsequent days of the matched patterns. 
The different steps involved in both phases of the PSF algorithm are as follows: 
The clustering component encompasses several activities, such as data normalization, 
determination of optimal number of clusters, and obtaining the cluster labels.  

• Data normalization: Data normalization was used to smooth the trend from the original
data. The transformation used in the original PSF algorithm is 𝑥𝑗 =

𝑥𝑗
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1

 where 𝑥𝑗 is the 

demand of the jth hour of the day and 𝑁 is equal to 24 (the number of hours per day). 
• Number of clusters: The optimal number of clusters is determined by the concordance

between at least two of the following three indices: the Silhouette index, Dunn index, and
the Davies-Bouldin index.

• Clustering/Labelling: K-means clustering was used to label each day with the optimal
number of clusters. Clustering reduces the dimensionality of the data from 24 features to a
single dimension, which enhances resilience by substituting the actual values with whole
numbers (cluster labels).

The prediction phase in PSF consists of activities such as choosing the optimal window size, 
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identifying matching pattern sequences, and calculating the final forecasts. 
Let 𝑋(𝑖) ∈ ℝ24 be a vector composed of 24-hourly demand of day 𝑖, and the corresponding cluster 
label is given by 𝐿𝑖  ∈ {1, 2, … , 𝐾}, where 𝐾 is the number of clusters.  

• Selection of optimal window size: The optimal window length (𝑤) of the pattern sequence
must be determined prior to prediction. The calculation is performed using n-fold cross
validation, and is selected at which prediction error ∑ ‖�̅�(𝑡) − 𝑋(𝑡)‖𝑡∈𝑇𝑆  is minimum
during the training process. Here �̅�(𝑡) is the forecasted demand for day 𝑡, and 𝑇𝑆 refers to
the testing set.

• Identification of matching pattern sequences: If day 𝑑 is to be predicted, matchings for a
sequence of labels 𝑆𝑤

𝑑−1 = [𝐿𝑑−𝑤, 𝐿𝑑−𝑤+1, … , 𝐿𝑑−2, 𝐿𝑑−1] of window length 𝑤, are searched in
the labelled data. The search continues until at least one matching pattern sequence of the
same length is discovered. If no replicates are identified, the window size is reduced by
one unit. This guarantees the presence of at least one duplicate in a labelled sequence, with
a minimum w value of 1.

• Forecasting: After identifying the matches, the subsequent 24 values that directly follow all
coincidences are extracted to a vector 𝑁𝑆. Finally, the values are averaged using the
formula given in  to anticipate the value of the future load.

�̅�(𝑡) =
1

𝑠𝑖𝑧𝑒(𝑁𝑆)
∑ 𝑁𝑆(𝑗)

𝑠𝑖𝑧𝑒(𝑁𝑆)
𝑗=1         (1) 

2.2. Modifications Proposed in the literature 

The literature proposes various modifications and improvements to the PSF algorithm. This 
section discusses some of the variations of the original PSF algorithm. The original PSF algorithm 
identifies analogous patterns in temporal data, although it had difficulties with specific instances. 
To address this issue, an enhanced version of the PSF algorithm was developed in [11] to predict 
anomalies in time series data with high accuracy. The method proceeds by using an additional 
measure to identify motifs or repetitive patterns in sequences that leads to improved predictions 
and capacity to identify potential outliers. A modification to PSF was proposed in [12], which uses 
nonnegative tensor factorization for clustering in PSF and is a promising direction for energy 
demand prediction. A novel method employing the PSF algorithm is presented in [13] wherein the 
accuracy of power demand forecasting was enhanced by employing distribution-based predictions 
and computing the frequency ratios of the cluster patterns. The imputePSF method suggested in 
[14] is a variation of the PSF algorithm that looks for recurring patterns in observed data to obtain
a more accurate estimate of missing values. A novel hybrid algorithm, the funPSF, was designed to
forecast functional time series, particularly in the context of electricity demand [15]. This algorithm
combines functional data clustering with a forecasting strategy based on pattern sequence
similarity. The bigPSF [16] and CUDA-bigPSF [17] algorithms, which build on the PSF method,
design big data time series forecasting with notable improvements in scalability and accuracy. An
improved version of the algorithm proposed in [10] which makes use of self-organizing maps and
artificial neural networks and a genetic algorithm to determine the optimal hyperparameters of the
model. MV-bigPSF algorithm [18], was proposed to forecast a multivariate time series. The model
leverages the PSF algorithm, showcasing exceptional scalability and effectiveness in handling data
sets consisting of millions of samples.

2.3. Scope for Refinement 

In the clustering phase, the PSF algorithm employs K-means clustering. Despite its efficiency and 
simplicity, the K-means clustering algorithm has certain limitations, including sensitivity to the 
initialization of centroids, scale, and density. Also, ignoring the temporal order of the time series 
can hinder its efficiency when dealing with time series data or complicated pattern identification. 
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In the prediction phase, simply averaging the patterns observed immediately after a matched 
sequence may not be the optimal method. This is because the averaged pattern may not accurately 
depict the load pattern of the specific day under examination, particularly if the cluster patterns 
discovered differ from those of the previous working day [13]. 

3. Proposed Methodology

This section outlines the proposed methodology, which is based on the fundamental PSF 
algorithm. Below is a summary of the steps of the proposed methodology. Section 3.1 describes the 
data preprocessing; Section 3.2 details the clustering phase, which includes the determination of 
the clustering algorithm and the tuning of hyperparameters (k and w); and Section 3.3 presents the 
prediction phase. Fig. I illustrate the flow of the proposed method.  

Figure 1: Flow of the Proposed Methodology 

3.1 Pre-Processing Phase 

Data normalization is a crucial technique in data pre-processing, particularly in clustering 
algorithms, as they rely on distance measurements to determine the similarity between any two 
data points. When features are not normalized, those with large scales can have a disproportionate 
impact on the distance calculations, resulting in biased or incorrect cluster labels. 

The normalize technique used in this paper is 
𝑥𝑗

′ =
𝑥𝑗−min (𝑥𝑖)

max (𝑥𝑖)−min (𝑥𝑖)
 (2) 

where 𝑥𝑗
′ denotes the normalized value for 𝑥𝑗 and 𝑖 = 1, 2, … , 24.

This transformation is called Min-max normalization, which brings all the values into the range 
[0, 1]. Min-max normalization ensures that all features contribute equally to the clustering process, 
prevents any single feature from dominating due to its scale, and can lead to better and more 
interpretable clustering results [19]. 

3.2 Clustering Phase 

The main objective of the clustering step is to classify the data into groups based on the behavior 
and underlying patterns in the time series. It provides a representation that preserves the original 
information and describes the shape of the time series data as accurately as possible.  
The clustering phase consists of two steps: finding optimal values for the parameters and the 
clustering technique. 

PRE-PROCESSING 

PHASE

CLUSTERING PHASE 

Grid Search (k and w) Hierarchical 

Pattern Matching Finding 

Weights 
Final Forecast 

PREDICTION PHASE 

Data 

Normalization 

Parameter Optimization 
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3.2.1 Parameter Optimization (Optimal values of 𝑘 and 𝑤) 

The proposed algorithm has two input parameters: the number of clusters (𝑘) and the length of the 
window (𝑤) that contains the search patterns. The optimal values of 𝑘 and 𝑤  are determined 
using a grid search over the training set. We split the original data set into training and testing sets. 
We further divided the training set into two sets, 𝑦𝑇  and 𝑦𝑉 one for training and the other for 
validation to fine-tune the hyperparameters. The proposed algorithm was applied to different 
combinations of 𝑘 and 𝑤 for prediction. Among all possible combinations of  𝑘 and 𝑤, the pair that 
results in the minimum prediction error on  𝑦𝑉 i.e., ∑ ‖𝑦�̅�(𝑡) − 𝑦𝑣(𝑡)‖𝑚𝑖𝑛   is considered as the 
optimal value of parameters  𝑘 and 𝑤. 

3.2.2 Clustering Technique 

This study used two different clustering algorithms: K-means and Hierarchical clustering. An 
analysis of both algorithms was performed to identify the patterns in the historical data. 

K-means Clustering:

The primary concept underlying K-means clustering [20] is to establish k centroids, where each
centroid represents a distinct cluster with k denoting the predetermined number of clusters. Each
point in the given data set was assigned to its closest centroid. The centroids of these new clusters
are recalculated and a new binding is performed between the same data points and the new centroids.

Consequently, the location of the centroid’s changes. This process was repeated until the centroids

converged.

Hierarchical Clustering: 

Hierarchical clustering generally falls into two types: the agglomerative (bottom-up) and the 
divisive (top-down). The agglomerative approach is the most common approach for hierarchical 
clustering. In agglomerative clustering, the clustering algorithm treats each point as an 
independent cluster and, iteratively merges the two most similar clusters into a single cluster at 
each step. It creates a tree-like structure called a dendrogram, which records sequences of merges 
or splits. Fig. 2 depicts a dendrogram with data points on the x-axis and cluster distance on the y-
axis. The method of finding similarities between clusters results in the following hierarchical 
clustering variations: single, average, complete linkages, and Ward's method. Among them is the 
complete-linkage algorithm, which yields tightly bound clusters [21]. 

Figure 2: Dendrogram 
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3.3 Prediction Phase 

This section proposes a new weighing prediction formula that addresses the limitations of the 
original PSF algorithm.  

Let 𝑂𝑤
𝑖 = [𝑋(𝑖 − 𝑤 + 1), 𝑋(𝑖 − 𝑤 + 2), … , 𝑋(𝑖 − 1), 𝑋(𝑖)] be the vector composed of 𝑤 consecutive 

days prior to the day ′𝑖′. The distance between any pair of days 𝑖, 𝑗 is defined as 𝑑𝑖𝑠𝑡(𝑖, 𝑗) =

‖𝑂𝑤
𝑖 − 𝑂𝑤

𝑗
‖, where ‖. ‖ represents the Euclidean norm. The neighbors set of the day ′𝑑 − 1′ be 𝑁𝑆 =

{𝑞1, 𝑞2, … , 𝑞𝑚 } where 𝑞𝑖 is the day whose pattern sequence is matched with 𝑆𝑤
𝑑−1 and 𝑞1 and 𝑞𝑚 are

the first and 𝑚𝑡ℎ neighbor in order of distance calculated using the metric ′𝑑𝑖𝑠𝑡′ . The weighted 
average of the load for the days following the nearest neighbors provides the prediction, assuming 
that load profiles that were similar in the past will likely be similar in the future. The prediction is 
given by Equation. (3) 

    𝑋(𝑑) =
1

∑ 𝛼𝑖𝑖∈𝑁𝑆
∑ 𝛼𝑖𝑋(𝑖 + 1)𝑖𝜖𝑁𝑆   (3) 

where 𝛼𝑖 are the weighting coefficients that can be obtained using any of the following schemes 
given below. The standard method of computing the weighting factors 𝛼𝑖 as outlined in [22] is 
given by means of the Equation (4) 

𝛼𝑖 =
𝑑𝑖𝑠𝑡(𝑞𝑘,𝑑−1)−𝑑𝑖𝑠𝑡(𝑖,𝑑−1)

𝑑𝑖𝑠𝑡(𝑞𝑘,𝑑−1)−𝑑𝑖𝑠𝑡(𝑞1,𝑑−1)
 (4) 

4. Results and Discussion

This section outlines and analyses the performance of the proposed method. Section 4.1 describes 
the data set used to assess the effectiveness of the proposed method. Section 4.2 outlines the 
metrics used to measure the quality of the obtained results. Section 4.3 presents an analysis of the 
clustering techniques. Section 4.4 showcases the performance of the method using PJM market 
demand data for 2022, while, Section 4.5 outlines a comparative analysis with other methods 
proposed in the literature. 

4.1 Data Set 

Electricity demand data of the Pennsylvania - New Jersey - Maryland (PJM) market [23] on hourly 
basis for the year 2021 is considered to analyse the proposed methodology. The data set comprises 
8760 data points with a mean 89.34 × 103 MW. Fig. 3 shows the hourly load data for the year 2021.  

Figure 3: Hourly demand data of PJM market in the year 2021 

One can observe a high demand during summer months specially from June through August. 
Before the clustering analysis the data was normalized as mentioned in Section 3.1. 
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4.2. Performance Metrics 

The efficacy of the proposed methodology in obtaining day-ahead forecasts on the considered data 
was analysed using the forecast error metrics, Mean absolute percentage error (MAPE) in %, Root 
mean square error (RMSE) and Mean absolute error (MAE). 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑙𝑖−𝑙𝑖|

𝑙𝑖
× 100𝑁

𝑖=1            (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑙𝑖 − 𝑙𝑖)

2𝑁
𝑖=1  (6) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑙𝑖 − 𝑙𝑖|𝑁

𝑖=1  (7) 
where 𝑙𝑖 and 𝑙𝑖 are the actual load and the forecast load at hour ′𝑖′ respectively and 𝑁 is the number
of predictions.  In addition, the uncertainty in the forecasts can be estimated through the variance 
of the forecast error and evaluated using the metric VAR given by [24]. 

𝑉𝐴𝑅 =
1

𝑁
∑ (

|𝑙𝑖−𝑙𝑖|

𝑙𝑖
− 𝑀𝐴𝑃𝐸)

2
𝑁
𝑖=1  (8) 

4.3 Analysis of clustering techniques 

In the clustering phase prior to the clustering analysis, the important step is to find the best values 
for the input parameters 𝑘 and 𝑤. We considered the yearly load data of the PJM market from 
2021, which spans 365 days, for training, and use the 24-hourly load data from January 1, 2022, for 
validation. We varied 𝑘 from 2 to 7 and 𝑤 from 1 to 12 to measure the forecasting error when 
predicting the validation set. We found that 𝑘 =  4 and 𝑤 =  5 achieve the minimum RMSE, 
leading us to choose these values as optimal. 

We used a sample data set of PJM load data from March 1, 2021, to May 31, 2021 (spring 
season) to demonstrate the effectiveness of the clustering techniques (k-means and hierarchical 
clustering). K-means and Hierarchical clustering were used to label each day in the sample data 
into 4 clusters. Tables I and II shows the percentage of days classified into four clusters. By 
observing the tables, we can clearly classify the clusters into two groups: workings days and 
weekends. From Table 1 and 2 it is evident that Cluster 1 represents a group of weekends and 
clusters 2, 3 and 4 represents a group of working days. However, from both the tables one can 
observe that some days are mislabelled owing to the complex behaviour of the load data.    

Table 1: The distribution of days of the week (in%) and clusters using k-means clustering 

Cluster 
label 

Mon Tue Wed Thu Fri Sat Sun 

1 7.14 0.00 0.00 0.00 0.00 61.54 69.23 
2 64.29 69.23 69.23 53.85 69.23 23.08 15.38 
3 21.43 23.08 15.38 30.77 23.08 7.69 7.69 
4 7.14 7.69 15.38 15.38 7.69 7.69 7.69 

Table 2: The distribution of days of the week (in%) and clusters using Hierarchical clustering 

Cluster 
 label 

Mon Tue Wed Thu Fri Sat Sun 

1 7.14 0.00 0.00 0.00 0.00 69.23 84.62 
2 64.29 53.85 61.54 46.15 61.54 15.38 0.00 
3 0.00 15.38 7.69 7.69 7.69 0.00 0.00 
4 28.57 30.77 30.77 46.15 30.77 15.38 15.38 

In Table 1, one working day and nine weekends were misclassified, and in Table 2, one 
working day and six weekends were misclassified. Upon thorough analysis of holidays during the 
above period, we find that the one mislabelled working day is a Monday, falling on May 31, 2021, 
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as a holiday. Therefore, out of 92 days (working days and weekends), k-means clustering 
mislabelled five Saturdays and four Sundays, whereas hierarchical clustering mislabelled four 
Saturdays and two Sundays. The relative errors for k-means clustering and hierarchical clustering 
were 9.78% and 6.52%. The above analysis reveals that the hierarchical clustering is effective in 
labelling the time series data. 

4.4 Performance of the Proposed method 
A case study is conducted by considering the hourly load data from the PJM market for the year 
2022. The methodology is used to forecast day-ahead load data by considering the historical load 
of one year prior to the day in which the load is to be forecast. We advance the one-year training 
window for a specific day by one day, resulting in forecasts for the next 24 hours. This process 
yields forecasts for an entire year. We calculated and presented the monthly MAPE and error 
variance in Table 3 to evaluate the model's performance across all the months of 2022. The results 
are compared with the results of the model (K-means) obtained by using K-means clustering in the 
clustering phase.  According to the results in Table 3, it is evident that the proposed methodology 
performs significantly better than the K-means model.  The best and worst predictions occur on 7th 
of July and 30th of May with 0.2972 and 9.8249 MAPE (%) respectively. Fig. 4 and 5 shows the 
original day versus the predicted load. 

Table 3: Monthly MAPE (MMAPE) and Error variance (VAR) for all the months of the year 2022 

Month 
Proposed 

Methodology K-means
MMAPE VAR MMAPE VAR 

January 2.71 6.46e-4 3.43 10e-4 
February 2.41 4.33e-4 3.08 5.92e-4 
March 2.54 5.40e-4 3.02 7.59e-4 
April 2.46 6.15e-4 2.74 6.02e-4 
May 2.22 6.97e-4 2.26 6.57e-4 
June 2.18 4.60e-4 2.97 12e-4 
July 2.01 4.50e-4 2.58 6.55e-4 
August 1.84 4.34e-4 2.27 5.06e-4 
September 2.17 3.96e-4 2.42 6.03e-4 
October 1.53 1.80e-4 1.51 1.82e-4 
November 2.2 4.79e-4 2.08 3.88e-4 
December 2.18 5.79e-4 2.97 9.73e-4 
Average 2.20 4.92e-4 2.61 6.76e-4 

       Figure 4: Best Prediction in PJM load 2022     Figure 5: Worst Prediction in PJM load 2022 
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4.5 Comparative Analysis 

We compared the proposed methodology to three main approaches: Bokde & Asencio et al.'s R 
package (2017) [19], which includes the basic PSF function (RPSF) ; Shende et al.'s (2022) Python 
package [25], which includes the basic PSF function (PPSF) and DPSF functions; and modified PSF 
algorithm proposed in [13]. 

First, we validated the proposed methodology using real-time series "nottem" and "CO2" 
datasets. The “nottem” time series contains the average air temperatures at Nottingham Castle in 
degrees Fahrenheit over 20 years, and the “CO2” dataset consists of atmospheric concentrations of 
CO2 expressed in parts per million (ppm). We conduct a comparative analysis against RPSF, PPSF, 
DPSF functions using the metrics root-mean-square error (RMSE), mean absolute error (MAE), and 
mean absolute percentage error (MAPE). Both the time series data sets were partitioned into 
training and testing datasets. The training set comprised the time series data, with the exception of 
the final 12 values. The testing dataset comprised of final 12 values. The values of the error metrics 
are recorded in Table 4.  

Table 4: A comparative analysis of real-time series forecasting results 

Time 
Series 

Error 
Metric 

RPSF PPSF DPSF Proposed 
Method 

nottem 
RMSE 2.24 1.84 5.27 1.81 
MAE 1.94 1.54 4.77 1.35 
MAPE 4.14 3.23 9.43 2.89 

CO2 
RMSE 5.93 1.42 0.41 1.21 
MAE 5.91 9.27 0.32 1.13 
MAPE 1.62 2.67 0.08 0.61 

From the results, it is evident that the proposed methodology is performed well. The DPSF 
function yields better results for a data with positive or negative trend.  

Secondly, the methodology was compared with the model proposed by Jin et al (2014) [13] 
using the load data of NYISO market over the year 2006 [26] with the error metric MAE. Load data 
of 2005 is used as training set and the forecast of 24-hours ahead is calculated. Further forecasts can 
be found by shifting the window of the training set to next day. The error metric MAE is evaluated 
and recorded in Table 5 against the measures obtained in [13]. 

Table 5: A comparative analysis of the forecast results using MAE of NYISO load data from 2006 

Month 
Mean Absolute Error (MAE) 

RPSF PPSF DPSF 
Modified 

PSF 
Proposed 
Method 

January 6.71 9.61 6.7 3.45 2.18 
February 6.91 9.84 8.07 3.8 2.38 

March 5.20 9.01 7.87 3.59 2.58 
April 9.15 8.87 12.01 3.32 2.18 
May 9.62 12.35 10.37 3.67 2.07 
June 8.06 15.27 11.05 4.53 3.35 
July 9.60 15.91 10.41 5.84 3.37 

August 8.75 13.33 12.83 4.07 2.17 
September 8.45 10.39 8.65 2.6 2.18 

October 4.22 9.97 7.7 2.92 1.67 
November 4.80 9.12 6.87 3.47 2.54 
December 7.65 11.73 8.58 3.77 2.52 
Average 7.43 11.28 9.26 3.75 2.43 
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5. Conclusion

The paper presents a methodology that enhances the forecast capability of the PSF algorithm. The 
modifications to the PSF algorithm that includes a judicious use of hierarchical clustering 
algorithm in its clustering phase and a weighted average formula in the prediction phase has led to 
improved accuracy in day ahead load forecasts. Alongside MAE, RMSE, MAPE, the error variance 
(VAR) has been used for a comprehensive evaluation of the model’s performance. The proposed 
model outperforms benchmark models in terms of forecasting accuracy, as evidenced by the 
performance metrics calculated from the real-time series data.  The findings highlight the 
effectiveness of the proposed approach in enhancing the precision of day-ahead load forecasts, 
making it a valuable tool for efficient power system management and operational planning in 
electricity markets. 
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Abstract 

This study proposes a new family of distributions. A study is done on some of its basic characteristics, 

such as quantile, skewness, kurtosis, hazard rate function, moments, mean deviations, availability and 

reliability function of successive linear and circular systems, mean time to failure, mean time between 

failure, and availability, Bonferroni and Lorenz curves, and entropies. Two unique models of the new 

family are studied in depth once the general class is introduced. The special basis models have been 

taken from the exponential and Fréchet distributions. The parameters of the model are estimated using 

maximum likelihood techniques. There is a thorough analysis of percentage points. Three unique real 

data sets are used to demonstrate the significance of the new family. A comparison is drawn between 

the suggested distribution family and well-known two-, three-, and four-parameter components. To 

model actual data, it can be used as an alternative model to various lifetime distributions found in the 

statistical literature. 

Keywords: G-family, Exponentiated model, percentage points, real-life data. 

I. Introduction

There are many attempts have been made to introduce new classes in the statistical literature. Several 
classes have been suggested in the statistical literature by adding one or more factors to construct new 
distributions. There has been growing interest in introducing and developing more flexible 
distributions like  

Table 1: Research contributions by various authors 

Contribution Author(s) Year of 
Published 

Weibull-G Bourguignon et. al. [7] 2014 
beta Marshall-Olkin family Alizadeh et. al. [2] 2015 
type I half-logistic family Cordeiro et.al. [9] 2016 
The Poisson-G Hamed & Ibrahim [16] 2017 
The generalized transmuted-G Nofal et.al. [23] 2017 
odd flexible Weibull-H El-Morshedy & Eliwa [13] 2019 
odd log-logistic Lindley-G Alizadeh et. al. [3] 2020 
Exponentiated odd Chen-G Eliwa et.al. [12] 2020 
Kumaraswamy Poisson-G Chakraborty et.al. [8] 2022 
Triangle-G Rahman, H. [25] 2024 
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The pdf and cdf of the Po-G family of distribution are 

𝑓𝑃𝑜−𝐺(𝑥, 𝜃, 𝜉) =
𝜃𝑔(𝑥,𝜉)

𝑒𝜃−1
exp[𝜃𝐺(𝑥, 𝜉)].      (1.1) 

𝐹𝑃𝑜−𝐺(𝑥, 𝜃, 𝜉) =
exp[𝜃𝐺(𝑥,𝜉)]−1

𝑒𝜃−1
.      (1.2) 

Where 𝑔(𝑥, 𝜉) and 𝐺(𝑥, 𝜉) are the baseline pdf and cdf depending on a parameter vector𝜉and 𝜃 > 0 is 
a shape parameter. Suppose x is a non-negative random variable that follows an Exponentiated 
distribution with the following pdf and cdf𝑓(𝑥)  and  𝐹(𝑥) respectively. 

   𝑔𝜆(𝑥) = 𝜆[𝐹(𝑥)]𝜆−1𝑓(𝑥).      (1.3) 
   𝐺𝜆(𝑥) = [𝐹(𝑥)]𝜆.      (1.4) 

The main goal of this study is to introduce and investigate a generalized family of probability 
distributions for data modelling with a limited number of parameters but a high degree of flexibility. 
The remainder of the essay is broken out as follows. We develop a very helpful form for the ExPo-G 
density function in Section 2. The quantile function (qf), moment generating function (mgf), entropies, 
and ordinary and incomplete moments are just a few of the general mathematical aspects of the 
proposed family that are included in Section 3. Section 3 investigates the maximum likelihood estimate 
of the model parameters. In Section 4, two unique models of this family are provided, along with some 
plots of their pdfs and hrfs. The results of the proposed models' percentage points are discussed in 
Section 5. Three applications to actual data sets are made in Section 6 to demonstrate the applicability 
of two unique models of the proposed family. In Section 7, some last observations are offered. 

II. Exponentiated Poisson-G family of Distribution

Let us suppose a random variable 𝑇 ∈ (𝑎, 𝑏) for −∞ ≤ 𝑎 < 𝑏 < ∞ having a probability density function 
(pdf) and 𝑊[𝐹(𝑥)]be a function of a cumulative distribution function of the random variable X which 
satisfies some statistical conditions such as𝑊[𝐹(𝑥)] ∈ (𝑎, 𝑏), 𝑊[𝐹(𝑥)] is differentiable and 
monotonically non-decreasing and 𝑊[𝐹(𝑥)] → 𝑎 as 𝑥 → −∞ and 𝑊[𝐹(𝑥)] → 𝑏as x → . 
Alzaatreh et al. (2013) defined the T-X family cdf by 

𝐺(𝑥) = ∫ 𝑦(𝑡)𝑑𝑡 = 𝑌{𝑊[𝐹(𝑥)]}
𝑊[𝐹(𝑥)]

𝑎
. 

Where 𝑊[𝐹(𝑥)] satisfied all the conditions. The corresponding pdf of the T-X family of distribution is 
𝑔(𝑥) = {

𝑑

𝑑𝑥
𝑊[𝐹(𝑥)]} 𝑦{𝑊[𝐹(𝑥)]}.

The distribution function of the Expo-G family of distribution is obtained by substituting (1.1) and 
(1.2) in (1.3) and (1.4). Thus, the pdf and cdf of the ExPo-G family of distribution are presented as 

       𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = 𝜃𝜆
1

(𝑒𝜃−1)
𝜆 𝑔(𝑥, 𝜉)exp[𝜃𝐺(𝑥, 𝜉)][exp(𝜃𝐺(𝑥, 𝜉)) − 1]

𝜆−1.         (2.1) 

𝐹𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = [
𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))−1

𝑒𝜃−1
]

𝜆

.         (2.2) 

Where 𝑔(𝑥, 𝜃, 𝜆, 𝜉)and𝐺(𝑥, 𝜃, 𝜆, 𝜉) are the baseline pdf and cdf depending on a parameter vector 𝜉and 
(𝜃, 𝜆) > 0 are shape parameters. Let us denote a random variable 𝑋 having a density function (2.1). 
The reliability function (rf), hazard rate function (hrf), and cumulative hazard rate function (chrf) of 
X  are, respectively, given by 

𝑅𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = [
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆

.          (2.3) 

ℎ𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) =
𝜃𝜆𝑔(𝑥,𝜉) 𝑒𝑥𝑝[𝜃𝐺(𝑥,𝜉)][𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))−1]

𝜆−1

(𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉)))
𝜆 .         (2.4) 

𝐻𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = − 𝑙𝑛 [
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆

.         (2.5) 
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III. Statistical Properties

I. Quantile function, Median, Bowley skewness and Moors kurtosis

Let us consider 𝑢~𝑈(0,1), the 𝑢𝑡ℎ quantile function of ExPo-G is defined as 𝑄(𝑢) the solution of 
𝐺(𝑄(𝑢)) = 𝑢; 𝑄(𝑢) > 0. The simplest form can be defined as 

𝑄(𝑢) = 𝐺−1 [
1

𝜃
𝑙𝑜𝑔 {1 + 𝑢

1

𝜆(𝑒𝜃 − 1)}].                   (3.1) 
where 𝐺−1 represents the baseline quantile function. The median of the ExPo-G family can be obtained 
by setting 𝑢 = 0.5. Studying the influence of the shape factors on the skewness and kurtosis using 

(3.1). The Bowley skewness and Moors kurtosis can be formulated as   𝐵 =
𝑄(

3

4
)+𝑄(

1

4
)−2𝑄(

1

2
)

𝑄(
3

4
)−𝑄(

1

4
)

  and 

𝑀 =
𝑄(

3

8
)−𝑄(

1

8
)+𝑄(

7

8
)−𝑄(

5

8
)

𝑄(
6

8
)−𝑄(

2

8
)

. 

II. Ordinary and Incomplete moments, Moment generating Function and Mean
Deviation

Let us consider a non-negative random variable𝑋~𝐸𝑥𝑃𝑜 − 𝐺, then the 𝑟𝑡ℎ moment of 𝑋 is defined as 
𝜇𝑟
′ and is written as  

   𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉)

∞

0
.         (3.2) 

Using the power series and the generalized binomial expansion, (2.1) can be developed as an infinite 
mixture of exponential-G (Exp−G) family as 

   𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) =
1

(𝑒𝜃−1)
𝜆 ∑ ∑

𝜆𝑗+1𝜃𝑘+1

(𝑗+1)!(𝑘+1)!

∞
𝑘=0

∞
𝑗=0 ℎ𝑗𝑘+1(𝑥). 

       𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 ℎ𝑗𝑘+1(𝑥).          (3.3) 

Where ℎ𝑗𝑘+1(𝑥) is the Ex-G family of distribution with power parameter 𝑗𝑘 + 1 and 

𝛺𝑗𝑘 =
𝜆𝑗+1𝜃𝑘+1

(𝑒𝜃−1)
𝜆

(𝑗+1)!(𝑘+1)!
. 

The 𝑟𝑡ℎ moment can be obtained by using (3.3) and is given by 
        𝜇𝑟

′ = 𝐸(𝑋𝑟) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 𝐸 (𝑍𝑟

𝑗𝑘+1(𝑥)).     (3.4) 
𝑍𝑗𝑘+1(𝑥) is the Ex-G family of distribution with power parameter 𝑗𝑘 + 1. 
The mean can be obtained by setting 𝑟 = 1 in (3.4). The 𝑖𝑡ℎ incomplete moment is defined as 𝐼(𝑥, 𝜃, 𝜆, 𝜉) 
and is given by 

𝐼(𝑥, 𝜃, 𝜆, 𝜉) = ∫ 𝑥𝑖𝑓(𝑥, 𝜃, 𝜆, 𝜉)
𝑡

−∞
𝑑𝑥. 

Using equation (3.3), we get 
  𝐼(𝑥, 𝜃, 𝜆, 𝜉) = ∑ ∑ 𝛺𝑗𝑘

∞
𝑘=0

∞
𝑗=0 ∫ 𝑥𝑖ℎ𝑗𝑘+1(𝑥)

𝑡

−∞
𝑑𝑥.         (3.5) 

The moment generating function is defined as ( )XM t and given by 

 𝑀𝑋(𝑡) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 𝑀𝑗𝑘+1(𝑡);    𝑀𝑗𝑘+1(𝑡) is the mgf of ℎ𝑗𝑘+1(𝑥). 

For a random variable ~X ExPo G− , the mean deviations about the mean and median can be written 
as follows 

𝜀1 = ∫ |𝑥 − 𝜇1
′ |

∞

0
𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉)𝑑𝑥 = 2𝜇1

′ 𝐹(𝜇1
′ ) − 2𝐼(1)(𝜇1

′ ) = ∑ ∑ 𝛺𝑗𝑘
∞
𝑘=0

∞
𝑗=0 𝐻𝑗𝑘+1(𝑥). 

where ( )1jkH x+
is the first incomplete moment of Ex-G family. 

𝜀2 = ∫ |𝑥 − 𝑄(0.5)|
∞

0
𝑓𝐸𝑥𝑃𝑜−𝐺(𝑥, 𝜃, 𝜆, 𝜉)𝑑𝑥 = 𝜇1

′ − 2𝐼(1)(𝑄(0.5)). 

III. Reliability function for parallel and series systems

Suppose for 𝑛 ∗ independent components, each component has the ExPo-G family, the reliability of 
the parallel system (P) is given by 
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𝑅𝑝(𝑥, 𝜃, 𝜆, 𝜉) = [
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆𝑛∗

. 

The reliability of the series system (S) is given by 

𝑅𝑠(𝑥, 𝜃, 𝜆, 𝜉) = [[
𝑒𝜃−𝑒𝑥𝑝(𝜃𝐺(𝑥,𝜉))

𝑒𝜃−1
]

𝜆

]

𝑛∗

. 

IV. Mean time to failure (MTTF), mean time between failure (MTBF) and availability
(AvB)

If the MTBF is given as 
𝑀𝑇𝐵𝐹 =

−𝑥

𝑙𝑛(1−𝐺(𝑥,𝜃1,𝜆1,𝜉1))
;  𝑥 > 0. 

If 𝑋~𝐸𝑥𝑃𝑜 − 𝐺(𝜃2, 𝜆2, 𝜉2) then the MTTF is given as 
𝑀𝑇𝑇𝐹 = 𝐸(𝑋) = 𝜇1

′ |(𝜃2, 𝜆2, 𝜉2);  𝑥 > 0. 

The AvB is consider the probability that the component is successful at time x , i.e. 
𝐴𝑣𝐵 = 𝑀𝑇𝑇𝐹/𝑀𝑇𝐵𝐹 = −𝜇1

′ |(𝜃2, 𝜆2, 𝜉2)
𝑙𝑛(1−𝐺(𝑥,𝜃1,𝜆1,𝜉1))

𝑥
.

V. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves defined for a given probability 𝜋 is given by 
𝐵(𝜋) = 𝐼1(𝑞)/𝜋𝜇1

′  and 𝐿(𝜋) = 𝐼1(𝑞)/𝜇1
′ . 

Where 𝑞 = 𝑄(𝜋)is the quantile function of 𝑋at 𝜋. 

VI. Entropies

The Rényi entropy of a random variable 𝑋 represents a measure of variation of the uncertainty. The 
Rényi entropy is defined by 

ϒ𝛾(𝑥) =
1

1−𝛾
𝑙𝑜𝑔 ∫ 𝑔(𝑥)𝛾∞

−∞
𝑑𝑥;  0 < 𝛾 < 1. (3.6) 

Using equation (3.3) in (3.6), we get 
ϒ𝛾(𝑥) =

1

1−𝛾
𝑙𝑜𝑔[∑ ∑ 𝛹𝑗𝑘

∞
𝑘=0

∞
𝑗=0 ∫ ℎ𝑗𝑘+1(𝑥)𝑑𝑥

∞

−∞
]; 0 < 𝛾 < 1. 

Where 𝛹𝑗𝑘 =
(𝜆𝛾)𝑗(𝜃𝛾)𝑘

(𝑒𝜃−1)
𝜆𝛾

(𝑗+1)!(𝑘+1)!
. 

The Tsalli’s Entropy is denoted by 𝛵𝛾(𝑥)and given by 
𝛵𝛾(𝑥) =

1

1−𝛾
𝑙𝑜𝑔[1 − {∑ ∑ 𝛹𝑗𝑘

∞
𝑘=0

∞
𝑗=0 ∫ ℎ𝑗𝑘+1(𝑥)𝑑𝑥

∞

−∞
}]; 0 < 𝛾 < 1. 

VII. Parameter Estimation

Here, we determine the Maximum Likelihood Estimation method to estimate the parameters of the 
new family of distributions from complete samples only. Let 𝑋1, … , 𝑋𝑛be a random sample from the 
ExPo-G family with parameters (𝜃, 𝜆, 𝜉). Let (𝜃, 𝜆, 𝜉𝛵)𝛵be the (𝑝 × 1) parameter vector. Then, the log-
likelihood function for 𝛩, say 𝑙 = 𝑙(𝛩), is given by  

𝑛 𝑙𝑜𝑔 𝜃 + 𝑛 𝑙𝑜𝑔 𝜆 − 𝑛𝜆 𝑙𝑜𝑔(𝑒𝑥𝑝(𝜃) − 1)−(𝜆+1) + ∑ 𝑙𝑜𝑔 𝑔 (𝑥𝑖; 𝜃, 𝜆, 𝜉)

𝑛

𝑖=1

+𝜃 ∑ 𝐺(𝑥𝑖; 𝜃, 𝜆, 𝜉) + [𝜃 ∑ 𝐺(𝑥𝑖; 𝜃, 𝜆, 𝜉)𝑛
𝑖=1 − 1]𝜆−1𝑛

𝑖=1 .         (3.7) 
Equation (3.7) can be maximized either directly by using the R (optimum function Ox program (sub-
routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by differentiating (3.7). 
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The score vector components, say 𝑈(𝛩) =
𝜕𝑙

𝜕𝛩
= (

𝜕𝑙

𝜕𝜃
,

𝜕𝑙

𝜕𝜆
,

𝜕𝑙

𝜕𝜉
)

𝛵

= (𝑈𝜃, 𝑈𝜆, 𝑈𝜉)
𝛵. Setting the nonlinear

system of equations 𝑈(𝛩) = 0and solving them simultaneously yields the MLE �̂� = (�̂�, �̂�, 𝜉) of 𝛩 =

(𝜃, 𝜆, 𝜉) . These equations cannot be solved analytically and statistical software can be used to solve 
them numerically using iterative methods such as the Newton-Raphson type algorithms. For interval 
estimation of the parameters, we obtain the 𝑝 × 𝑝 observed information matrix 𝐽(𝛩) = {

𝜕3𝑙

𝜕𝜃𝜕𝜆𝜕𝜉
} , whose 

elements can be computed numerically. Under standard regularity conditions when 𝑛 → ∞, the 
distribution of �̂� can be approximated by a multivariate normal 𝑁𝑝 (0, 𝐽(�̂�)

−1
)distribution to obtain

confidence intervals for the parameters. 

IV. Special ExPo-G models

I. The ExPo-Exponential distribution

Let us consider the pdf and cdf of Exponential distribution with positive parameter 𝛼. Then the pdf 
and cdfof ExPo-Exponential (ExPo-E) distribution is given by 
𝑓𝐸𝑥𝑃𝑜−𝐸(𝑥, 𝜃, 𝜆, 𝛼) =

𝛼𝜃𝜆

(𝑒𝜃−1)
𝜆 𝑒−𝛼𝑥 𝑒𝑥𝑝[𝜃(1 − 𝑒−𝛼𝑥)] [𝑒𝑥𝑝(𝜃(1 − 𝑒−𝛼𝑥)) − 1]

𝜆−1.         (4.1) 

𝐹𝐸𝑥𝑃𝑜−𝐸(𝑥, 𝜃, 𝜆, 𝛼) = [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛼𝑥)−1

𝑒𝜃−1
]

𝜆

.  (4.2) 
The reliability function is given by 

𝑅𝐸𝑥𝑃𝑜−𝐸(𝑥, 𝜃, 𝜆, 𝛼) = 1 − [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛼𝑥)−1

𝑒𝜃−1
]

𝜆

.         (4.3) 

 Figure 1: pdf, cdf, reliability and hrfplots of ExPo-E distribution 

Figure 1 showing the various shapes of the functions with the fluctuation of parameters values. The 
flexibility of fitting different datasets of the proposed distribution from the increasing or unimodal-
bathtub shape of hrf function. 
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II. The Expo-Frechet (ExPo-Fr) distribution

Let us consider the pdf and cdf of Frechet distribution with positive parameter 𝛼and 𝛽. Then the pdf, 
cdfand reliability function of ExPo-Frechet (ExPo-Fr) distribution is given by 

𝑓𝐸𝑥𝑃𝑜−𝐹𝑟(𝑥, 𝜃, 𝜆, 𝛼, 𝛽) =
𝛼𝛽𝜃𝜆

(𝑒𝜃−1)
𝜆 𝑥−(𝛼+1)𝑒−𝛽𝑥−𝛼 𝑒𝑥𝑝[𝜃(𝑒−𝛽𝑥−𝛼)] [𝑒𝑥𝑝 (𝜃(𝑒−𝛽𝑥−𝛼)) − 1]

𝜆−1

.    (4.4) 

𝐹𝐸𝑥𝑃𝑜−𝐹𝑟(𝑥, 𝜃, 𝜆, 𝛼, 𝛽) = [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛽𝑥−𝛼)−1

𝑒𝜃−1
]

𝜆

.  (4.5) 

𝑅𝐸𝑥𝑃𝑜−𝐹𝑟(𝑥, 𝜃, 𝜆, 𝛼, 𝛽) = 1 − [
𝑒𝑥𝑝(𝜃(1−𝑒−𝛽𝑥−𝛼)−1

𝑒𝜃−1
]

𝜆

.   (4.6) 

Figure 2: pdf, cdf, reliability and hrf plots of ExPo-E distribution 

Figure 2 shows the various shapes of the functions with the fluctuation of parameters values. The 
flexibility of fitting different datasets of the proposed distribution from the increasing shape of hrf 
function. 

V. Percentage Points

A r.v.𝑋 is consider a continuous random variable by expecting random values in the interval (𝑎, 𝑏) i.e., 
𝑎 ≤ 𝑥 ≤ 𝑏or more specifically it can assume any value like integral or fraction between certain limits. 
The number of expecting values are uncertain and infinite and for this reason assigning probability to 
each number is impossible. Therefore, in a continuous probability distribution we assign probabilities 
to intervals and not to individual values. For a given probability distribution, the specific value which 
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a random variable 𝑋 exceeds with a definite probability is called the percentage point of the 
distribution. 
In this part, a discussion of the percentage points of the proposed models ExPo-E and ExPo-Fr has 
been attempted. Percentage points of the proposed distributions has been computed at a number of 
different significance levels for different values of the parameters. The calculations in manual are very 
complicated, so computer programming R has used to calculate the values.  

I. Percentage points of ExPo-E model

Suppose𝑥1, 𝑥2, . . . , 𝑥𝑛are n independent r.v. from ExPo-E with pdf and cdf mentioned in the equation (4.1) and 
(4.2). The 𝑝𝑡ℎpercentile equation of ExPo-Eis represented as 

𝐹𝑥(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑝. 
𝑥 = 𝐹−1(𝑝) = 𝑄(𝑝). 

𝑥 = −
1

𝛼
𝑙𝑜𝑔 [−

1

𝜃
𝑙𝑜𝑔 {𝑝

1

𝜆(𝑒𝜃 − 1)}].    (5.1) 
The percent point function of the ExPo-E does not exist in a simple closed form. The numeric 
computation is not possible in this case. We have used computer programming R to compute the 
different values for different points. Using the equation (5.1), we compute the percentage points of 
ExPo-E for 𝑝 = 0.01,0.05,0.25,0.50,0.75,0.90,0.95,0.99 which has been tabulated in table (2). The 
parameters are varying different the values to compute the p-table in different cases. 

II. Percentage points of ExPo-Fr model

Suppose𝑥1, 𝑥2, . . . , 𝑥𝑛are n independent r.v. from ExPo-Fr with pdf and cdf mentioned in the equation 
(4.4) and (4.5). The 𝑝𝑡ℎpercentile equation of ExPo-Fris represented as 

𝐹𝑥(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑝. 
𝑥 = 𝐹−1(𝑝) = 𝑄(𝑝). 

𝑥 = −
𝛼

𝛽
𝑙𝑜𝑔 [

1

𝜃
𝑙𝑜𝑔 {𝑝

1

𝜆(𝑒𝜃 − 1)} + 1].   (5.2) 

The percent point function of the ExPo-Fr does not exist in a simple closed form. The numeric 
computation is not possible in this case. We have used computer programming R to compute the 
different values for different points. Using the equation (5.2), we compute the percentage points of 
ExPo-E for 𝑝 = 0.01,0.05,0.25,0.50,0.75,0.90,0.95,0.99 which has been tabulated in table (2). The 
parameters are varying different the values to compute the p-table in different cases. 

Table 2: Percentage points of ExPo-E for different values of parameter 

𝒑 0.01 0.05 0.25 0.50 0.75 0.90 0.95 0.99 

𝝀 

0.1 -0.4923 -0.3615 -0.1381 0.0432 0.2311 0.3728 0.4304 0.4825 
0.2 -0.2737 -0.1455 0.0704 0.2410 0.4099 0.5293 0.5753 0.6154 
0.3 -0.1438 -0.0160 0.1987 0.3674 0.5334 0.6496 0.6940 0.7325 
0.4 -0.0490 0.0797 0.2974 0.4704 0.6433 0.7673 0.8155 0.8579 
0.5 0.0274 0.1584 0.3827 0.5655 0.7559 0.9007 0.9600 1.0140 


0.1 -11.005 -10.2102 -8.8709 -7.8134 -6.7661 -6.0257 -5.7406 -5.4920
0.2 -9.6189 -8.8239 -7.4846 -6.4271 -5.3798 -4.6394 -4.3543 -4.1057
0.3 -8.8080 -8.0130 -6.6737 -5.6161 -4.5689 -3.8285 -3.5433 -3.2947
0.4 -8.2326 -7.4376 -6.0983 -5.0408 -3.9936 -3.2531 -2.9680 -2.7194
0.5 -7.7863 -6.9913 -5.6520 -4.5945 -3.5473 -2.8068 -2.5217 -2.2731

0.5, 0.2 = =

3.1, 2.5 = =
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Table 3: Percentage points of ExPo-Fr for different values of parameter 

p 0.01 0.05 0.25 0.50 0.75 0.90 0.95 0.99 


1.0 2.2337 0.5666 -0.2034 -0.4426 -0.5667 -0.6193 -0.6346 -0.6461
1.1 1.2455 0.2368 -0.3608 -0.5593 -0.6644 -0.7093 -0.7224 -0.7323
1.2 0.7541 0.0179 -0.4736 -0.6440 -0.7354 -0.7748 -0.7863 -0.7950
1.3 0.4454 -0.1386 -0.5579 -0.7077 -0.7888 -0.8239 -0.8342 -0.8420
1.4 0.2298 -0.2563 -0.6229 -0.7568 -0.8299 -0.8617 -0.8710 -0.8781
1.5 0.0698 -0.3479 -0.6743 -0.7956 -0.8622 -0.8913 -0.8998 -0.9063
𝜷  

1.0 0.1399 0.1399 -0.0715 -0.0978 -0.1117 -0.1177 -0.1194 -0.1207
1.1 0.1272 0.1271 -0.0650 -0.0889 -0.1015 -0.1069 -0.1086 -0.1097
1.2 0.1166 0.1166 -0.0596 -0.0815 -0.0931 -0.0981 -0.0995 -0.1006
1.3 0.1076 0.1076 -0.0550 -0.0752 -0.0859 -0.0905 -0.0919 -0.0928
1.4 0.0999 0.0999 -0.0510 -0.0699 -0.0798 -0.0841 -0.0853 -0.0862
1.5 0.0933 0.0933 -0.0476 -0.0652 -0.0744 -0.0785 -0.0796 -0.0804

Percentage points of proposed distributions have been presented in Table 2 and 3. For chosen values 
of the parameters, different values of have been obtained at different significant levels using R-
Programme. From the tables of percentage points of these distributions; it is clear that for fixed values 
of 𝑝 = 0.01,0.05,0.25,0.50,0.75,0.90,0.95,0.99 and for fixed positive values of the parameters. From 
Table2, it is observed that percentage points increase as the parameter 𝜆 increases, decreases when the 
parameters 𝛼 and 𝛽 increases; for fixed positive values of other two parameters. From Table 3, it is 
observed that percentage points decreases when the value of parameter 𝛼, 𝛽, 𝜃, 𝜆 increases; for fixed 
positive values of other parameters.  

VI. Data Analysis

This section goes over the empirical significance of using an application to complete real data with the 
ExPo-G model. The competitive distributions' best-fitting capabilities are determined using specific 
analytical metrics. To choose the most suited ones, the values of the Akaike Information Criterion 
(AIC), Hannan-Quinn Information Criterion (HQIC), Corrected Akaike Information Criterion (CAIC), 
and Bayesian Information Criterion (BIC) were employed. Other goodness-of-fit tests, such as the 
Cramer-von Mises (W) distance value test, the Kolmogorov-Smirnov (K-S) statistic with 
accompanying p values, and the loglikelihood function, are also recorded in addition to discriminating 
tests. The AIC, BIC, CAIC, and HQIC values as well as the W and K-S tests are all lowest for the 
optimal model. To compare the competitive distributions, the model with the highest p values for the 
K-S statistics is used. Three data sets have been taken into consideration.
Data Set 1: Bjerkedal (1960) observed and recorded the survival times (in days) of 72 guinea pigs who
were infected with virulent tubercle bacilli.

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 
1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 
1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 
2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55. 

Data sets-1 have considered fitting Expo-E with other some models like exponential (Exp), moment 
exponential (ME), Marshall-Olkin exponential (MO-E), generalized Marshall-Olkin exponential 
(GMO-E), Kumaraswamy exponential (Kw-E), Beta exponential (BE), Marshall-Olkin Kumaraswamy 
exponential (MOKw-E) and Kumaraswamy Marshall-Olkin exponential (KwMO-E) distributions and 
Beta Poisson-Exponential (BP-E). 

1.5, 1, 3.5  = = =

0.2, 1.5, 2.3  = = =
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Data Set 2: Eliwa et al (2022) recorded 101 observations of the fatigue time of 101 6061-T6 aluminium 
coupons cut parallel to the direction of rolling and oscillates at 18 cycles per second (cps). 
5 ,25, 31, 32, 34, 35, 38, 39, 39, 40, 42, 43, 43,43, 44, 44, 47, 47, 48, 49, 49, 49, 51, 54, 55, 55,55, 56, 56, 56, 
58, 59, 59, 59, 59, 59, 63, 63, 64,64, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68,69, 69, 69, 69, 71, 71, 72, 73,73, 
73, 74, 74, 76,76, 77, 77, 77, 77, 77, 77, 79, 79, 80, 81, 83, 83,84, 86, 86, 87, 90, 91, 92, 92, 92, 92, 93, 94, 97,98, 
98, 99, 101, 103, 105, 109, 136, 147. 

Data sets 3 have considered fitting Expo-Frdistribution with some competitive models like EoCh Fr, 
odd Chen Fr (OChFr), Type I generalized exponential Fr (TIGEFr), odd flexible Weibull Fr (OFWFr), 
Topp-Leaon Fr (ToLeFr), exponentiated Gompertz Fr (EGoFr), exponentiated transmuted Fr (ETrFr), 
transmuted Fr (TrFr), Gumbel Fr (GuFr), exponentiated Fr (EFr) and Fr. 

Table 4: MLEs and standard errors values for data set 1 

Models ML Estimator 
̂ ̂ ̂ ̂

EXPo-E( , ,   ) 3.100(2.647) 0.210 (0.023) 0.100(0.002) - 
BP-E( , , ,    ) 3.595 (1.031) 1.482(0.516) 0.014(0.010) 0.724(1.590) 

KwMo-E( , , ,    ) 0.373(0.136) 0.299(1.112) 3.478(0.861) 3.306(0.779) 
MOKw-E( , , ,    ) 0.008 (0.002) 0.099 (0.048) 2.716 (1.316) 1.986 (0.784) 

B-E( , ,   ) 0.807(0.696) 1.331(0.855) 3.461(1.003) - 
Kw-E( , ,   ) 3.304(1.106) 1.037(0.764) 1.100(0.614) - 

GMO-E( , ,   ) 47.635 (44.901) 4.465(1.327) 0.179(0.070) - 
MO-E( ,  ) 8.778(3.555) 1.379(0.193) - - 

ME( ) 0.925 (0.077) - - - 
Exp( ) 0.540(0.063) - - - 

Table 5: Log-likelihood, AIC, BIC, CAIC, HQIC, W and KS (p-value) values data set 1 

Models 2L− AIC CAIC BIC HQIC *W K S− p value−

EXPo-E(

, ,   ) 
141.52 147.52 147.87 154.35 151.12 0.17 0.03 1.00 

BP-E(

, , ,    ) 

199.42 205.42 206.02 214.50 209.02 0.08 0.09 0.81 

KwMo-E (

, , ,    ) 

201.82 207.82 208.42 216.94 211.42 0.11 0.08 0.73 

MOKw-E(

, , ,    ) 

203.44 209.44 210.04 218.56 213.04 0.12 0.10 0.44 

B-E( , ,   ) 201.38 207.38 207.73 214.22 210.08 0.15 0.11 0.34 
Kw-E(

, ,   ) 

203.42 209.42 209.77 216.24 212.12 0.11 0.08 0.50 

GMO-E(

, ,   ) 

204.54 210.54 210.89 217.38 213.24 0.16 0.09 0.51 

MO-E( ,  ) 204.36 210.36 210.53 214.92 212.16 0.17 0.10 0.43 
ME( ) 204.4 210.40 210.45 212.68 211.30 0.25 0.14 0.13 
Exp( ) 228.63 234.63 234.68 236.91 235.54 1.25 0.27 0.06 
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Table 6:  MLEs and confidence intervals values for data set 2 

Models ML Estimator 
�̂� �̂� �̂� �̂� �̂� 

EXPo-Fr( , , ,    ) 0.187(0.019) 0.054(0.005) 0.100 (0.214) 0.100(0.025) - 
EOChFr(

, , , ,     ) 

0.019 0.257 1.822 4.223 11.500 

OChFr( , , ,    ) 49.633 0.629 1.588 444.284 - 
TIGEFr( , , ,    ) 16648.994 74.474 5.057 7.531 - 
OFWFr( , , ,    ) 9.310 0.380 0.736 312.686 - 
ToLeFr( , , ,    ) 35.077 0.783 4.088 59.691 - 

EGoFr( , , , ,     ) 0.013 0.647 1.807 1.158 127.896 
TrFr( , ,   ) 1.00 - 3.980 136.952 - 

GuFr( , , ,    ) 1.968 0.029 0.107 3.457 - 
EFr( , ,   ) - 73.221 5.057 51.679 - 

Fr( ,  ) 5.057 120.782 - - - 

Table 7: Log-likelihood, AIC, BIC, CAIC, HQIC, W and KS (p-value) values for the fatigue time of 101 6061-T6 

aluminium coupons data set 2 

Tables 4,5,6 and 7 represent the MLEs with standard errors of the parameters for all the fitted models 
along with their AIC, BIC, CAIC, HQIC, A, W and KS statistic with p-value from the fitting results of 
the data sets 4,5 and 6 are presented respectively. The proposed model Expo-E is found to be a better 
model on the basis of the lowest value different criteria like AIC, BIC, CAIC, HQIC, W and the highest 
p-value of the KS statistics compared to other introduced models like models Exp, ME, MO-E, GMO-
E, Kw-E, BE, MOKw-E, KwMO-E and BP-E considered data set 1.The proposed model Expo-fr is

Models −𝟐𝑳 𝑨𝑰𝑪 𝑪𝑨𝑰𝑪 𝑩𝑰𝑪 𝑯𝑸𝑰𝑪 𝑾 ∗ 𝑲 − 𝑺 𝒑
− 𝒗𝒂𝒍𝒖𝒆

EXPo-Fr(

, , ,    ) 
753.24 761.24 761.49 771.66 753.96 0.07 0.027 0.98 

EOChFr(

, , , ,     ) 

912.18 920.18 920.43 930.60 912.9 0.08 0.065 0.786 

OChFr( , , ,    ) 912.64 920.64 920.89 931.06 913.36 0.07 0.068 0.732 
TIGEFr( , , ,   

) 

950.38 958.38 958.63 968.80 951.1 0.07 0.133 0.057 

OFWFr( , , ,   

) 

919.38 927.38 927.63 937.80 920.1 0.15 0.090 0.383 

ToLeFr( , , ,   

) 

932.70 940.70 940.95 951.12 933.42 0.18 0.121 0.102 

EGoFr(

, , , ,     ) 

922.60 930.60 930.85 941.02 923.32 0.20 0.107 0.198 

TrFr( , ,   ) 932.82 940.82 941.07 951.24 933.54 0.20 0.120 0.105 
GuFr( , , ,    ) 951.46 959.46 959.71 969.88 952.18 0.25 0.135 0.050 

EFr( , ,   ) 950.36 958.36 958.61 968.78 951.08 0.27 0.133 0.056 
Fr( ,  ) 950.36 958.36 958.61 968.78 951.08 0.27 0.133 0.056 
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found to be a better model on the basis of the lowest value different criteria like AIC, BIC, CAIC, 
HQIC, W and the highest p-value of the KS statistics compared to other introduced models like 
modelsEoCh Fr, odd Chen Fr (OChFr), Type I generalized exponential Fr (TIGEFr), odd flexible 
Weibull Fr (OFWFr), Topp-Leaon Fr (ToLeFr), exponentiated Gompertz Fr (EGoFr), exponentiated 
transmuted Fr (ETrFr), transmuted Fr (TrFr), Gumbel Fr (GuFr), exponentiated Fr (EFr) and Fr 
considered data set 2. 

VII. Conclusion

In this article, we propose and study the family of exponentiated Poisson-G distributions (ExPo-G). 
The main advantage of the ExPo-G family is that practitioners will have a one-parameter class flexible 
enough to adapt to real data in applied fields. It can be a good alternative to other four parameter 
families infected with one, two or three parameters. In some real-world circumstances, nevertheless, 
it might also outperform other kinds of distributions in terms of model fit, albeit this is not always 
assured. Additionally, a thorough explanation of several of its mathematical features is given. We 
demonstrate empirically that the ExPo-G family's unique models can offer a better match than other 
models produced by the aforementioned classes. 
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Abstract 

In many applications of multivariate statistical quality control, it is commonly observed that the 

number of quality characteristics exceeds the sample size. This poses significant challenges in 

monitoring high-dimensional data. In such conditions, it is challenging to detect sparse changes 

where an assignable cause leads to the deviation of only a few elements in the covariance matrix. On 

the other hand, the utilization of the multiple dependent state (MDS) sampling technique to 

enhance the sensitivity of control charts has recently attracted the attention of researchers. 

However, to the best of the authors' knowledge, no previous research has been conducted on 

equipping multivariate dispersion control charting methods with the MDS technique under high 

dimensionality. Therefore, this article integrates the adaptive thresholding Lasso statistic with the 

MDS and generalized MDS techniques to track all types of disturbances in the covariance matrix of 

high-dimensional processes, including diagonal, off-diagonal, and joint diagonal/off-diagonal 

deviations. The performance of the proposed control charts will be compared through a numerical 

example under seven out-of-control patterns in terms of three metrics: average, standard deviation, 

and median of run length. The results clearly indicate that the use of both sampling techniques 

significantly improves the run length properties of the adaptive thresholding Lasso chart. 

Keywords: Adaptive thresholding Lasso control chart; High dimensional 
process; Multiple dependent state sampling; Run length; Covariance matrix. 

I. Introduction

In recent years, increasing customer expectations and technological advancements have resulted in 
the development of new production processes that require monitoring numerous quality 
characteristics. In this context, we can mention imaging processes and multi-stage production 
processes. Conventional multivariate control charts lose their sensitivity to process changes as the 
number of quality characteristics under study increases. This challenge becomes more significant 
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when only a limited number of variables are affected by assignable causes [1]. Therefore, in recent 
years, significant efforts have been devoted to monitoring high-dimensional data, where the 
number of quality characteristics exceeds the sample size. One effective strategy for monitoring 
high-dimensional processes involves implementing control charts based on variable selection 
approach. This method involves identifying a small subset of variables that may deviate from their 
nominal value and subsequently conducting the monitoring process using this subset. In this 
connection, Abdella et al. [2] developed a multivariate cumulative sum (MCUSUM) chart using a 
variable selection approach for the quick detection of small mean disturbances in high-dimensional 
process monitoring. Sangahn [3] integrated the deviance residual-based multivariate exponentially 
weighted moving average statistic with a variable selection procedure for Phase II monitoring of 
high-dimensional multistage processes. Zhang et al. [4] proposed a sensitized variable selection-
based control charting method that utilizes a classification algorithm for Phase II monitoring of 
high-dimensional industrial process. 

Although variable selection-based control charts have significant advantages for monitoring 
high-dimensional processes under sparse conditions, they face challenges in identifying suspicious 
variables. The efficacy of this control chart is significantly reduced when the suspicious variables 
are not accurately identified. Specifically, when the shift magnitude in process parameters is small, 
these monitoring schemes lose their effectiveness because they fail to accurately identify all the 
variables responsible for the deviation in the selected set. As one of the most effective alternative 
methods for monitoring the dispersion of high-dimensional processes, the adaptive thresholding 
Lasso control chart has gained significant attention from researchers in recent years. In this 
monitoring procedure, the first step involves calculating the difference matrix through the 
subtraction of the sample covariance from its corresponding target matrix. Then, according to the 
sparsity assumption, only the values of the difference matrix that exceed a certain threshold value 
are taken into consideration. In other words, any elements in the difference matrix that are smaller 
than the threshold value are considered to be equal to zero. Interested readers can refer to 
important references, such as [5], [6], [7], [8], and [9], for more comprehensive details regarding the 
adaptive thresholding LASSO control chart. 

On the other hand, the performance of control charts significantly depends on the sampling 
strategy used to collect process observations. This issue becomes even more crucial in situations 
where any delay in identifying process disturbances, regardless of shift magnitude, results in 
substantial costs for the production system. In this context, researchers have recently been focusing 
on new sampling strategies, such as double sampling, ranked set sampling [10], repetitive 
sampling [11], and multiple dependent state sampling [12], to enhance the power of various 
control charts. Recently, the multiple dependent state (MDS) sampling strategy has been 
successfully utilized to enhance the diagnostic capability of control charts. In this regard, Arshad et 
al. [13] equipped a variability control charting mechanism based on sample variance statistic to 
MDS sampling strategy in order to improve the detection of increased variance shifts. Aiming to 
achieve rapid detection of small mean deviations, Naveed et al. [14] have developed a modified 
version of the exponentially weighted moving average (EWMA) control chart that utilizes MDS 
strategy. Aslam et al. [15] designed an enhanced version of the X  control chart based on the 
generalized multiple dependent state (GMDS) sampling for rapid detection of small mean 
deviations. Rao et al. [16] studied the efficiency of the GMDS sampling technique in improving the 
detectability of the coefficient of variation (CV) control chart. Please refer to [17] and [18] for 
additional information on MDS-based control charts. 

The high dispersion of the quality characteristics under investigation will lead to an increase 
in the production rate of non-conforming products, thereby resulting in an increase in quality loss 
costs. In many manufacturing environments, product fluctuations often increase due to various 
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factors, including changes in raw materials, machinery depreciation, operator mistakes, 
environmental factors, and insufficient calibration of measuring equipment calibration. If these 
factors are not promptly identified and eliminated, the costs imposed on the system due to the 
production of non-conforming products will increase greatly. According to the mentioned cases, 
monitoring the covariance matrix in multivariable production processes is of great importance for 
maintaining product quality in both industrial and service environments. In recent years, 
researchers such as [19] and [20] have dedicated their attention to tracing the deviations of the 
covariance matrix. Most covariance matrix monitoring control charts are commonly designed with 
the assumption that the sample size exceeds the problem dimension or the number of quality 
characteristics. However, this assumption does not hold true in numerous statistical quality control 
applications. Fortunately, there have been recent efforts to monitor the scatter matrix of high-
dimensional data. In this context, Kim et al. [21] developed a covariance matrix monitoring scheme 
based on a ridge penalized likelihood ratio statistic for the identification of general disturbances, 
without the need for sparsity assumption. A monitoring scheme for Phase I monitoring of high-
dimensional variability matrices, utilizing the sparse-leading-eigenvalue statistic was developed 
by [22]. Safikhani et al. [23] employed an additive covariate model to examine how imprecise 
observations affect the effectiveness of the ridge penalized likelihood ratio chart in Phase II 
monitoring of high-dimensional process dispersion. As far as we know, the MDS sampling 
technique has mainly been used in control charts to monitor univariate processes. Therefore, due 
to the appropriate performance of the MDS method in improving the sensitivity of control charts. 
Therefore, this paper aims to utilize the MDS and GMDS sampling methods for Phase II 
monitoring of high-dimensional process dispersion, as they have been shown to improve the 
sensitivity of control charts. Specifically, in this article two adaptive thresholding Lasso-based 
control charting schemes named MDS-ATL and GMDS-ATL are presented to identify the 
covariance matrix disturbances under high-dimensionality. 

The structure of this article is organized as: Section 2 describes the adaptive thresholding 
Lasso control chart, which is used to detect covariance matrix disturbances in high-dimensional 
processes. Two variability control charts are developed by integrating the adaptive thresholding 
Lasso statistic with the multiple dependent state and generalized multiple dependent state 
sampling strategies in Section 3. In Section 4, firstly, seven out-of-control scenarios for the 
covariance matrix are defined, based on three patterns: diagonal, off-diagonal, and joint 
diagonal/off-diagonal patterns. We then conduct extensive simulation studies to demonstrate the 
effectiveness of the MDS and GMDS sampling strategies in enhancing the sensitivity of the 
adaptive thresholding Lasso control chart. Section 5 is devoted to the conclusion and 
recommendations for future research. 

II. Adaptive thresholding Lasso monitoring scheme

In this section, we discuss the adaptive thresholding Lasso control chart as an efficient 
approach in monitoring the dispersion of high-dimensional processes. This control chart has the 
ability to detect covariance matrix disturbances across all three categories: diagonal, non-diagonal, 
and diagonal-non-diagonal deviations. In this regard, Table 1 presents the indices, distribution 
parameters, sample parameters, and chart parameters employed in the development of the 
adaptive thresholding Lasso chart along with its improved versions based on MDS and GMDS 
sampling strategies. 
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Table 1. Notations 

Indices Description 

t Index of sample  

i Index of observation 

,j k Indices of quality characteristics 

Distribution parameters 

jy Quality characteristic j

tY The matrix of observations obtained in the tht  sample 

tiy The column vector of quality characteristics in the thi  observation of the tht

sample
tijy The value of the 

thj quality characteristic in the thi  observation of the tht sample
p Process dimension 

icμ Target mean vector 
j Target mean parameter of the 

thj quality characteristic
icΣ Target covariance matrix 

2
j Target variance of the 

thj  quality characteristic 

jk Target covariance of quality characteristics j  and k

jk Threshold value for the covariance between quality characteristics j  and k

jk Variance of ,
ˆ
t jkd

ocΣ Off-target covariance matrix 

Ψ The matrix of shift magnitudes within the covariance matrix 

Sample parameters 

ty Sample mean vector at the 
tht  sample. 

tS Sample covariance matrix at the 
tht sample 

2
tjS Sample variance of quality characteristic j  at the 

tht sample 

,t jkS Sample covariance of quality characteristics j  and k  at the 
tht sample 

tD Difference matrix at the 
tht  sample 

ˆ
tD Shrinkage difference matrix at the 

tht  sample 

,t jkd The component of matrix tD  at row j  and column k

,t jkd The component of matrix ˆ tD at row j and column k

tATL Adaptive thresholding LASSO statistic at the 
tht  sample 

Chart/Other parameters 
 Probability of type I error 
n Sample size 
 Regularization parameter 
 Shrinkage parameter 
r Number of additional samples taken 
q Minimum number of additional samples 

UCL Control limit of adaptive thresholding LASSO chart 

innerUCL Inner control limit of the proposed MDS- based adaptive thresholding LASSO charts 

outerUCL Outer control limit of the proposed MDS- based adaptive thresholding LASSO charts 

icARL In-control average run length 

 The time of occurring an assignable cause of deviation 
T The time of alerting an out-of-control signal by the control chart 

( )a + Operator for converting negative values to zero 
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Consider a process in which a product manufacturer or service provider is interested in 
concurrently monitoring p correlated quality characteristics 

1 2, ,..., py y y which all follow a 

normal distribution. In this case, the observations obtained in the 
tht sample are described by the 

matrix 1 2( , ,..., )
t tt t t tn p n=Y y y y , where ( )1 2, ,..., ; 1,..., , 1,...,

T

ti ti ti tip ty y y t T i n= = =y . In addition, tn

denotes the number of observations at the tht  sample, while T indicates the point at which the out-
of-control signal is issued. In this thesis, it is assumed, in accordance with the convention of 
statistical quality control, that the number of observations in each subgroup remains constant and 
equal to n between consecutive samples. Furthermore, it is presumed in this study that the 
observations within a sample are independent from each other. In other words, the columns of the 
observation matrix tY , denoted as 1 2, ,...,t t tny y y , are considered to be independent. The mean

vector and covariance matrix of the study quality characteristics are defined by Equations (1) and 
(2), respectively, when the process is statistically in-control. 

( )1 2, ,...,
T

ic p  =μ (1) 

2
1 12 1

2
21 2 2

2
1 2

p

p
ic

p p p

  

  

  

 
 
 

=  
 
 
 

Σ (2) 

Since the purpose of adaptive thresholding Lasso control chart is to identify variations in the 
covariance matrix in high-dimensional processes, the mean vector is considered to remain constant 
throughout each production cycle, and the assignable cause solely affects the elements of the 
covariance matrix. In other words, when an assignable cause occurs at time  , the covariance 
matrix of random vectors ; 1, 2,..., ; 1,...,ti t T i n = + + =y  changes from icΣ  to oc ic= +Σ Σ Ψ , while

the mean vector remains constant at icμ . The adaptive thresholding Lasso control chart is

designed to compare the sample covariance matrix in each sample with its target matrix. In other 
words, this monitoring procedure conducts the following hypothesis test: 

0

1

:

:

ic p p

ic p p

H

H





− =

− 

Σ Σ 0

Σ Σ 0 (3) 

To test hypothesis (3) using the adaptive thresholding Lasso method, the difference matrix is 

calculated based on the difference between the sample and target covariance matrices as: 
t t ic= −D S Σ (4) 

By calculating the sample mean vector of the 
tht subgroup as 

1

1 n

t ti

in =

= y y , we can obtain the 

sample covariance matrix as follows: 

( )( )

2
1 ,12 ,1

2
,21 2 ,2

1

2
, 1 , 2

1

1

t t t p

n
Tt t t p

t ti t ti t

i

t p t p tp

S S S

S S S

n

S S S

=

 
 
 

= = − − 
− 

 
 

S y y y y (5) 

It is evident that the probability of rejecting the null hypothesis increases as the distance between 

the elements of matrix tD increases from zero. Since tY is a random matrix, the components of

the difference matrix exhibit slight deviations from their nominal values even when the covariance 
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matrix remains stable. Therefore, according to [5], ˆ tD is defined by setting a threshold value based

on Equation (6) such that the respective values of the in-control components are equal to zero. 

( ), , ,1 ; , 1,...,t jk t jk jk t jkd d d j k p



+

= − = (6) 

In Equation (6), the output of the operator ( ).
+
 is equal to 1

jk

jkd




−  when jk jkd


  is less than 1; 

otherwise the output will be zero. Moreover,   is a predetermined constant parameter that 

determines the amount of shrinkage, while jk represents an specified threshold which is

calculated as follows. 
logjk

jk

p

n


 = (7) 

In Equation (7),   is a non-negative constant known as the regularization parameter, while jk

represents the variance of ,
ˆ
t jkd which is calculated in terms of the components of icΣ as: 

2 2 2
,( )t jk j k jkVar d   = + (8) 

In Equation (8), 2
j and 

2
k  denote the variances of variables j  and k , respectively, whereas 

jk

represents the covariance between them. Accordingly, the value of the component in the 
thj row 

and 
thk column of the shrinkage difference matrix at the 

tht  sample can be rewritten as: 

( )2 2 2 1

, ,

,

log
1 ; , 1,...,

j k jk

t jk t jk

t jk

n p
d d j k p

d



    −

+

 
+ 

= − = 
  
 

(9) 

Finally, the adaptive thresholding Lasso chart statistic for the 
tht  sample based on ,

ˆ
t jkd and jk

is calculated according to Equation (10). 
2
,1

1 1

p p t jk

t k l
jk

d
ATL n



−

= =

 
 =
 
 

  (10) 

The ideal value of tATL is zero, and as the sample covariance matrix deviates further from icΣ , 

the chart statistic increases. As can be observed, each component in Equation (10) is a positive 
value, and therefore the adaptive thresholding Lasso control chart only has an upper control limit, 
denoted by UCL . In this study, the value of UCL  is determined through 10,000 iterations of Monte 
Carlo simulation to ensure that the in-control average run length ( icARL ) of the chart is equal to a 

predetermined value of 
1


. 

III. Proposed MDS-ATL and GMDS-ATL control charting methods

One of the key factors that significantly affects the control chart's ability to detect various 
shifts in the distribution parameters is the sampling methodology that is employed. This section 
presents two monitoring approaches, namely MDS-ATL and GMDS-ATL to enhance the 
detectability of the adaptive thresholding Lasso control chart for high-dimensional process 
monitoring based on MDS and GMDS sampling strategies. In the proposed control charting 
methods, the control limit interval is partitioned into three zones of safety, warning, and rejection 
as follows: 
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Rejection zone of 

null hypothesis

Warning zone

Acceptance zone of null 

hypothesis

UCLinner

UCLouter

0

Taking r additional samples

Implementing corrective activities

No action

Figure 1. Safety, warning, and rejection zones

In the MDS-ATL chart, the covariance matrix is declared to be in-control when the adaptive 
thresholding Lasso statistic is less than or equal to the internal control limit i.e. 

 0,t innerMDS ATL UCL−  . On the other hand, if the chart statistic exceeds the outer control limit, 

or equivalently  ),t outerMDS ATL UCL−   , an out-of-control situation is triggered. Then, the 

production process is stopped to implement necessary corrective actions. If neither of the two 
mentioned situations occurs, i.e. ( ),t inner outerMDS ATL UCL UCL−  , the final decision regarding the 

process dispersion is postponed until the additional r samples are taken. In this case, the process 
variability is deemed to be in-control if the adaptive thresholding Lasso statistic associated with 
each additional r samples fall within the acceptance zone. In other words, if the chart statistic for 
any of the additional r samples exceeds innerUCL , the process is out-of-control. 

The MDS-ATL chart employs a rigorous approach to declare the covariance matrix as being in 
control when the chart statistic falls within the warning region. To address this issue and enhance 
chart’s flexibility, we propose using a control chart called the GMDS-ATL. In this chart, we define 
an additional parameter q , as the generalization parameter, alongside the four previous 
parameters n, r, innerUCL , and outerUCL . The difference between the GMDS chart and MDS-ATL lies 
in the condition where the adaptive thresholding Lasso statistic falls within the warning area. In 
such cases, the process is considered in-control if both of the following conditions are fulfilled: (1) 
The chart statistic corresponding to at least q samples from r additional samples is less than or 
equal to innerUCL ; (2) the chart statistic for r additional samples are all smaller than outerUCL . 

IV. Performance evaluation

In this section, the sensitivity of the proposed MDS-ATL and GMDS-ATL control charts to the 
covariance matrix deviations of high-dimensional processes is compared with the adaptive 

thresholding Lasso chart in terms of ARL, SDRL and MRL metrics.  To illustrate this, a numerical 
example based on simulation is presented, wherein the quality of the product or service is assessed 
through 15p =  normally distributed variables. When the process is statistically in-control, the 
mean vector and covariance matrix of the study variables are considered to be equal to 15 1ic =μ 0

and 15ic =Σ I , respectively. In all ATL, MDS-ATL and GMDS-ATL control charts, the
regularization and shrinkage parameters of adaptive thresholding Lasso statistic are set to 1 =  

and 4 = , respectively, and samples of size 10n =  are used to monitor the process dispersion. 

Furthermore, the repetition parameter for the MDS-RPLR and GMDS-RPLR charts is set to 3r = , 

and two values of  1,2q  are utilized for the generalization parameter. To ensure a fair

comparison, the , innerUCL UCL  and outerUCL   values of the ATL-based control charting methods are 
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determined through 20,000 iterations of Monte Carlo simulation in such a way that the in-control 
ARL of all charts is equal to the predefined value of 200icARL = . The upper control limits for the 
competing control charting schemes to achieve 200icARL =  are reported in Table 2. 

Table 2. UCL values 

Chart innerUCL
outerUCL

ATL 3.6710 3.6710 

MDS-ATL 1.7325 3.8002 

GMDS-
ATL 

1q = 1.3346 3.9495 
2q = 1.0126 3.9910 

Next, we will introduce seven out-of-control scenarios for the components of the covariance 
matrix in order to compare the sensitivity of the competing variability charts in response to process 
disturbances. It is important to note that the defined out-of-control scenarios are divided into three 
categories: diagonal, off-diagonal, and diagonal/off-diagonal. The first two scenarios are of the 
diagonal type, while the third and fourth scenarios belong to the off-diagonal category. Finally, the 
remaining three scenarios are categorized as diagonal/off-diagonal. 
Scenario 1. In this scenario according to Equation (11), the assignable cause has no effect on the 
covariance components, while the variance of each of the 15 quality characteristics under study 
deviates equally from their target values. 

1

15 15

1 0 0

0 1 0

0 0 1

oc



+  
 

+ 
 =
 
 

+  

Σ (11) 

Scenario 2. In this scenario, according to Equation (12), the variance of the first quality 
characteristic is increased by   units from its target value. As a result, scenario 2 will lead to a 
sparse deviation in the process covariance matrix. 

2

15 15

1 0 0

0 1 0

0 0 1

oc



+  
 
 =
 
 
 

Σ (12) 

Scenario 3. In this off-diagonal scenario, according to Equation (13), the covariance values 
associated with 70% of the quality characteristics increase from 1 to 1+  . 

3

15 15

1 0 0

1 0 0

1 0 0

0 0 0 1 0

0 0 0 0 1

oc



  
 
 
 
 
 

=   
 
 
 
 
 

Σ (13) 

Scenario 4. The main difference between this scenario and scenario 3 is that only the covariance of 
the first three variables deviate from their nominal value. Given that only 2.66% of all the elements 
of the covariance matrix change under this scenario, it can be characterized as a sparse pattern. 
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4

15 15

1 0 0

1 0 0

1 0 0

0 0 0 1 0

0

0 0 0 0 1

oc



  
 
 
 
  

=  
 
 
 
  

Σ (14) 

Scenario 5. As indicated in Equation (15), the fifth scenario represents a diagonal/off-diagonal out-
of-control pattern wherein the variance and covariance components associated with 30% of quality 
characteristics deviate from their nominal values by   units. 

5

15 15

1 0 0

1 0 0

1

1 0 0

0 0 0 1 0

0 0 0 0 1

oc



+     
 
 +   

 
   +  
 

=    +  
 
 
 
 
 

Σ (15) 

Scenario 6. In this scenario, the first three variables are impacted by the source of deviation, so that 

each of the variance and covariance components increase by   and 
2  units, respectively. 

6

2

2

2

15 15

1 0 0

1 0 0

1 0 0

0 0 0 1 0

0

0 0 0 0 1

oc



 +   
 

 +   
 

  +  =
 
 
 
 
 

Σ (16) 

Scenario 7. Based on Equation (17), the variance and covariance components corresponding to the 
first three variables, and the last three variables change by the amount of   units. However, the 
components related to the 4th to 12th quality characteristics have remained unchanged. 

7

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

oc

+    
 
 +  

 
   + 
 
 
 =
 
 
 +   
 

 +   
 

  +  

Σ (17) 

The ARL, SDRL, and MRL values for the ATL, competing charts under 

 0,0.1,0.2,0.3,0.4,0.5,0.75 are summarized in Tables 3-9. It is evident that in all scenarios and

shift magnitudes, the MDS-ATL and GMDS-ATL charts show significantly better performance 
than the ATL in timely detecting the covariance matrix disturbances. That is to say, incorporating 
MDS and GMDS techniques into the ATL chart significantly enhances its performance in terms of 
ARL, SDRL, and MRL metrics. In particular, the values of ARL, SDRL, and MRL indices under
diagonal changes based on 20,000 replicates are reported in Tables 3 and 4. Table 3 shows that the
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GMDS-ATL scheme has superior performance compared to the ATL and MDS-ATL charts. As 
seen, when   is equal to 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75, equipping the ATL chart with the MDS 
technique leads to improvements in its power by 36.30%, 60.57%, 62.70%, 49.92%, 31.84%, and 
6.16%, respectively. This means that in the first scenario, the average sensitivity improvement of 
the ATL chart in terms of the ARL index, when using the MDS technique, is 41.25% across different 
values of  . The findings from Table 3 demonstrate that implementing the MDS sampling 
technique in the design of the ATL control chart enhances its SDRL index by 35.63%, 61.57%, 
75.82%, 84.03%, 89.11%, and 100% when   is equal to 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75, respectively. 

Table 3. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 1 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 31.3154 8.7568 3.6496 2.1015 1.4789 1.0657 
SDRL 201.2460 30.8788 8.1388 3.1113 1.5094 0.8413 0.2640 
MRL 138 22 6 3 2 1 1 

M
D

S-
A

TL
 ARL 199.1255 19.9484 3.4527 1.3611 1.0525 1.0080 1.0000 

SDRL 198.4491 19.8767 3.1274 0.7522 0.2410 0.0916 0 
MRL 138 14 2 1 1 1 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 17.8049 2.7309 1.0772 1.0441 1.0000 1.0000 
SDRL 197.4807 17.3989 2.3829 0.5795 0.1678 0.0638 0 
MRL 138 12 2 1 1 1 1 

𝑞
=
2

 ARL 198.6688 17.6665 2.9177 1.1110 1.0518 1.0000 1.0000 
SDRL 199.5893 17.3772 2.4720 0.5972 0.1628 0.0619 0 
MRL 138 12 2 1 1 1 1 

Table 4 shows that in the second scenario, equipping the ATL chart with the MDS technique under 

0.1,0.2,0.3,0.4,0.5,0.75 =  leads to improvements of 3.64, 6.11, 8.59, 11.07, 14.80 and 23.45 percent 
in the ARL. The improvement percentages by employing the GMDS technique, with 1q = , are 
10.86%, 15.15%, 28.51%, 34.12%, 36.89%, and 43.27%, respectively. Hence, as the shift magnitude 
increases, the percentage of improvement in the ATL scheme from the application of both MDS 
and GMDS techniques also increases. Furthermore, both the SDRL and MRL indices demonstrate a 
similar trend as the ARL. The main finding from comparing Tables 3 and 4 is that using MDS and 
GMDS techniques for detecting non-sparse diagonal shifts (scenario 1) has a considerably greater 
influence on the performance of the ATL chart compared to sparse diagonal shifts (scenario 2). 

Table 4. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 2 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 173.9385 147.6309 124.5177 104.2381 88.0053 55.6005 
SDRL 201.2460 175.1907 145.4316 123.1942 104.4754 88.9015 55.0208 
MRL 138 121 103 87 72 60 39 

M
D

S-
A

TL
 ARL 199.1255 167.5999 138.6120 113.8206 92.6929 74.9781 42.5623 

SDRL 198.4491 168.7403 139.5496 114.3189 95.0044 75.6889 42.7268 
MRL 138 115 95 79 64 52 30 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 155.0499 125.2636 89.0154 68.6665 55.5435 31.5425 
SDRL 197.4807 147.4571 128.7383 89.7331 65.1677 51.9184 26.8687 
MRL 138 109 88 65 51 41 24 

𝑞
=
2

 ARL 198.6688 154.9197 125.2593 91.2727 69.2921 56.0495 30.1794 
SDRL 199.5893 157.0294 124.2078 93.0953 66.7335 53.1658 23.6370 
MRL 138 109 88 67 52 42 23 
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Table 5 indicates that in terms of ARL index, the MDS-ATL chart outperforms the ATL at various 
values of   (0.1, 0.2, 0.3, 0.4, 0.5, and 0.75), with percentages of 7.58, 18.45, 30.48, 37.38, 41.21, and 
39.89. Additionally, when the GMDS technique is implemented with 1q = , the performance of the 
ATL chart improves by 7.92, 21.16, 34.86, 43.39, 46.86, and 55.76 percent, respectively, under the 
mentioned values of  . As can be seen, the positive effect of using the MDS and GMDS techniques 
on the power of the ATL chart becomes more noticeable with the increase of  . A similar trend 
can be observed in SDRL and MRL indices produced by the MDS and GMDS charts. 

Table 5. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 3 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 120.7972 40.3205 15.9755 8.2071 5.1151 2.4923 

SDRL 201.2460 120.7832 39.4855 15.2993 7.6347 4.5666 1.9078 
MRL 138 83 28 11 6 4 2 

M
D

S-
A

TL
 

ARL 199.1255 111.6419 32.8822 11.1054 5.1396 3.0072 1.4980 

SDRL 198.4491 111.2441 33.2822 11.2720 5.0651 2.7762 1.0197 
MRL 138 78 22 8 3 2 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 111.2271 31.7886 10.4066 4.6458 2.7183 1.1026 
SDRL 197.4807 111.1097 31.4771 10.5509 4.6317 2.5387 0.7109 
MRL 138 77 21 8 3 2 1 

𝑞
=
2

 ARL 198.6688 111.2013 32.0921 10.2317 4.4474 2.6022 1.0711 
SDRL 199.5893 111.2748 31.1282 10.4600 4.3239 2.3699 0.7083 
MRL 138 77 21 7 3 2 1 

Table 6 indicates that the GMDS-ATL scheme demonstrates superior performance compared to the 
MDS-ATL and ATL charts in terms of all ARL, SDRL, and MRL metrics when the assignable cause 
leads to off-diagonal disturbances according to the fourth out-of-control scenario. Similar to the 
previous scenario, the performance improvement of the ATL chart through the utilization of MDS 
and GMDS strategies will be more significant as the shift magnitude increases. For example, when 

0.1,0.2,0.3,0.4,0.5,0.75 = , the MDS-ATL chart demonstrates superiority over ATL in terms of the 
ARL index by 1.15%, 5.47%, 7.92%, 13.93%, 19.36%, and 30.17% respectively. The the ARL 

improvement achieved by implementing the GMDS strategy in the ATL chart for the mentioned 
shifts, is 2.72%, 17.30%, 24.02%, 47.44%, 50.75%, and 36.34% when 1q =  while in the case of 2q =

, the ARL improvements are 4.16%, 16.92%, 28.19%, 54.93%, 57.78%, and 38.37%. In other words, 
under this off-diagonal pattern, increasing q  from 1 to 2 will lead to improved detectability of the 
GMDS-ATL chart. By comparing the results in Tables 5 and 6, it is observed that the improvement 
percentage of all three RL-based indices is more tangible when ATL chart is equipped with MDS 
and GMDS sampling approaches in detection of an off-diagonal non-sparse pattern (as in the third 
scenario) compared to the off-diagonal sparse pattern (as in the fourth scenario). 
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Table 6. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 4 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 
A

TL
 ARL 200.6506 187.9099 155.3939 111.0139 75.9599 51.0764 20.6715 

SDRL 201.2460 186.4131 154.5071 111.4313 75.0029 50.9071 20.2622 
MRL 138 131 108 77 53 35 14 

M
D

S-
A

TL
 

ARL 199.1255 185.7435 146.8887 102.2206 65.3805 41.1865 14.4354 

SDRL 198.4491 186.5648 147.2405 102.0745 65.2222 41.3985 14.5201 
MRL 138 129 102 70 45 29 10 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 182.8032 128.5112 84.3483 39.9277 25.1525 13.1602 
SDRL 197.4807 185.3521 129.5276 85.2083 37.6359 23.8887 8.4463 
MRL 138 127 90 58 28 18 9 

𝑞
=
2

 ARL 198.6688 180.0868 129.0974 79.7237 34.2348 21.5663 12.7393 
SDRL 199.5893 176.4070 127.7548 79.4708 32.3020 20.5031 5.7574 
MRL 138 125 90 55 25 16 9 

Tables 7 to 9 present the run length properties of the ATL, MDS-ATL, and GMDS-ATL control 
charting methods for joint diagonal/off-diagonal disturbances in high-dimensional covariance 
matrices. The results confirm that using the MDS and GMDS control charts, instead of the ATL, 
will significantly lead to faster detection of co-diagonal/off-diagonal changes in the covariance 
matrix components. The results presented in Tables 7 to 9 reveal that as the shift magnitudes 
increase, the superiority of MDS-ATL and GMDS-ATL compared to the ATL control chart becomes 
more evident. 

Table 7. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 5 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 98.9288 44.2593 20.4434 11.0304 6.8975 3.1627 

SDRL 201.2460 98.1537 43.3755 20.2059 10.4759 6.3302 2.5983 
MRL 138 69 31 14 8 5 2 

M
D

S-
A

TL
 

ARL 199.1255 86.9386 32.4176 12.7290 5.8847 3.2767 1.4862 

SDRL 198.4491 86.4191 32.6108 12.6924 5.6984 3.0323 0.9624 
MRL 138 61 22 9 4 2 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 86.2533 31.0648 12.5609 5.4242 3.0203 1.2224 
SDRL 197.4807 84.1714 30.9066 12.4237 5.2813 2.8104 0.7855 
MRL 138 61 21 9 4 2 1 

𝑞
=
2

 ARL 198.6688 86.7379 32.3513 12.8048 5.6068 3.1220 1.2655 
SDRL 199.5893 88.8912 32.1598 12.7473 5.3554 2.8498 0.8444 
MRL 138 61 22 9 4 2 1 
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Table 8. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 6 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 
A

TL
 ARL 200.6506 178.3261 128.3747 78.7263 43.6322 24.2064 7.2093 

SDRL 201.2460 178.1352 128.3269 76.9652 43.3895 23.6536 6.7377 
MRL 138 124 89 55 30 17 5 

M
D

S-
A

TL
 

ARL 199.1255 176.7739 120.3104 66.4980 33.5460 16.5317 3.6357 

SDRL 198.4491 177.6378 120.3849 66.5117 33.6048 16.5764 3.3766 
MRL 138 123 84 46 23 11 2 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 168.6586 108.5676 57.8567 27.8740 13.7365 2.8737 
SDRL 197.4807 169.3584 105.8655 57.3664 29.0077 14.3088 2.5912 
MRL 138 118 76 40 19 9 2 

𝑞
=
2

 ARL 198.6688 176.2301 114.1713 59.7670 29.2099 14.3948 3.1825 
SDRL 199.5893 166.7157 114.6325 60.3128 29.7811 14.6903 2.7198 
MRL 138 121 79 41 19 9 2 

Table 9. RL features of ATL, MDS-ATL, and GMDS-ATL charts under scenario 7 

Chart Index 


0 0.1 0.2 0.3 0.4 0.5 0.75 

A
TL

 ARL 200.6506 78.8354 30.6467 13.7325 7.1715 4.4884 2.1488 

SDRL 201.2460 77.8354 30.0446 13.3228 6.7644 3.9699 1.5554 
MRL 138 55 21 10 5 3 2 

M
D

S-
A

TL
 

ARL 199.1255 65.0101 20.0844 6.9717 3.1433 1.8793 1.1167 

SDRL 198.4491 64.9520 20.0714 6.8471 2.8302 1.4152 0.3920 
MRL 138 45 14 5 2 1 1 

G
M

D
S-

A
TL

 

𝑞
=
1

 ARL 199.9991 64.3264 20.0155 6.7645 3.1169 1.8635 1.0000 
SDRL 197.4807 63.8176 20.2910 6.8467 2.8459 1.4227 0.3619 
MRL 138 44 14 5 2 1 1 

𝑞
=
2

 ARL 198.6688 65.6486 19.8908 7.1158 3.1635 1.8914 1.0241 
SDRL 199.5893 64.4291 20.7047 6.9845 2.7734 1.3868 0.3694 
MRL 138 45 13 5 2 1 1 

V. Conclusion remarks

Manufacturers often prefer using small sample sizes to reduce production costs, while also 
needing to consider a wide range of quality characteristics in order to enhance their market share. 
Therefore, in today's competitive world, encountering high-dimensional data where the sample 
size is smaller than the number of quality characteristics, has become a significant challenge in 
various industrial and service applications. Due to the singularity of the sample covariance matrix, 
conventional multivariate statistical methods cannot be used to monitor the process dispersion 
under high-dimensionality. On the other hand, in recent years, multiple dependent state sampling 
has been effectively utilized to enhance the effectiveness of control charts, primarily for the 
purpose of monitoring the mean parameter of univariate processes. As a result, in this paper, we 
extended two adaptive thresholding Lasso control charts for the rapid detection of covariance 
matrix disturbances in high-dimensional process monitoring using multiple dependent state and 
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generalized multiple dependent state sampling techniques. The performance of the improved 
MDS-ATL and GMDS-ATL control charting methods was compared to the conventional adaptive 
thresholding Lasso through Monte Carlo simulation, using three metrics of ARL, SDRL and MRL. 
The simulation results demonstrate that the utilization of MDS and GMDS methods in design of 
the ATL control chart effectively enhances the detection of covariance matrix disturbances in high-
dimensional processes. Particularly when confronted with assignable causes that result in 
significant deviations in the components of the covariance matrix, the incorporation of MDS and 
GMDS methods in the design of the ATL chart becomes even more crucial. One assumption of this 
article is that the assignable cause solely impacts the components of the covariance matrix. 
However, there are instances where the deviation source can also result in a simultaneous change 
in the mean vector and the covariance matrix of high-dimensional processes. To overcome this 
limitation, it is recommended to employ MDS and GMDS techniques to monitor the coefficient of 
variation in high-dimensional processes. 
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Abstract 

This paper suggests a novel method for acceptance sampling that integrates neutrosophical fuzzy 

logic with the negative binomial distribution. The complexity and ambiguity that characterize real-

world circumstances are typically overlooked by traditional acceptance sampling methodologies. The 

neutrosophic Fuzzy Acceptance Sampling Plan (NFASP) incorporates the negative binomial 

distribution, which is particularly well-suited for count data, to account for circumstances where 

defect occurrences are important. The efficacy of the methodology is demonstrated by theoretical study 

and simulations. This innovative method lifts acceptance sampling to a more accurate and 

sophisticated procedure by dealing with ambiguity and indeterminacy. 

Keywords: Neutrosophic fuzzy acceptance sampling, Negative Binomial 
distribution, Indeterminacy. 

I. Introduction

Acceptance sampling is a statistical technique that assess whether a large number of products 
confirm to particular standards. The goal of acceptance sampling is to minimize both the cost of the 
inspection and likelihood of approving a deficient batch. By inspecting the sample of the product 
deciding whether to accept or reject entire lot based on the inspection sample. In this paper our study 
focusses on a new attribute sampling plan by using a new fuzzy technique neutrosophic concepts. 
With a help of neutrosophic fuzzy acceptance sampling plan, we demonstrate that our traditional 
plan is sometimes inadequate when the situations are indeterminacy. We think that this research 
will significantly add to the body of knowledge on neutrosophic fuzzy acceptance sampling plan. 
          Acceptance sampling is a crucial quality control method that is applied in a variety of sectors 
to determine whether to accept or reject a batch of goods after inspecting a sample. Although 
traditional acceptance sampling plans have been widely used, academics have begun to investigate 
novel approaches, such as neutrosophic fuzzy acceptance sampling plans, in order to address 
uncertainty and ambiguity in real-world industrial processes. The purpose of this review of the 
literature is to examine the material that has been done on the design of fuzzy acceptance sampling 
plan based on the negative binomial distribution. 
          According to the neutrosophic statistical interval method, Aslam (2018) [1] suggested a novel 
acceptance sampling plan for the exponential distribution. The neutrosophic non-linear problem 
was used to determine the neutrosophic plan parameters of the proposed design. further usage in 

RT&A, No 1 (82) 
Volume 20, March 2025 

339



Jayalakshmi S, Gopinath M 
A NEUTROSOPHIC FUZZY ACCEPTANCE SAMPLING PLAN 
BASED ON NEGATIVE BINOMIAL DISTRIBUTION 

industry, tables with different risk values were supplied.  The acceptance sampling plan for the 
binomial distribution based on neutrosophic fuzzy sets was developed by Aslam & Aslam (2020) 
[2]. Regarding both producer risk and consumer risk, the proposed plan was found to be more 
effective than conditional acceptance sampling plan. Simulated analysis of the plan's performance 
revealed that it is a promising plan for addressing product quality uncertainty.  A novel approach 
of acceptance sampling plan based on neutrosophic fuzzy sets was proposed by Aslam and Aslam 
(2021) [3]. Regarding both producer risk and consumer risk, the proposed plan was found to be more 
effective than conditional acceptance sampling plans. Simulated data was used to evaluate the same 
plan. A variable sampling plan for the Poisson distribution based on neutrosophic fuzzy sets was 
proposed by Aslam et al. in 2021 [4]. Regarding both the risk to the producer and the risk to the 
consumer, the proposed plans was shown to be more successful than conditional variable sampling 
plans. Simulated analysis of the plan's performance revealed that it is a promising plan for 
addressing product quality uncertainty.  For the binomial distribution with unknown probability of 
defect, Divya P et al. (2012) [5] suggested a novel type of acceptance sampling plan based on 
neutrosophic fuzzy sets. The proposed plan was found to be more effective than conditional 
acceptance sampling plans. For the Poisson distribution with unknown parameters, Aslam et al. 
(2021) [6] developed a novel acceptance sampling method based on neutrosophic fuzzy sets. 
Regarding both producer risk and consumer risk, the proposed plan was found to be more effective 
than conditional acceptance sampling plans. Simulated analysis of the plan's performance revealed 
that it is a promising plan for addressing product quality uncertainty.   
          For the Weibull distribution with unknown parameters, Aslam et al. (2021) [7] developed a 
novel acceptance sampling method based on neutrosophic fuzzy sets. Regarding both producer risk 
and consumer risk, the proposed approach was found to be more successful than conditional 
acceptance sampling plans. Simulated analysis of the plan's performance revealed that it is a 
promising plan for addressing product quality uncertainty.  For the binomial distribution with 
unknown parameters, Aslam et al. (2021) [8] developed a novel acceptance sampling method based 
on neutrosophic fuzzy sets. Regarding both producer risk and consumer risk, the proposed 
approach was found to be more successful than conditional acceptance sampling plans. Simulated 
analysis of the plan's performance revealed that it is a promising plan for addressing product quality 
uncertainty.  A novel kind of double sampling plan based on neutrosophic fuzzy sets was developed 
by Aslam et al. in 2021 [9] for the Poisson distribution with unknown parameters. Regarding both 
the risk to the producer and the risk to the consumer, the proposed plans was found to be more 
successful than conditional double sampling plans. Simulated analysis of the plan's performance 
revealed that it is a promising plan for addressing product quality uncertainty.  For the Weibull 
distribution with unknown parameters, Aslam et al. (2021) [10] developed a novel sort of variable 
sampling plans based on neutrosophic fuzzy sets. Regarding both the risk to the producer and the 
risk to the consumer, the suggested plans was shown to be more successful than conditional variable 
sampling plans. Simulated analysis of the plan's performance revealed that it is a promising plan for 
addressing product quality uncertainty. 
A novel sort of acceptance sampling plan based on intuitionistic fuzzy linguistic concepts was 
presented by Isik and Kaya in 2022 [11]. Simulated analysis of the plan's performance revealed that 
it is a promising plan for addressing product quality uncertainty.  The effect of neutrosophic 
statistics on acceptance sampling plans was studied by Raza et al. in 2022 [12]. The study 
demonstrated several ways in which neutrosophic statistics can be used to enhance the design and 
analysis of acceptance sampling plans, including addressing product quality uncertainty, enhancing 
producer and consumer risk, and enhancing the effectiveness of acceptance sampling plans. 
Furthermore, an acceptance sampling plan for the Weibull distribution based on neutrosophic fuzzy 
sets was developed by Raza et al. in 2022 [13]. The proposed approach was found to be more 
successful than conditional acceptance sampling plans. Simulated analysis of the plan's performance 
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revealed that it is a promising plan for addressing product quality uncertainty.  An innovative 
acceptance sampling approach for attribute data based on neutrosophic fuzzy sets was developed 
by Raza et al. in 2022 [14]. A kind of double sampling plans for the negative binomial distribution 
based on neutrosophic fuzzy sets was developed by Sadeghpour Gildeh B et al. in 2022 [15].  For the 
Weibull distribution with an unknown shape parameter, Aslam et al. (2022) [16] suggested a 
acceptance sampling plan based on neutrosophic fuzzy sets. 

II. Neutrosophic Negative Binomial Distribution (NNBD)

The neutrosophic negative binomial distribution is an extension of the negative binomial 
distribution that incorporates neutrosophic uncertainty. In this distribution, the parameters of the 
negative binomial distribution are described with the help of neutrosophic membership degrees, 
which represent the degree of truth, indeterminacy, and falsity associated with each parameter. The 
neutrosophic negative binomial distribution allows for modeling uncertainty in the parameter 
values and is especially useful when dealing with imprecise or incomplete information. The 
Cumulative Density Function (CDF) is given below: 

𝐹(𝑥) = 1 − (𝑝𝑟(𝑆))𝛿(𝑝𝑟(𝑈))𝑥−𝛿+1 ∑ (
𝑥 − 𝑠 + 𝑚

 𝑚 − 1
)

∞

𝑚=1

(𝑝𝑟(𝐼))𝑚−1
(1) 

The Probability Mass Function (PMF) NNBD is given below 

𝑇𝑥 = (𝑝𝑟(𝑆))𝑠 ∑ (
𝑥 − 𝑠

 𝑡
)

𝑡ℎ

𝑡=0

(𝑝𝑟(𝐼))𝑡(𝑝𝑟(𝑈))𝑥−𝑠−𝑡
         (2) 

𝑈𝑥 = ∑ 𝑇𝑦

∞

𝑦=𝑠
𝑦≠𝑥

= (𝑝𝑟(𝑆))𝑠 ∑ ∑

𝑡ℎ

(
𝑦 − 𝑠

 𝑡
)

∞

𝑦=𝑠
𝑦≠𝑥

(𝑝𝑟(𝐼))𝑡(𝑝𝑟(𝑈))𝑥−𝑠−𝑡
       (3) 

𝐼𝑥 = (𝑝𝑟(𝑆))𝑠 ∑ (
𝑥 − 𝑠

 𝑧
)

𝑥−𝛿

𝑧=𝑡ℎ+1

(𝑝𝑟(𝐼))𝑧 ∑ ∑ (
𝑥 − 𝑠 − 𝑧

 𝑡
)

𝑥−𝑠−𝑧

𝑡=0

∞

𝑥−𝑠

(𝑝𝑟(𝑈))𝑥−𝑠−𝑧−𝑡
         (4) 

          The mentioned equations namely (1), (2), (3) and (4) gives cumulative density function, 
probability mass functions of negative binomial distribution. Additionally, Tx provides probability 
of success, Ux provides probability of failures and Ix provides probability of indeterminacy values.  

III. Operating Procedure

The following stages make up the operational method for the neutrosophic negative binomial 
distribution: 

Step 1: Establish the neutrosophic negative binomial distribution's parameters. r: The number of 
successes (failures before the procedure is stopped), p: The likelihood that each trial will be 
successful, P(S): The degree of success with uncertainty (degree of success with neutral 
membership). P(U) is the level of uncertainty for the unknown (neutrosophic membership level), 
and P(I) is the level of uncertainty for the failure (neutrosophic membership level). 

RT&A, No 1 (82) 
Volume 20, March 2025 

341



Jayalakshmi S, Gopinath M 
A NEUTROSOPHIC FUZZY ACCEPTANCE SAMPLING PLAN 
BASED ON NEGATIVE BINOMIAL DISTRIBUTION 

Step 2: Determine the neutrosophic negative binomial distribution's probability mass function 
(PMF) for a given success rate x. PMF is provided by: 

𝑇𝑥 = (𝑝𝑟(𝑆))𝑠 ∑ (
𝑥 − 𝑠

 𝑡
)

𝑡ℎ

𝑡=0

(𝑝𝑟(𝐼))𝑡(𝑝𝑟(𝑈))𝑥−𝑠−𝑡
         (5) 
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𝑦 − 𝑠

 𝑡
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𝑦≠𝑥

(𝑝𝑟(𝐼))𝑡(𝑝𝑟(𝑈))𝑥−𝑠−𝑡
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𝐼𝑥 = (𝑝𝑟(𝑆))𝑠 ∑ (
𝑥 − 𝑠

 𝑧
)

𝑥−𝛿

𝑧=𝑡ℎ+1

(𝑝𝑟(𝐼))𝑧 ∑ ∑ (
𝑥 − 𝑠 − 𝑧

 𝑡
)

𝑥−𝑠−𝑧

𝑡=0

∞

𝑥−𝑠

(𝑝𝑟(𝑈))𝑥−𝑠−𝑧−𝑡
         (7) 

Step 3: Determine the Level of Belongingness in the degree of truth, indeterminacy, and falsehood 
related to each parameter is represented by the neutrosophic membership degrees P(S), P(U), and 
P(I). The following criteria should be met by these membership degrees: Tx + Ux + Ix = 1. 

Step 4: Making Decisions to make judgments in the face of uncertainty, use the neutrosophic 
negative binomial distribution. You can calculate the likelihood of various outcomes and evaluate 
the risk involved with certain situations or events. 

IV. The Average Outgoing Quality (AOQ)

In order to evaluate the quality of items or services leaving a manufacturing or service process, the 
Average Outgoing Quality (AOQ) is a crucial metric used in acceptance sampling plans. The 
predicted quality of the goods or services under the suggested acceptance sampling plans is best 
understood in the context of the neutrosophic negative binomial distribution. Consider the situation 
where a random sample of goods or services is chosen for inspection, and a decision is made based 
on whether the number of successes (k) (e.g., defect-free units, satisfied consumers) in the sample 
meets a given criterion before a certain number of failures (r) (e.g., defective units, dissatisfied 
consumers) occur. This will help you understand AOQ in the context of the neutrosophic negative 
binomial distribution. We seek to ascertain the typical proportion of non-conforming items 
(defective goods or disgruntled consumers) that will be approved by the acceptance sampling plan 
across a large number of inspection instances in the context of AOQ for the neutrosophic negative 
binomial distribution. The formula below can be used to determine  

𝐴𝑂𝑄 =
𝑘 + 1

𝑘 + 𝑟 + 1
      (8) 

Where: 

• AOQ: Average Outgoing Quality, which denotes the anticipated percentage of non-conforming
products in lots that have been accepted.

• k: The predetermined number of accomplishments (such as non-defective products or pleased
clients) necessary for acceptance.

• r: The predetermined number of errors permitted prior to rejection (examples: damaged goods,
angry consumers).

• An elevated AOQ score means that the acceptance sampling plan is successful in preserving a
high standard of quality in the delivered goods or services. A low AOQ number, on the other
hand, denotes that the acceptance plan could require modifications in order to better assure the
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quality of the delivered goods or services. 

Case Study – 1 

          A company manufactures yarn. The company has a quality control inspector who randomly 
inspects 10 yarns from each lot of 100 yarns. The inspector defines 20% of the yarns as successes, 
60% of the yarns as failures, and 20% of the yarns as indeterminacies. The inspector rejects the lot if 
he finds more than 3 failures. 

Here, X = 0,1, 2…10, th = 2 and s = 3 
P(S) = 20% P(U) = 60% P(I) = 20% 

Case Study – 2 

          A company manufactures batteries. The company has a quality control inspector who 
randomly inspects 15 batteries from each lot of 100 batteries. The inspector defines 10% of the 
batteries as successes, 80% of the batteries as failures, and 10% of the batteries as indeterminacies. 
The inspector rejects the lot if he finds more than 4 failures. 

Here, X = 0,1, 2,15, th = 2 and s = 4 
P(S) = 10% P(U) = 80% P(I) = 10% 

Case Study – 3 

          A company manufactures toys. The company has a quality control inspector who randomly 
inspects 3 toys from each lot of 50 toys. The inspector defines 80% of the toys as successes, 15% of 
the toys as failures, and 5% of the toys as indeterminacies. The inspector rejects the lot if he finds 
more than 1 failure. 

Here, X = 0,1, 2,50, th = 2 and s = 4 
P(S) = 80% P(U) = 15% P(I) = 05% 

V. Conclusion

This work presents a unique discrete neutrosophic negative binomial probability distribution based 
on neutrosophic logic. We have looked at a variety of case studies throughout the study to show 
how the suggested distribution works in real-world settings. The suggested neutrosophic negative 
binomial distribution has proven useful for modeling situations where one wants to know how 
many successes there will be in a series of independent trials before there are a certain number of 
failures. This study makes a significant addition to the area of probability theory by broadening the 
applicability of the negative binomial distribution using neutrosophic logic. It also creates new 
opportunities for managing uncertainty in a variety of real-world scenarios. 
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Table 1: Consisting of n, Ux, Ix and Tx value when c = 3, th = 2, P(S) = 0.35, P(U) = 0.7 and P(I) = 0.15 

n Ux Ix Tx Tx+Ix+Ux AOQ n Ux Ix Tx Tx+Ix+Ux AOQ 

2 0.0002 0.0292 0.9706 1.0000 0.0116 49 0.0000 0.0008 0.9992 1.0000 0.0003 

3 0.0002 0.0331 0.9666 1.0000 0.0131 50 0.0000 0.0007 0.9993 1.0000 0.0003 

4 0.0003 0.0325 0.9673 1.0000 0.0129 51 0.0000 0.0006 0.9994 1.0000 0.0002 

5 0.0003 0.0290 0.9707 1.0000 0.0115 52 0.0000 0.0006 0.9994 1.0000 0.0002 

6 0.0003 0.0244 0.9752 1.0000 0.0097 53 0.0000 0.0005 0.9995 1.0000 0.0002 

7 0.0003 0.0199 0.9798 1.0000 0.0079 54 0.0000 0.0005 0.9995 1.0000 0.0002 

8 0.0003 0.0159 0.9838 1.0000 0.0063 55 0.0000 0.0004 0.9996 1.0000 0.0002 

9 0.0003 0.0127 0.9869 1.0000 0.0050 56 0.0000 0.0004 0.9996 1.0000 0.0001 

10 0.0003 0.0103 0.9894 1.0000 0.0041 57 0.0000 0.0003 0.9997 1.0000 0.0001 

11 0.0003 0.0086 0.9911 1.0000 0.0034 58 0.0000 0.0003 0.9997 1.0000 0.0001 

12 0.0003 0.0074 0.9924 1.0000 0.0029 59 0.0000 0.0003 0.9997 1.0000 0.0001 

13 0.0003 0.0065 0.9932 1.0000 0.0026 60 0.0000 0.0002 0.9998 1.0000 0.0001 

14 0.0003 0.0060 0.9937 1.0000 0.0024 61 0.0000 0.0002 0.9998 1.0000 0.0001 

15 0.0002 0.0057 0.9941 1.0000 0.0022 62 0.0000 0.0002 0.9998 1.0000 0.0001 

16 0.0002 0.0054 0.9943 1.0000 0.0021 63 0.0000 0.0002 0.9998 1.0000 0.0001 

17 0.0002 0.0053 0.9945 1.0000 0.0021 64 0.0000 0.0002 0.9998 1.0000 0.0001 

18 0.0002 0.0052 0.9946 1.0000 0.0020 65 0.0000 0.0001 0.9999 1.0000 0.0001 

19 0.0002 0.0051 0.9947 1.0000 0.0020 66 0.0000 0.0001 0.9999 1.0000 0.0000 

20 0.0002 0.0050 0.9948 1.0000 0.0019 67 0.0000 0.0001 0.9999 1.0000 0.0000 

21 0.0001 0.0049 0.9950 1.0000 0.0019 68 0.0000 0.0001 0.9999 1.0000 0.0000 

22 0.0001 0.0048 0.9951 1.0000 0.0019 69 0.0000 0.0001 0.9999 1.0000 0.0000 

23 0.0001 0.0047 0.9952 1.0000 0.0018 70 0.0000 0.0001 0.9999 1.0000 0.0000 

24 0.0001 0.0045 0.9954 1.0000 0.0018 71 0.0000 0.0001 0.9999 1.0000 0.0000 

25 0.0001 0.0044 0.9955 1.0000 0.0017 72 0.0000 0.0001 0.9999 1.0000 0.0000 

26 0.0001 0.0042 0.9957 1.0000 0.0016 73 0.0000 0.0001 0.9999 1.0000 0.0000 

27 0.0001 0.0040 0.9959 1.0000 0.0016 74 0.0000 0.0000 1.0000 1.0000 0.0000 

28 0.0001 0.0038 0.9961 1.0000 0.0015 75 0.0000 0.0000 1.0000 1.0000 0.0000 

29 0.0001 0.0036 0.9963 1.0000 0.0014 76 0.0000 0.0000 1.0000 1.0000 0.0000 

30 0.0001 0.0035 0.9965 1.0000 0.0013 77 0.0000 0.0000 1.0000 1.0000 0.0000 
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Table 2: Consisting of n, Ux, Ix and Tx value when c = 3, th = 2, P(S) = 0.95, P(U) = 0.05 and P(I) = 0.15 

n Ux Ix Tx Tx+Ix+Ux AOQ n Ux Ix Tx Tx+Ix+Ux AOQ 

11 0.0000 0.6405 0.3595 1.0000 0.1248 68 0.0000 0.3681 0.6318 1.0000 0.2068 

12 0.0000 0.0885 0.9114 1.0000 0.3161 69 0.0000 0.3728 0.6272 1.0000 0.2050 

13 0.0000 0.0106 0.9894 1.0000 0.3428 70 0.0000 0.3771 0.6228 1.0000 0.2034 

14 0.0000 0.0044 0.9956 1.0000 0.3446 71 0.0000 0.3813 0.6187 1.0000 0.2018 

15 0.0000 0.0055 0.9945 1.0000 0.3439 72 0.0000 0.3851 0.6148 1.0000 0.2003 

16 0.0000 0.0075 0.9925 1.0000 0.3429 73 0.0000 0.3888 0.6112 1.0000 0.1989 

17 0.0000 0.0099 0.9901 1.0000 0.3417 74 0.0000 0.3921 0.6078 1.0000 0.1976 

18 0.0000 0.0127 0.9873 1.0000 0.3404 75 0.0000 0.3953 0.6047 1.0000 0.1964 

19 0.0000 0.0160 0.9840 1.0000 0.3389 76 0.0000 0.3981 0.6019 1.0000 0.1953 

20 0.0000 0.0196 0.9804 1.0000 0.3373 77 0.0000 0.4007 0.5993 1.0000 0.1942 

21 0.0000 0.0236 0.9764 1.0000 0.3356 78 0.0000 0.4031 0.5969 1.0000 0.1932 

22 0.0000 0.0281 0.9719 1.0000 0.3337 79 0.0000 0.4052 0.5948 1.0000 0.1923 

23 0.0000 0.0329 0.9671 1.0000 0.3317 80 0.0000 0.4071 0.5929 1.0000 0.1915 

24 0.0000 0.0381 0.9619 1.0000 0.3296 81 0.0000 0.4087 0.5912 1.0000 0.1908 

25 0.0000 0.0437 0.9563 1.0000 0.3273 82 0.0000 0.4101 0.5898 1.0000 0.1901 

26 0.0000 0.0496 0.9504 1.0000 0.3250 83 0.0000 0.4113 0.5887 1.0000 0.1896 

27 0.0000 0.0558 0.9441 1.0000 0.3225 84 0.0000 0.4122 0.5877 1.0000 0.1890 

28 0.0000 0.0624 0.9376 1.0000 0.3200 85 0.0000 0.4130 0.5870 1.0000 0.1886 

29 0.0000 0.0693 0.9307 1.0000 0.3173 86 0.0000 0.4135 0.5865 1.0000 0.1882 

30 0.0000 0.0764 0.9236 1.0000 0.3145 87 0.0000 0.4137 0.5863 1.0000 0.1880 

31 0.0000 0.0838 0.9162 1.0000 0.3117 88 0.0000 0.4138 0.5862 1.0000 0.1877 

32 0.0000 0.0914 0.9085 1.0000 0.3088 89 0.0000 0.4136 0.5863 1.0000 0.1876 

33 0.0000 0.0993 0.9007 1.0000 0.3058 90 0.0000 0.4133 0.5867 1.0000 0.1875 

34 0.0000 0.1073 0.8926 1.0000 0.3027 91 0.0000 0.4128 0.5872 1.0000 0.1874 

35 0.0000 0.1156 0.8844 1.0000 0.2996 92 0.0000 0.4120 0.5880 1.0000 0.1875 

36 0.0000 0.1240 0.8760 1.0000 0.2965 93 0.0000 0.4111 0.5889 1.0000 0.1876 

37 0.0000 0.1325 0.8675 1.0000 0.2933 94 0.0000 0.4100 0.5900 1.0000 0.1877 

38 0.0000 0.1411 0.8589 1.0000 0.2901 95 0.0000 0.4087 0.5913 1.0000 0.1879 

39 0.0000 0.1498 0.8502 1.0000 0.2868 96 0.0000 0.4072 0.5928 1.0000 0.1882 

40 0.0000 0.1586 0.8414 1.0000 0.2836 97 0.0000 0.4056 0.5944 1.0000 0.1885 

41 0.0000 0.1674 0.8326 1.0000 0.2803 98 0.0000 0.4038 0.5962 1.0000 0.1888 

RT&A, No 1 (82) 
Volume 20, March 2025 

345



Jayalakshmi S, Gopinath M 
A NEUTROSOPHIC FUZZY ACCEPTANCE SAMPLING PLAN 
BASED ON NEGATIVE BINOMIAL DISTRIBUTION 

42 0.0000 0.1763 0.8237 1.0000 0.2771 99 0.0000 0.4019 0.5981 1.0000 0.1892 

43 0.0000 0.1851 0.8148 1.0000 0.2738 100 0.0000 0.3998 0.6002 1.0000 0.1897 

44 0.0000 0.1940 0.8060 1.0000 0.2705 101 0.0000 0.3975 0.6024 1.0000 0.1902 

45 0.0000 0.2029 0.7971 1.0000 0.2673 102 0.0000 0.3952 0.6048 1.0000 0.1907 

46 0.0000 0.2117 0.7883 1.0000 0.2640 103 0.0000 0.3927 0.6073 1.0000 0.1913 

47 0.0000 0.2204 0.7796 1.0000 0.2608 104 0.0000 0.3900 0.6100 1.0000 0.1919 

48 0.0000 0.2291 0.7709 1.0000 0.2577 105 0.0000 0.3873 0.6127 1.0000 0.1926 

49 0.0000 0.2376 0.7623 1.0000 0.2545 106 0.0000 0.3844 0.6156 1.0000 0.1933 

50 0.0000 0.2461 0.7539 1.0000 0.2515 107 0.0000 0.3814 0.6186 1.0000 0.1940 

51 0.0000 0.2544 0.7455 1.0000 0.2484 108 0.0000 0.3783 0.6217 1.0000 0.1947 

52 0.0000 0.2627 0.7373 1.0000 0.2454 109 0.0000 0.3751 0.6249 1.0000 0.1955 

53 0.0000 0.2707 0.7292 1.0000 0.2425 110 0.0000 0.3718 0.6282 1.0000 0.1963 

54 0.0000 0.2786 0.7213 1.0000 0.2396 111 0.0000 0.3684 0.6316 1.0000 0.1972 

55 0.0000 0.2864 0.7136 1.0000 0.2368 112 0.0000 0.3649 0.6351 1.0000 0.1980 

56 0.0000 0.2940 0.7060 1.0000 0.2340 113 0.0000 0.3614 0.6386 1.0000 0.1989 

57 0.0000 0.3013 0.6986 1.0000 0.2313 114 0.0000 0.3578 0.6422 1.0000 0.1998 

58 0.0000 0.3085 0.6914 1.0000 0.2287 115 0.0000 0.3541 0.6459 1.0000 0.2008 

59 0.0000 0.3155 0.6845 1.0000 0.2261 116 0.0000 0.3503 0.6497 1.0000 0.2017 

60 0.0000 0.3223 0.6777 1.0000 0.2237 117 0.0000 0.3465 0.6535 1.0000 0.2027 

61 0.0000 0.3288 0.6711 1.0000 0.2213 118 0.0000 0.3426 0.6574 1.0000 0.2036 

62 0.0000 0.3352 0.6648 1.0000 0.2190 119 0.0000 0.3386 0.6614 1.0000 0.2046 

63 0.0000 0.3413 0.6587 1.0000 0.2167 120 0.0000 0.3346 0.6654 1.0000 0.2056 

64 0.0000 0.3471 0.6529 1.0000 0.2146 121 0.0000 0.3306 0.6694 1.0000 0.2066 

65 0.0000 0.3527 0.6472 1.0000 0.2125 122 0.0000 0.3265 0.6735 1.0000 0.2077 

66 0.0000 0.3581 0.6419 1.0000 0.2105 123 0.0000 0.3224 0.6776 1.0000 0.2087 
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Table 3: Consisting of n, Ux, Ix and Tx value when c = 3, th = 2, P(S) = 0.8, P(U) = 0.4 and P(I) = 0.15 
n Ux Ix Tx Tx+Ix+Ux AOQ n Ux Ix Tx Tx+Ix+Ux AOQ 

6 0.0020 0.0926 0.9053 1.0000 0.4041 54 0.0000 0.0000 1.0000 1.0000 0.4252 

8 0.0019 0.0626 0.9356 1.0000 0.4172 55 0.0000 0.0000 1.0000 1.0000 0.4248 

9 0.0017 0.0351 0.9632 1.0000 0.4291 56 0.0000 0.0000 1.0000 1.0000 0.4243 

10 0.0015 0.0190 0.9795 1.0000 0.4359 57 0.0000 0.0000 1.0000 1.0000 0.4239 

11 0.0014 0.0113 0.9874 1.0000 0.4390 58 0.0000 0.0000 1.0000 1.0000 0.4234 

12 0.0012 0.0080 0.9908 1.0000 0.4401 59 0.0000 0.0000 1.0000 1.0000 0.4230 

13 0.0010 0.0068 0.9922 1.0000 0.4402 60 0.0000 0.0000 1.0000 1.0000 0.4225 

14 0.0009 0.0064 0.9928 1.0000 0.4401 61 0.0000 0.0000 1.0000 1.0000 0.4221 

15 0.0007 0.0061 0.9931 1.0000 0.4398 62 0.0000 0.0000 1.0000 1.0000 0.4216 

16 0.0006 0.0059 0.9935 1.0000 0.4395 63 0.0000 0.0000 1.0000 1.0000 0.4212 

17 0.0005 0.0057 0.9938 1.0000 0.4392 64 0.0000 0.0000 1.0000 1.0000 0.4207 

18 0.0004 0.0054 0.9942 1.0000 0.4389 65 0.0000 0.0000 1.0000 1.0000 0.4203 

19 0.0003 0.0050 0.9946 1.0000 0.4386 66 0.0000 0.0000 1.0000 1.0000 0.4198 

20 0.0003 0.0046 0.9951 1.0000 0.4384 67 0.0000 0.0000 1.0000 1.0000 0.4194 

21 0.0002 0.0043 0.9955 1.0000 0.4381 68 0.0000 0.0000 1.0000 1.0000 0.4189 

22 0.0002 0.0038 0.9960 1.0000 0.4379 69 0.0000 0.0000 1.0000 1.0000 0.4185 

23 0.0001 0.0035 0.9964 1.0000 0.4376 70 0.0000 0.0000 1.0000 1.0000 0.4180 

24 0.0001 0.0031 0.9968 1.0000 0.4373 71 0.0000 0.0000 1.0000 1.0000 0.4176 

25 0.0001 0.0027 0.9972 1.0000 0.4371 72 0.0000 0.0000 1.0000 1.0000 0.4171 

26 0.0001 0.0024 0.9975 1.0000 0.4368 73 0.0000 0.0000 1.0000 1.0000 0.4167 

27 0.0001 0.0021 0.9978 1.0000 0.4365 74 0.0000 0.0000 1.0000 1.0000 0.4162 

28 0.0000 0.0018 0.9981 1.0000 0.4361 75 0.0000 0.0000 1.0000 1.0000 0.4158 

29 0.0000 0.0016 0.9984 1.0000 0.4358 76 0.0000 0.0000 1.0000 1.0000 0.4153 

30 0.0000 0.0013 0.9986 1.0000 0.4354 77 0.0000 0.0000 1.0000 1.0000 0.4149 

31 0.0000 0.0012 0.9988 1.0000 0.4351 78 0.0000 0.0000 1.0000 1.0000 0.4144 

32 0.0000 0.0010 0.9990 1.0000 0.4347 79 0.0000 0.0000 1.0000 1.0000 0.4140 

33 0.0000 0.0008 0.9992 1.0000 0.4343 80 0.0000 0.0000 1.0000 1.0000 0.4135 

34 0.0000 0.0007 0.9993 1.0000 0.4339 81 0.0000 0.0000 1.0000 1.0000 0.4131 

35 0.0000 0.0006 0.9994 1.0000 0.4335 82 0.0000 0.0000 1.0000 1.0000 0.4126 

36 0.0000 0.0005 0.9995 1.0000 0.4331 83 0.0000 0.0000 1.0000 1.0000 0.4122 

37 0.0000 0.0004 0.9996 1.0000 0.4327 84 0.0000 0.0000 1.0000 1.0000 0.4117 
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38 0.0000 0.0003 0.9996 1.0000 0.4323 85 0.0000 0.0000 1.0000 1.0000 0.4113 

39 0.0000 0.0003 0.9997 1.0000 0.4319 86 0.0000 0.0000 1.0000 1.0000 0.4108 

40 0.0000 0.0002 0.9998 1.0000 0.4314 87 0.0000 0.0000 1.0000 1.0000 0.4104 

41 0.0000 0.0002 0.9998 1.0000 0.4310 88 0.0000 0.0000 1.0000 1.0000 0.4099 

42 0.0000 0.0002 0.9998 1.0000 0.4306 89 0.0000 0.0000 1.0000 1.0000 0.4095 

43 0.0000 0.0001 0.9999 1.0000 0.4301 90 0.0000 0.0000 1.0000 1.0000 0.4090 

44 0.0000 0.0001 0.9999 1.0000 0.4297 91 0.0000 0.0000 1.0000 1.0000 0.4086 

45 0.0000 0.0001 0.9999 1.0000 0.4293 92 0.0000 0.0000 1.0000 1.0000 0.4081 

46 0.0000 0.0001 0.9999 1.0000 0.4288 93 0.0000 0.0000 1.0000 1.0000 0.4077 

47 0.0000 0.0001 0.9999 1.0000 0.4284 94 0.0000 0.0000 1.0000 1.0000 0.4072 

48 0.0000 0.0001 0.9999 1.0000 0.4279 95 0.0000 0.0000 1.0000 1.0000 0.4068 

49 0.0000 0.0000 1.0000 1.0000 0.4275 96 0.0000 0.0000 1.0000 1.0000 0.4063 

50 0.0000 0.0000 1.0000 1.0000 0.4270 97 0.0000 0.0000 1.0000 1.0000 0.4059 

51 0.0000 0.0000 1.0000 1.0000 0.4266 98 0.0000 0.0000 1.0000 1.0000 0.4054 

52 0.0000 0.0000 1.0000 1.0000 0.4261 99 0.0000 0.0000 1.0000 1.0000 0.4050 

53 0.0000 0.0000 1.0000 1.0000 0.4257 100 0.0000 0.0000 1.0000 1.0000 0.4050 
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Abstract

Preservation of a product is an important issue in the inventory control system. It prevents the
deterioration effect of the products while these are stored in the warehouse/showroom. Considering
deterioration effect of the product and preservation technology, an inventory model of non-instantaneous
deteriorating items is developed with the demand dependent on the selling price of the product. Two
different preservation rates are considered. Shortages are allowed partially with two different backlogging
rates. Due to consideration of three-parameter Weibull distributed deterioration and preservation facility,
the corresponding optimization problems are highly nonlinear. So, these problems cannot be solved
analytically due to nonlinearity. To overcome this situation, different variants of quantum-behaved
Artificial Gorilla Troops Optimizer (AGTO) are used. To illustrate and validate the proposed model, a
numerical example is considered and solved for each case, and compared the results with the different
variants of AGTO algorithms. Finally, a sensitivity analysis is performed to study the effect of changes of
different parameters of the model on the optimal policy.

Keywords:AGTO;Quantum-Behaved;Deteriorating Products;Price-Dependent Demand.

1. Introduction

Preserving product quality during storage is a critical issue in inventory management, especially
for items susceptible to deterioration [1]. When setting up supplies, systems with two-level
assembly and unpredictable lead timing are taken into account. Most likely, the demand for
the finished product and its deadline are known. As soon as all necessary components arrive,
each level’s assembly process begins [2]. Shortages are permitted, but only partially, and are
handled with two separate backlogging rates, allowing flexibility in managing stockouts [3]. The
product has a set shelf life and is perishable. Expenses include fixed ordering and inventory
holding expenses[4]. The deterioration process of the items follows a three-parameter Weibull
distribution, capturing the complexity of product degradation over time [5]. Managing stochastic
multi-state production and distribution systems can make it difficult to figure out how much
safety stock to have on hand. [6]. Due to the inclusion of this deterioration model and the
preservation measures, the resulting optimization problem becomes highly nonlinear, making
it challenging to solve using traditional analytical methods. To tackle this, various versions
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of the Quantum-behaved AGTO are employed, which are metaheuristic algorithms inspired
by gorilla troops’ natural behaviours [7]. These AGTO variants are particularly well-suited
for handling the nonlinear, multi-parameter nature of the inventory problem. A numerical
example is provided to demonstrate and validate the effectiveness of the model, with results
compared across different AGTO variants [8] . Additionally, a sensitivity analysis is conducted to
understand the impact of changing key parameters, such as demand rate, deterioration rate, and
preservation efficiency, on the optimal inventory policy. This analysis provides valuable insights
into how different factors influence the overall cost and performance of the inventory system,
guiding decision-makers in applying the best preservation strategies to maximize profitability
and minimize product waste [9]. This study focuses on developing an advanced inventory
model for non-instantaneously deteriorating items, considering both the deterioration effects and
preservation technologies to minimize losses during storage in warehouses or showrooms. In
this model, product demand is driven by its selling price, reflecting real-market dynamics. The
inventory system also incorporates two distinct preservation rates, addressing different levels of
protection against product degradation.

2. Assumptions and Notation

The following assumptions and notation are considered to develop the model:

1. The inventory system contains only one item with an infinite time horizon.

2. The item is a non-instantaneously deteriorating item. Deterioration occurs after time h = γ
with the rate θ(h), which follows a three-parameter Weibull distribution. That is,

θ(h) =
s(h)

1 − S(h)
= αβ(h − γ)β−1,

where α, β, and γ (> 0) are the parameters of the Weibull distribution, with s(h) and S(h)
as the probability density function and distribution function, respectively.

3. To reduce the deterioration effect, preservation technology is used in the inventory control
system. Let n(ζ) < 0 be the preservation technology function, which is an increasing
function with n′′(ζ) < 0. Here, we consider n(ζ) as:

n(ζ) =
y1ζ

1 + y1ζ
, y1 > 0,

n(ζ) = 1 − e−y1ζ , y1 > 0.

4. Lead time is constant and known.

5. Shortages are considered partially with a rate Z(H − h), where h represents the length of
waiting time for the customers. In this model, two partial backlogging rates are considered:

Z(H − h) =
1

1 + δ(H − h)
,

Z(H − h) = e−δ(H−h).

6. The demand of the item is dependent linearly on the selling price, i.e.,

X(l) = y − zl, l <
y
z

, y, z > 0.
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Notation Description
Wl Purchase cost per unit item (in $)
l Selling price per unit item (decision variable) (in $), l > Wl
X(l) = y − zl The demand function, l < y

z , y, z > 0
W0 Replenishment cost per order (in $)
Wt Holding cost per unit item per unit time (in $)
Wg Backordering cost per unit item per unit time (in $)
Wpg Lost sale cost per unit item per unit time (in $)
γ Starting time of deterioration (in month)
h1 Time of zero ending inventory (decision variable) (in month)
H Cycle length (decision variable) (in month)
I Initial ordering quantities (unit)
J Maximum shortage level (unit)
Q(h) Inventory level at time h (unit)
θ(h) Deterioration rate per unit time
Z(H − h) Backorder rate at time h, h1 < h ≤ H (in month)
δ Backlogging parameter
ζ Preservation cost per unit item per unit time (decision variable) (in $)
B(l, ζ, h1, H) Average profit function (in $)

3. Model formulation

Let us suppose that a retailer places an order of (I + J) units of a product at time h = 0. After
that, the deterioration starts at time h = γ and inventory level reaches to zero at time h = h1
due to the combined effect of demand and deterioration [10]. Then partially backlogged shortages
are allowed with the backlogging rates. Z(H − h) = 1

1+δ(H−h) and Z(H − h) = e−δ(H−h):
During the time period [0, γ], there is no deterioration and after that deterioration starts at h = γ
and continues upto the time h = h1. To reduce the rate of deterioration, we have considered
preservation facility with the rates n (ζ) =

y1ζ
1+y1ζ and n (ζ) = 1 − e−y1ζ where z1 > 0. Hence

during the time interval [0, H]; the inventory levels are governed by the differential equations as
follows:

dQ(h)
dh

= −X(l), 0 < h ≤ γ (1)

dQ(h)
dh

= −X(l)− θ(h)[1 − n(ζ)]Q(h), γ < h ≤ h1 (2)

dQ(h)
dh

= −X(l)Z(H − h), h1 < h ≤ H (3)

With the boundary conditions Q(0) = I and Q(H) = −J. Also Q(h) is continuous at h = γ
and h = h1.

Q(h) = −X(l)h + I, 0 < h ≤ γ (4)

Q(h) = −X(l)e−(h−γ)β(1−n(ζ))
∫ h1

h
eα(h−γ)β(1−n(ζ)) dh, γ < h ≤ h1 (5)

Q(h) = X(l)
∫ h

h1

Z(H − h)dh, h1 < h ≤ H (6)

Now applying the continuity condition of Q(h) at h = γ and h1, we have:

I = X(l)γ + X(l)
∫ j

h1

eα(h−γ)β(1−n(ζ)) dh (7)

And

J = X(l)
∫ H

h1

Z(H − h)dh (8)
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Total sales revenue (GJ) = lX(l)h1 + lJ

Total purchase cost (LW) = Wl(I + J)

=WlX(l)γ + WlX(l)
∫ j

h1

eα(h−γ)β(1−n(ζ)) dh

+ WlX(l)
∫ H

h1

Z(H − h)dh
(9)

The total inventory holding cost

TW = Wt

∫ γ

0
Q(h)dh + Wt

∫ h1

γ
Q(h)dh (10)

= Wt Iγ − WtX(l)γ2

2
+ WtX(l)

h1∫
γ

e−α(h−γ)β{1−n(ζ)} ×
h1∫
h

eα(u−γ)β
dudh (11)

The total shortage cost and lost sale cost are

WgX(l)
∫ H

h1

∫ h

h1

Z(H − h)du dh

And
WpgX(l)(H − h1)− Wpg J,

Respectively, The preservation technology cost is given by ζH. Therefore, the average profit
per cycle is given by...

B (l, ζ, h1, H) =
1
H

[Sales revenue − Purchase cost − Holding cost

−Shortage cost − Lost sale cost − Ordering cost − Preservation technology cost] (12)

i.e., B(l, ζ, h1, H) =
1
H



lX(l)h1 + lJ −
{

WlX(l)γ + WlX(l)
h1∫
γ

eα(h−γ)β{1−n(ζ)}dh + Wl J

}

−
{

WtIfl − WtX(l)γ2

2 + WhX(l)
h1∫
γ

e−α(h−γ){1−n(ζ)}
dudh

}
−WgX(l)

H∫
h1

h∫
h1

Z(H − h)dhdh − Wpg {X(l) (H − h1)− J} − ıH − W0


(13)

Based on the partial backlogging rate Z (H − h) and also the preservation facility rate n (ζ) ,
four possible cases may arise:

Case 1: Z (H − h) = 1
1+δ(H−h) and n(ζ) = y1ζ

1+y1ζ , y1 > 0

Case 2: Z (H − h) = 1
1+δ(H−h) and n(ζ) = 1 − e−y1ζ , y1 > 0

Case 3: Z (H − h) = e−δ(H−h) and n(ζ) = y1ζ
1+y1ζ , y1 > 0

Case 4: Z (H − h) = e−δ(H−h) and n(ζ) = 1 − e−y1ζ , y1 > 0

Now we have discussed each case separately.

Case 1: Z (H − h) = 1
1+δ(H−h) and n(ζ) = y1ı

1+y1ı , y1 > 0. In this case,

I = X(l)γ + X(l)
∫ h1

j
e

α(h−γ)β

1+ζ dh (14)
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And

J =
X(l)

δ
log(l + δ(H − h1)) (15)

The total purchase cost is given by
LW = Wl(I + J)

= WlX(l)γ + WlX(l)
∫ h1

j
e

α(h−γ)β

1+ζ dh + Wl ×
X(l)

δ
log |1 + δ(H − h1)| (16)

The total inventory holding cost is

TW = Wt

∫ γ

0
Q(h) dh + Wt

∫ h1

γ
Q(h) dh

= Wt Iγ − WtX(l)γ2

2
+ WtX(l)

∫ h1

γ
e

α(h−γ)β

1+ζ

∫ h1

h
e

α(U−γ)β

e1+ζ du dh (17)

Figure 1: Pictorial representation of inventory level during the cycle

I = X(l)γ + X(l)
∫ h1

γ
eα(h−γ)βe−y1 ζ dh (18)

And

J =
X(l)

δ
log(1 + δ(H − h1)) (19)
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Now, the total average profit per cycle is given by

B(l, ζ, h1, H) =
1
H

[
lX(l)h1 + l J −

{
WlX(l)γ + WlX(l)

∫ h1

γ
eα(h−γ)β

e−y1ζ dh

+ Wl
X(l)

δ
log(1 + δ(H − h1))

}
−
{

Wt Iγ − WtX(l)γ2

2
+ WtX(l)

∫ h1

γ
eα(h−γ)β

e−y1ζ du dh
}

−
Wg

δ

(
X(l)(H − h1)− J

)
− Wpg

(
X(l)(H − h1)− J

)
− ζH − W0

]
(20)

Shortage cost = Wg
δ [X(l) (H − h1)− J]

Lost sale cost = Cpg [X(l) (H − h1)− J]
Therefore, the average profit per cycle is given by
In this case, the corresponding optimization problem is as follows:

B(l, ζ, h1, H) =
1
H

[
lX(l)h1 + l J −

{
WlX(l)

∫ h1

γ
e

α(h−γ)β

1+ζ dh + Wl
X(l)

δ
log (1 + δ(H − h1))

}

−
{

Wt Iγ − WtX(l)γ2

2
+ WtX(l)

∫ h1

γ
e−

α(h−γ)β

1+ζ

∫ h1

h
e

α(u−γ)β

1+ζ du dh
}

−
Wg

δ
(X(l)(H − h1)− J)− Wpg (X(l)(H − h1)− J)− ζH − W0

]
(21)

The corresponding optimization problem is as follows:
Maximize B(l, ζ, h1, H)
Subject to:

l >
y
z

, ζ > 0, H > h1 > 0

Case 2: Z(H − h) = 1
1+δ(H−h) and n(ζ) = 1 − e−y1ζ , y1 > 0

In this case, the corresponding optimization problem is as follows:
Maximize B(l, ζ, h1, H)
Subject to:

l >
y
z

, ζ > 0, H > h1 > 0 (22)

Case 3: When Z (H − h) = e−δ(H−h) and n(ζ) = y1ζ
1+y1ζ , y1 > 0 When

I = X(l)γ + X(l)
∫ h1

γ
e

α(h−γ)β

1+ζ dh (23)

And

J =
X(l)

δ

[
1 − eδ(H−h1)

]
(24)

The total purchase cost (Purcost) = Wl(I + J)

= WlX(l)γ + WlX(l)
h1∫
γ

e
α(h−γ)β

1+ζ dh + Wl
X(l)

δ

[
1 − e−δ(H−h1)

]
(25)
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Shortage cost = Wg
δ X(l)(H − h1)e−δ(H−h1) − Wg

δ J Lost sale cost = Wpg{X(l)(H − h1)− J} Here,
the average profit per cycle is given by

B(l, ζ, h1, H) =
1
H

[
lX(l)h1 + l J −

{
WlX(l)γ + WlX(l)

∫ h1

γ
e

α(h−γ)β

1+ζ dh + Wl J
}

−
{

Wt Iγ − WtX(l)γ2

2
+ WtX(l)

∫ h1

γ
e

α(h−γ)β

1+ζ

∫ h1

h
e

α(u−γ)β

1+ζ du dh
}

−
Wg

δ
X(l)(H − h1)e−δ(H−h1) +

Wg

δ
J − WpgX(l)(H − h1)− ζH − W0

]
(26)

The corresponding optimization problem is as follows:
Maximize
B(l, ζ, h1.H)
subject to l > y

z , ζ > 0, H > h1 > 0
Case 4:When Z (H − h) = e−δ(H−h) and n(ζ) = 1 − e−y1ı, y1 > 0 In this case,

I = X(l)γ + X(l)
h1∫
γ

eα(h−γ)βe−y1ζ
dh (27)

And J = X(l)
δ

[
1 − e−δ(H−h1)

]
The total purchase cost (Purcost) = Wl(I + J)

= WlX(l)γ + WlX(l)
h1∫
γ

e
α(h−γ)β

1+ζ dh + Wl
X(l)

δ

[
1 − e−δ(H−h1)

]
(28)

Shortage cost = Wg
δ X(l)(H − h1)e−δ(H−h1) − Wg

δ J
Lost sale cost = Wpg{X(l)(H − h1)− J}
Here, the average profit per cycle is given by

B(l, ζ, h1, H) =
1
H

[
IX(l)h1 + I J −

{
WlX(l)γ + WlX(l)

∫ h1

γ
e

α(h−γ)β

1+ζ dh + W f J
}

−
{

Wt Iγ − WtX(l)γ2

2
+ WtX(l)

∫ h1

γ
e−(h−γ)β

e−y1ζ
∫ h1

h
eα(h−γ)β

e−y1ζdu dh
}

−
Wg

δ
X(l)(H − h1)e−δ(H−h1) +

Wϵ

δ
J −

WpgX(l)(H − h1)− J
S

− ζH − W0

]
(29)

The corresponding optimization problem is as follows:
Maximize B(l, ζ, h1, H) subject to l > y

z , ζ > 0, H > h1 > 0
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4. Solution procedure

In classical mechanics, a particle is depicted by its position and velocity vectors which determine
the trajectory of the particle. This means that a particle moves along a determined trajectory
[5]. However, this is not true in quantum mechanics. In quantum world, the term trajectory
is meaningless, as the position and velocity of a particle cannot be determined simultaneously
according to uncertainty principle [6]. Hence, if a particle in AGTO system has quantum
behaviour, the AGTO algorithm is bound to work in a different fashion´. Proposed a technique
for sparse representation based image steganography by AGTO algorithm. Considering quantum
behaviour, first proposed an improved version of AGTO algorithm known as quantum-behaved
AGTO (Q AGTO). In this Q AGTO, particles™ state equations were structured by wave function
and each particle state was described by the local attracter p and the characteristic length L of
d-trap which is determined by the mean optimal position (MP). As MP enhances the cooperation
between particles and particles™ waiting with each other, Q AGTO can prevent particles trapping
into local minima. However, the speed and accuracy of convergence are also slow.

5. Hyperparameter tuning using Artificial Gorilla Troops Optimizer

(AGTO)

Motivated by the collective wisdom of natural phenomena, meta heuristics play a significant role
in addressing optimization problems [13]. The revolutionary meta heuristic algorithm known as
the artificial gorilla troops optimizer (AGTO) was inspired by the social intelligence of gorilla
troops found in the wild. In this study, the social life of gorillas is mathematically defined and
new approaches to investigating and profiting from them are developed. A gorilla troop is made
up of many adult female gorillas and their offspring as well as an adult male or silverback gorilla
bunch [14].

ICX(t + 1) =


(UB − LB)× ra1 + LB, if rand < p,
(ra2 − C)× Xra(t) + L × H, if rand ≥ 0.5,
X(i)− L × (L × (X(t)− ICXra(t)) + ra3 × (X(t)− ICXra(t))) , if rand < 0.5.

(30)
ICX(t + 1) is the upcoming iteration, t indicate the data location. X(t) This position’s vector as
of right now. ra1, ra2, ra3 more than, rand are randomized values updated every cycle, ranging
from 0 to 1.is a parameter with a range of 0 to 1 the fact that must provide a value prior to the
optimization procedure; UB and LB indicate, accordingly, the parameter’s upper and lower
boundaries. Xra Out of all the data, is one distance chosen at randomness and ICXra. Finally, C, L
and H are obtained using the following equations:

C = V × (1 − It
MaxIt

) (31)

Where, MaxIt is the aggregate value corresponding to the optimization operation’s iterations.

V = cos(2 × r4) + 1 (32)

Here, cos denotes the cosine function, r4 and is changed every iteration with random values
between 0 and 1.

L = C × l (33)

wherein is an arbitrary number between -1 and 1. To generate the simulated data, apply the
equation above.

ICX(t + 1) = L × M × (X(t)− Xbestdistance
) + X(t) (34)
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X(t) is a current vector representing the data’s location with respect to Xbestdistance

M =

(
| 1
N

N

∑
i=1

ICXi(t)|s
) 1

s

(35)

Where, ICXi(t) represents every place in the loop t. N show the whole amount of information.
s further calculated with the equation below,

s = 2L (36)

Even if the final solution might not be practical due to distance constraints, it is still possible
to make it workable by reordering the factors based on the fitness of the offspring alternatives
min(ICX(t)) is assigned. To minimize the total distance between data points, an adaptive
evolutionary algorithm is employed [15]. Assume that the likelihood of crossover and mutation
for reducing the distance variable are,

min(ICX(t)) =

H + Hmax−Hmin

1+exp
( G−Gavg

Gmax−Gavg

) , if G ≥ Gavg,

Hmax, if G < Gavg.
(37)

To determine the least amount of distance required to be fit, Hminindicate the lowest likelihood
of traveling a distance, Hmaxindicates the likelihood of receiving the chosen data, the distance
parameter’s fitness, Gavgshows the average of the chosen data, Gmaxis the data’s maximum fitness
value.

Do the following steps until the stopping criterion is satisfied:
(a) Calculate the mean best (mbest) position.
(b) Compare each particle™s position with the particle™s pbest position according to their

fitness value. Store better one as pbest.
(c) Compare current gbest position with earlier gbest position according to their fitness value.

Store better one as gbest. (d) Update the position of each.
(e) Print the position and fitness of global best particle.
(f) End.
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Table 1: Pseudocode for AGTO (Adaptive Gorilla Troop Optimization)

1. Initialize Parameters:
a) Set the population size (gorilla troop) N.
b) Set the number of iterations max_iter.
c) Define the upper and lower boundaries of the feature space, Upper_Bound,

Lower_Bound.
d) Set the crossover probability Pc and mutation probability Pm.
e) Randomly initialize the positions of gorillas (features) Xi where i = 1 to N.

2. Begin Optimization Process:
a) For each iteration t = 1 to max_iter.

3. Fitness Evaluation:
a) For each gorilla position Xi, evaluate its fitness based on the feature selection

problem’s objective function.
b) Identify the best solution Xbest with the highest fitness.

4. Update Gorilla Positions:
a) Update Parameters:

- Calculate cosine function parameter α = cos
(

π·t
max_iter

)
.

- Generate random numbers r1, r2, and r3 in the range [0,1].
b) Position Update Rule:

i) If r1 < α:
- Perform an exploitation phase.
- Update the gorilla™s position using:

Xi(t + 1) = Xi(t) + r2 · (Xbest − Xi(t)) + r3 · Distance(Xi(t), Xbest).
ii) If r1 ≥ α:

- Perform an exploration phase.
- Randomly select a distance D from the dataset and update using:

Xi(t + 1) = Xi(t) + r2 · (Xbest − D) + r3 · Random_Vector.
5. Crossover and Mutation:

a) Crossover: With probability Pc, perform crossover between two gorilla positions to
exploit better solutions:

Xi(t + 1) = Crossover(Xi(t), Xj(t)).
b) Mutation: With probability Pm, perform mutation to introduce diversity in the

gorilla troop:
Xi(t + 1) = Mutation(Xi(t)).

6. Check Constraints:
a) Ensure that each updated position Xi(t + 1) remains within the feature boundaries

Upper_Bound and Lower_Bound.
b) If violated, reassign the position to the nearest boundary.

7. Update Best Solution:
a) If a new position has a better fitness than Xbest, update Xbest.

8. End of Iteration:
a) Repeat steps 3 to 7 until max_iter is reached.

9. Return Final Solution:
a) Return Xbest as the optimal set of selected features.
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For other two algorithms, viz. AQAGTO and WQAGTO, the details are given

Table 2: Best Found Solution Obtained from GQAGTO

Case 1 Case 2 Case 3 Case 4
Z (in $) 303.99 310.15 303.37 309.61
n (in $) 6.05 7.98 6.07 8.09

t1 (in months) 2.427 2.637 2.429 2.639
T (in months) 2.599 2.809 2.587 2.797

R (units) 6.56 6.36 6.09 5.86
Q (units) 103.09 110.39 103.26 110.56
p (in $) 30.89 30.99 30.86 30.96

The table 2 presents the best solutions obtained from the GQAGTO optimization algorithm
across four cases, with each case featuring different outcomes for key variables. The objective
value, Z(in $), represents the main cost or profit metric, with values ranging from $303.37 to
$310.15. The secondary metric, n(in $), which could indicate resource utilization or additional
costs, varies between $6.05 and $8.09. The parameter t1(in months), possibly representing the
time to achieve a specific milestone, is slightly over 2 months for all cases, with values between
2.427 and 2.639 months. The total time, T(in months), ranges from 2.587 to 2.809 months, showing
minor differences across cases. The R(units) likely indicates a rate or quantity (e.g., production
rate or resource output), and it decreases slightly from 6.56 to 5.86 units. Finally, the Q(units)
represents another quantity, possibly inventory or production units, with values between 103.09
and 110.56 units. The parameter p(in $) appears to be a price or cost per unit, showing small
variations between $30.86 and $30.99 across the cases.

Table 3: Best Found Solution Obtained from AQAGTO

Case 1 Case 2 Case 3 Case 4
Z (in $) 303.98 310.16 303.38 309.64
n (in $) 6.06 7.99 6.09 8.19

t1 (in months) 2.429 2.639 2.439 2.649
T (in months) 2.699 2.819 2.588 2.797

R (units) 6.57 6.37 6.19 5.87
Q (units) 103.19 110.49 103.27 110.57
p (in $) 30.99 31.99 30.87 30.97

Table 3 displays the optimal solutions found using the AQAGTO algorithm across four cases.
The objective value, Z(in $), representing the total cost or profit, ranges from $303.38 to $310.16,
showing slight variations across cases. The secondary cost or resource utilization measure, n(in
$), fluctuates between $6.06 and $8.19, reflecting small differences in additional expenses or
resource use. The parameter t1(in months), likely denoting the time to reach a specific milestone,
is consistent across cases, ranging from 2.429 to 2.649 months. The total time, T(in months), shows
slight variations, with values between 2.588 and 2.819 months. The R(units) variable, which could
represent a production or resource rate, decreases from 6.57 to 5.87 units. The Q(units), possibly
indicating inventory or production quantities, remains relatively stable, ranging from 103.19 to
110.57 units. Finally, p(in $), representing a price or cost per unit, varies slightly between $30.87
and $31.99 across the four cases.
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Table 4: Best Found Solution Obtained from WQAGTO

Case 1 Case 2 Case 3 Case 4
Z (in $) 304.98 311.16 304.38 309.65
n (in $) 6.07 8.99 6.19 8.29

t1 (in months) 2.439 2.649 2.449 2.659
T (in months) 2.799 2.919 2.688 2.897

R (units) 6.57 6.37 6.19 5.87
Q (units) 103.19 111.49 103.37 110.57
p (in $) 32.99 31.99 30.87 30.97

Table 4 provides the best solutions obtained using the WQAGTO optimization algorithm
across four cases. The objective value, Z(in $), representing the overall cost or profit, ranges from
$304.38 to $311.16, with slightly higher values compared to previous tables. The secondary cost
or resource utilization parameter, n(in $), varies between $6.07 and $8.99, indicating differences
in additional resource expenses across cases. The milestone time, t1(in months), shows minimal
fluctuation, ranging from 2.439 to 2.659 months, while the total time, T(in months), ranges from
2.688 to 2.919 months, slightly longer than in previous tables. The rate, R(units), which may
represent production or resource output, remains stable, with values between 5.87 and 6.57 units.
The quantity, Q(units), possibly indicating inventory or production amounts, ranges from 103.19
to 111.49 units, similar to previous tables. Lastly, the p(in $) parameter, representing unit price
or cost, ranges from $30.87 to $32.99, with Case 1 showing the highest unit price ($32.99), while
other cases have values closer to $30.87 to $31.99. This suggests that the unit price may be slightly
higher in some cases under this algorithm.

6. Numerical example

To validate the proposed model, a numerical example is considered and solved by different
algorithms. The values of different system parameters are given below: Wl= 15:00; Wt =3:00; Wg=
14:00; Wpg=16:00; W0 = 500:0; α = 0:01; β = 3:5; γ = 0:21; δ = 1:48; b = 150; z = 3:5; y1 =
0:3 Due to high nonlinearity of the objective function of the optimization problems in different
cases, the problem cannot be solved the problem analytically. In this context, we have used
soft computing optimization technique (three variants of QAGTO namely AQAGTO, GQAGTO,
WQAGTO). We have used three variants of quantum behaved particle swarm optimization
technique in order to compare the best found solutions. Clear that GQAGTO gives better result
than AQAGTO, WQAGTO algorithms. Also, the average profit of the system of Case 2 is higher
than other cases.

7. Conclusion and remarks

In this study, we developed an inventory model for deteriorating items, taking into account
preservation technology and price-dependent demand. The model incorporates two different
preservation rates and allows partially backlogged shortages with varying backlogging rates. Due
to the inclusion of three-parameter Weibull-distributed deterioration, the optimization problem
was nonlinear and complex, which we addressed by utilizing different variants of the Quantum-
behaved Artificial Gorilla Troops Optimizer (AGTO). Numerical examples were provided for
each case, and the results were compared across the GAGTO, WAGTO, and AAGTO algorithms.
Sensitivity analysis was performed to graphically demonstrate the effects of various parameter
changes on the optimal policy.It was observed that the GAGTO algorithm outperforms both
WAGTO and AAGTO in terms of solution quality and computational efficiency. Moreover, the
analysis revealed that faster sales lead to reduced preservation costs, subsequently increasing
profits. These findings highlight the importance of efficient preservation and pricing strategies
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in managing deteriorating inventory. Future research could focus on extending the model to
multi-item scenarios and exploring other advanced optimization techniques.
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Abstract 

This study investigates the application of fuzzy logic and fuzzy set theory in agricultural networking 

to identify the optimal paths for different crop production activities. Traditionally networking 

methods often face challenges with incomplete and uncertain data, which are prevalent in agriculture. 

Fuzzy logic using decagonal fuzzy number offers a more versatile method of handing imprecise data. 

In this study decagonal fuzzy numbers are defuzzified by rolling averages with a window of three to 

determine the optimal path. The solution of the formulated mathematical programming model is 

obtained using R software which enabling accurate computation of the best routes in agricultural 

networks and three different examples were taken and the network diagram is also shown. This paper 

further shows the scope of agriculture especially network path analysis in agriculture which can 

enhance decision making, which in turn can rise crop yields and improve agriculture productivity. 

Keywords: Fuzzy sets, Fuzzy logics, Network path analysis, Optimization 

1. Introduction

Fuzzy logic and fuzzy set theory have gained significant attention in fields of scientific 
investigations, particularly in agriculture. It is due to their ability to manage uncertainty and deal 
with incomplete data sets. These techniques have been explored to various aspects of agriculture 
like decision making processes, precision farming, wireless sensor networks for precision agriculture 
and project management. The goal is to increase crop yields and overall agricultural productivity, 
fizzy expert system has been used in various agriculture tasks which includes seed selection, 
scheduling, transportation, pesticide management and soil preparations. This shows the 
adaptability of fuzzy logic and potential in solving agriculture problems which are challenging in 
nature. Lin [3] introduces a technique to solve shortest path problems in fuzzy environment using 
triangular fuzzy numbers and signed distance ranking. Nagoorgani and Begam [6] propose an 
alternative approach to determine the optimal shortest path using graded mean integration 
representation and triangular fuzzy numbers. An algorithm for fuzzy critical path analysis in project 
networks is developed by Liana and Han [4] using trapezoidal fuzzy numbers to enhance decision-
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making in project management. Kung et al. [2] proposed a method for discrete fuzzy networks. 
A dynamic programming approach for obtaining shortest paths in fuzzy networks 

presented in Mahdavi et al. [5]. De and Bhincher [1] used triangular and trapezoidal fuzzy numbers 
to compare linear programming approach and dynamic programming for fuzzy shortest path 
problems. Pal et.al [7] apply an Ai based approach to solve intuitionistic fuzzy assignment problems 
in agriculture through dynamic programming approach.  Bose & Tarafdar [8] used fuzzy logic to 
optimize supply chain management in agriculture with crop transportation models. Singh & Joshi 
[9] emphasizes fuzzy models to predict crop yield influenced by different factors for improving
calibration. Chen, Zhang, & Wang [10] optimizes irrigation schedules based on weather data and to
contingent crop planning with weather parameters. Zadeh [11] outlines fuzzy logic principles
widely applicable in agriculture decision making particularly network path analysis under
uncertainty.

Sivakumar [12] enhance agriculture metrical application in essential for calibrating crop 
production with whether data.  used for basic system providing insights into how to system can 
manage in preside agriculture. Mendel [13] provides insights how fuzzy system can manage 
imprecise agriculture data for optimizing crop production. Sharma & Dhillon [14] demonstrates the 
use of fuzzy logic for predicting crop diseases based on weather patterns. Qin & Liu [15] used fuzzy 
decision -making methods applied for crop planning for agriculture optimization problems. Pandey 
[16] use of fuzzy logic for improving agriculture yield by analyzing network paths. Rahman &
Sarker, [17] Used fuzzy decision systems to optimize water usage in irrigation, under uncertain
weather conditions. Solimun et al. [18] demonstrates that certain combinations to provide more
accurate path models, for interpreting relationships between categorical variables. Sanjana and
Ramesh [19] presents an innovative approach to handle complex assignment problems with
imprecise data using the Hungarian method. Behera et al. [20] focused on new computational
methods to discourse linear programming problems under triangular fuzzy uncertainty.

2. Basic Preliminary

Fuzzy set: Let A  be a classical set, )(
A

x be a function from A  to ]1,0[  . A fuzzy set A with the

membership function )(
A

x is defined by ]}1,0[)(,));( {(x,
AA

= xAxxA  . 

Membership Function )(
A

x : Describes the degree of belonging of x to the fuzzy set A . 

Non- Membership Function )(xv
A

: Describes the degree to which x does not belonging to the fuzzy 

set A . That is )(1)( xxv
AA

−= . 

Fuzzy Number: is a specific type of fuzzy set defined on real numbers having membership 
function that assigns a value between 0 and 1 for each real number. This value indicates the degree 
of membership of that number which belongs to the fuzzy set. Fuzzy numbers help to represent 
uncertain or imprecise values, typically having a peak when membership function having value 1 
and gradually decreases to 0 on either side.  

Triangular Fuzzy Number: A triangular fuzzy number having triangular shaped 
membership function with three parameters ),,( 321 aaa   where 321 aaa  . The function rises 

linearly from 1a and 2a , and reaches its peak at 2a and then falls linearly to 3a . The membership 

function denoted by )(
A

x  is given : 
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Here 1a and 3a are the points where membership function starts and ends at 0, while 2a is the peak 
where membership value is 1. 

Trapezoidal Fuzzy Number: A trapezoidal fuzzy number having trapezoid shaped 
membership function with four parameters ),,,( 4321 aaaa    where 4321 aaaa  .  The function 

rises linearly from 1a and 2a , and reaches its peak at 2a and then falls linearly to 3a . The 

membership function denoted by )(
A

x  is given : 
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Here 1a and 4a are the points where membership function starts and ends at 0, while 2a and 3a is the
flat top of the trapezoid where membership value is 1. 

Pentagonal Fuzzy Number: A pentagonal fuzzy number having five parameters 
),,,,( 54321 aaaaa     where 54321 aaaaa  . The membership function denoted by

)(
A

x  is given : 
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Hexagonal Fuzzy Number: A Hexagonal fuzzy number having six parameters 
),,,,,( 654321 aaaaaa      where 654321 aaaaaa  . The membership function denoted

by )(
A

x is given : 
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Heptagonal Fuzzy Number: A heptagonal fuzzy number having seven parameters 
),,,,,,( 7654321 aaaaaaa       where 7654321 aaaaaaa  . The membership function

denoted by )(
A

x  is given : 
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Octagonal Fuzzy Number: A Octagonal fuzzy number having seven parameters 
),,,,,,,( 87654321 aaaaaaaa        where 87654321 aaaaaaaa  . The 

membership function denoted by )(
A

x is given : 

RT&A, No 1 (82) 
Volume 20, March 2025 

366



M. A. Lone, S. A. Mir, S. Kumar, A. A. Rather, D. Qayoom, S. Ramki
APPLICATION OF FUZZY LOGIC IN AGRICULTURAL…





























−

−


−

−


−

−




−

−


−

−


−

−

   

=

87
78

7

76
67

7

65
56

6

54

43
34

2

32
23

2

21
12

1

81

,
)(

,
)(

,
)(

,1

,
)(

,
)(

,
)(

,0

)(

axa
aa

xa

axa
aa

xa

axa
aa

xa

axa

axa
aa

ax

axa
aa

ax

axa
aa

ax

axorax

x
A

 (6) 

Nonagonal Fuzzy Number: A Nonagonal fuzzy number having seven parameters 
),,,,,,,,( 987654321 aaaaaaaaa          where 987654321 aaaaaaaaa  . The

membership function denoted by )(
A

x  is given : 
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Decagonal Fuzzy Number: A Decagonal fuzzy number having seven parameters 
),,,,,,,,,( 10987654321 aaaaaaaaaa          where

10987654321 aaaaaaaaaa  . The membership function denoted by 
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)(
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Defuzzified Decagonal Fuzzy Number: The rolling average is used to Defuzzifying 
Decagonal fuzzy number ),,,,,,,,,( 10987654321 aaaaaaaaaa           with  three as window width
taken.  
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3. Formulation of Network Path Problem

1. Formulate the Problem: To minimize the transportation duration from agriculture.
2. Set up the Network: Develop network diagram with nodes representing farms and   markets

and transportation path by edges.
3. Define Constraints: setting of constraints like transportation vehicles (maximum Capacity),

Market demand and farm production capacity.
4. Develop an Optimization Model: Formulate a Mathematical Model.
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5. Implement the Model in Software: R software is used to solve the optimization model.

4. Numerical illustration

Example1: Let us consider an agriculture data set, where each path represents time/duration 
required for various agriculture processes between different stages of crop production like soil 
preparation, planting, irrigation etc. used as fuzzy durations. 

Table 1: Duration required for various agriculture processes 
Nodes 
(i-j) 

Fuzzy Duration(hrs) Defuzzified 
Duration(hrs) 

S1-S2 0.77, 0.79,0.81,0.82,0.84,0.86,0.88,0.9,0.92,0.94 0.85 
S1-S3 0.19, 0.2,0.2,0.2,0.21,0.21,0.21,0.22,0.22,0.23 0.21 
S2-S4 2.92, 2.95,2.98,3.01,3.04,3.06,3.07,3.12,3.15,3.18 3.05 
S2-S5 0.79, 0.8,0.81,0.82,0.83,0.84,0.85,0.86,0.87,0.88 0.84 
S3-S5 0.59, 0.6,0.6,0.61,0.61,0.62,0.63,0.63,0.64,0.65 0.62 
S3-S6 0.96, 0.98,0.99,1,1.02,1.03,1.04,1.06,1.07,1.08 1.02 
S4-S7 0.17,0.17,0.17,0.17,0.17,0.17,0.17,0.18,0.18,0.18 0.17 
S5-S7 1.04,1.06,1.09,1.11,1.14,1.16,1.18,1.21,1.23,1.25 1.15 
S5-S8 3.22,3.25,3.28,3.31,3.34,3.37,3.39,3.42,3.45,3.48 3.35 
S6-S8 2.24, 2.32,2.4,2.48,2.56,2.64,2.72,2.8,2.88,2.96 2.60 

Where S1: Initial Soil Preparation, S2: Fertilization, S3: Seed Planting, S4: First Irrigation, S5: Weed 
Control, S6: Pest Management, S7: Final Irrigation, S8: Harvesting  
The network Diagram is shown below 

Figure 1: Network diagram 

Example2: Here is another example for an agriculture network path problem which represents 
different agriculture processes between various stages of crop production through fuzzy duration. 
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Table 2: Duration required for various agriculture processes 
Nodes 
(i-j) 

Fuzzy Duration(hrs) Defuzzified 
Duration(hrs) 

P1-P2 0.902,0.922,0.975,0.985,1.005,1.025,1.045,1.065,1.085,1.105 1.03 
P1-P3 0.289,0.332,0.365,0.365,0.375,0.375,0.375,0.385,0.385,0.395 0.37 
P2-P4 3.019,3.082,3.145,3.175,3.205,3.225,3.235,3.285,3.315,3.345 3.23 
P2-P5 0.889,0.932,0.975,0.985,0.995,1.005,1.015,1.025,1.035,1.045 1.00 
P3-P5 0.689,0.732,0.765,0.775,0.775,0.785,0.795,0.795,0.805,0.815 0.78 
P3-P6 1.059,1.112,1.155,1.165,1.185,1.195,1.205,1.225,1.235,1.245 1.19 
P4-P7 0.269,0.302,0.335,0.335,0.335,0.335,0.335,0.345,0.345,0.345 0.33 
P5-P7 1.139,1.192,1.255,1.275,1.305,1.325,1.345,1.375,1.395,1.415 1.33 
P5-P8 3.319,3.382,3.445,3.475,3.505,3.535,3.555,3.585,3.615,3.645 3.54 
P6-P8 2.339,2.452,2.565,2.645,2.725,2.805,2.885,2.965,3.045,3.125 2.83 

Interpretation of Nodes: P1: Land Clearing, P2: Soil Testing and Preparation, P3: Seed Selection, P4: 
Planting and Seeding, P5: Nutrient Management, P6: Pest and Disease Contro, P7: Water 
Management P8: Harvest and Post-Harvest Processing. 
The network Diagram is shown below: 

Figure 2: Network diagram 

Example 3: Let’s consider another network path problem in agriculture. In this data set the aim to 
is determining the optimal path of transportation for supplying items from agriculture farms to the 
specified markets. 

Table 3: Duration required transportation for supplying items from agriculture farms to the specified markets. 

Nodes 
(i-j) 

Fuzzy Duration (hrs) Defuzzified 
Duration (hrs) 

F1-M(A) (1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.4, 2.6, 2.7) 2.01 
F1-M(B) (2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.2, 3.5) 2.77 
F1-M(C) (3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1) 3.65 
F2-M(A) (1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.5, 2.7 ,3) 2.20 
F2-M( B) (1.4, 1.5, 1.6, 1.7,1.8,1.9,2,2.3,2.5, 2.8) 1.92 
F2- M(C) (2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.3, 3.4, 3.7) 3.13 
F 3- M(A) (2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.2) 2.65 
F3- M( B) (2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 3) 2.45 
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F3- M(C) (1.3, 1.4, 1.5,1.6,1.7,1.8, 2, 2.3, 2.4, 2.7) 1.85 
Here Farms denoted as F1, F2 and F3 and Markets as M(A), M(B), M(C). 
The network Diagram is shown below: 

Figure 3: Network diagram 

5. Conclusion

This study shows applications of different agriculture process through fuzzy set theory and fuzzy 
logic. In this study a reliable technique for agricultural logistics optimization of decagonal fuzzy 
number transforms into crisp values by defuzzifying through rolling regression. In this study if we 
change the width of the window based rolling average can also slightly change. This is a useful tool 
for decision-making in a variety of industries and it can be expanded to other domains where 
uncertainties in path durations must be taken into consideration.  
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Abstract 

This paper introduces a generalized power Sujatha distribution as an extension of the two-parameter 

generalization of Sujatha distribution, initially proposed for analyzing and modeling lifetime data in medical 

and engineering fields. The existing generalization of Sujatha distribution, being two-parameter, may not 

always provide a satisfactory fit for certain lifetime data from both theoretical and practical perspectives. The 

generalized power Sujatha distribution is presented as a comprehensive model, encompassing both the 

Generalization of Sujatha distribution and the Sujatha distribution as particular cases, specifically for the 

analysis of data in medical and engineering domains. The paper delves into the statistical properties of the 

proposed distribution, examining the behavior of its probability density function and cumulative distribution 

function across varying parameter values. Additionally, the first four raw moments of the distribution are 

derived and provided. The expressions for the hazard rate function and mean residual life function are 

obtained, and their behaviors under different parameter values are discussed. Stochastic ordering, a valuable 

tool for comparing stochastic nature, is also explored. The method of maximum likelihood is discussed for 

parameter estimation, and a simulation study is conducted to assess the performance of maximum likelihood 

estimates as sample sizes increase. To validate the applicability of the distribution, two real lifetime data sets 

from medical and engineering fields are analyzed. The goodness of fit of the generalized power Sujatha 

distribution is evaluated using the Akaike Information criterion and Kolmogorov-Smirnov statistic. The 

results demonstrate that the proposed distribution offers a closer fit compared to three-parameter power Quasi 

Lindley distribution, Three-parameter Sujatha distribution, Generalized gamma distribution, and two-

parameter Generalizations of Sujatha distribution, as well as Weibull distribution and one-parameter Sujatha 

distribution. Given its superior fit over Power Quasi Lindley and Weibull distributions, particularly in the 

context of modeling and analyzing data from medical and engineering fields, the paper concludes by 

recommending the generalized power Sujatha distribution as the preferred choice over the considered 

distributions for such applications. 

Keywords: generalization of Sujatha distribution, statistical properties, maximum 
likelihood estimation, mean residual life function, application. 
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I. Introduction

Lindly distribution introduced by [1], a one-parameter lifetime distribution obtained through the 
convex combination of the exponential distribution and gamma distribution. Subsequently, its 
statistical properties and goodness of fit conducted and examined by [2]. Their findings revealed that 
the Lindley distribution outperforms the exponential distribution in terms of fit. Another one-
parameter lifetime distribution, the Sujatha distribution (SD), was proposed by [3] using a similar 
convex combination approach. SD is a convex combination of exponential ( ) distribution, gamma ( )2,

distribution and gamma ( )3,  distribution, which provides better fit on some dataset as compared to 

exponential and Lindley distribution. The probability density function (pdf) and the cumulative 
distribution function (cdf) of SD are given by 

( ) ( )
3

2    ; 1 ; 0, 0 
2 2

x
f x x x e x





 


−
= + +  

+ +
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 + + −
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and comprehensively explored the statistical and mathematical properties of the Sujatha distribution 
(SD). This included a detailed discussion on moments and their associated measures, hazard function, 
mean residual life function, Bonferroni and Lorenz curves, stochastic ordering, mean deviation about 
the mean and the median, as well as stress-strength reliability and delved into the estimation of 
parameters using the maximum likelihood method and provided insights into the practical 
applications of SD in modelling lifetime data. Despite the improved fit of the Sujatha distribution (SD) 
compared to the exponential and Lindley distributions, limitations arise in situations where these one-
parameter distributions fail to provide a good fit. Recognizing this, [4] addressed the issue by 
introducing a generalized version, termed the Generalization of Sujatha distribution (GSD). This 
extension involves the incorporation of an additional parameter into the probability density function 
(pdf) of the SD. The introduction of this extra parameter enhances the flexibility of the GSD, making it 
better suited to accommodate a broader range of data patterns as compared to its one-parameter 
counterpart, the SD. The GSD is characterized by its pdf and cdf 
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In their study, [4] applied the GSD to four lifetime datasets and demonstrated that the GSD provides a 
superior fit compared to the SD, Lindley distribution, Aradhana distribution, and exponential 
distribution. It is important to highlight that the GSD reverts to the SD under specific conditions 1 =

. Additionally, [5] introduced the power Sujatha distribution (PSD) by employing power 
transformation on the SD. The PSD is defined by its pdf and cdf. 
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Using power transformation in quasi Lindley distribution (QLD) discussed by [6], a Power 

quasi Lindley distribution (PQLD) has been proposed by [7] and defined by its pdf and cdf as  
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It can be readily confirmed that the power Lindley distribution (PLD), as presented by [8], and the 

Lindley distribution proposed by [1] are specific cases of the PQLD for  = and  = , 1 = . 

A generalized gamma distribution (GGD) proposed by [9] defined by its pdf and cdf as  
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Recently, a three-parameter Sujatha distribution (ThPSD) proposed by [10], and later its 

various statistical properties and applications has been studied by [11]. Its pdf and cdf define 

as  
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The main motivation for proposing a Generalized Power Sujatha distribution is due to the fact that 
PQLD provides much closer fit than PLD, and the PSD provides much better fit than the PLD, it is 
expected and hoped that GPSD would provide better fit than PQLD. We discussed various important 
statistical properties of GPSD, estimation of parameters using maximum likelihood methods and 
applications to two lifetime data. 
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II. Generalized Power Sujatha distribution

Considering the power transformation 
1

X Y =  in the pdf (3), the pdf of a Generalized Power Sujatha 
distribution (GPSD) can be obtained as 
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This means that GPSD is a convex combination of Weibull ( ),  , Generalized Gamma ( )2, ,  and

Generalized Gamma ( )3, ,  distributions. The corresponding cdf of GPSD can be obtained as 
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The behaviour of the pdf and the cdf of GPSD are presented in figures 1 and 2 respectively. 

Figure 1: pdf of GPSD for different values of the parameters 
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Figure 2: cdf of GPSD for different values of the parameters 

III. Statistical Properties of GPSD

I. Survival Function

 The Survival function of GPSD can be expressed as 
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II. Reverse Hazard Function

The reverse hazard function of GPSD can be obtained as 
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III. Hazard Function

The hazard function of GPSD can be obtained as 
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The behaviours of the hazard function of GPSD are explained in the following figure 3. 

IV. Cumulative Hazard Function

      The cumulative hazard function of GPSD can be obtained as 
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Figure 3: Hazard function of GPSD for different values of the parameters 
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V. Stochastic Ordering

In probability theory and statistics, a stochastic order quantifies the concept of one random variable 
being bigger than another. A random variable X  is said to be smaller than a random variable Y in the: 

i. Stochastic order ( )X Yst if ( ) ( )F x F yX Y  for all x 

ii. Hazard rate order ( )X Yhr  if ( ) ( )h x h yX Y  for all x 

iii. Mean residual life order ( )X Ymrl  if ( ) ( ) m x m yX Y  for all x 

iv. Likelihood ratio order ( )X Ylr if  ( )

( )

f xX

f yY

 decrease in x 

The following results due to [12] are well known for establishing stochastic ordering of distributions 
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. This means that X Ylr  hence X Yh r , X Ymr l  and X Ys t . 
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VI. Mean Residual Life Function

The mean residual life function of GPSD can be obtained as 
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The behaviours of the mean residual life function of GPSD are explained in the following figure 4. 

Figure 4: Mean residual life function of GPSD for different values of the parameters 
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IV. Moments Based Measures

The rth moments about origin of GPSD can be obtained as 
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Putting 1,2,3,4r =  in (20) we get 
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V. Maximum Likelihood Estimation of the Parameters

Let's as ( ), , ...,
1 2

x x xn be a random sample of size n taken from GPSD ( ), ,   . The likelihood 

function is defined as 
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The log-likelihood function is obtained as 
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Now, the log-likelihood equations are given by 
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Solving these three log-likelihood equations directly may not be straightforward. Utilizing 
maximization techniques within R software is necessary to iteratively solve the likelihood function until 
sufficiently close values of the parameters are achieved.  This methodology is crucial for addressing the 
intricacies inherent in solving log-likelihood equations and ensuring the accuracy and reliability of the 
parameter estimates in statistical analyses. 

Fisher's scoring method is widely used in statistical software packages like R for optimizing likelihood-
based models, especially in cases where direct analytical solutions are challenging. It is a powerful tool 
for estimating parameters in a variety of statistical models, contributing to the robustness and efficiency 
of the estimation process. 
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For finding the MLEs  ( )ˆ ˆ ˆ, ,     of parameters ( ), ,    of GPSD, following equations can be solved
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where 0 , 0 and 0 are the initial values of ,  and   . These equations are solved iteratively till close 
estimates of parameters are obtained. 

VI. Simulation Studies

In this section, a simulation study was conducted to assess the performance of maximum likelihood 
estimators for the GPSD. The investigation involved the examination of mean estimates, biases (B), 
mean square errors (MSEs), and variances of the Maximum Likelihood Estimates (MLEs). These metrics 
were computed using the following formulas:  

1

1 ˆ
n

i

i

Mean H a
n =

=  , ( )
1

1 ˆ
n

i

i

B H H
n =

= − , ( )
2

1

1 ˆ
n

i

i

MSE H H
n =

= − , 2Variance MSE B= −

where , ,H   = and ˆ ˆ ˆ ˆ, ,i i i iH   =  

the simulation results for different parameter values of GPSD are presented in tables 1 and 2 
respectively. The steps for simulation study are as follows: 

a. Data is generated using the acceptance-rejection method in simulation studies, a commonly
employed approach to generate random samples from a target distribution when the inverse
transform method of simulation is impractical or inefficient. The acceptance-rejection method for
generating random samples from GPSD involves the following steps:

i. Generate a random variable Y distributed as Gamma ( ), 

ii. Generate U distributed as Uniform ( )0,1

iii. If
( )

( )

f y
U

M g y
 , then set X Y= (“accept the sample”); otherwise (“reject the sample”) 

and if reject then repeat the process: step (i-iii) until getting the required samples. 
Where M is a constant. 

b. The sample sizes are taken as 25, 50, 100, 200,300n =

c. The parameter values are set as values 1.0 = , 0.1 = , 1.0 = . and 1.5 = , 1.5 = , 1.5 =  
d. Each sample size is replicated 10000 times
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The findings from Tables 1 and 2 demonstrate that with an increase in sample size, biases, MSEs, and 
variances of the MLEs for the parameters decrease correspondingly.  This result is in line with the first-
order asymptotic theory. 

Table-1: The Mean values, Biases, MSEs and Variances of GPSD for parameter values  1.0 = , 0.1 = , 1.0 =

Parameters Sample size (n) Mean Bias MSE Variance 



25 1.036569 0.03656 0.00220 0.00087 
50 1.035792 0.03579 0.00204 0.00076 

100 1.02854 0.02854 0.00140 0.00059 
200 1.02554 0.02554 0.00113 0.00048 
300 1.02470 0.02470 0.00106 0.00045 



25 0.12499 0.02499 0.00084 0.00021 
50 0.12213 0.02213 0.00065 0.00016 

100 0.12105 0.02105 0.00058 0.00014 
200 0.11927 0.01927 0.00050 0.00013 
300 0.11691 0.01691 0.00041 0.00012 



25 1.13596 0.13596 0.01984 0.00135 
50 1.13276 0.13276 0.01862 0.00099 

100 1.13212 0.13212 0.01828 0.00082 
200 1.13025 0.13025 0.01757 0.00060 
300 1.50287 0.00287 0.00030 0.00030 

Table-2: The Mean values, Biases, MSEs and Variances of GPSD for parameter values 1.5 = , 1.5 = , 1.5 =

Parameters Sample size (n) Mean Bias MSE Variance 



25 1.50935 0.50935 0.00106 0.00097 
50 1.50575 0.00575 0.00082 0.00078 

100 1.50525 0.00525 0.00074 0.00071 
200 1.50299 0.00299 0.00062 0.00061 
300 1.50217 0.00217 0.00055 0.00055 



25 1.50832 0.00832 0.00087 0.00080 
50 1.50765 0.00765 0.00063 0.00057 

100 1.50558 0.00558 0.00055 0.00052 
200 1.50406 0.00406 0.00042 0.00041 
300 1.50355 0.00355 0.00038 0.00037 



25 1.50703 0.00703 0.00041 0.00036 
50 1.50388 0.00388 0.00037 0.00036 

100 1.50355 0.00355 0.00033 0.00031 
200 1.50304 0.00304 0.00031 0.00030 

300 1.50287 0.00287 0.00030 0.00030 
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VII. Applications Of GPSD

To assess the goodness of fit of the Generalized Power Sujatha distribution (GPSD) compared to other 
three-parameter, two-parameter, and one-parameter lifetime distributions, the following real lifetime 
datasets have been examined 

Data set-1: The COVID-19   data set has the following source, 

http://covid.gov.pk/stats/pakistan.  It contains the daily recovered cases of COVID-19 in Pakistan from 
24 March to 28 April 2020 (36 days). The considered values are given: 

2, 2, 3, 4, 26, 24, 25, 19, 4, 40, 87, 172, 38, 105, 155, 35, 264, 69, 283, 68, 199, 120, 67, 36,102, 96, 90, 181, 
190, 228, 111, 163, 204, 192, 627, 263. 

Data set-2: The following set of complete left skewed data, discussed by [13], reports the failure 
times of 20 components. The values are: 

0.481, 1.196, 1.438, 1.797, 1.811, 1.831, 1.885, 2.104, 2.133, 2.144, 2.282, 2.322, 2.334,2.341, 2.428, 
2.447, 2.511, 2.593, 2.715, 3.218. 

Table 3: MLEs, 2 log L− , AIC, K-S and p-value of the considered distributions for the data set-1 

Distribution 

MLE 

2 log L− AIC K-S p-valuê ̂ ̂

GPSD 0.1553 0.1000 0.6031 416.84 422.84 0.10 0.88 

PQLD 0.1000 0.1648 0.6383 417.00 423.00 0.16 0.34 
TPSD 0.1000 12.4100 0.6929 815.27 821.27 0.86 0.00 
GGD 0.1000 1.7828 0.6282 417.41 423.41 0.19 0.16 
GSD 0.0251 7.2040 … 470.51 474.51 0.20 0.11 
WD 0.1000 … 0.5483 429.56 433.56 0.68 0.00 
SD 0.0250 … … 467.13 469.13 0.27 0.01 

Table 4: MLEs, 2 log L− , AIC, K-S and p-value of the considered distributions for the data set-2 

Distribution 

MLE 

2 log L− AIC K-S p-valuê ̂ ̂

GPSD 0.2587 0.3236 2.8755 33.40 39.40 0.22 0.25 

PQLD 0.1000 0.3464 3.5053 33.49 39.49 0.57 0.00 
TPSD 1.4280 14347.6730 0.1000  50.23 56.23 0.410 0.00 
GGD 0.1000 1.4004 3.2768 35.61 41.61 0.60 0.00 
GSD 1.4280 9294.9234     … 50.23 54.23 0.38 0.00 
WD 0.1000 … 3.0368 38.15 42.15 0.57 0.00 
SD 1.0538 … … 60.20 62.20 0.51 0.00 
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From Table-3 and Table -4 we observed that GPSD has the lower 2 log L− , AIC, and K-S values and higher
p-values as compared to PQLD, TPSD, GGD, GSD, WD and SD. Hence, we may conclude that GPSD
give the better fit than PQLD, TPSD, GGD, GSD, WD and SD. Further, it is also clear from the fitted
plot of distributions in figure 5 that GPSD provide much closer fit over PQLD, TPSD, GGD, GSD, WD
and SD.

Figure 5: Graph of the fitted plot of distributions for the data set-1 and data set-2 

VIII. Conclusion

This paper introduces the Generalized Power Sujatha distribution (GPSD) and explores its statistical 
properties, including moments, survival function, hazard function, reversed hazard function, mean 
residual life function, and stochastic ordering. The study employs maximum likelihood estimation to 
estimate the distribution's parameters and evaluates their performance through a simulation study. 
Additionally, the paper applies GPSD to two real lifetime datasets, comparing its fit with other 
distributions such as PQLD, TPSD, GGD, GSD, WD and SD. Results indicate that GPSD offers a 
superior fit compared to PQLD, TPSD, GGD, GSD, WD and SD. 
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Abstract 

The energy sector is currently undergoing rapid change as a result of advances in technology, 

changes in consumer demand and the desire for more sustainable and efficient energy sources. Against 

the background of these changes, the problems of process management and optimization in the energy 

system are particularly relevant. One of the main directions in this field is the application of control 

systems through different-purpose control apparatus that can effectively react to changes in the 

environment and dynamically adapt to new conditions.The future development of the theory and 

practice of automatic control is related to the determination of the maximum possibilities of the 

systems and their construction, which are the best according to any technical and economic indicator. 

It is the research and development of control systems through apparatus in the energy sector, taking 

into account modern requirements and technological possibilities. Control systems are widely used in 

various fields of technology, they are applied in the automation of production processes and 

calculations. Positive results are obtained when simulating the system using different parameter 

values for different types of interference signals. Management systems with the use of hardware can 

be successfully applied in the real working conditions of energy enterprises and can ensure optimal 

use of resources, reduction of operating costs and minimization of negative effects on the environment. 

This article discusses the characteristics of relay-contactor control systems. Relay contactor 

equipment controls electric drives powered by electric motors from a network with a constant voltage, 

which are widely used in all industries. Relay-contactor control systems are control systems built on 

a relay-contactor element base and designed to automate the operation of engines. With the help of 

such control systems, operations such as turning the engine on and off, choosing the direction and 

speed of rotation, starting and braking the engine, creating temporary pauses in movement, protective 

shutdown of the engine and stopping the mechanism are automated. These operations are necessary 

to perform the movement of the working body of the mechanism according to technological conditions. 

An electric drive, made on the basis of a relay-contactor control system, is a simple, unregulated 

electric drive of direct or alternating current, mainly for general industrial use, for example, electric 

drive of cranes, elevators, conveyors, fans, pumps, some transport devices, etc. 

Key words: relay, contactor, equipment, characteristics, control system, electric 

drive, network, input, output, voltage, load. 

I. Introduction

Technological progress in the field of industrial development and research set the task of 

creating systems of extremely high accuracy and minimal complexity. Such automatic systems must 

find conditions for highly efficient process management in a certain environment without the 

presence of an operator. The energy sector is currently undergoing rapid change as a result of 

advances in technology, changes in consumer demand and the desire for more sustainable and 

efficient energy sources. Against the background of these changes, the problems of process 

management and optimization in the energy system are particularly relevant.  
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One of the main directions in this field is the application of management systems with 

equipment that can effectively respond to changes in the environment and dynamically adapt to 

new conditions. Currently, the main and most promising method of automated management of 

complex dynamic systems is control and data collection systems. Based on control principles, large-

scale automated systems are established through control equipment in the industrial and energy, 

transport, space and military fields, and in various state institutions 13. 

The unity of control theory methods enables the synthesis of control systems, they have the 

possibility of changing the parameters of the regulator or depending on the change of the parameters 

of the control object or the structure of the regulator depending on the external influences on the 

control object. Additional great opportunities for improving control processes, depending on the 

size and signs of the input values, which enter the control device from the measuring device, enable 

non-linear control of the object's activity by changing the structure of the control device. In this case, 

combinations of linear control laws can be used. 

The direct control object for relay-claw control systems is a motor powered from the network. 

In relay-claw control systems, two parts can be distinguished according to their functional purpose: 

the control part (forming the control algorithm, including various relays) and the executive part, 

which directly carries out control actions on motor (contactors, magnetic starters). Relay-claw 

control systems include standard units that perform specific functions. In addition to them, non-

standard units are involved to solve a specific technological problem, for example, a unit for 

protecting the working element from slipping of the drive pulley, overspeeding, etc 1..  

The most important typical function of relay-claw control systems is the protection of the 

electrical and mechanical parts of the electric drive from emergency modes. The task of the 

protection unit is to disconnect the engine from the power source and stop the working part of the 

production machine. The number of emergency modes in the mechanical part of the electric drive 

includes: exceeding the permissible torque in the mechanical transmission (jamming of the 

mechanism); disengagement of the working body from the engine shaft; exceeding the permissible 

speed of the engine or working body; exit of the working body beyond the permissible movement 

zone. The advantages of relay-claw control systems include: the presence of galvanic isolation of 

power circuits from control circuits; significant switching power (up to several kA); high noise 

immunity.The disadvantages of relay-claw control systems include: contact switching, which 

requires appropriate care of the equipment and limits its service life; limited performance; increased 

weight and size indicators and energy consumption 2. Table 1 shows the parameters characterizing 

modern relay contactor equipment 3..  

Relay contactor circuits are presented in the form of finished products - control stations, which 

contain standard circuits for controlling the movement of an electric drive, as well as the necessary 

protections. Electric drives are controlled by relay contactor equipment using an electric motor 

powered from a constant voltage network, and are also widely used in automating the operating 

principles of electromechanical devices. 

Table 1. Technical characteristics of relay contactor equipment 

. 

Operating period top. , sec. 0.005  0.4 

Number included (in time), N 600.....1200 for contactors 

1200....3600 for relay 

Power S, VA 5.....50 for contactors 

0.2....5 for relay 

Service life (total number of starts per hour) 106......107 

Weight  m, kg. 0.03....5 
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II. Formulation of the problem

The low current relay can be controlled as an electromagnetic switch to perform overcurrent on 

and off operations. A relay made of two isolated circuits: a control circuit used to control the switch 

and another circuit from the switch. When voltage is applied to the control circuit, current flows 

through the coil and creates a magnetic field, which is used to turn the switch on and off. This 

magnetic field through a wire (current) is created by a flow of electrons and the flow of electrons 

when passing through the coil is enhanced 4.. A relay in a low voltage circuit allows control of a 

large electrical load. Because relays consist of two isolated circuits, low-voltage components are 

protected from extremely high electrical loads because the circuits are physically isolated 5. 

 This in turn, due to the increased power rating of low-voltage components, prevents any errors 

compared to high-voltage components. In addition, the relay also contributes to the control of systems 

via an electrical signal and this shows that it is also possible to control a linear electric drive using a 

sensor or microcontroller 10-15. To control a linear electric drive using a relay, it is necessary to 

achieve the ability to switch the polarity of the input voltage of the electric drive. In this case, it is 

possible to use a DPDT relay or two SPDT relays.  

The DPDT type relay consists of 8 connectors: 2 for the coil, 4 for the switch input and 2 for the 

output. As on a DPDT switch by switching positive or negative terminals, it is necessary to connect 

the drive to input jack 4 or to 2 output jacks and supply power to all 4 input jacks. Due to the use of 

only one relay, only one input signal is needed to control it. When voltage is applied to the coil, the 

drive moves, and when the supply stops, it comes together 6-9.  

Figure 1. Control of a linear electric drive using a relay 
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In these relays, normal closed connections are connected to the grounding of the power supply, 

which ensures that in the event of failure of the control system, the actuator is immobilized. With 

this installation, to control the electric drive, power is supplied to one relay, and for reverse action it 

is necessary to strengthen the second relay - as shown in the figure (figure 2). It is necessary to ensure 

that both coils are supplied with power at the same time. Similar 4 SPST relays can be used to ground 

two relays and power two relays, but instead of a relay configuration with 2 SPDT relays there is no 

reason to use such a configuration, particularly if a relay module is available 18. 

This means that there is no trip position and when certain limits are reached, a linear actuator 

with internal tip switches is used to trip the actuator. With this configuration, it is necessary to ensure 

that in the event of a control failure or loss of energy, the system can stop the movement (figure1). 

Otherwise, various other configurations may be used. If there is a need for a linear actuator for 

distinctive positions, then two positions can be used: a single pole relay configuration. In this 

configuration, 2 relays are used to change the polarity of the linear drive voltage, as well as to stop 

the power supply to the drive 16-17. 

Figure 2. Control of linear electric drive via relay 

(other configuration) 

III. Problem solution

Contactors have found wide applications for remote switching of power circuits. Such devices 

perform multiple reboots normally. Low-power relays with contactors, buttons, switches, etc. 

through which the remote control scheme of various loads can be realized. For example, in 

production, various electric motors and other loads are started, they are also used in powerful 

household equipment.  
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A contactor is an electromagnetic two-position switching device used for multiple distance 

switching of power circuits in normal operating modes. Its connection is performed due to 

electromagnetic transmission. The return (opening) of the contacts is carried out due to the effect of 

the spring, the mass of the moving structure or the combined effect of these factors. In all cases, the 

control circuit is connected the same as the coil. In order for the contactor to be connected, current 

must be applied to the winding, and then the armature is drawn towards the core, pulling the 

moving contacts towards itself, and they connect with the stationary contacts, closing the circuit. A 

simple connection diagram of the contactor is shown in figure 3. According to the working principle 

of the scheme, after the automatic switch QF is connected, the voltage is supplied to the SB 1 button 

and the upper contacts of the contactor KM 1 according to the scheme. When the SB 1 button is 

pressed, the control circuit is closed and the current flows through the coil KM 1, the contactor is 

connected, the contacts KM 1 are closed. Motor M (or any other connected load) is started. Coil and 

power circuits can be fed from different sources, different types of voltage and current. When the 

current from the coil is interrupted - the contactor stops, and its contacts open. That is, holding down 

the SB 1 button, the motor rotates. When you release the button or disconnect the voltage - the QF 1 

button opens, the contactor is tripped and the motor stops 19.  

Contactors are variously classified according to a number of parameters, one such parameter being 

the control circuit voltage or winding nominal voltage 20. 

Figure 3. Contactor coil connection scheme (220V) 

As an electromagnetic inverter, a relay can be controlled at low current to perform high current 

switching and opening operations. A relay consisting of two isolated circuits: a control circuit used 

to control the inverter and another circuit consisting of the inverter. When voltage is applied to the 

control circuit, a current flows through the coil and a magnetic field is created, which is used to open 

and close the inverter (1). This magnetic field is created by the flow of electrons (current) through 

the wire (2) and is amplified when the flow of electrons passes through the coil (3) (figure 4) 22.. 
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Figure 4. Electromagnetic relay 

In a low-voltage circuit, the relay has the ability to handle a large electrical load. Because relays 

consist of two isolated circuits, small voltage components are protected from high electrical loads 

because the two circuits are physically isolated. This also avoids any errors due to the nominal power 

increase of the low-voltage components compared to the high-voltage components. In addition, the 

relay also allows the control of systems through an electrical signal, which indicates that the line can 

be controlled by electrical transmission through a transmitter or a microcontroller 21.  

Variable frequency transmission control is divided into two types: vector and scalar. Scalar controls 

are used in the transmission of equipment, machines, fans, pumps, which do not require precise 

adjustment of torque and control of torque and speed at the same time (figure 5). Vector control is 

the regulation of quantity, frequency and phase of supply voltage. This method allows for virtually 

inertialess rotational speed and torque changes (figure 6). In the scalar method, control of the supply 

voltage value and its frequency is carried out. In the vector method, in addition to the value and 

frequency, the control of the phase is also carried out, that is, the control of the angle and value of 

the spatial vector is carried out  9. Compared to the scalar method, the vector method has higher 

efficiency, adjustment accuracy and range. Any method is selected depending on the requirements, 

which are given for the technological process - the depth and accuracy of regulation, torque control, 

the state of the transmission during transition processes - starting, stopping, braking, etc. 

Figure 5. Vector control method 
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Figure 6. Scalar control method (variation of feed voltage) 

The scalar method is used for small and medium power transmissions with fan loads. In the 

application of this method, there is the possibility of using multi-engine transmissions. The stability 

of the static characteristics of the transmission is practically close to the natural characteristic 23. 

 The range of the scalar control principle is no more than 1:10 with the lossless resistance moment. 

For this reason, a constant load capacity of the motor is achieved, and the applied voltage does not 

depend on the frequency, but at low frequencies the motor may overheat and the generated torque 

decreases. To prevent this, restrictions are placed on the minimum value of the output frequency 

11. Different analog and pulse speed transmitters are used in order to expand the stiffness of the

characteristic and the adjustment limits. Therefore, discrete-analog controlled inputs are available

in the frequency converters. Compared to the scalar method, the vector control method has the

following advantages:

- high speed accuracy and a wide adjustment range;

- smooth regulation of engine rotation speed in the entire frequency range;

- the ability to maintain speed stability in the load change of electric transmission;

- reduction of losses in transition processes in transmission (increased engine efficiency).

In addition to the advantages, it should also be noted that the computational complexity of the

vector control method is high, and the number of parameters must be taken into account in the 

calculation of the optimal operating modes of the transmission. But only to ensure a wide range and 

accuracy of regulation, especially at low frequencies of rotation, a vector frequency converter 

becomes indispensable 18. 

IV. Conclusions

An electric motor fed from a constant voltage network through a relay-contactor apparatus 

provides control of electric transmissions and is also widely used in automating the working 

principles of electromechanical devices. Relay-contactor circuits are presented as finished products 

of control stations, on which typical circuits and necessary protections are assembled for the control 

of electric transmission movement. In many cases, it is required to connect any powerful load 

through a low-power relay. Sometimes they are needed for direct switching. In such cases, the 

contactor is simply installed and the output of the relay is connected to its coil. This can be 

implemented not only with a single voltage relay, but also with other devices of automation, for 

example, through a low-power intermediate relay or with another voltage type and value from the 

circuit (for example, in automation in different controllers.  
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As a reference to the literature reviewed on the basis of the scientific and technical base, it can be 

noted that in practice, in the choice of methods of adjusting the rotation speed of the electric 

transmission, it is necessary to evaluate the requirements for the control object, which is the range 

and accuracy of the adjustment of technological quantities, the need to maintain the torque on the 

motor shaft (especially small rotation frequencies), are the requirements for traffic control in 

emergency conditions. 
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Abstract

The main goal of the present paper is to propose a systematic approach to model performance measurements
within the context of continuous-time semi-Markov processes with a finite state space. Specifically, the
mean performance is estimated using the kernel method. The uniform strong consistency and the
asymptotic normality of the proposed estimator is investigated. Furthermore, a non-parametric kernel
estimation of the expected cumulative operational time is addressed. The constructed estimator is proved
to be consistent and to converge to a normal random variable as the time of observation becomes large. As
an illustration example, a simulation study has been conducted in order to highlight the efficiency as well
as the superiority of our method to the standard empirical method.

Keywords: Semi-Markov processes, Kernel estimator, Mean performance, Reliability, Cumulative
operational time, Consistency, Asymptotic normality.

1. Introduction and motivation

Stochastic process theory can be seen as an extension of probability theory that allows modeling
the evolution of a system through the time. In addition, any serious study of renewal processes
would be impossible without using the powerful tool of Markov processes. Markov processes
are significant because, in addition to modeling a wide range of interesting phenomena, their
lack of memory property allows for the computation of probabilities and expected values that
quantify the behavior of the process and the prediction of its potential behavior. Therefore, the
starting step of many attempts to model continuous-time processes has been the Markov process.
However, the Markov property has its limitations. It imposes restrictions on the distribution of
the sojourn time in a state, which is exponentially distributed in the continuous case, though this
is not realistic in general. It is adequate to assume that the probability of leaving a state depends
on the time already spent there. More precisely, it has become clear that the propensity to move
from one state to another often depends strongly on the length of stay in that state. Therefore,
any adequate model must incorporate this feature and the semi-Markov process meets the case.

The study of the semi-Markov process is related to the theory of Markov renewal processes
(MRP) which can be considered as an extension of the classical renewal theory (see for instance,
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Pyke [23], [24] and Limnios and Oprisan [13]). More precisely, the semi-Markov processes
generalize the renewal processes as well as the Markov jump processes and have numerous
applications, especially in reliability (see the pioneer work of Janssen [9] which has made a state
of the art for the area of the semi-Markov theory and its applications). Furthermore, there are
numerous real-world scenarios where semi-Markov models are relevant, such as in fault-tolerant
systems, computer systems and networks, manufacturing systems, healthcare systems, and others.

There is a growing need to assess reliability and performance measure (see, for example,
Smith et al. [27]). Meyer [16] created a conceptual framework for performability, defining it as the
probability that a system achieves a certain level of accomplishment during a utilization interval
[0, t]. In other words, for the semi Markov process (Zt), that describes the evolution of the system
through a set of states E, the performance level, or a reward rate, L(j) is associated with each
state j ∈ E, where the reward function L : E → R is proposed to be a measure of performance
per unit time. The resulting semi-Markov reward process is then able to capture not only the
failure and repair of the system components, but the degradable performance as well. Therefore,
the development of a performance model is badly needed when we are interested in the level of
productivity of a system.

The accumulated reward until time t will be ϕ(t) =
∫ t

0 L(Zu)du which is an integral functional
of the process (Zt). Integral functionals are very important from theoretical as well as practical
point of view. Indeed, in martingale theory, integral functionals are very useful since they are
used as compensators, see Koroliuk and Limnios [12]. In statistics, they are used as empirical
estimators for stationary distributions in semi-Markov processes [15]. In stochastic applications,
they are crucial in some reliability studies, in performance evaluation of computer systems [26]
and so on.

Since the work of [2] in which the author has defined combined measures of performance
and reliability, many researchers have focused on evaluating performability, particularly in cases
where (Zt) is a Markov process with a finite number of states. Meyer [17] has studied the case
of Markov process when the function L is monotonic. Beaudry [3] introduced an algorithm
to compute performability until absorption over an infinite interval. Additionally, Donatiello
and Iyer [5], have proposed an algorithms for computing performability that do not require the
function L to be monotonic.

The semi-Markov case with a finite number of states has been examined by Iyer et al. [7].
The authors demonstrated that the distribution function of ϕ(t) satisfies a Markov renewal-type
equation and proposed approach to solve it. Fore years later, Ciardo et al. [4] have offered an
extension of Beaudry’s approach to semi-Markov processes.
Since then, several research papers have been published on the development of estimators and the
investigation of their asymptotic properties. In [14], the authors have presented a statistical study
of the nonparametric estimation of performability of a finite state space semi-Markov system by
using empirical estimator and give consistency and asymptotic normality results for such a system.

A specific scenario occurs when a reward of 1 is assigned to all operational states and 0 to all
non-operational states. This case was studied by [21], where the expected reward rate at time t,
E(ϕ(t)), is known as the instantaneous or point availability A(t). In this case, ϕ(t) represents the
total time spent in operational states during the interval [0, t].

To the best of our knowledge, there are no existing works on nonparametric kernel estimators
of the performance and performability. The main goal of the present paper is to propose a
systematic approach to model performance measurements within the context of continuous-time
semi-Markov processes with a finite state space. Specifically, the mean performance is estimated
using the kernel method. The uniform strong consistency and the asymptotic normality of the
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proposed estimator is investigated. Furthermore, a non-parametric kernel estimation of the
expected cumulative operational time is addressed. The constructed estimator is proved to be
consistent and to converge to a normal random variable as the time of observation becomes
large. As an illustration example, a simulation study has been conducted in order to highlight
the efficiency as well as the superiority of our method to the standard empirical method.

The remainder of the paper is organized as follows. Section 2 presents some definitions and
notations of the semi-Markov processes in a countable state space, and these are needed in the
work’s sequel. An explicit expression of the mean performance of a finite state space semi-Markov
system is given in Section 3. The basic elements of statistical estimation are given in Section
4. In Section 5, we introduce and discuss in detail the necessary conditions for establishing
the asymptotic properties of the proposed estimator. In Section 6, we illustrate these concepts,
measures and estimators through the cumulative operational time as well as a numerical study.
Some concluding remarks are given in Section 7.

2. Semi-Markov system and related quantities

Definition 1. (Markov renewal process) Let E = {1, . . . , s} be the state space.
A Markov renewal process is a bivariate stochastic process (Jn, Tn) where Jn is the system state at
the nth time, and Tn is the nth jump time, we set T0 = 0. The process has to satisfy the following
formula:

P (Jn+1 = j, Tn+1 − Tn ≤ t | J0, J1, . . . , Jn, T0, T1, . . . , Tn) = P (Jn+1 = j, Tn+1 − Tn ≤ t | Jn) , (1)

for all j ∈ E, all t ∈ R+ and all n ∈ N.
Moreover, if Equation (1) is independent of n, (Jn, Tn) is considered to be time homogeneous.

Definition 2. (Continuous-time semi-Markov process) Consider a Markov-renewal process
{(Jn, Tn) : n ∈ N} defined on a complete probability space and with state space E. The stochastic
process {Zt; t ∈ R+} defined by

Zt = JN(t), (2)

is called a Semi-Markov Process (SMP) where N(t) := sup {n ≥ 0 | Tn ≤ t} is the counting
process of the SMP up to time t. Let us also define Xn = Tn − Tn−1, n ≥ 1, the inter-jump times
of Z = (Zt)t∈R+ .

Let us also introduce some functions associated with the process Z:

• The semi-Markov kernel Q(t) =
{

Qij(t), i, j ∈ E
}

, t ≥ 0 of Z, is given by

Qij(t) = P (Jn+1 = j, Xn+1 ≤ t | Jn = i) ,

and pij := Qij(∞) = P (Jn+1 = j | Jn = i) with p = (pij)i,j∈E is the transition matrix of the
process (Jn) which is called the embedded Markov chain (EMC) of Z.

• The conditional sojourn time distribution in state i, given that the next state to be visited is
j, denoted Fij, is defined by

Fij(t) := P (Xn+1 ≤ t | Jn = i, Jn+1 = j) .

Meanwhile, the sojourn time distribution in state i, denoted Hi, is defined, for every t ∈ R+,
by

Hi(t) = P (Xn+1 ≤ t | Jn = i) = ∑
j∈E

Qij(t),

and its corresponding survival function is defined by Hi(t) = 1 − Hi(t).
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• If we consider g to be a locally bounded function and G to be a real right continuous
nondecreasing function both defined on R+, the Stieltjes convolution of the function g with
the function G is defined, for every t ∈ R+, by

g ∗ G(t) =
∫

R
g(t − x)dG(x) =

∫ t

0
g(t − x)dG(x).

Furthermore, when G and F are cumulative distribution functions, we have

G ∗ F(t) =
∫ t

0
G(t − x)dF(x) =

∫ t

0
F(t − x)dG(x) = F ∗ G(t).

• Now, consider the n-fold convolution of Q by itself, for any i, j ∈ E,

Q(n)
ij (t) =


1{i=j,t≥0} if n = 0,
Qij(t) if n = 1,

∑
k∈E

∫ t

0
Qik(ds)Q(n−1)

kj (t − s) if n ≥ 2.

• The Markov renewal function denoted Ψij(·), is defined, for every i, j ∈ E, t ≥ 0, by

Ψij(t) = Ei[
∞

∑
n=0

1{Jn=j,Tn≤t}]

=
∞

∑
n=0

Pi (Jn = j, Tn ≤ t) =
∞

∑
n=0

Q(n)
ij (t).

The matrix renewal function is given by

Ψ(t) =
∞

∑
n=0

Q(n)(t),

where Ψ(t) = [Ψij(t)].

The matrix renewal function Ψ(t) is the solution of the following Markov renewal equation

Ψ(t) = I(t) + Q ⋆ Ψ(t)1,

where I(t) = I when t ≥ 0 and I(t) = 0 when t < 0.

• The transition matrix function P(t) = [Pij(t)] of the semi-Markov process is defined, for
every i, j ∈ E, t ≥ 0, by

Pij(t) = P (Zt = j | Z0 = i) = P
(

JN(t) = j | J0 = i
)

.

It is known, cf. [23], that

Pij(t) = 1{i=j}

(
1 − ∑

k∈E
Qik(t)

)
+ ∑

k∈E

∫ t

0
Pkj(t − s)Qik(ds).

By solving the above Markov renewal equation, cf. [13], it is seen that, in matrix notation, we have

P(t) = (Ψ ⋆ (I − H))(t),

where (I − H) (t) = diag[1 − Hi(t)].

Definition 3. For a semi-Markov process (Zt)t∈R+ , the limit distribution
π = (π1, . . . , πs)

t is defined, when it exists, for every i, j ∈ E, by

πj = lim
t→∞

Pij(t).
1⋆ stands for the matrix-Stieltjes convolution of an n × r matrix function, A, by an m × n matrix function, B, denoted

B ⋆ A, which can be defined by (B ⋆ A)ij (t) =
n

∑
k=1

Bik ∗ Akj(t), i = 1, . . . , m, j = 1, . . . , r.
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3. Mean performance

The performance process at time t ≥ 0, denoted Φ(t) is the real-valued integral functional of a
homogeneous semi-Markov process (Zt)t∈R+ , cf. [14], defined by

Φ(t) =
∫ t

0
L (Zu) du = ∑

j∈E
L(j)

∫ t

0
1{zu=j}du, (3)

where L is a real-valued function defined on E.
The mean performance at time t ≥ 0, denoted Φ(t), is defined by

Φ(t) := E[Φ(t)] = ∑
i∈E

αiΦi(t) = ∑
i∈E

∑
j∈E

αiL(j)
∫ t

0
Pij(u)du, (4)

where Φi(t) = ∑
j∈E

L(j)
∫ t

0
Pij(u)du, αi = P (J0 = i) and the row vector

α = (αi : i ∈ E) defines the initial distribution of Z.

4. Elements of statistical estimation

Consider a sample path of the Markov renewal process (Jn, Tn)n∈N

Y(M) :=
(

J0, X1, . . . , JN(M)−1, XN(M), JN(M), uM

)
, M ∈ R+,

where N(M) is defined in Definition 2 and uM := M − TN(M).

For all i, j ∈ E, we define:

• Ni(M) :=
N(M)

∑
n=1

1{Jn−1=i}, the number of visits to state i, up to time M.

• Nij(M) :=
N(M)

∑
n=1

1{Jn−1=i,Jn=j}, the number of transitions from i to j, up to time M.

For all i, j ∈ E, t > 0, we define the kernel estimator of Qij and Hi respectively (cf. [1]), by

Q̂ij(t, M) =
1

Ni(M)

N(M)

∑
l=1

G

(
t − Xl
hij,M

)
1{Jl−1=i,Jl=j},

and

Ĥi(t, M) =
1

Ni(M)

N(M)

∑
l=1

G
(

t − Xl
hi,M

)
1{Jl−1=i};

where G(t) =
∫ t
−∞ K(t)dt, with K is a bounded kernel function.

For fixed states i and j, it should be noted that the smoothing parameter of the previous
estimators depends on the sample size, so we should write hij,Nij(M) = hij,M (resp. hi,Ni(M) = hi,M),
however we prefer to use a simpler notation.

The kernel estimator of the Markov renewal function Ψij(t), in matrix form, is given by

Ψ̂(t, M) =
∞

∑
n=0

Q̂(n)(t, M). (5)

The kernel estimator of the transition matrix function P(t) at time t ≥ 0 of the SMP, is given
by

P̂(t, M) =
(

Ψ̂(·, M) ⋆
(

I − Ĥ(., M)
))

(t). (6)
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Based on Equation (4), an nonparametric kernel estimator of the mean performance Φ̂(t, M)
is given by the following expression:

Φ̂(t, M) = ∑
i∈E

∑
j∈E

αiL(j)
∫ t

0
P̂ij(u, M)du. (7)

5. Asymptotic properties

The following assumptions are necessary to derive the asymptotic behaviour of the kernel
estimator defined in (7).

5.1. Assumptions

First, we will assume the following two assumptions:

(H.1) The EMC (Jn)n∈N is an ergodic Markov chain, with stationary distribution ν.

(H.2) The SMP is regular, with finite mean sojourn times m.

Second, the following assumptions are required in order to establish all the asymptotic properties
in this paper:

(H.3) i) Qij(t) and qij(t) are continuously differentiable with respect to the Lebesgue mea-
sure, and let qij(t) and q

′
ij(t) be respectively their corresponding Radon-Nikodym

derivatives.

ii) The derivative q
′
ij is bounded.

(H.4) The function G is a distribution function, where its derivative is K.

(H.5) The kernel K is a density function of bounded variation such that lim
x→∞

|xK(x)| = 0 and∣∣∫ tjKn(t)dt
∣∣ < ∞ for j = 0, 1, and n = 1, 2.

(H.6) The smoothing parameter hij,M satisfies

lim
M−→∞

hij,M = 0 and lim
M−→∞

Mhij,M = ∞.

5.2. Comments on the assumptions

The structural assumptions (H.1) and (H.2) are the same as those used classically for the semi-
Markov processes framework (see, for instance [1] and [6]). More precisely, the recurrence and
the positivity of the EMC (Jn)n∈N in (H.1) ensure that the stationary distribution πj defined in
Definition 3 is strictly positive and unique. Furthermore, since the EMC (Jn)n∈N is irreducible
and aperiodic, the limit in Definition 3 always exists and it is independent of the distribution
in the initial state. (H.2) means that the counting process {N(t) : t ≥ 0} has a finite number of
jumps in a finite period with probability 1. In addition, under this hypothesis we have Tn < Tn+1,
for any n ∈ N, and Tn → ∞ as n goes to infinity. Assumption (H.3) as imposed on Qij(t) and
qij(t) is a regularity type hypothesis. Whereas, assumption (H.3)(i) is a regularity constraint
using to get the strong consistency. the second derivative hypothesis (H.3)(ii) establishes more
restrictive constraints when going through to state the asymptotic normality of our estimators.
(H.5)-(H.6) are technical constraints; they are imposed for the sake of the proof’s simplicity and
brevity.

Before stating our main result, we introduce the following technical lemma which will be
necessary to prove our second result.
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Lemma 1. For n = 1, 2. If (H.3)-(H.5) hold, we have

1
hij,M

∫ +∞

0
Kn

(
v − x
hij,M

)
dQij(x) ⩽ qij(v)

∫ +∞

−∞
Kn (z) dz + o(hij,M).

Proof of Lemma 1 By using a change of variable followed by Taylor’s expansion, we have

1
hij,M

∫ +∞

0
Kn

(
v − x
hij,M

)
dQij(x) =

∫ v
hij,M

−∞
Kn (z) qdr(v − hij,Mz)dz

=
∫ v

hij,M

−∞
Kn (z)

[
qij(v)− hij,Mzq

′
ij(v

∗)
]

dz

⩽ qij(v)
∫ +∞

−∞
Kn (z) dz + o(hij,M),

where v − hij,Mz ≤ v∗ ≤ v.

5.3. Main Results

Our first result concerns the uniform strong consistency of the proposed estimator.

Theorem 1. For any fixed 0 ≤ t ≤ M and i ∈ E, under (H.1)-(H.6), the estimator Φ̂(t, M) of Φ(t)
is uniformly strongly consistent, that is

max
i∈E

sup
t∈[0,M]

| Φ̂i(t, M)− Φi(t) |
a.s.−→ 0 as M −→ ∞.

Proof of Theorem 1 The proof of this theorem is based on (5), (6), (7) and the following
inequality:

max
i∈E

sup
t∈[0,M]

| Φ̂i(t, M)− Φi(t) | ≤ ∑
j∈E

L(j)t
∞

∑
n=0

max
i∈E

sup
t∈[0,M]

∣∣∣Q̂(n)
ij (t, M)− Q(n)

ij (t)
∣∣∣

+ ∑
j∈E

L(j)t
∞

∑
n=0

max
i∈E

sup
t∈[0,M]

∣∣∣Q̂(n)
ij (t, M)− Q(n)

ij (t)
∣∣∣ ∗ Ĥj(t, M)

+ ∑
j∈E

L(j)t max
i∈E

sup
t∈[0,M]

∣∣∣Ĥj(t, M)− Hj(t)
∣∣∣ ∗ Ψij(t).

For all i, j ∈ E, n ∈ N∗ and M ∈ R+, based on a straightforward adaptation of the proof of
Lemma 1 in [19], we get that the estimator Q̂(n)

ij (t, M) is uniformly strong consistent in [0, M]. In

addition, the uniform strong consistency of the kernel estimator Ĥj(t, M) is stated in Theorem 4.1
of [1]. Then,

max
i∈E

sup
t∈[0,M]

| Φ̂i(t, M)− Φi(t) |
a.s.−→ 0, as M −→ ∞.

Before stating our second result, let us consider the renewal process
(
Ti

n
)

n≥0 of successive times
of visits to state i, then Ni(t) is the counting process of renewals. Let µii and µ∗

ii denote the mean
first passage times of the state i in the MRP and in the corresponding Markov chain {Jn; n ≥ 0},
respectively. Furthermore, µii is the mean interarrival times of the eventual delayed renewal
process

(
Ti

n
)

, n ≥ 0, i.e., µii = E
[
Ti

2 − Ti
1
]
, and µ∗

ii = E
[
S∗

i |J0 = i
]

with S∗
i = min{k ≥ 1, Jn = i}

is the first visit time to the state i.
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Theorem 2. For any fixed 0 ≤ t ≤ M, if (H.1)-(H.6) hold, we have√
MhM

[
Φ̂(t, M)− Φ(t)

]
D−→ N

(
0, σ2

Φ(t)
)

, as M −→ ∞,

with hM = min
i,j∈E

{
hij,M

}
and the asymptotic variance

σ2
Φ(t) ⩽ ∑

i∈E
∑
j∈E

µii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du, (8)

where
Rij = ∑

d∈E
∑
r∈E

αdL(r)
(
Ψdi ∗ Ψjr ∗ Hr

)
, (9)

and
Di = ∑

d∈E
∑
r∈E

αdL(r)1{i=r}Ψdr. (10)

Proof of Theorem 2 We have,√
MhM

[
Φ̂(t, M)− Φ(t)

]
= ∑

d∈E
∑
r∈E

αdL(r)
√

MhM

[∫ t

0
P̂dr(u, M)du −

∫ t

0
Pdr(u)du

]
= ∑

d∈E
∑
r∈E

αdL(r)
√

MhM

[∫ t

0

[(
Ψ̂dr(·, M) ∗

(
I − Ĥr(·, M)

))
(u)

− (Ψdr ∗ (I − Hr)) (u)] du] .

Note that the last right side can be written as follows:

∑
d∈E

∑
r∈E

αdL(r)
√

MhM

[∫ t

0

((
Ψ̂dr(·, M)− Ψdr(·)

)
∗
(

Ĥr(·, M)− Hr(·)
))

(u)du

+
∫ t

0

(
Ψdr(·) ∗

(
Ĥr(·, M)− Hr(·)

))
(u)du +

∫ t

0

((
Ψ̂dr(·, M)− Ψdr(·)

)
∗ Hr(·)

)
(u)du

]
.

According to [1] and by following the same arguments as [18], the first term converges to zero as
M tends to infinity.
Consequently, by applying Slutsky’s Theorem, we deduce that

√
MhM

[
Φ̂(t, M)− Φ(t)

]
con-

verges in distribution to the same limit as

√
MhM ∑

d∈E
∑
r∈E

αdL(r)
[∫ t

0

(
Ψdr(·) ∗

(
Ĥr(·, M)− Hr(·)

))
(u)du

+
∫ t

0

((
Ψ̂dr(·, M)− Ψdr(·)

)
∗ Hr(·)

)
(u)du

]
.

By combining Theorem 4.3 (i) of [1] and Theorem 4 (b)[18], along with arguments akin to those

employed in [9] p. 214, we deduce that
√

MhM

[
Ψ̂(·, M)− Ψ(·)

]
dr
(t) has the same limit in

distribution as
√

MhM[Ψ(·) ⋆ ∆Q ⋆ Ψ(·)]dr(t),
where ∆Q = (Q̂ − Q), for every t ≥ 0, t ≤ M, and for every d, r ∈ E, which is written as follows:

∆Qdr(·) =
1

Nd(M)

N(M)

∑
l=1

[
G
(
· − Xl
hdr,M

)
1{Jl−1=d,Jl=r} − Qdr(·)1{Jl−1=d}

]
.

Furthermore,

Ψdr ∗
(

Ĥr − Hr

)
= − ∑

k∈E
Ψdr ∗ ∆Qrk = − ∑

k∈E
∑

m∈E
1{m=r}Ψdr ∗ ∆Qmk.
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Then,
√

MhM

[
Φ̂(t, M)− Φ(t)

]
has the same limit as

1√
M

N(M)

∑
l=1

∑
m∈E

∑
k∈E

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − Xl
hmk,M

)
1{Jl−1=m,Jl=k}

−Qmk(.)1{Jl−1=m}

)]
(u)du

]
,

where Rmk and Dm are given in (9) and (10).
Apply central limit theorem related to semi-Markov processes (see [25]) to the function W f (t)
such that

W f (t) =
N(M)

∑
l=1

f (Jl−1, Jl , Xl)

=
N(M)

∑
l=1

∑
m∈E

∑
k∈E

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − Xl
hmk,M

)
1{Jl−1=m,Jl=k}

−Qmk(.)1{Jl−1=m}

)]
(u)du

]
,

where, for any fixed t > 0, we have defined the function f : E × E × R → R by

f (i, j, x) = ∑
m∈E

∑
k∈E

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − x
hmk,M

)
1{i=m,j=k} − Qmk(.)1{i=m}

)]
(u)du

]
.

In order to apply the Pyke and Schaufele’s CLT, we need to compute the quantities Aij, Ai, Bij, Bi, ri, m f , σ2
d

and then σ2
Φ
(t), using Lemma 1 with assumptions (H.3)-(H.5). We have

Ai = ∑
j∈E

Aij

= ∑
j∈E

∫ +∞

0
f (i, j, x) dQij(x)

= ∑
j∈E

∑
k∈E

∑
m∈E

∫ +∞

0

M
Nm(M)

√
hM

[∫ t

0

[
(Rmk − Dm) ∗

(
G
(

. − x
hmk,M

)
1{i=m,j=k}

−Qmk(.)1{i=m}

)]
(u)du

]
dQij(x)

= ∑
j∈E

M
Ni(M)

√
hM

[∫ t

0

∫ u

0

(
Rij − Di

)
(u − v)

(
1

hij,M

∫ +∞

0
K

(
v − x
hij,M

)
dQij(x)

)
dvdu

− ∑
k∈E

∫ t

0

∫ u

0
(Rik − Di) (u − v)qik(v)

∫ +∞

0
dQij(x)dvdu

]
.

Then

Ai ⩽ ∑
j∈E

M
Ni(M)

√
hM

∫ t

0

[(
Rij − Di

)
∗
(
o
(
hij,M

))]
(u)du.
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For Bi and by using Jensen’s inequality and Lemma 1, we have

Bi = ∑
j∈E

Bij

= ∑
j∈E

∫ +∞

0
[ f (i, j, x)]2dQij(x)

= ∑
j∈E

∫ +∞

0

[
M

Ni(M)

√
hM

[∫ t

0

[(
Rij − Di

)
∗ G

(
. − x
hij,M

)

− ∑
k∈E

(Rik − Di) ∗ Qik(.)

]
(u)du

]]2

dQij(x)

⩽ ∑
j∈E

∫ +∞

0

(
M

Ni(M)

)2
hM

[∫ t

0

[∫ u

0

(
Rij − Di

)
(u − v)

(
1

hij,M
K

(
v − x
hij,M

))
dv

− ∑
k∈E

∫ u

0
(Rik − Di) (u − v)qik(v)dv

]2

du

 dQij(x).

Then

Bi ⩽ ∑
j∈E

(
M

Ni(M)

)2
hM

∫ +∞

0

[∫ t

0

∫ u

0

[(
Rij − Di

)2
(u − v)

(
1

h2
ij,M

K2

(
v − x
hij,M

))
+ ∑

k∈E
(Rik − Di)

2 (u − v)q2
ik(v)

−2 ∑
k∈E

(Rik − Di)
(

Rij − Di
)
(u − v)qik(v)

1
hij,M

K

(
v − x
hij,M

)]
dvdu

]
dQij(x).

Since Ni(M)
M

a.s.→ 1
µii

(see [13]), when M → +∞ and from the assumption (H.6), the second and the
third term in the last inequality converge to zero, we get

Bi ⩽ ∑
j∈E

µ2
ii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du.

Furthermore,

rd = ∑
i∈E

Ai
µ∗

dd
µ∗

ii
= 0 as M → ∞,

m f =
1

µdd
rd = 0 as M → ∞,

σ2
Φ(t) =

1
µdd

σ2
d (t),

where

σ2
d (t) = ∑

i∈E
Bi

µ∗
dd

µ∗
ii

⩽ µ∗
dd ∑

i∈E
∑
j∈E

µ2
ii

µ∗
ii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du.

Then, since µ∗
ii =

1
vi

(see [10]) and µii =
m̄
vi

(see [13]), where m̄ = ∑
i∈E

mivi is the mean sojourn

time of the MRP; we have

σ2
Φ(t) ⩽ ∑

i∈E
∑
j∈E

µii

∫ t

0

[(
Rij − Di

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du.
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We obtain from the CLT that
√

MhM

[
Φ̂(t, M)− Φ(t)

]
converges in distribution, as M tends to

infinity, to a zero-mean normal random variable, of variance σ2
Φ
(t) given in (8).

6. Applications

The cumulative operational time is considered as one of the most relevant performance measures
for the reliability. In this section, we propose a non-parametric kernel estimator of the expected
cumulative operational time for the semi-Markov system. Then, we investigate the asymptotic
properties of the proposed estimator, namely, the strong consistency and the asymptotic normality.
As an illustration example, we apply the previous results to three-state continuous time SMP.

6.1. The cumulative operational time

The state space E is often split into two subsets for reliability research. The first one, let’s say U,
is made up of up states, whereas the second one, let’s say D, is made up of down states. The start
of an essential event, such as a component failure related to some reason or a complete repair,
might well be associated with the transition into a state. Since we suppose that the system can be
fixed, the process alternates between U and D.

The cumulative operational time is defined by

W(t) =
∫ t

0
1{Zu∈U}du.

It represents the total time that the semi-Markov process Z spends in the set of up states U over
the interval [0, t].

Making use of the assumptions (H.1) - (H.2), along with the aid of the arguments used in [8],
we obtain the following result:

lim
t→+∞

W(t)
t

=

∑
j∈U

νjmj

∑
k∈E

νkmk
,

where mj =
∫ ∞

0 (1 − Hj(t))dt is the mean sojourn time in state j.
The quantity we aim to analyze is the expected cumulative operational time of a semi-Markov

system, denoted by W(t) := E[W(t)]. Which is given by

W(t) = ∑
i∈E

αiWi(t) = ∑
i∈E

∑
j∈U

αi

∫ t

0
Pij(u)du, (11)

where Wi(t) = ∑
j∈U

∫ t

0
Pij(u)du.

The expected cumulative operational time serves as a crucial indicator in maintenance studies,
facilitating the calculation of average system availability, cf. [21], which is expressed as

A(t) =
1
t

W(t) =
1
t ∑

i∈E
∑
j∈U

∫ t

0
Pij(u)du.

From the definition of the expected cumulative operational time W(t) given in Equation (11),
and based on a sample path truncated to the time interval [0, M] of the process, the nonparametric

kernel estimator Ŵ(t, M) is given by

Ŵ(t, M) = ∑
i∈E

∑
j∈U

αi

∫ t

0
P̂ij(u, M)du. (12)

RT&A, No 1 (82) 
Volume 20, March 2025 

407



Tayeb Hamlat, Fatiha Mokhtari, Saâdia Rahmani
KERNEL SMOOTHING OF THE MEAN PERFORMANCE FOR SMP

The asymptotic properties of the proposed estimator are gathered in the following two corollaries.

Corollary 1. For any fixed 0 ≤ t ≤ M, under the same assumptions of Theorem 1, the estimator

of the expected operational time, Ŵ(t, M) is strongly consistent, that is

sup
t∈[0,M]

| Ŵ(t, M)− W(t) | a.s.−→ 0 as M → ∞.

Proof of Corollary 1
This corollary is a particular case of Theorem 1 and then the proof is omitted.

The following result concerns the asymptotic normality of the proposed estimator.

Corollary 2. For any fixed 0 ≤ t ≤ M, we have
√

MhM

[
Ŵ(t, M)− W(t)

]
converges in law, as M

tends to infinity, to a zero mean normal random variable with the asymptotic variance

σ2
W(t) ⩽ ∑

i∈E
∑
j∈U

µii

∫ t

0

[(
Yij − Ci

)2 ∗
(

Qij(·)
∫ +∞

−∞
K2 (z) dz

)]
(u)du,

where
Yij = ∑

d∈E
∑

r∈U
αd
(
Ψdi ∗ Ψjr ∗ Hr

)
and Ci = ∑

d∈E
∑

r∈U
αd1{i=r}Ψdr.

Proof of Corollary 2
The proof of this result is based on the same arguments as in the proof of Theorem 2.

6.2. Confidence interval

The main purpose of the confidence interval is to supplement the estimate at a point with
information about the uncertainty in this estimate. It is considered as a direct application of the
Central Limit Theorem. In order to provide a confidence interval for the expected cumulative
operational time W(t), we need first to propose a consistent estimator of the variance σ2

W
(t). A

natural consistent estimator of this variance, denoted by σ̂2
W
(t, M), is obtained by estimating the

parameters involved in this quantity such as Qmk(t), H j(t) and Ψim(t).

Indeed, from the strong consistency of Q̂mk(t, M), Ĥ j(t, M) and Ψ̂im(t, M), (see the proof of
Theorems 1 and 2 as well as Theorem 4.1 and Theorem 4.2 (v) in [1]), we deduce the strong
consistency of σ̂2

W
(t, M).

Consequently, from Corollary 2, we get√
MhM

[
Ŵ(t, M)− W(t)

]
D−→ N

(
0, σ̂2

W(t, M)
)

.

Then √
MhM

σ̂W(t, M)

[
Ŵ(t, M)− W(t)

]
D−→ N (0, 1) .

Hence, for α ∈ (0, 1), an asymptotic 100(1 − α)% confidence interval for Ŵ(t, M) can be straight-
forwardly computed:

I =
(

Ŵ(t, M)± z α
2

σ̂W(t, M)
√

MhM

)
where z α

2
is the upper α

2 quantile of the standard normal distribution.
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6.3. Numerical application

To validate our results, we consider a three state system whose state transition diagram is given
in Figure 1. States 1 and 2 are up states and state 3 is a down state.
We have two exponential and two Weibull distribution functions as conditional transitions, for all
x ≥ 0, say H12(x) = 1 − exp (−λ1x) , H31(x) = 1 − exp (−λ2x) ,

H23(x) = 1 − exp
[
−
(

x
α1

)β2
]

, H21(x) = 1 − exp
[
−
(

x
a1

)β1
]

.

The parameters of these distributions are: λ1 = 0.1, λ2 = 0.2, α1 = 0.3, β1 = 2, α2 = 0.1, β2 = 2.

Figure 1: A three state semi-Markov system.

The transition probability matrix of the embedded Markov chain (Jn) is:

P =

 0 1 0
0.95 0 0.05

1 0 0


Where the system is defined by the initial distribution α = (1/3, 1/3, 1/3).

To construct the kernel estimator for the mean performance of a continuous-time semi-Markov
process. The smoothed function K(·) is chosen to be the quadratic function defined as K(u) =
3
4
(
1 − u2) for |u| ≤ 1 and the cumulative distribution function G(u) =

∫ u
−∞

3
4
(
1 − z2) 1[−1,1](z)dz.

The bandwidth hM has been obtained by the "PBbw" method, which computes the plug-in band-
width of the Polansky and Baker method, cf. [22]. We have considered that the observation period
is the interval [0, M] with M = 20000.

Figure 2 gives a comparison between the kernel estimator of the mean performance for
different sample sizes (M = 2000, M = 10000 and M = 20000 ). We observe that this estimator
converges to the true value of the mean performance as M increases.
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Figure 2: Comparison between the kernel estimator of the mean performance for different sample sizes and the true
value.

Figure 3: Comparison between the true values of the mean performance and their estimators (empirical and kernel).

Figure 3 gives a comparison between the empirical estimator (see [14]) and our kernel estima-
tor of the mean performance. We remark easily that, our method provides better results than the
empirical one.
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7. Concluding remarks

The application of the nonparametric kernel approach to estimate the mean performance of a
continuous-time semi-Markov process is the main element of the work described in this paper.
We have proposed a kernel estimator for this quantity then we have provided its asymptotic
properties, such as the uniform strong consistency, as well as the asymptotic normality.
Compared to the empirical estimator, the use of this kernel technique approach has a number of
benefits. Since the empirical function is always a discontinuous function, the kernel smoothing
in particular prevents discontinuities in this function. As a result, the empirical distribution
may be considered a poor approximation when knowing that the underlying distribution is
continuous. To the best of our knowledge, no limit theorems have been obtained for functionals
of homogeneous semi-Markov processes, such as the performance and the related quantities, by
using the kernel approach. In particular, we have made an important connection of our results
with the reliability theory by focusing on the cumulative operational time of the semi-Markov
systems. This crucial indicator is the total time spent by the process in the set of operational
states during a specific time interval. It is used to minimize the expected cost of the maintenance
process. The uniform strong consistency and asymptotic normality have been stated. In addition,
a confidence interval has been constructed. Moreover, a simulation study has been conducted
in order to highlight to the efficiency as well as the superiority of our method to the standard
empirical method.
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Abstract

The Lindley distribution has been useful for fitting lifetime data. In recent times, several authors
studied the extension of the original Lindley distribution. In this paper, we introduced the two general
classes of distributions, which include all earlier versions of Lindley distributions. These general classes
are characterized using conditional expectations of order statistics. Further, there results are applied
to characterize several known distributions like Lindley, X-Lindley, power Lindley, Lindley-Pareto,
Ailamujia, power Ailamujia, Lindley-Weibull, length-biased exponential, inverse Lindley, inverse power
Lindley and inverted length biased exponential distributions.

Keywords: Order statistics, characterization, conditional expectation, continuous distributions.

1. Introduction

Lindley distribution is a combination of exponential and gamma distributions. The one parameter
Lindley distribution, initially introduced by [1]. This distribution has been made extensively
due to its practical applications, ease of implementation, and suitability for modelling lifetime
data. Characterization of distribution plays a crucial role in understanding the behaviour of
the distributions. The theoretical aspect of probability distributions is the core and significant
concept of statistics, as it is the basis for various statistical models. There are several meth-
ods to characterize the probability distributions. Some are the moment-generating function,
entropy function, conditional expectation, recurrence relation, etc. The literature is rich with
studies focusing on characterization via conditional expectations. For instance, [2] characterized
a generalized class of distributions using the conditional expectation of order statistics, while
[3] explored conditioning on pairs of order statistics. Franco and Ruiz [4] gave some general
results of characterization based conditional expectation of adjacent order statistics, whereas
[5] studied the characterizations based on conditional expectations of the doubled truncated
distribution. Balasubramanian and Dey [6] characterized both absolutely continuous random
variables and discrete random variables using conditional expectation. Su and Huang [7] obtained
a relationship between failure and conditional expectations, along with characterization results
based on conditional expectations. Khan and Abouammoh [8] extended the results of [2] to
cases where the conditional order statistic may not be adjacent. Moreover, [9] characterized
distributions through linear regression of non-adjacent generalized order statistics. Gupta and
Ahsanullah [10] developed characterization results based on the conditional expectation of a
function of non-adjacent order statistics. Noor and Athar [15] characterized two general classes
of distributions through conditional expectation of power of difference of two record statistics.
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Ahsanullah et al. [17] established some new characterization results of continuous distributions
by truncated moments, while [21] established characterization results for two general forms of
distributions by truncated moments. Furthermore, [22] examined characterization results based
on conditional expectations of function of random variables when truncation is from both the
left and right sides, whereas [24] developed characterization results for three general classes of
continuous distributions using double truncated moments.

In this paper, we present two generalized classes of distributions, which include several known
distributions such as the one-parameter Lindley, X-Lindley, power Lindley, Lindley pareto, Aila-
mujia, power Ailamujia, Lindley-Weibull, length-biased exponential distribution, and others. We
aim to characterize these classes through conditional expectations of order statistics, contributing
to the ongoing research in statistical distribution characterization. This approach not only enriches
the theoretical understanding of these distributions but also enhances their applicability in various
fields.

1.1. Conditional Distribution of Order Statistics

Let Xi, i = 1, 2, 3, . . . , n be the independent and continuous random variables (r.vs.) having
probability density function (pd f ) f (x) and cumulative distribution function (cd f ) F(x). Let
X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the corresponding order statistics. Then, the conditional distribution
of Xs:n given Xr:n = x is given by

(n − r)!
(s − r − 1)!(n − s)!

(F(y)− F(x))s−r−1(1 − F(y)n−s) f (y)
(1 − F(x))n−r , x < y (1)

and the conditional pd f of Xr:n given Xs:n = y, 1 ≤ r < s ≤ n, is

(s − 1)!
(r − 1)!(s − r − 1)!

(F(x))r−1(F(y)− F(x))s−r−1 f (x)
(F(y))s−1 , x < y (2)

See [12].

1.2. Proposed Generalized Classes of Distributions

The Lindley distribution has been useful for its simplicity and ability to model lifetime data
effectively. Ghitany et al. [11] investigated the properties of the one-parameter Lindley distribution
and demonstrated its flexibility in fitting lifetime data better than the exponential distribution.
Their work highlighted the practical utility of the Lindley distribution in real-world applications.
Ghitany et al. [13] extended the Lindley distribution to a two-parameter form, enhancing its
flexibility and fitting ability. Moreover, [14] introduced the two-parameter extension, offering
additional parameters to capture more complex data behaviors. Further, [20] introduced a new
two-parameter version of the Lindley distribution, which showed an improvement to fit skewed
real data compared to the inverse Lindley distribution, introduced by [16]. In this paper, we
introduced two generalized classes of distributions, named Haseeb generalized Lindley (HGL)
and Haseeb Generalized inverse Lindley (HGIL) class of distributions. These generalized classes
include all the distributions belonging to Lindley and inverse Lindley families.

1.2.1 Haseeb Generalized Lindley (HGL) Class of Distributions

Let X ∈ (α, β) be a r.v. having pd f f (x) and cd f F(x), then X is said to follow HGL class of
distribution, if cd f is given as

F(x) = 1 − (b + ah(x))e−ch(x), x ∈ (α, β) (3)

and the corresponding pd f is

f (x) = {c(b + ah(x))− a}h′(x)e−ch(x), x ∈ (α, β) (4)
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Table 1: Sub-model of HGL class of distribution

Distribution F(x) a b c h(x)

One Parameter Lindley 1 −
(
1 + θ

1+θ x
)
e−θx; θ, x > 0 θ

1+θ 1 θ x

X-Lindley 1 −
(
1 + θx

(1+θ)2

)
e−θx; θ, x > 0 θ

(1+θ)2 1 θ x

Power Lindley 1 −
(
1 + θxα

1+θ

)
e−θxα

; θ, x > 0 θ
1+θ 1 θ xα

Lindley Pareto 1 − αp+xpθ
(1+θ)αp e−θ

(xp−αp)
αp ; θ, α > 0, x > 0 θeθ

1+θ
eθ

1+θ θ
( x

α

)p

Power Ailamujia 1 − (1 + θxβ)e−θxβ
; θ > 0, x > 0 θ 1 θ xβ

Lindley-Weibull 1 −
(
1 + θ(αx)β

1+θ

)
e−θ(αx)β

; α, θ, β > 0, x > 0 θ
1+θ 1 θ (αx)β

Length-Biased Exponential 1 −
(
1 + x

θ

)
e−

x
θ ; θ > 0, x > 0 1

θ 1 1
θ x

1.2.2 Haseeb Generalized Inverse Lindley (HGIL) Class of Distributions

Let f (x) and F(x) be the pd f and cd f of a continuous r.v. X respectively, then X is said to follow
HGIL class of distribution, if its cd f is given by

F(x) = (b + ah(x))e−ch(x), x ∈ (α, β) (5)

and corresponding pd f is

f (x) = {a − c(b + ah(x))}e−ch(x)h′(x), x ∈ (α, β) (6)

Table 2: Sub-model of HGIL class of distribution

Distribution F(x) a b c h(x)

Inverse Lindley
(
1 + θ

(1+θ)x

)
e−

θ
x ; θ > 0, x > 0 θ

1+θ 1 θ 1
x

Inverse Power Lindley
(
1 + θ

(1+θ)xα

)
e−

θ
xα ; α, θ > 0, x > 0 θ

1+θ 1 θ 1
xα

Inverted LBE
(
1 + 1

θx
)
e−

1
θx ; θ > 0, x > 0 1

θ 1 1
θ

1
x

2. Characterization Results

Theorem 1. Let X be the continuous r.v. having cd f F(x) and pd f f (x). Suppose F(x) is defined
for all x ∈ (α, β), with boundary conditions F(α) = 0 and F(β) = 1, then for 1≤ r < r + 1 ≤n

E[h(Xr+1:n)|Xr:n = x] = gr+1|r(x) = h(x) +
[

ae
cb
a

1 − F(x)

]n−r Γ[n − r + 1, c(n−r)
a (b + ah(x))]

[c(n − r)]n−r+1 , (7)

if and only if for n − r > 0

1 − F(x) = (b + ah(x))e−ch(x) , x ∈ (α, β). (8)

where, h(x) is a continuous and differentiable function of x on (α, β), a ̸= 0 and Γ(n, x) =∫ ∞
x un−1e−udu be the upper incomplete gamma function.

Proof. Necessary part: In view of (1), we have

E[h(Xr+1)|Xr:n = x] =
(n − r)

(1 − F(x))n−r

∫ β

x
h(y)

(
1 − F(y)

)n−r−1 f (y)dy.
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Integrating right hand side of the above expression by parts, then we get

= h(x) +
1

(1 − F(x))n−r

∫ β

x
h′(y)(b + ah(y))n−re−c(n−r)h(y)dy

= h(x) +
1

(1 − F(x))n−r × I(x) (9)

where,

I(x) =
∫ β

x
h′(y)(b + ah(y))n−re−c(n−r)h(y)dy.

Let, t = b + ah(y), implies dt = ah′(y)dy, then we have

I(x) =
ec(n−r)b

a

∫ ∞

t
tn−re−

c(n−r)t
a dt.

Again, substitute u = c(n−r)t
a , then

I(x) =
e

c(n−r)b
a

c(n − r)
×

[
a

c(n − r)

]n−r ∫ ∞

c(n−r)(b+ah(x))
a

un−r+1−1e−udu

=
e

c(n−r)b
a

c(n − r)
×

[
a

c(n − r)

]n−r

Γ[n − r + 1,
c(n − r)

a
(b + ah(x))]. (10)

Now, substitute (10) in (9) to prove the necessary part.

Sufficient part: From (7), we have

(1 − F(x))n−rgr+1|r(x) = (1 − F(x))n−rh(x) +
(ae

bc
a )n−r

[c(n − r)]n−r+1 ×
∫ ∞

c(n−r)(b+ah(x))
a

un−re−udu. (11)

Differentiating both sides of (11) w.r.t. x, then we have

g′r+1|r(x)(1 − F(x))n−r − (n − r)gr+1|r(x)(1 − F(x))n−r−1 f (x) = h′(x)(1 − F(x))n−r (12)

−(n − r)h(x)(1 − F(x))n−r−1 f (x)− e−c(n−r)h(x)h′(x)

Also, we have

gr+1|r(x) =
(n − r)

(1 − F(x))n−r

∫ β

x
h(y)(1 − F(y))n−r−1 f (y)dy

or

gr+1|r(x)(1 − F(x))n−r = (n − r)
∫ ∞

x
h(y)(1 − F(y))n−r−1 f (y)dy (13)

Now, differentiate both the sides of (13) w.r.t. x to get

g′r+1|r(x)(1 − F(x))n−r − (n − r)gr+1|r(x)(1 − F(x))n−r−1 f (x) = −(n − r)h(x)× (14)

(1 − F(x))n−r−1 f (x).

Now on comparison of (12) with (14), we get

(1 − F(x))n−r = (b + ah(x))n−re−c(n−r)h(x)
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or

ln(1 − F(x)) = ln(b + ah(x))− ch(x)

Differentiating both sides of the above expression w.r.t. x, we get

− f (x)
1 − F(x)

=
ah′(x)

b + ah(x)
− ch′(x)

or

1 − F(x) =
b + ah(x)

h′(x){c(b + ah(x))− a} f (x)

or

f (x)
1 − F(x)

=
{

ch′(x)− ah′(x)
b + ah(x)

}
. (15)

Now integrating both sides of (15), leads to the sufficiency part. ■

Corollary 1. Under the similar conditions as stated in Theorem 1

E[h(x)|X ≥ x] = h(x) +
c(b + ah(x)) + a

c2(b + ah(x))
. (16)

Proof. Corollary can be proved by substituting r = n − 1 in (7). ■

Theorem 2. Let X be the continuous r.v. having cd f F(x) and pd f f (x). Suppose F(x) is defined
over x ∈ (α, β), with boundary conditions F(α) = 0 and F(β) = 1. Then for 1 ≤ r < r + 1 ≤ n

E[h(Xr:n)|Xr+1:n] = gr|r+1(x) = h(x)− 1
rc

[
aebc/a

rcF(x)

]r

γ

(
r + 1,

rc
a
(b + ah(x))

)
, (17)

if and only if

F(x) = [b + ah(x)]e−ch(x); x ∈ (α, β), (18)

where, h(x) is a continuous and differentiable function of x on (α, β) and a ̸= 0 and γ(a, x) =∫ x
0 ua−1e−udu be the lower incomplete gamma function.

Proof. To prove necessary part, in view of (2), we have

E(h(Xr:n)|Xr+1:n = x) =
r

Fr(x)

∫ x

α
h(y)Fr−1(y) f (y)dy,

= h(x)− 1
Fr(x)

∫ x

α
h′(y)(b + ah(y))re−rch(y)dy

= h(x)− 1
Fr(x)

I(x), (19)

where,

I(x) =
∫ x

α
h′(y)(b + ah(y))re−rch(y)dy.

Let t = b + ah(y), which implies dt = ah′(y)dy. Then

I(x) =
1
a

e
rbc
a

∫ b+ah(x)

0
tre−

rct
a .
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Again suppose u = rct
a , then we get

I(x) =
1
rc

[
aebc/a

rc

]r

γ(r + 1,
rc
a
(b + ah(x))). (20)

Now, substitute (20) into (19) and simplify, this proves the necessary parts.

To prove sufficiency part, in view of (17), we have

gr|r+1(x) = h(x)− 1
rc

[
aebc/a

rc

]r

γ(r + 1,
rc
a
(b + ah(x)))

or

Fr(x)gr|r+1(x) = Fr(x)h(x)− 1
rc

[
aebc/a

rc

]r ∫ rc(b+ah(x))
a

0
ure−udu. (21)

Differentiate both the sides of (21) w.r.t x,

rFr−1(x) f (x)gr|r+1(x) + g′r|r+1(x)Fr(x) = h′(x)Fr(x)− (b + ah(x))re−rch(x)h′(x)+ (22)

rFr−1(x) f (x)h(x).

Again

gr|r+1(x) =
r

Fr(x)

∫ x

α
h(y)Fr−1(y) f (y)dy

or

Fr(x)gr|r+1(x) = r
∫ x

α
h(y)Fr−1(y) f (y)dy (23)

Now differentiate both sides of (23) w.r.t x, then we get

rFr−1(x) f (x)gr|r+1(x) + Fr(x)g′r|r+1(x) = rh(x)Fr−1(x) f (x) (24)

Now after comparing (22) with (24), we have

Fr(x) = (b + ah(x))re−rch(x)

Taking log on both the sides of above expression, we have

r ln F(x) = r ln(b + ah(x))− rch(x) (25)

Differentiating (25) w.r.t. x, we get

f (x)
F(x)

=
ah′(x)

b + ah(x)
− ch′(x) (26)

Hence, the cd f as given in (18). ■

Corollary 2. For the condition as stated in Theorem 2 and r = 1,

E[h(x)|X ≤ x] = h(x) +
c(b + ah(x)) + a − ae

c(b+ah(x))
a

c2(b + ah(x))
. (27)
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3. Applications

3.1. Applications of Characterization Theorem 1

Lindley Distribution

Corollary 3. Let X be a continuous r.v. with cd f F(x) and pd f f (x). Further, suppose that E(X)
exists. Then

E(Xr+1:n|Xr:n = x) = x +
Γ[n − r + 1, (n − r)(1 + θ + θx)]

θ(n − r)n−r+1(1 + θ + θx)n−re−(n−r)(1+θ+θx)
, (28)

if and only if

F(x) = 1 −
(

1 +
θ

1 + θ
x
)

e−θx; θ > 0, x > 0. (29)

Proof. To prove the necessary part, we compare (29) with (8), and get a = θ
1+θ , b = 1, h(x) =

x, c = θ. Now, in view of (7) we get (28).

To prove the sufficiency part, using (15), we get

f (x)
1 − F(x)

=

{
θ −

θ
1+θ

1 + θx
1+θ

}
(30)

Now, integrate both the sides of (30), which leads to the cd f given in (29). ■

Similar result was obtained by [18].

Remark 1: In view of Corollary 1, we get the characterization result for truncated moment. That
is

E(X|X ≥ x) = x +
2 + θ + θx

θ(1 + θ + θx)
.

The similar result was also obtained by [19].

X-Lindley Distribution

Corollary 4. Under the conditions as stated in Corollary 2

E(Xr+1:n|Xr:n = x) = x +
Γ[n − r + 1, (n − r)((1 + θ)2 + θx)]

θ((1 + θ)2 + θx)n−re−(θx+(1+θ)2)(n−r)(n − r)n−r+1
, (31)

if and only if

F(x) = 1 −
(

1 +
θ

(1 + θ)2 x
)

e−θx, θ > 0, x > 0. (32)

Proof. First, we shall prove the necessary part. On comparison of (32) with (8), we get
a = θ

(1+θ)2 , b = 1, c = θ, h(x) = x. Now, in view of (7), we get (31). Hence, the necessary
part is true.

To prove sufficient part, in view of (15) we have

f (x)
1 − F(x)

=

{
θ −

θ
(1+θ)2

1 + θ
(1+θ)2 x

}
. (33)
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This implies the cd f of X-Lindley distribution as given in (32). ■

Remark 2: In view of Corollary 1, we have

E(X|X ≥ x) = x +
(1 + θ)2 + θx + 1
θ[(1 + θ)2 + θx]

. (34)

This characterizing result was also obtained by [23].

Power Lindley Distribution

Corollary 5. Let X be a continuous r.v having cd f F(x) and pd f f (x). Let E(Xα) exists, then

E(Xα
r+1:n|Xr:n = x) = xα +

Γ[n − r + 1, (n − r)(1 + θ + θxα)]

θ(n − r)n−r+1e−(n−r)(1+θxα+θ)(1 + θ + θxα)n−r
, (35)

if and only if

F(x) = 1 −
(

1 +
θ

1 + θ
xα

)
e−θxα

, θ > 0, x > 0. (36)

Proof. Necessary part: By comparing (36) with (8) we get

a = θ
1+θ , b = 1, c = θ, h(x) = xα. Now on application of (7), we get (35).

Sufficient part: In view of (15), we have

f (x)
1 − F(x)

=

{
αθxα−1 −

θαxα−1

1+θ

1 + θ
1+θ xα

}
, (37)

which gives cd f of power Lindley distribution as given in (36). ■

Remark 3: The result for characterization based on truncated moment can be seen in view of
Corollary 1 as below:

E(X|x ≥ x) = xα +
2 + θ + θxα

1 + θ + θxα
.

Lindley Pareto Distribution

Corollary 6. Under the similar condition as given in Corollary 5,

E(Xp
r+1:n|Xr:n = x) = xp +

αp[(α + θxp)e
θ(xp−αp)

αp +θ+1]n−rΓ[n − r + 1, (n−r)(αp+θxp)
αp ]

θ(n − r)n−r+1 , (38)

if and only if

F(x) = 1 − (αp + xpθ)

(1 + θ)αp e−θ
(

xp
αp −1

)
. (39)

Proof. Corollary 6 can be proved on the lines of Corollary 5. ■

Remark 4: The characterization result for truncated moment can be obtained on application of
Corollary 1.

E(Xp|X ≥ x) = xp +
(αp + θxp)(2αp + θxp)

θ
.
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Power Ailamujia Distribution

Corollary 7. Let X be a continuous r.v. having pd f f (x) and cd f F(x), then

E(Xβ
r+1:n|Xr:n = x) = xβ +

Γ[n − r + 1, (n − r)(1 + θxβ)]

(n − r)n−r+1θ(1 + θxβ)n−re−(n−r)θxβ+1 , (40)

if and only if

F(x) = 1 − (1 + θxβ)e−θxβ
; θ > 0, x > 0. (41)

Proof. Necessary part: On comparing of (41) with (8), we get a = c = θ, b = 1, h(x) = xβ. Now
on application of (7), we get (40).

To prove sufficient part, In view of (15), we have

f (x)
1 − F(x)

= θβxβ−1 − θβxβ−1

1 + θxβ
. (42)

Now integrate both the sides of (42) w.r.t. x to get (41). ■

Remark 5: For β = 1 in (40). we get the result for Ailamujia distribution.

E(Xr+1:n|Xr:n = x) = x +
Γ[n − r + 1, (n − r)(1 + θx)]

θ(1 + θx)n−re−(n−r)(1+θx)(n − r)n−r+1
. (43)

Further, the characterization based on truncated can be obtained using (16) as below:

E(Xβ|X ≥ x) = xβ +
2 + θxβ

θ(1 + θxβ)
.

Lindley-Weibull Distribution

Corollary 8. Let X be the continuous r.v having pd f f (x) and cd f F(x), and E(Xk) exist, then

E(Xβ
r+1:n|Xr:n = x) = xβ +

Γ[n − r + 1, (n − r)(1 + θ + θ(αx)β)]

θαβ(1 + θ + θ(αx)β)n−r(n − r)n−r+1e−(n−r)(1+θ+θ(αx)β)
, (44)

if and only if

F(x) = 1 −
(

1 +
θ

1 + θ
(αx)β

)
e−θ(αx)β

; α, β, θ > 0, x > 0. (45)

Proof. Corollary 8 can be proved easily on the lines of Corollary 7. ■

Remark 6: The result for characterization using truncated moments based on Corollary 1 is given
as

E(Xβ|X ≥ x) = xβ +
2 + θ + θ(αx)β

θαβ(1 + θ + θ(αx)β)
.

Length-Biased Exponential (LBE) Distribution

Corollary 9. Let X be the continuous r.v. having pd f f (x) and cd f F(x), and E(X) exist, then

E(Xr+1:n|Xr:n = x) = x +

(
θ

n − r

)n−r+1 Γ[n − r + 1, (n−r)
θ (θ + x)]

((θ + x)e−
x+θ

θ )n−r
, (46)

if and only if

F(x) = 1 −
(

1 +
x
θ

)
e−

x
θ ; θ > 0, x > 0. (47)
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Proof. To prove necessary part we compare of (47) with (8) and get

a = 1
θ = c, b = 1, h(x) = x. Now using (7), we get (46).

To prove sufficient part, in view of (15), we have,

f (x)
1 − F(x)

=
1
θ
−

1
θ

1 + x
θ

, (48)

which gives the cd f as given in (47). ■

Remark 7: The result for characterization using truncated moment can be seen using (16) as:

E(X|x ≥ x) = x +
x + 2θ

x + θ
.

Similarly several other distributions that belong to this class can be characterized.

3.2. Applications of characterization Theorem 2

Inverse Lindley Distribution

Corollary 10. Let X be a continuous r.v. having cd f F(x) and E(X−1) < ∞, then

E(X−1
r:n |Xr+1:n = x) = x−1 − 1

rθ

[
xe

θ+x(1+θ)
x

r{θ + x(1 + θ)}

]r

γ(r + 1,
r{θ + x(1 + θ)}

x
), (49)

if and only if

F(x) =
(

1 +
θ

1 + θ

1
x

)
e−

θ
x ; θ > 0, x > 0. (50)

Proof. First we shall prove the necessary part. On comparison of (50) with (18), we get
a = θ

1+θ , b = 1, c = θ, h(x) = 1
x . Now in view of (17), we get (49). Hence the necessary

part is true.

To prove sufficient part, from (26), we have

f (x)
F(x)

= −
θ

(1+θ)
1
x2

1 + θ
(1+θ)x

+
θ

x2 (51)

which give cd f as given in (50). ■

Remark 8: The characterization result for truncated moment can be obtained on application of
Corollary 9 as below:

E(X−1|X ≤ x) = x−1 +
θ + x(2 + θ − e

θ+x(1+θ)
x )

θ{θ + x(1 + θ)} .

Inverse power Lindley Distribution

Corollary 11. Let X be a continuous r.v. having cd f F(x) and E(X−α) exists, then

E(X−α
r:n |Xr+1:n = x) = x−α − 1

rθ

[
xαe

θ+xα(1+θ)
xα

r{xα(1 + θ) + θ}

]r

γ(r + 1,
r

xα
(θ + xα(1 + θ))), (52)

if and only if

F(x) =
(

1 +
θ

1 + θ

1
xα

)
e−

θ
xα ; α, θ > 0, x > 0. (53)
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Proof. Corollary can be proved on the lines of Corollary 10. ■

Remark 9: Under the similar condition as stated under Corollary 11, the result for truncated
moment is given as

E(X−α|X ≤ x) = x−α +
θ + xα(2 + θ − e

xα(1+θ)+θ
xα )

θ(θ + xα(1 + θ))
.

Inverted LBE Distribution

Corollary 12. Under the conditions as stated in Corollary 11.

E(X−1
r:n |Xr+1:n = x) = x−1 − θer

rr+1 γ(r + 1,
r(1 + xθ)

θx
), (54)

if and only if

F(x) =
(

1 +
1

θx

)
e−

1
θx , θ > 0, x > 0. (55)

Proof. Proof is straight forward.
■

Remark 10: The characterization result for truncated moment using Corollary 9 is given as:

E(X−1|X ≤ x) = x−1 +
θ(1 + x(θ + 1 − e

1+θx
θx ))

1 + θx
.

4. Conclusion

In this study, we defined the HGL and HGIL classes of distributions, and characterized these
using the conditional expectation of adjacent order statistics. This approach has demonstrated
efficiency in differentiating the characteristics of the HGL and HGIL classes of distributions.
Moreover, we obtained characterization results for right and left truncated moments for HGL
and HGIL classes of distributions. Further, main results are applied to characterize several well
known continuous distributions, such as the one-parameter Lindley, X-Lindley, power Lindley,
Lindley Pareto, Ailamujia, power Ailamujia, Lindley-Weibull, and length-biased exponential. Our
findings unify the earlier results obtained in the literature.
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Abstract 

In a well-supervised production framework, non-conformities occur seldom, resulting in a more 

number of zeros in the count of non-conformities. The zero-inflated Poisson (ZIP) distribution is a 

suitable model for handling zero inflation. Double sampling plan (DSP) is a precise quality inspection 

method where a decision on the approval or rejection of a lot is made after reviewing two samples, 

providing stronger conclusions than single sampling plan (SSP). In practice, decision-making for 

submitted lots requires a consistent assessment of both within-lot and between-lot variations, which 

can be addressed using Bayesian methodology. A Bayesian approach integrates prior knowledge and 

provides more information for making decisions about the approval or rejection of a lot. This article 

focuses on the designing of Bayesian DSPs; employing a   Gamma prior to the parameter in the 

Poisson component of ZIP distribution the operating characteristic (OC) function is derived. 

Examples are provided to assess Gamma-ZIP (GZIP) DSPs. The significance of GZIP DSPs over 

conventional ZIP DSPs is also presented. 

Keywords: Sampling inspection by attributes, Double sampling plan, Prior 
distribution, Zero-inflated Poisson distribution, Average quality level, Limiting 
quality level, Operating characteristics function. 

I. Introduction

Sampling inspection is a method employed to assess the quality of items by examining a sample 
rather than inspecting every individual item. This approach is widely applied in manufacturing, 
service industries, and other sectors where full inspection would be too expensive or time-
consuming.  Acceptance sampling is a strategy that helps determine whether entire batches can be 
approved or declined based on sample inspection. Sampling inspection is categorized into two main 
types: sampling inspection by attributes and variables, both of which help to assess the quality 
standard of a batch. 

In a SSP, the judgment to approve or decline a batch is based on inspecting only one sample. 
However, there are situations where a single sample may not provide sufficient information for a 
conclusive decision. In such cases, a DSP is implemented, where the decision is made based on the 
inspection of two samples. DSP functions as an extension of SSP, offering more reliable decision-
making in quality control. Designing DSP parameters offers enhanced decision-making accuracy 
and provides better protection to both producer and consumer. 
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A Bayesian approach to acceptance sampling integrates prior knowledge with observed data to 

improve decision-making. When items are manufactured in lots, quality variations can occur due to 
within-lot and between-lot variation. Conventional acceptance sampling often assumes that 
between-lot variation is less significant than within-lot variation, leading to the assumption that the 
fraction of nonconforming items in a lot remains constant. In reality, decisions about submitted lots 
should consider both within-lot and between-lot variations. In such cases, Bayesian methods can be 
employed to design effective sampling plans based on predictive distributions. 

The ZIP distribution is particularly effective in situations where non-conformities are rare. It is 
suitable for processes where there is a high occurrence of zero non-conformities, though occasional 
non-conformities are still possible. Loganathan and Shalini [5, 6] pioneered the determination of ZIP 
SSPs. Later, Uma and Ramya [17], Rao and Aslam [13], and Fu-Kwun and Sharew [3] discussed the 
construction of sampling plans in different perspectives. The Bayesian approach to developing ZIP 
SSPs has been explored by Suresh and Latha [15], Vijayaraghavan et al.,[19], Shalini et al., [11], 
Palanisamy and Latha [7, 8] and Kaviyarasu and Sivakumar [4]. 

The designing of ZIP DSPs has been addressed by Shalini and Sheik [12], Pramote and 
Wimonmas [9], Wimonmas and Pramote [20]. The integration of Bayesian principles into the 
designing of DSPs have been discussed by Vijayaraghavan and Sakthivel [18], Balamurali et al.,[1], 
and Suresh and Usha [16]. 

According to the literature, there has been no research conducted on developing GZIP DSPs. 
This article focuses on the determination of GZIP DSPs. The OC function of the GZIP DSP is derived 
in Section 2. Designing GZIP DSPs is discussed in Section 3. Numerical examples and the 
significance of GZIP DSPs over the conventional ZIP DSPs are given in Section 4. Results are 
summarized in the concluding section. 

II. OC function of GZIP DSPs

DSPs offer more flexibility than SSPs by reducing the risk of making premature decisions. This 
approach is widely used in industries where cost and time efficiency are critical, providing a balance 
between minimizing inspection efforts and ensuring product quality. 

A DSP is structured around five specific parameters: n1, n2, c1, c2 and c3, where c1 < c2 and c2 ≤ c3 

(the third acceptance number). When c2 is taken in equal to c3 (i.e., c2 = c3), the DSP is described 
through its parameters n1, n2, c1and c2, which represent the sizes of the first and second samples and 
the first and second acceptance numbers, respectively (Duncan [2] and Stephens [14]). 

Upon inspecting all items in the sample, the number of nonconformities (d1) is established. If d1 

≤ c1, the lot is approved; if d1 > c2, it is declined. When c1 < d1 ≤ c2, the initial sample fails, a second 
sample of size n2 is taken and the nonconformities (d2) are counted. The cumulative count, D = d1 + 

d2, is compared to c2: the lot is approved if D ≤ c2 and declined if D > c2. This two-stage process 
enhances the reliability of quality assessment, allowing for more effective decision-making 
regarding lot approval or rejection based on observed nonconformities (Schilling and Neubauer 
[10]). 

The effectiveness of a sampling plan can be evaluated through its OC function. In various 
industrial environments, careful monitoring of production processes often results in the frequent 
occurrence of zero non-conformities. In such scenarios, the ZIP distribution is the fitting probability 
distribution for nonconformities. The probability mass function (pmf) of the ZIP distribution is 
defined as follows 

𝑃 (𝑋 = 𝑑|𝜑, 𝜆) = {
𝜑 + (1 − 𝜑)𝑒−𝜆

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!

, 𝑤ℎ𝑒𝑛 𝑑 = 0
,  𝑤ℎ𝑒𝑛 𝑑 = 1,2,3, . . .

(1)
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In this model, φ and λ are parameters, where φ (0 < φ < 1) denotes the mixing proportion, which 

is assumed to be known. 
When the variation in lot quality is significant from lot-to-lot, it indicates an unstable 

production process. In such cases, the process parameter λ is assumed to vary randomly between 
lots and follows Gamma (a, m) distribution. This gamma distribution is the natural conjugate prior 
to λ= np in the Poisson component of the ZIP distribution.  

Shalini et al. [11] derived the probability distribution of d under the conditions of a ZIP 
distribution and a gamma prior distribution for λ, where the shape parameter of the gamma 
distribution is m. 

𝑓 (𝑑|𝜑, 𝑛, 𝑝, 𝑚) = {
𝜑 + (1 − 𝜑) (

𝑚

𝑛𝑝+𝑚
)

𝑚

(1 − 𝜑) (
𝑚 + 𝑑 − 1

𝑚 − 1
) (

𝑛𝑝

𝑛𝑝+𝑚
)

𝑑

(
𝑚

𝑛𝑝+𝑚
)

𝑚

, 𝑤ℎ𝑒𝑛 𝑑 = 0
,  𝑤ℎ𝑒𝑛 𝑑 = 1,2,3, . . .

(2) 

The OC function of the GZIP DSP can be described as: 

𝑃𝑎(𝑝) = 𝐹(𝑑1 ≤ 𝑐1|𝑛1) + ∑ 𝑓(𝑑1|𝑛1,𝑝, 𝜑, 𝑚)𝐹(𝑑2 ≤ 𝑐3 − 𝑑1|𝑛2)
𝑐2
𝑑1= 𝑐1+ 1  (3) 

As proposed by Vijayaraghavan and Sakthivel [18], the prior knowledge about the production 

process must be used to estimate the value of m. The moment estimator �̂� =
𝑠1

2

𝑠2
  can be used for m, 

where 𝑠1 =
1

𝑘
∑ �̂�𝑖

𝑘
𝑖=1 = 𝜆̅ and 𝑠2 =

1

𝑘
∑ (�̂�𝑖 − 𝜆̅)

2𝑘
𝑖=1  ;  �̂�𝑖, i = 1, 2, 3, … , k. 

III. Designing GZIP DSPs

GZIP DSPs are designed by determining the optimum parameters n1, n2, c1and c2 based on the 
prescribed points (p1, 1-α) and (p2, β) on the OC curve so that the determined GZIP DSPs provide 
adequate protection to both producer and consumer. 

The plan must satisfy the following requirements: 
(i) Pa (p1) ≥ 1- α

(ii) Pa (p2) ≤ β

The values of the plan parameters n1, n2, c1 and c2 can be derived for each set of φ, m, p1, α, p2 and 
β by applying the unity value approach. The values np1 and np2 satisfying respectively equations (i) 
and (ii) are termed as unity values (Schilling and Neubauer [10]). The plan parameters can be 
arranged in tables for different combinations of (p1, α, p2, β). The use of an operating ratio 𝑅 =
𝑛𝑝2

𝑛𝑝1
,  reduces the number of tables. 

The plan parameters are determined for specific sets of values of φ, m, p1, α, p2 and β under the 
condition of GZIP distribution. The unity values are computed for various values combinations of 
(φ, m, c, Pa (p)) by solving the OC function of GZIP DSPs for each combination of c1 and c2 with n1= n2 

= n. The values taken for m are 5 and 10 and for Pa (p) are 0.99, 0.90, 0.50, 0.20 and 0.10. The value 
considered for c1 and c2 in these combinations are 1(1)9 and 2(1)10 respectively. The values taken for 
φ are 0.03 and 0.07 and are given in Table 1. The operating ratio values calculated corresponding to 
(α = 0.05, β = 0.10), (α = 0.10, β = 0.20), φ = 0.03 and 0.07, m = 5 and 10, c1 = 1(1)9 and c2 = 2(1)10 are 
listed in Table 2. 

For specified strength (p1, α, p2, β) and values of φ and m these tables can be used to determine 
the plan parameters by implementing the following procedure: 

First, we compute the operating ratio 𝑅 =
𝑝2

𝑝1
 .Next select the unity value np1 and the acceptance

numbers (c1, c2) from Table 2 corresponding to the value of φ, m, α, β associated with an operating 
ratio closest to R. Then, determine the unity values np1 from Table 1 and calculate the sample size n 
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as  

𝑛𝑝1

𝑝1
. Thus, the acceptance numbers and the sample size determined together with φ and m are the 

parameters of the desired plan. 

Table 1: Unity Value of GZIP DSPs 

φ m c1 c2 
Pa (p) 

0.99 0.95 0.9 0.5 0.2 0.1 

0.03 5 

1 2 0.3488 0.6455 0.8704 2.2795 4.2836 6.2789 
1 3 0.5684 0.9343 1.1976 2.7349 4.7742 6.7438 
1 4 0.791 1.2209 1.5219 3.2119 5.3513 7.3541 
1 5 1.0182 1.5102 1.8489 3.7034 5.9797 8.0607 
1 6 1.2504 1.8033 2.1795 4.2049 6.6399 8.8299 
1 7 1.4872 2.1002 2.5138 4.7136 7.3208 9.6402 
1 8 1.728 2.4004 2.8512 5.2275 8.0156 10.4782 
1 9 1.9723 2.7034 3.1912 5.745 8.7201 11.3353 
1 10 2.2194 3.0087 3.5333 6.2654 9.4313 12.2058 
2 3 0.6147 1.0308 1.3368 3.2234 5.9143 8.5762 
2 4 0.8351 1.3024 1.6345 3.5798 6.2375 8.8573 
2 5 1.0569 1.5775 1.9398 3.9877 6.6701 9.2693 
2 6 1.2833 1.8588 2.2535 4.4292 7.1839 9.7977 
2 7 1.515 2.1461 2.5744 4.8934 7.755 10.4186 
2 8 1.7515 2.4385 2.9012 5.3734 8.3665 11.1092 
2 9 1.9921 2.7352 3.2328 5.8649 9.0067 11.8514 
2 10 2.2362 3.0355 3.5682 6.3648 9.6678 12.6316 
3 4 0.9132 1.4502 1.8397 4.2225 7.5954 10.8922 
3 5 1.1254 1.6984 2.1037 4.4942 7.8127 11.082 
3 6 1.3418 1.9581 2.3863 4.8329 8.1275 11.3654 
3 7 1.5646 2.2284 2.6835 5.2197 8.5307 11.7496 
3 8 1.7936 2.5073 2.9918 5.6407 9.006 12.2295 
3 9 2.028 2.7932 3.3088 6.0863 9.5374 12.7925 
3 10 2.2669 3.0847 3.6324 6.55 10.1113 13.4239 
4 5 1.2365 1.8964 2.3715 5.2571 9.2958 13.2063 
4 6 1.4357 2.1188 2.6012 5.4625 9.4506 13.3504 
4 7 1.6438 2.3606 2.8589 5.7376 9.6809 13.5583 
4 8 1.8607 2.6176 3.1373 6.0692 9.9911 13.8426 
4 9 2.0853 2.8862 3.4308 6.4439 10.3759 14.2093 
4 10 2.3161 3.1639 3.7359 6.8511 10.8249 14.6568 
5 6 1.5793 2.364 2.9258 6.3131 11.0028 15.5146 
5 7 1.7633 2.5604 3.123 6.4695 11.121 15.6345 
5 8 1.961 2.7829 3.3551 6.6905 11.2948 15.7986 
5 9 2.1704 3.0249 3.613 6.9699 11.5339 16.0185 
5 10 2.3891 3.2817 3.8902 7.298 11.8413 16.3033 
6 7 1.9377 2.8482 3.4973 7.3819 12.7115 17.8174 
6 8 2.1057 3.02 3.6652 7.5033 12.808 17.9234 
6 9 2.2918 3.2226 3.872 7.6804 12.9446 18.0614 
6 10 2.4923 3.4487 4.1088 7.9135 13.1325 18.2403 
7 8 2.3088 3.3455 4.0817 8.4583 14.4201 20.1156 
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φ m c1 c2 
Pa (p) 

0.99 0.95 0.9 0.5 0.2 0.1 

0.03 5 

7 9 2.4608 3.4947 4.224 8.555 14.5031 20.2132 
7 10 2.6346 3.6778 4.4068 8.6978 14.6156 20.3348 
8 9 2.6901 3.8529 4.676 9.5394 16.128 22.4102 
8 10 2.8268 3.9821 4.7965 9.6186 16.2024 22.5023 
9 10 3.0796 4.3683 5.2775 10.6234 17.8349 24.7018 

0.03 10 

1 2 0.3675 0.6684 0.8907 2.192 3.8343 5.2986 
1 3 0.6025 0.9714 1.2293 2.6331 4.2825 5.709 
1 4 0.843 1.2746 1.568 3.0994 4.8159 6.2568 
1 5 1.0908 1.5836 1.9123 3.5825 5.3982 6.8918 
1 6 1.3466 1.8991 2.2628 4.0768 6.0096 7.5801 
1 7 1.6097 2.2207 2.6189 4.5787 6.6386 8.3008 
1 8 1.879 2.5474 2.9796 5.0858 7.2784 9.0415 
1 9 2.1537 2.8783 3.3442 5.5963 7.9249 9.7945 
1 10 2.4329 3.2129 3.7119 6.1093 8.5754 10.5551 
2 3 0.6554 1.0761 1.3762 3.0882 5.2284 7.1066 
2 4 0.8908 1.3588 1.6808 3.4237 5.5103 7.3413 
2 5 1.1303 1.649 1.9979 3.817 5.9025 7.703 
2 6 1.378 1.9494 2.3277 4.2483 6.3765 8.1781 
2 7 1.6342 2.2591 2.6681 4.7053 6.9071 8.7405 
2 8 1.8981 2.5768 3.017 5.18 7.4764 9.3656 
2 9 2.1685 2.9009 3.3727 5.6669 8.0719 10.0347 
2 10 2.4444 3.2302 3.7337 6.1625 8.6853 10.7341 
3 4 0.9843 1.5265 1.9068 4.0436 6.6651 8.9182 
3 5 1.209 1.7809 2.1715 4.2873 6.8423 9.0682 
3 6 1.442 2.0528 2.4618 4.6048 7.115 9.3052 
3 7 1.6857 2.3403 2.7723 4.977 7.4781 9.6411 
3 8 1.9393 2.6406 3.0984 5.3883 7.9157 10.0719 
3 9 2.2014 2.9512 3.4365 5.8276 8.41 10.5838 
3 10 2.4706 3.27 3.7839 6.287 8.9462 11.1598 
4 5 1.3465 2.0131 2.4756 5.0383 8.1145 10.7165 
4 6 1.5546 2.2357 2.6989 5.2109 8.2333 10.8275 
4 7 1.7771 2.4852 2.9588 5.4576 8.4208 10.9938 
4 8 2.0134 2.7563 3.2463 5.7678 8.6878 11.2317 
4 9 2.2617 3.0441 3.5545 6.1278 9.0324 11.5508 
4 10 2.5197 3.3449 3.8786 6.5254 9.4443 11.9512 
5 6 1.7368 2.5297 3.0754 6.0563 9.5646 12.5006 
5 7 1.925 2.7199 3.2593 6.1786 9.6524 12.5929 
5 8 2.1339 2.9448 3.487 6.3653 9.7858 12.7213 
5 9 2.3604 3.1967 3.7488 6.616 9.98 12.8984 
5 10 2.601 3.4693 4.0364 6.9226 10.243 13.1364 
6 7 2.1506 3.0708 3.6995 7.0875 11.0118 14.2731 
6 8 2.3177 3.2302 3.8481 7.1763 11.083 14.3555 
6 9 2.511 3.4293 4.0438 7.3159 11.1839 14.4633 
6 10 2.7254 3.6602 4.2784 7.5139 11.328 14.6044 
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φ m c1 c2 
Pa (p) 

0.99 0.95 0.9 0.5 0.2 0.1 

0.03 10 

7 8 2.5841 3.6314 4.3422 8.126 12.4553 16.0363 
7 9 2.7301 3.7629 4.4607 8.1931 12.5175 16.1132 
7 10 2.9065 3.9365 4.6261 8.2982 12.5992 16.2091 
8 9 3.0339 4.2073 4.9987 9.1684 13.8953 17.7925 
8 10 3.1598 4.3147 5.0928 9.2219 13.9523 17.8657 
9 10 3.4971 4.795 5.6656 10.213 15.3323 19.543 

0.07 5 

1 2 0.3554 0.66 0.8925 2.3944 4.8306 8.5599 
1 3 0.5786 0.9547 1.2272 2.8707 5.3748 9.1613 
1 4 0.8047 1.2465 1.5583 3.3685 6.013 9.946 
1 5 1.0351 1.5407 1.8917 3.8806 6.7086 10.8654 
1 6 1.2702 1.8385 2.2284 4.4028 7.4406 11.8792 
1 7 1.5099 2.1399 2.5686 4.9321 8.1966 12.9589 
1 8 1.7534 2.4444 2.9117 5.4664 8.9689 14.085 
1 9 2.0003 2.7516 3.2573 6.0045 9.7525 15.2443 
1 10 2.2501 3.0611 3.605 6.5453 10.5441 16.4278 
2 3 0.6249 1.0517 1.3677 3.376 6.631 11.531 
2 4 0.8491 1.3291 1.6727 3.7531 7.0123 11.9703 
2 5 1.0741 1.6092 1.9844 4.1799 7.5013 12.556 
2 6 1.3036 1.895 2.3041 4.64 8.0733 13.2756 
2 7 1.5381 2.1866 2.6307 5.1228 8.7063 14.1084 
2 8 1.7772 2.4833 2.963 5.6217 9.3835 15.0324 
2 9 2.0205 2.7842 3.3 6.1323 10.093 16.0281 
2 10 2.2671 3.0885 3.6408 6.6514 10.8262 17.0794 
3 4 0.9273 1.4775 1.8794 4.4115 8.4709 14.4839 
3 5 1.1431 1.7314 2.1507 4.7059 8.756 14.8475 
3 6 1.3627 1.9959 2.4394 5.0632 9.1321 15.32 
3 7 1.5883 2.2705 2.7422 5.4671 9.5924 15.9023 
3 8 1.8199 2.5535 3.0558 5.905 10.1245 16.589 
3 9 2.0569 2.8434 3.3779 6.3677 10.7143 17.3698 
3 10 2.2983 3.1388 3.7067 6.8489 11.3496 18.2324 
4 5 1.2543 1.9301 2.4198 5.4807 10.3229 17.4184 
4 6 1.4573 2.1584 2.6573 5.712 10.5536 17.742 
4 7 1.6684 2.4048 2.9209 6.0069 10.8534 18.1493 
4 8 1.888 2.6658 3.2045 6.3553 11.226 18.6439 
4 9 2.115 2.9383 3.503 6.7457 11.6683 19.2263 
4 10 2.3483 3.2196 3.8129 7.1685 12.173 19.8938 
5 6 1.6007 2.4037 2.9824 6.5697 12.1774 20.339 
5 7 1.7887 2.6065 3.1881 6.7554 12.3767 20.6388 
5 8 1.9894 2.8335 3.4261 6.9985 12.6274 21.0059 
5 9 2.2013 3.0794 3.6891 7.2957 12.9365 21.4438 
5 10 2.4223 3.3398 3.9708 7.6391 13.3066 21.9543 
6 7 1.9627 2.8938 3.5619 7.6702 14.0314 23.2495 
6 8 2.1349 3.0725 3.7391 7.824 14.2118 23.5338 
6 9 2.324 3.2798 3.9521 8.0262 14.4309 23.8743 
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φ m c1 c2 
Pa (p) 

0.99 0.95 0.9 0.5 0.2 0.1 

0.07 5 

6 10 2.5269 3.5097 4.1939 8.2787 14.6957 24.2737 
7 8 2.3372 3.3968 4.154 8.7776 15.8839 26.1528 
7 9 2.4938 3.5536 4.3066 8.9092 16.0525 26.426 
7 10 2.6706 3.7416 4.4961 9.08 16.2509 26.7478 
8 9 2.7219 3.9098 4.7557 9.889 17.7348 29.0506 
8 10 2.8635 4.0472 4.8875 10.0052 17.8956 29.3156 
9 10 3.1147 4.4305 5.3644 11.0028 19.5843 31.9442 

0.07 10 

1 2 0.3744 0.6832 0.9129 2.2942 4.2581 6.8443 
1 3 0.6134 0.9921 1.2588 2.7535 4.7481 7.3537 
1 4 0.8574 1.3007 1.6042 3.2377 5.3299 8.0376 
1 5 1.1086 1.6146 1.9546 3.7384 5.9662 8.8447 
1 6 1.3675 1.9346 2.3108 4.2501 6.6352 9.734 
1 7 1.6334 2.2605 2.6724 4.7692 7.3243 10.6776 
1 8 1.9055 2.5913 3.0384 5.2933 8.0258 11.6572 
1 9 2.1828 2.9262 3.4081 5.8206 8.7349 12.6611 
1 10 2.4645 3.2646 3.7808 6.35 9.4486 13.6816 
2 3 0.6663 1.0975 1.4071 3.2217 5.7651 9.0165 
2 4 0.9057 1.386 1.7188 3.5751 6.0952 9.3774 
2 5 1.1485 1.681 2.042 3.9842 6.5325 9.8823 
2 6 1.3992 1.9858 2.3772 4.4308 7.0528 10.5184 
2 7 1.6583 2.2997 2.7228 4.903 7.6328 11.2631 
2 8 1.9249 2.6213 3.0767 5.393 8.2547 12.0916 
2 9 2.1978 2.9492 3.4373 5.8954 8.9057 12.983 
2 10 2.4762 3.2823 3.8031 6.4065 9.5767 13.9204 
3 4 0.9993 1.5547 1.9465 4.2066 7.3015 11.1529 
3 5 1.228 1.8147 2.2183 4.4706 7.5386 11.4466 
3 6 1.4641 2.091 2.514 4.8033 7.8632 11.8479 
3 7 1.7105 2.3824 2.8293 5.1888 8.2725 12.3593 
3 8 1.9666 2.6864 3.1601 5.6132 8.7546 12.9752 
3 9 2.2312 3.0006 3.5027 6.0657 9.2948 13.6839 
3 10 2.5028 3.3229 3.8546 6.5388 9.8795 14.4708 
4 5 1.3657 2.0478 2.5239 5.2283 8.8418 13.2582 
4 6 1.5777 2.2761 2.7546 5.4251 9.0295 13.5176 
4 7 1.803 2.5298 3.0196 5.6884 9.2796 13.8605 
4 8 2.0419 2.8044 3.3113 6.0113 9.6 14.2917 
4 9 2.2924 3.0954 3.6237 6.3826 9.9908 14.8122 
4 10 2.5527 3.3994 3.9518 6.7914 10.4459 15.4192 
5 6 1.7601 2.5708 3.132 6.2712 10.378 15.3406 
5 7 1.9523 2.7671 3.324 6.4218 10.5396 15.5798 
5 8 2.1639 2.9959 3.5567 6.6279 10.7447 15.8875 
5 9 2.3926 3.2509 3.8223 6.8922 11.0024 16.2675 
5 10 2.6353 3.5264 4.1135 7.2093 11.3191 16.722 
6 7 2.1779 3.118 3.7639 7.3255 11.9085 17.4062 
6 8 2.3492 3.2841 3.9216 7.4462 12.0559 17.6321 
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φ m c1 c2 
Pa (p) 

0.99 0.95 0.9 0.5 0.2 0.1 

0.07 10 

6 9 2.545 3.4872 4.1225 7.609 12.2343 17.9166 
6 10 2.7615 3.7209 4.3607 7.8226 12.4509 18.2623 
7 8 2.6153 3.6844 4.4139 8.3859 13.4337 19.4595 
7 9 2.7658 3.8236 4.5429 8.4879 13.5728 19.6757 
7 10 2.9447 4.0012 4.714 8.6197 13.7352 19.9435 
8 9 3.0688 4.2658 5.0773 9.4496 14.9545 21.5035 
8 10 3.1997 4.3818 5.1832 9.5399 15.0883 21.7122 

9 10 3.5356 4.8587 5.7507 10.515 16.4715 23.5402 

Table 2: Operating Ratio of GZIP DSPs 

φ m c1 c2 
R 

α = 0.05, β =0.10 α = 0.10, β =0.20 

0.03 5 

1 2 9.7272 0.2222 
1 3 7.218 4.9214 
1 4 6.0235 3.9865 
1 5 5.3375 3.5162 
1 6 4.8965 3.2342 
1 7 4.5901 3.0465 
1 8 4.3652 2.9122 
1 9 4.193 2.8113 
1 10 4.0568 2.7325 
2 3 8.3199 2.6693 
2 4 6.8008 4.4242 
2 5 5.8759 3.8162 
2 6 5.271 3.4386 
2 7 4.8547 3.1879 
2 8 4.5558 3.0124 
2 9 4.3329 2.8838 
2 10 4.1613 2.786 
3 4 7.5108 2.7094 
3 5 6.525 4.1286 
3 6 5.8043 3.7138 
3 7 5.2727 3.4059 
3 8 4.8776 3.1789 
3 9 4.5799 3.0102 
3 10 4.3518 2.8824 
4 5 6.9639 2.7836 
4 6 6.3009 3.9198 
4 7 5.7436 3.6332 
4 8 5.2883 3.3862 
4 9 4.9232 3.1846 
4 10 4.6325 3.0243 
5 6 6.5629 2.8975 
5 7 6.1063 3.7606 
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φ m c1 c2 
R 

α = 0.05, β =0.10 α = 0.10, β =0.20 

0.03 5 

5 8 5.677 3.561 
5 9 5.2955 3.3665 
5 10 4.9679 3.1923 
6 7 6.2557 3.0439 
6 8 5.9349 3.6347 
6 9 5.6046 3.4945 
6 10 5.289 3.3431 
7 8 6.0127 3.1962 
7 9 5.784 3.5329 
7 10 5.5291 3.4335 
8 9 5.8164 3.3166 
8 10 5.6509 3.4491 
9 10 5.6548 3.378 

0.03 10 

1 2 7.9273 3.3794 
1 3 5.8771 4.3048 
1 4 4.9088 3.4837 
1 5 4.352 3.0714 
1 6 3.9914 2.8229 
1 7 3.7379 2.6558 
1 8 3.5493 2.5349 
1 9 3.4029 2.4427 
1 10 3.2852 2.3697 
2 3 6.604 2.3102 
2 4 5.4028 3.7992 
2 5 4.6713 3.2784 
2 6 4.1952 2.9544 
2 7 3.869 2.7394 
2 8 3.6346 2.5888 
2 9 3.4592 2.4781 
2 10 3.323 2.3933 
3 4 5.8423 2.3262 
3 5 5.0919 3.4954 
3 6 4.5329 3.151 
3 7 4.1196 2.8902 
3 8 3.8142 2.6974 
3 9 3.5863 2.5548 
3 10 3.4128 2.4473 
4 5 5.3234 2.3643 
4 6 4.843 3.2778 
4 7 4.4237 3.0506 
4 8 4.0749 2.846 
4 9 3.7945 2.6762 
4 10 3.573 2.5411 
5 6 4.9415 2.435 
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φ m c1 c2 
R 

α = 0.05, β =0.10 α = 0.10, β =0.20 

0.03 10 

5 7 4.6299 3.11 
5 8 4.3199 2.9615 
5 9 4.0349 2.8064 
5 10 3.7865 2.6622 
6 7 4.648 2.5377 
6 8 4.4442 2.9766 
6 9 4.2176 2.8801 
6 10 3.9901 2.7657 
7 8 4.416 2.6477 
7 9 4.2821 2.8684 
7 10 4.1176 2.8062 
8 9 4.229 2.7235 
8 10 4.1407 2.7798 
9 10 4.0757 2.7396 

0.07 5 

1 2 12.9695 2.7062 
1 3 9.596 5.4124 
1 4 7.9791 4.3797 
1 5 7.0522 3.8587 
1 6 6.4614 3.5463 
1 7 6.0558 3.339 
1 8 5.7622 3.1911 
1 9 5.5402 3.0803 
1 10 5.3666 2.994 
2 3 10.9642 2.9249 
2 4 9.0063 4.8483 
2 5 7.8026 4.1922 
2 6 7.0056 3.7801 
2 7 6.4522 3.5039 
2 8 6.0534 3.3095 
2 9 5.7568 3.1669 
2 10 5.53 3.0585 
3 4 9.803 2.9736 
3 5 8.5754 4.5072 
3 6 7.6757 4.0712 
3 7 7.0039 3.7436 
3 8 6.4966 3.4981 
3 9 6.1088 3.3132 
3 10 5.8087 3.1719 
4 5 9.0246 3.0619 
4 6 8.22 4.266 
4 7 7.5471 3.9716 
4 8 6.9937 3.7158 
4 9 6.5433 3.5032 
4 10 6.179 3.3309 
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φ m c1 c2 
R 

α = 0.05, β =0.10 α = 0.10, β =0.20 

0.07 5 

5 6 8.4615 3.1926 
5 7 7.9182 4.0831 
5 8 7.4134 3.8822 
5 9 6.9636 3.6856 
5 10 6.5735 3.5067 
6 7 8.0342 3.3511 
6 8 7.6595 3.9393 
6 9 7.2792 3.8009 
6 10 6.9162 3.6515 
7 8 7.6992 3.5041 
7 9 7.4364 3.8238 
7 10 7.1488 3.7274 
8 9 7.4302 3.6144 
8 10 7.2434 3.7292 
9 10 7.2101 3.6615 

0.07 10 

1 2 10.018 3.6508 
1 3 7.4123 4.6644 
1 4 6.1794 3.7719 
1 5 5.478 3.3225 
1 6 5.0315 3.0524 
1 7 4.7236 2.8714 
1 8 4.4986 2.7407 
1 9 4.3268 2.6415 
1 10 4.1909 2.563 
2 3 8.2155 2.4991 
2 4 6.7658 4.0972 
2 5 5.8788 3.5462 
2 6 5.2968 3.1991 
2 7 4.8976 2.9669 
2 8 4.6128 2.8033 
2 9 4.4022 2.683 
2 10 4.2411 2.5909 
3 4 7.1737 2.5181 
3 5 6.3077 3.7511 
3 6 5.6661 3.3984 
3 7 5.1878 3.1278 
3 8 4.83 2.9239 
3 9 4.5604 2.7704 
3 10 4.3549 2.6536 
4 5 6.4744 2.563 
4 6 5.9389 3.5032 
4 7 5.4789 3.278 
4 8 5.0962 3.0731 
4 9 4.7852 2.8992 
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φ m c1 c2 
R 

α = 0.05, β =0.10 α = 0.10, β =0.20 

0.07 10 

4 10 4.5359 2.7571 
5 6 5.9672 2.6433 
5 7 5.6304 3.3135 
5 8 5.3031 3.1708 
5 9 5.004 3.021 
5 10 4.7419 2.8785 
6 7 5.5825 2.7517 
6 8 5.3689 3.1639 
6 9 5.1378 3.0742 
6 10 4.908 2.9677 
7 8 5.2816 2.8553 
7 9 5.1459 3.0435 
7 10 4.9844 2.9877 
8 9 5.0409 2.9137 
8 10 4.9551 2.9454 
9 10 4.845 2.911 

IV. Numerical Examples

This section outlines the process for choosing GZIP DSPs for a defined strength, along with 
numerical examples. 

When solving the OC function of the GZIP DSPs conditions, the unity values for various 
combinations of (φ, m, c, Pa(p)) are calculated by considering each combination of c1 and c2 with the 
condition n1 = n2 = n. Then, the plan parameters for specific values of φ, m, p1, α, p2 and β are 
determined GZIP DSPs. 

I. Example 1

Suppose that φ = 0.07, m = 10, and the strength of the plan is specified as p1 = 0.01, α = 0.05, p2 = 0.06, 
β = 0.10, the operating ratio R corresponding to these specifications is computed as 6. The acceptance 
number can be determined from Table 2 as c1 = 5 and c2 = 6 with an R value of 5.9672, which is close 
to 6. The unity values corresponding to the φ, m, p1, α, p2and β parameters are obtained from Table 1 
as np1 = 2.5708.  

Since n =
𝑛𝑝1

𝑝1
=

2.5708

0.01
≈ 257. Based on these calculations, the optimum DSP is n1 = 257, c1 = 5, 

n2 = 257 and c2 = 6. 

II. Example 2

Assuming φ = 0.03, m = 10, and the plan's strength is set at p1 = 0.01, α = 0.05, p2 = 0.06, 
β = 0.10, the operating ratio R can be calculated as 6. The acceptance number can be determined from 
Table 2 as c1 = 1 and c2 = 3 with an R value of 5.8771, which is close to 6. Consequently, 
the unity values for φ, m, p1, α, p2and β from Table 1 are np1 = 0.9714. 

Since, n =
𝑛𝑝1

𝑝1
=

0.9714

0.01
≈ 97.  the optimal GZIP DSPs for the specified specifications is n1 = 97, 

c1 = 1, n2 = 97, c2 = 3, φ = 0.03 and m = 10. 
The ZIP DSP for the specified strength is n1 = 102, c1 = 1, n2 = 102, c2 = 3, φ = 0.03. 
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This indicates that GZIP DSP requires smaller sample compared to ZIP DSP. 

III. Significance of GZIP DSPs over non-Bayesian ZIP DSPs.

The producer's risk for the ZIP DSP is 4.63% when the lot fraction non-conforming is 
p = 0.009. On the other hand, the producer's risk for the GZIP DSPs for the given values of m = 5 and 
10 are 3.32% and 3.56%, respectively. When the lot fraction non-conforming is p = 0.059, the 
consumer's risk for the ZIP DSP is 10.35%. In contrast, the consumer's risk for the GZIP DSPs for the 
specified values of m = 5 and 10 is 10.36% and 9.94%, respectively. For the ZIP DSP, the combined 
producer and consumer risk is 14.98%. On the other hand, the GZIP DSP has a total risk for m = 5 
and 10 are 13.68% and 13.50% respectively. 

Table 3: Values of OC function of DSP ZIP and GZIP DSPs for (p1 = 0.005, α = 0.05, p2 = 0.05, β = 0.10) 

Model 
Parameters 

Lot Fraction  
non-conforming (p) Producer’s 

Risk (%) 
Consumer’s 

Risk (%) 

Total 
Risk 
(%) φ m c1 c2 n 0 0.009 0.059 

ZIP 
DSP 

0.03 - 1 2 75 1 0.9537 0.1035 4.63 10.35 14.98 

GZIP 
DSP 

0.03 
5 7 8 335 1 0.9668 0.1036 3.32 10.36 13.68 

10 1 3 97 1 0.9643 0.0994 3.56 9.94 13.50 

V. Conclusion

The fundamental assumption in the theory of sampling inspection procedures by attributes 
is that the fraction of nonconforming items in a lot remains constant. However, in real-world 
scenarios, lots produced from a process often exhibit quality variations due to random fluctuations, 
leading to a random variation in the fraction of nonconforming units across lots. In such situations, 
Bayesian acceptance sampling plans (BASP), which incorporate prior information about process 
variability when making decisions on submitted lots, can offer an advantage over conventional 
plans. In this paper, Bayesian double sampling plans by attributes are determined for the two 
specified points on the OC curve based on gamma-ZIP distribution. The GZIP DSPs requires fewer 
sample units for inspection compared to non-Bayesian ZIP DSPs. As a result, GZIP DSPs effectively 
lower both producer’s and consumer’s risks, offering better protection for both parties by 
minimizing the chances of rejecting good-quality lots and accepting poor-quality ones. By 
implementing GZIP DSPs, optimal sample sizes and acceptance numbers are achieved, reducing 
overall risk and delivering benefits such as enhanced customer satisfaction, increased productivity, 
and sustained market competitiveness. 

References 
[1] Balamurali, S., Aslam, M. and Jun, C.H. (2012). Bayesian double sampling plan under

gamma-Poisson distribution. Research Journal of Applied Sciences, Engineering and Technology, 4(8): 949-
956. 

[2] Duncan, A.J. Quality Control and Industrial Statistics, Homewood: Richard D. Irwin, Inc,
1986. 

[3] Fu-Kwun, W. and Shalemu Sharew, H. (2018). Sampling plans for the zero-inflated Poisson
distribution in the food industry, Food Control 85:359-368. 

RT&A, No 1 (82) 
Volume 20, March 2025 

437



Priyadharshini R & Shalini K 

CONSTRUCTION OF GZIP DSP 
[4] Kaviyarasu, V. and Sivakumar, P. (2021). Optimization of Bayesian single sampling plan for

the zero inflated Poisson distribution involving risk minimization using tangent angle method, 
International Journal of Scientific Research in Mathematical and Statistical Sciences, 8(3):01-11. 

[5] Loganathan, A. and Shalini, K. (2014). Determination of single sampling plans by attributes
under the conditions of zero-inflated Poisson distribution. Communications in Statistics- Simulation 

and Computation, 43(3):538-548. 
[6] Loganathan, A. and Shalini, K. (2014). Selection of single sampling plans by attributes under

the conditions of zero-inflated Poisson distribution. International Journal of Quality & Reliability 

Management, 31(9):1002–1011. 
[7] Palanisamy, A. and Latha, M. (2018). Construction of Bayesian single sampling plan by

attributes under the conditions of gamma zero – inflated Poisson distribution. International Research 

Journal of Advanced Engineering and Science, 3(1):67-71. 
[8] Palanisamy, A. and Latha, M. (2018). Selection of Bayesian single sampling plan with zero–

inflated Poisson distribution based on quality region. International Journal of Scientific Research 

Mathematical and Statistical Sciences, 5(6):313-20. 
[9] Pramote, C. and Wimonmas, B. (2021). Designing of optimal required sample sizes for

double acceptance sampling plans under the zero-inflated defective data. Current Applied Science and 

Technology, 21(2):227-239. 
[10] Schilling, E.G. and Neubauer, D.V. Acceptance Sampling in Quality Control. Boca Raton: CRC 

Press, 2009. 
[11] Shalini, K, Loganathan, A and Kavitha, N. (2014). Bayesian single sampling plans under

the conditions of zero-inflated Poisson distribution. Research and Reviews Journal of Statistics, Special 
Issue 1:92–98. 

[12] Shalini, K., Sheik Abdullah, A. (2018). Designing double sampling plans under the
conditions of zero-inflated Poisson distribution. Journal of Emerging Technologies and Innovative 

Research, 5(12):529-534. 
[13] Srinivasa Rao, G. and Muhammad Aslam. (2017). Resubmitted lots with single sampling

plans by attributes under the conditions of zero-inflated Poisson distribution. Communications in 

Statistics - Simulation and Computation, 46(3):1814-1824. 
[14] Stephens K.S. The Hand book of Applied Acceptance Sampling: Plans, Procedures and

Principles, Wisconsin: ASQ Quality Press, 2001. 
[15] Suresh, K.K. and Latha, M. (2001). Bayesian single sampling plan for a gamma prior.

Economic Quality Control 16(1):93-107. 
[16] Suresh. K. K. and Usha, K. (2016). Construction of Bayesian double sampling plan using

minimum angle method. Journal of Statistics and Management Systems, 19(3):473-89, 
[17] Uma, G. and Ramya, K. (2016). Determination of quick switching system by attributes

under the conditions of zero-inflated Poisson distribution. International Journal of Statistics and 

Systems, 11(2):157-65. 
[18] Vijayaraghavan, R. and Sakthivel, K.M. (2010). Selection of Bayesian double sampling

inspection plans by attributes with small acceptance numbers. Economic Quality Control, 25:207-20. 
[19] Vijayaraghavan, R., Rajagopal, K. and Loganathan, A. (2008). A procedure for selection of

a Gamma-Poisson single sampling plan by attributes. Journal of Applied Statistics, 35(2):149-60. 
[20] Wimonmas, B. and Pramote, C. (2021). Designing of double acceptance sampling plan for

zero inflated and over-dispersed data using multi-objective optimization. Applied Science and 

Engineering Progress, 14(3):338-347.  

RT&A, No 1 (82) 
Volume 20, March 2025 

438



Suganya S and Pradeepa Veerakumari K 
A STUDY ON COMPARISON OF VARIOUS CSP AND SKSP 

A STUDY ON COMPARISON OF VARIOUS 

CONTINUOUS SAMPLING AND SKIP-LOT SAMPLING 

PLAN PROCEDURES 

S. Suganya1, K. Pradeepa Veerakumari2

• 
1Assistant Professor, Department of Statistics, PSG College of Arts & Science 

1suganstat@gmail.com 
2Associate Professor, Department of Statistics, Bharathiar University 

Abstract 

This paper explains the brief review of skip-lot sampling plan procedures followed by continuous 

sampling plan procedures. Also, various types of skip-lot sampling plans are compared with 

continuous sampling plans. The efficiency of SkSP-T is tested on comparison with various skip-lot 

sampling plans using Single Sampling Plan. A new system of skip-lot sampling plan of type SkSP-

T is compared with other skip-lot sampling plans. Different types of skip-lot sampling plans namely 

SkSP-2, SkSP-3, SkSP-V and SkSP-R. The tables are constructed for various combinations of various 

parameters using various numerical methods.  

Keywords: Continuous Sampling Plan, Skip Lot Sampling Plan, Skip-lot Sampling 

Plan of Type SkSP-T, Single Sampling Plan. 

I. Introduction

Acceptance sampling is a major tool in statistical quality control. Various Attributes Acceptance 

sampling procedures has been developed by several authors since 1940.  Acceptance sampling plan 

has four broad categorized.  It includes Continuous sampling plans, special purpose plans. Special 

purpose plan includes skip lot sampling procedure. In this paper explains the brief review of 

continuous sampling plan procedures and skip-lot sampling plan procedures. 

II. Comparison of CSP-1 and SkSP-1

Continuous sampling plan of type CSP-1 is introduced by [5]. CSP-1 plan is a continuous flow of 

discrete products. The operating procedure of CSP-1 is executed in two stages of inspections namely 

100% inspection and sampling inspection. These two types of inspection are controlled by the 

parameters i (clearance interval used for 100% inspection) and f (sampling frequency used for 

sampling inspection). CSP’s intended for applied only individual units. The average number of total 

production Pa (p) accepted are passed on a sampling basis is given by 

𝑃𝑎(𝑝) =
𝑞𝑖

𝑓+(1−𝑓)𝑞𝑖  (1) 

Where f is the Sampling Frequency (0<f<1), i is the Clearance Interval on 100% inspection. The 

first skip-lot sampling plan of type SkSP-1 is introduced by [8] it is based on the concept of 

continuous sampling plan of type CSP-1. Skip-lot sampling plan is a bulk materials or products 

produced in successive lots. The SkSP-1 sampling plan was proposed without considering the 

concept of reference plan. Skip-lot sampling plan of type SkSP-1 is followed by continuous sampling 

plan of type CSP-1. SkSP-1 is implemented by the following procedures are developed by [8]: 
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a) “Units” are be transformed into “lots” (clubbing of units).

b) After the inspection processes lots are conforming or non-conforming. Suppose

accepting a non-conforming lot and rejecting a conforming lot in this situation used

AOQL (Average Outgoing Quality Limit).

c) Using 2% AOQL table. If AOQL=2% then the standard plan parameter values are fixed.

Since f=1/2, i=14 and f=1/2, i=15.

Operating Procedure for SkSP-1 

a) Each nonconforming lots corrected or replaced by a conforming lot.

When i=14, f=1/2.

b) Each nonconforming lots rejected and not replaced by a conforming lot.

When i=15, f=1/2.

Under the plan is executed individually to each characteristic under inspection. During

some specific characteristics are elaborated, try to analyze partially single characteristic within per 

lot.  

Step1: Necessarily to test each lot, 15 lots are received and successive lots are found to be 

conforming. 

Step2: During 15 successive lots are found conforming, the lots are selected at randomly and 

to test half of a lots. In this case accepted lots are not tested. 

Step3: During a lot is rejected, go back to step-2. 

III. Comparison of CSP-2 and SkSP-2

CSP-2 is proposed by [6] it is a reconstruction of CSP-1 plan. Continuous sampling plan of type 

CSP-2 is different from CSP-1 plan. In this new plan once the sampling inspection is initiate, stop to 

100% inspection. When defect is found in sampling inspection it will use only the sampling 

frequency (f) of a succeeding of two defects occurs in the other k (successive sampling units) or less 

sample units. Suppose two defects occurs in k successive sampling units or less sampling units then 

the system immediately go to 100% inspection otherwise sampling inspection is ongoing. CSP-2 plan 

is maintained with three parameters i, f and k. The average number of total production Pa(p) 

accepted are passed on a sampling basis is given by 

𝑃𝑎(𝑝) =
𝑞𝑖(2−𝑞𝑘)

𝑓(1−𝑞𝑘)(1−𝑞𝑖)+𝑞𝑖(2−𝑞𝑘)
                 (2) 

Where f- Sampling Frequency, i- Clearance Interval on 100% inspection and k- Clearance 

Interval on sampling inspection. Skip-lot Sampling Plan of type SkSP-2 is developed by [7]. It is an 

extension of skip-lot sampling plan of type SkSP-1 and based on the origin of continuous sampling 

plan of CSP-1. In [15] has provided some operating characteristic of SkSP-2 plan using markov chain 

techniques. Skip-lot plan of type SkSP-2 is used an attribute inspection plan it is called as “reference 

plan”. The reference plan comprises certain rules, based on the record of lot acceptance or rejections, 

for switching back and forth between ‘normal’ and ‘skipping’ inspection. Every lot has received on 

the normal inspection and skipping inspection randomly selected fraction f of the lots and skipped 

lots are automatically accepted. Probability of acceptance under SkSP-2 plan is  

𝑃𝑎(𝑝) =  
𝑓𝑃+(1−𝑓)𝑃𝑖

𝑓+(1−𝑓)𝑃𝑖  (3) 

Where f- Sampling frequency, i- clearance interval and P- Probability of acceptance under the 

reference plans. 

IV. Comparison of CSP-3 and SkSP-3

The new concept of continuous sampling plan of type CSP-3 is designed by [6]. It is also moderation 

of CSP-1 and CSP-2 plans. CSP-3 is filtration of CSP-2 plan to provide additional production against 

highly defective quality. Four defects occur in k successive sampling units or less sampling units 
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then the system immediately go to 100% inspection otherwise sampling inspection is ongoing. It 

supplies additional manufacture on “Spotty quality”. The average fraction of total production 

accepted on a sampling basis is  

𝑃𝑎(𝑝)  =
𝑞𝑖[1+𝑞4(1−𝑞𝑘)

𝑓(1−𝑞𝑘+4)(1−𝑞𝑖)+𝑞(1+𝑞4𝑖(1−𝑞𝑘))+4𝑓𝑝𝑞𝑖
 (4) 

Where f- Sampling Frequency, i- Clearance Interval on 100% inspection and k- Clearance 

Interval on sampling inspection. Skip-lot sampling plan of type SkSP-3 is developed by [17] using 

markov chain technique. It is a basic concept of continuous sampling plans and skip-lot sampling 

plans. Probability of acceptance under SkSP-3 plan is  

𝑃𝑎(𝑝) =
𝑓𝑃(1−𝑃𝑖)(1−𝑃𝑘)+(1−𝑓)𝑃𝑖(2−𝑃𝑘)+𝑓𝑃𝑖+1(2−𝑃𝑘)

𝑓(1−𝑃𝑖)(1−𝑃𝑘)+𝑃𝑖(2−𝑃𝑘)
 (5) 

Where f- Sampling Frequency, i- Clearance Interval on normal inspection and k- Clearance 

Interval on skipping inspection. 

V. Comparison of CSP-V and SkSP-V

Exceptional study of continuous sampling plan of type CSP-V introduced by [2].  In   CSP-V plan f 

(sampling frequency) is never control to minimizing; using a smaller clearance interval to reducing 

inspection. CSP-V plan clearance number x (<i) can be used when 100% inspection only. And another 

clearance number i can be used in both 100% inspection and sampling inspection. The average 

fraction of total production accepted on a sampling basis (the operating characteristic function) is 

𝑃𝑎(𝑝) =  
𝑞𝑖

𝑞𝑖+𝑓[1−𝑞𝑖+𝑞𝑘(𝑞𝑖−𝑞𝑥)]
 (6) 

Where f- Sampling Frequency, i- Clearance Interval on 100% inspection, k- Clearance 

Interval on sampling inspection and x-Reduced clearance interval for 100% inspection. A new 

system of skip-lot sampling plan of type SkSP-V is introduced by [14]. The important feature of 

SkSP-V is the lot is rejected on skipping inspection then the system go to normal inspection with 

reduced clearance number. The probability of acceptance under the SkSP-V plan is 

𝑃𝑎(𝑝)  =  
𝑓𝑃+(1−𝑓)𝑃𝑖+𝑓𝑃𝑘+1(𝑃𝑖−𝑃𝑥)

(1+𝑃𝑖+𝑘−𝑃2𝑘)+(1−𝑓)𝑃𝑖  (7) 

Where, f- frequency, i- clearance interval, k- number of lots that consecutively were accepted 

under skip-lot inspection, x- number of reduced lots that were accepted under normal inspection  

VI. Comparison of CSP-R and SkSP-R

CSP-R plan which introduced by [12] the normal-tightened-reduced inspection concept of MIL-STD-

105D [13], the US standards for attributes sampling. Monograph for the selection of CSP-R plan is 

developed by [1]. Skip-lot sampling plan of type Resampling SkSP-R is introduced by [18]. In 

resampling plan, the producer maintains the quality of product. In SkSP-R sampling plan, m number 

of time the lots are submitted for resampling. The probability of acceptance under the SkSP-R plan 

is   

𝑃𝑎(𝑝) =  
𝑓𝑃+(1−𝑓)𝑃𝑖+𝑓𝑃𝑘(𝑃𝑖−𝑃)(1−𝑄𝑚)

𝑓(1−𝑃𝑖)[1−𝑃𝑘(1−𝑄𝑚)]+𝑃𝑖(1+𝑓𝑄𝑃𝑘)
 (8)

Where Q = 1-P, P is the probability of acceptance of a single lot under the reference plan, f-

the fraction of lots inspected in skipping inspection mode, i-clearance number of normal inspection, 

k-the clearance number of sampling inspection, m-the number of times the lots are submitted for

resampling.

VII. Brief explanation of SkSP-T and compared with CSP-T

The three-level continuous sampling plan assign as CSP-T (T-tightened) is designed by [9]. CSP-T is 

RT&A, No 1 (82) 
Volume 20, March 2025 

441



Suganya S and Pradeepa Veerakumari K 
A STUDY ON COMPARISON OF VARIOUS CSP AND SKSP 

derived an Average Outgoing Quality (AOQ) and Average Fraction Inspection (AFI) functions for 

continuous sampling plan of type CSP-T plan using Markov Chain Techniques. In this sampling 

plan is modified form of [10] and [4] following the methodology of as a multilevel plan CSP-T allows 

a reduction in sampling frequency (f) as quality improves, reducing the amount of sampling 

necessary. The sampling frequency is cut in every level then the quality is improved. Many authors 

study the properties and designing methodologies of continuous sampling plans of type CSP-T. 

Markov Chain model of CSP-T plan developed by [11], and Modified Tightened three level 

continuous sampling plan id derived by [3].  

Skip-lot sampling plan of type SkSP-T (T-tightened) is introduced by [16]. It is based on the 

concept of continuous sampling plan of type CSP-T, continuous sampling plan of type CSP-M, 

modified tightened three level continuous sampling plan and skip-lot sampling plan of type SkSP-

2. Sampling level is fixed by using CSP-M procedure; sampling fractions are taken from the CSP-T

procedure and other concepts are taken by modified CSP-T and SkSP-2 procedures. The main

advantage of skip lot sampling plan of type SkSP-T sampling plan is that the process moves from

one level of skipping inspection to another without going back to normal inspection and various

references plan are adopted for running normal and skipping inspections. In SkSP-T sampling plan

the sampling frequency (f) is minimized by every skipping inspection level. This procedure may face

the challenges of producer and consumer in terms of risks experienced by them during product and

process control. SkSP-T plan contains two inspections, namely normal and skipping inspection.

Skip-lot sapling plan is starts with normal inspection using various reference plans. In skipping

inspection entire lots in the structure of construction and the skipping inspections are continued.

The number of consecutive conforming lots or batches reaches some pre-specified clearance number

i continue to normal inspection. If i consecutive lots are cleared with normal inspection, using

skipping inspection with fraction f appear; if another i consecutive conforming lots are passed under

fractional inspection, the fraction (f) is bisecting to f/2, and then to f/4 provided no non-conforming

is found. Then the non-conforming is found in skipping inspection the system goes to normal

inspection. SkSP-T plan based on Burr type XII distribution and SkSP-T based on fuzzy logic

techniques  are developed [19,20].

Operating Procedure for SkSP-T

Step 1: Start with the normal inspection using reference plans. 

Step 2: When i consecutive lots are accepted on normal inspection, discontinue the normal 

inspection and started as skipping inspection. 

Step 3: Under skipping inspection mode, inspect only fraction f of the lots selected 

randomly, mention first level. 

Step 4: After i lots in succession have been found without a non-conforming at first level, 

the system then switches to skipping inspection with a fraction of f/2, mention second level. 

Step 5: After i lots in succession have been found without a non-conforming at second level, 

the system then switches to skipping inspection with a fraction of f/4, called third level. 

Step 6: If a non-conforming lot is found on either skipping level, the system reverts to 

normal inspection. 

Step 7: Exchange all non-conforming lots with conforming ones. 

The probability of acceptance under SkSP-T plan is 

Pa (p)  =
Pi(f2f3(1−Pi)+f1f3Pi(1−Pi)+f1f2P2i)

f1f2f3(1−Pi)+Pi(f2f3(1−Pi)+f1f3Pi(1−Pi)+f1f2P2i)
 (9) 

Where, P = Probability of Acceptance, f is the sampling frequency and i is the clearance 

number. 

VIII. Designing plans for given AQL, LQL, α and β

1. Specify p1 = Acceptable Quality Level at α = 0.05 or 0.01.

2. Specify p2 = Limiting Quality Level at β = 0.10 or 0.05.
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3. Obtain the corresponding ratio OR = p2 / p1 at different combination of α and β.

4. The actual np1 and np2 values corresponding to the OR value has been noted.

5. Determine the sample size n= np1 / p1. Round up the value for determining the sample Size.

Thus, the plan consists of the parameter n, i, f1, f2, f3, and c.

Table 1: Comparison of Operating Characteristics Values 

P CSP-2 SkSP-2 CSP-3 SkSP-3 CSP-V SkSP-V CSP-T SkSP-T 

0.001 0.9930 0.9976 0.9944 0.9999 0.9965 0.9999 0.9997 0.9999 

0.002 0.9748 0.9911 0.9937 0.9996 0.9960 0.9996 0.9987 0.9997 

0.003 0.9484 0.9811 0.9921 0.9986 0.9951 0.9990 0.9980 0.9992 

0.004 0.9158 0.9682 0.9896 0.9963 0.9934 0.9983 0.9974 0.9990 

0.005 0.8784 0.9527 0.9860 0.9921 0.9909 0.9974 0.9967 0.9987 

0.006 0.8375 0.9350 0.9810 0.9859 0.9870 0.9962 0.9960 0.9985 

0.007 0.7940 0.9155 0.9742 0.9773 0.9813 0.9949 0.9953 0.9982 

0.008 0.7488 0.8942 0.9650 0.9663 0.9727 0.9934 0.9946 0.9979 

0.009 0.7027 0.8716 0.9528 0.9529 0.9601 0.9916 0.9939 0.9977 

0.01 0.6562 0.8477 0.9367 0.9372 0.9418 0.9897 0.9931 0.9974 

IX. Comparative study

In nature skip-lot sampling plans are followed by continuous sampling plans. Continuous sampling 

plan is a series of lots or batches of materials. Skip-lot sampling plan is a bulk materials or products 

produced in successive lots. In this paper, various types of skip-lot sampling plans (SkSP) are 

compared with continuous sampling plans (CSP). Skip-lot sampling plan of types SkSP-2, SkSP-3, 

SkSP-V and SkSP-T using Single Sampling plan as reference plan. Compared to other skip-lot and 

continuous sampling plans, SkSP-T has more parameters.  

From table 1 compared with probability of acceptance (Pa (p)) values of continuous sampling 

plans and skip-lot sampling plans for using various parameters and its values. It concludes that skip-

lot sampling plan has high probability of acceptance (Pa (p)) compared with continuous sampling 

plans. Hence Skip-lot sampling plans have more efficient than continuous sampling plans. It 

concludes that SkSP-T is superior to other skip-lot and continuous sampling plans.  

X. Conclusion

In this paper, various types of skip-lot sampling plans are compared to Continuous sampling plans. 

In general skip lot sampling plans are reducing the frequency of sampling inspection and overall 

inspection cost. Comparison of continuous sampling plans and skip-lot sampling plans the new plan 

of skip-lot sampling plan of type SkSP-T has high probability of acceptance and good quality level. 

The new proposed plan of skip-lot sampling plan of type SkSP-T is better protection to the producer 

and the consumer. The main advantage of skip lot sampling plan of type SkSP-T sampling plan is 

that the process moves from one level of skipping inspection to another without going back to 

normal inspection. 
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Abstract 

This paper addresses an analysis methodology for assessing the efficacy of a evaporating system in a 
sugar industry. A stochastic Petri nets technique is employed to simulate the interactions between 
the subsystems. A software package, "Petri module," from GRIF, was licensed. The performability of 
subsystems has been evaluated, and fluctuations in repair and failure rates have been observed. The 
maintenance order priority was assigned to the subsystems of the evaporating system based on the 
criticality of failure. Finally, a decision support system is implemented to assist maintenance 
personnel in making more informed decisions during the development of maintenance policies. It has 
been noted that the evaporator is an essential component that requires the complete attention of the 
plant manager. 

Keywords: availability analysis, evaporating system, sugar industry, petri nets. 

I. Introduction

In the current scenario, modern process facilities must be run at high levels of availability due 
to the high cost of installation, operation, and maintenance [1]. As a result, achieving high levels of 
availability is crucial for ensuring their efficiency and economic viability. In this regard, a reliability 
study should evaluate its availability and provide a method for identifying possible event 
combinations that might lead to disastrous failures and assess the prospect that they would occur 
[2]. The assessment process should include cost-related elements and be able to examine other 
performance metrics [3]. The state-transition diagram (Markov models), Petri nets (PNs), fault tree 
analysis, event tree analysis (FTA and ETA), and network models are some of the key modeling 
techniques used in reliability analysis [4]. Models of networks are function-oriented. These models 
may address structural defects that impair system performance. Maintenance procedures, human 
and software errors, and other cost-related factors are complicated to include in network models [5]. 
Trees of faults are event-oriented. Including the repair processes and component reliance in the 
model is complex [6]. The static structure of failure trees makes it difficult to simulate dynamic 
behaviour such as standby redundancies and time-delay situations. The inflation of state space is 
the main disadvantage of Markov models. State-space explosion restricts the use of this formulation, 
despite the fact that it may describe the dynamic behaviour and reliance between components [7]. 
When creating a Markov model of a complicated system, it may be challenging to ensure that every 
conceivable outcome in a subsystem has been considered [8]. State-transition diagrams are also 
highly challenging to employ for model validation. In this research, a complicated system that is 
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concurrent, asynchronous, distributed, parallel, and non-deterministic is studied using PN, a 
graphical and mathematical modeling tool. Using PNs for reliability analysis makes the modeler's 
job much more manageable. The process involves sketching a net that describes a system model and 
labeling it with the appropriate transition firing timings [9], [10]. If tools could be developed to 
automate the process of determining the probability of markings and the algorithms for constructing 
the set of all reachable markings of a Petri net (PN), analysts would be able to focus more on 
addressing reliability concerns, rather than spending time writing and solving the equations for the 
underlying stochastic process. PNs provide for a systems approach as they employ a common 
vocabulary to represent human behaviour, software, and hardware. Safety and fault tolerance 
standards may also be included. 

II. Literature Review

Malik and Tiwari [11] conducted an assessment of the Coal Ash Handling System's 
performance at a subcritical thermal power plant. This model combines State probabilities using a 
normalizing condition. Parkash and Tiwari [12] created performance modeling and suggested a DSS 
to prioritize repair activities for an assembly line system. Kumar [13] highlighted the importance of 
many practical units in his Decision Support Priorities framework. Sheikh and Tewari [14] examined 
the applicability of Reliability, Availability, Maintainability, and Safety ideas in several process 
sectors to improve performability. Stochastic processes address unpredictability in systems, 
particularly about unpredictable temporal changes. Performability analysis enhances the 
understanding of the system's performance behaviour. This enables us to make better-informed 
decisions on the design and operation of systems to enhance their reliability and efficacy. Mehta et 
al. [15] examined the steel plant's sheet production unit's dependability, availability, and 
maintainability. The extractor, conveyors, de-scaling unit, furnace, roughing mill, Steckel mill, 
strapping machine, and down coiler were among the eight systems that were part of the unit. 
Simpson's 3/8 rule and the Runge–Kutta fourth-order approach have been used in MATLAB to 
assess the system's availability. Kumar and Ram [16] used the Markov approach to examine a 
number of reliability metrics, including availability, reliability, and MTTF for the sugar factory. 
Apart from the bagasse carrying mechanism, the system's MTTF declined for all failure scenarios. 
With the exception of the bagasse carrying method, dependability appears physically the same in all 
failure kinds. Aly et al. [17] used a model based on the Markov technique and state probability to 
assess systems' availability, dependability, and maintainability for the oil and gas sector. Jalal et al. 
[18] used SPNs modelling to offer a power production facility's reliability, availability, and
maintainability (RAM) analysis. This model assumed that the maintenance and repair crews would
always be accessible, regardless of the number of components that failed at any one moment. They
showed that, in comparison to the reliability block diagram simulation, SPN modeling produced a
smoother exponential curve when analyzing the system's mean availability.

Most models for estimating complex system availability and reliability are based on FMECA, 
FTA, Markov, and Bayesian network approaches, and few process plants use PNs to consider 
subsystems and component dependencies. 

III. System Description

The evaporation system (ES) removes water from the juice received from the clarifier system. 
All cells in the ES are in series. A three-subsystem ES is presented below. Fig. 1 shows the ES 
flowchart. 

Evaporator (EV): The system consists of a single unit, and its failure results in the complete 
failure of the entire system. Under this subsystem, a low vacuum is used to heat the juice. 
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Syrup Sulphitor (SY): The system consists of two units: one operational unit and one standby 
unit. If one unit fails, the system continues to operate at a reduced capacity. However, if both units 
fail, the system fails entirely. This subsystem heats juice at a high vacuum and passes SO2 gas. 

Sulphited Syrup (SU): The system consists of three units. If one or two units fail, the system 
continues to operate at a reduced capacity. However, if all units fail, the system fails entirely. 

Figure 1. Flow diagram of ES 

IV. Petri Nets Modelling

This section assesses several components of ES in the sugar industry. The maintenance workers and 
supervisors helped us extract component FRs and RRs from maintenance and repair manuals. FR 
and RR values were considered to be Weibull-distributed. The Monte Carlo Simulation Approach-
based MOCA-Computation engine modelled ES performance. This was accomplished using the 
SPN, as seen in Figure 2. 

Figure 2. PNs modelling of ES 
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I. Assumptions Notations
The following assumptions were used to employ PNs for availability analysis: 
• The FRs and RRs of a number of components follow exponential distributions.
• Individual component failures occur.
• The functionality of repaired components is equivalent to that of new ones.
• Repairs comprise both component replacements and repairs.
• It is not anticipated that two or more components will fail simultaneously.
• Active systems are functionally equivalent to standby components.
• The patterns of FRs and RRs remain statistically independent and stable over time.

II. Places
sys_available: signifies that the entire system is operational and available for use. 
sys. works_full cap.: denotes the system's condition when operating at full capacity. 
sys.works_red.cap: signifies that the system is operating at a reduced capacity. 
sys_failed: denotes the system's state during downstate. 
rep. facilities_available: denotes the facility's capacity to undergo swift repairs. 
EV_up, SY_up, and SU_up: denote the operational condition, which is the status of the EV, SY, and 
SU systems, respectively. 
EV_down, SY_down, and SU_down: denote the non-operational condition of the EV, SY, and SU 
systems, respectively. 
EV_Rep, SY_Rep, and SU_Rep: represent the restored conditions of the EV, SY, and SU systems, 
respectively. 

III. Transitions
EV_fail, SY_fail, and SU_fail represent timed transitions related to the failure patterns of EV, SY, and 
SU systems, respectively. 
EV_OK, SY_OK, and SU_OK represent cautious transitions associated with the repair patterns of the 
EV, SY, and SU systems, respectively. 
Rep. avail_ EV, Rep. avail_ SY, Rep. avail_ SU: These instantaneous transitions imply that the EV, SY, 
and SU systems are all instantly available. 
sys_ red, sys_ recovered, sys_ fail, and sys_ ok: These are instantaneous transitions that are fire 
without delay. 

IV. Guard Function (GF)
[G1]: = (#4>0 and #10>0) rep. avail_ EV transition was initiated when the GF ensured. 

[G2]: = (#6>0 and #10>0) rep. avail_ SY transition was initiated when the GF ensured. 

[G3]: = (#8>0 and #10>0) rep. avail_ SU transition was initiated when the GF was ensured. 

[G4]: = (#2<2 and #2>0 or #3<3 and #4>0) sys_ red transition initiated when the GF ensured. 

[G5]: = (#2>1 and #3>2) blocks transition from firing sys_ recovered. 

[G6]: = (#1<1 or #2<1 or #3<1) sys_ fail transition was initiated when the GF ensured. 

[G7]: = (#1>0 and #2>0 and #3>0) blocks transition from firing sys_ ok. 
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V. Performance Analysis
The system's dynamic behavior was evaluated using variables to determine its performance 
characteristics. After consulting with plant maintenance experts, the acceptable failure and repair 
rates for subsystems (Table 1) were established. These parameters are also examined about 
repairman availability. The findings are shown in Tables 2-11 and discussed further below. 

Table 1: Availability matrix for EV 

Ψ 

σ 
0.25 0.35 0.45 0.55 0.65 

0.021 0.8269 0.8375 0.8442 0.8490 0.8529 

0.026 0.8181 0.8277 0.8344 0.8407 0.8456 

0.031 0.8061 0.8179 0.8265 0.8332 0.8374 

0.036 0.7954 0.8078 0.8175 0.8249 0.8309 

0.041 0.7837 0.7973 0.8083 0.8173 0.8240 

Figure 3. Influence of varying FR and RR of EV on the availability 

Table 1 and Fig. 3 illustrate the influence of FRs and RRs in the EV on the ES's overall availability. 
With an increase in the FR from 0.021 to 0.041, there is a significant decrease in system availability, 
equivalent to a 5.22% decrease. In contrast, the increase in RRs from 0.25 to 0.65 resulted in a slight 
improved system availability of 3.04%. 
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Table 2: Availability matrix for SY 

Ψ 

σ 
0.47 0.57 0.67 0.77 0.87 

0.040 0.8287 0.8327 0.8365 0.8379 0.8397 

0.045 0.8227 0.8270 0.8303 0.8328 0.8345 

0.050 0.8179 0.8223 0.8265 0.8279 0.8304 

0.055 0.8124 0.8180 0.8207 0.8237 0.8259 

0.060 0.8066 0.8121 0.8152 0.8194 0.8232 

Figure 4. Influence of varying FR and RR of SY on the availability 

Table 2 and Fig. 4 illustrate the impact of FRs and RRs on the availability of the ES, with a particular 
emphasis on the SY. When the SY's FR is increased from 0.040 to 0.060, there is a slight decrease in 
system availability of 2.66%. Conversely, the system's availability is marginally enhanced by 1.3% 
as a result of the RR being increased from 0.47 to 0.87. 

Table 3: Availability matrix for SU 

Ψ 

σ 
0.10 0.20 0.30 0.40 0.50 

0.017 0.8258 0.8328 0.8362 0.8397 0.8427 

0.022 0.8201 0.8251 0.8299 0.8335 0.8374 

0.027 0.8117 0.8188 0.8265 0.8294 0.8303 

0.032 0.8019 0.8089 0.8164 0.8209 0.8259 

0.037 0.7945 0.8015 0.8091 0.8141 0.8189 
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Figure 5. Influence of varying FR and RR of SU on the availability 

The availability of the ES is influenced by FRs and RRs, as illustrated in Table 3 and Fig. 5, with a 
particular focus on the SU. The SU's FR increases from 0.019 to 0.039, resulting in a minor decrease 
in system availability of 3.8%. When the RR is increased from 0.37 to 0.57, the system's availability 
rises by 2.01%. 

According to the study's findings, the EV failure immediately affected total system availability by 
5.22%. Thus, the EV is shown to be the most crucial part of the ES, with an FR of 0.031. Likewise, the 
SY is the least significant element, with an FR of 0.050. Therefore, according to the ES system's ideal 
FRs and RRs, the maintenance priorities need to be allocated in the following order (as shown in 
Table 4). 

Table 4: List of maintenance priority 

Component FR RR 
Reduction in 

Av due to FR 

Elevation in 

Av due to RR 
Maintenance priority No. 

EV 0.021 -0.041 
0.25-

0.65 
5.22 3.04 I 

SY 0.040- 0.060 
0.47-

0.87 
2.66 1.3 III 

SU 0.019 - 0.039 
0.37-

0.57 
3.8 2.01 II 
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Table 5: Influence of variation in the RF on availability of CSPS 

No. of RF 1 2 3 4 

Availability 0.8265 0.8520 0.8621 0.8621 

Figure 6. Influence of variation in RF on the availability of CSPS 

Table 5 and Fig. 6 show the effect of higher RF on the ES's total availability. From 82.65% to 85.20%, 
the system's overall performance improves considerably as the number of RF increases from one to 
two. When RF goes up from 2 to 3, availability goes up from 85.20% to 86.21%, which is a significant 
improvement. The performance becomes stable at three RF, indicating that the service is consistently 
available. 

VI. Conclusion

The model demonstrates efficacy in evaluating the performance of various ES components, 
facilitating maintenance decision-making. The study enabled us to assess the impact of several 
factors, namely FRs and RRs, on the unit's availability.  The system's availability diminishes as the 
failure rate rises. Conversely, higher RRs result in increased system availability. Consequently, 
increasing the RRs and decreasing the FRs across all four subsystems is essential to improve the ES's 
performance. Therefore, optimizing FRs and RRs data is essential for attaining high efficiency. The 
suggested model is effectively used to evaluate the performance of ES in the sugar industry, 
facilitating decision-making about maintenance measures. Performance metrics indicate that the EV 
component is crucial for maintenance. Immediate care is necessary since the failure rates of the EV 
significantly impact system availability relative to other subsystems. Further, the SY component 
emerges as the least crucial, as the FRs of the SY have minimal influence on the system availability. 
As industries progress, the insights derived from these evaluations are essential for sustaining 
system performance and minimizing downtime. 
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Abstract

This paper explores a load-sharing model within a k-out-of-m system, where multiple components work
together to handle a shared load. Such systems are prevalent in various engineering and industrial
applications.While previous studies have focused on equal load-sharing rules, this research emphasizes
systems operating under an unequal load-sharing rule, which has a significant impact on the system’s
reliability and performance. Specifically, the paper examines a k-out-of-m load-sharing system modeled
using the proportional conditional reverse hazard rate model, incorporating unequal load sharing. We
have derived expressions for the probability density function and cumulative distribution function
of system failure. To illustrate the model, they use a 2-out-of-4 configuration with Weibull baseline
distributions. The maximum likelihood estimation method is employed to estimate the model parameters,
and the performance of these estimates is evaluated through a simulation study, assessing both bias and
mean square errors. Additionally, the practical applicability of the model is demonstrated through the
analysis of two real datasets.

Keywords: k-out-of-m system, Load sharing phenomenon, Order statistics, Proportional hazard
rate, Reverse hazard rate, Unequal load share rule.

1. Introduction

A k-out-of-m system with m components fails when (m − k + 1) or more of its components fail.
This setup includes series systems (where k = m) and parallel systems (where k = 1) as specific
instances. Generally, the failure times of the first (m − k + 1) components are modeled as the
first (m − k + 1) order statistics from a set of m independent and identically distributed (i.i.d.)
random variables. In k-out-of-m load-sharing systems, when one component fails, the load of the
failed component is distributed on the remaining components. This creates a dependency among
the lifetimes of the components, making these systems dynamic in terms of reliability. Failure
of component may increase of release the load of reaming components. Examples of k-out-of-m
load-sharing systems include fibrous composite materials, power plants, automobiles, and the two
jet engines of an airplane. A similar pattern is observed in the human body, where the failure of
one organ (e.g., a kidney) typically increases the failure rate of the surviving organ [1]. Conversely,
in scenarios like food scarcity within a letter, the death of some offspring can improve the survival
and growth of the remaining ones by increasing their food supply [10]. Similarly, in software
development, detecting one bug can help in finding others, thereby reducing the detection time.
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[12] and Kvam and Pena [13] have emphasized the importance of modeling the load-sharing
phenomenon in various contexts. Besides these works, load-sharing systems have been explored
extensively, beginning with Daniels [1], and continuing through the studies of Birnbaum and
Saunders [2], Coleman [3], Rosen [4], [5], Singpurwalla [6], Hollander and Pena [7], Cramer and
Kamps [8, 12], Lynch [11], Durham and Lynch [12], McCool [13], Pena [16], and Deshpande et al.
[17], among others. A comprehensive review can be found in Dewan and Naik-Nimbalkar [18].
Then after Deshpande et al. [17], Jain and Gupta [19], Sutar and Naik-Nimbalkar [20], Sutar and
Naik-Nimbalkar [21], Wang et al. [22], Zhao et al. [23], Xu et al. [24], Zhang et al. [25], Sutar and
Naik-Nimbalkar [26], Choudhary et al. [27], Park et al. [28], Sutar [29], Zhang et al. [30], Rykov
et al. [31], Pesch et al. [32], Sutar et al. [33], Biswas et al. [34], and Pesch et al. [35] all contributed
to the study of load-sharing systems.

Sutar and Naik-Nimbalkar [21] explored load-sharing systems within the framework of a
k-out-of-m system using a proportional conditional reverse hazard rate model. They concentrated
on equal load sharing, particularly examining a two-component parallel system where the
components’ initial lifetimes followed Weibull and linear failure rate distributions as baseline
models. Their research also extended to developing and applying inference techniques for
analyzing this system. However, the assumption of equal load sharing does not always hold true,
making it essential to create models that account for unequal load distribution. In these situations,
it is necessary to develop models that accurately represent the varying loads each component
bears to more effectively predict system reliability. An example of this is as follows.

Consider a power grid with multiple generators providing electricity to a city. If one generator
fails, the remaining generators must absorb the additional load, but they may not equally
distribute this increased demand due to differences in capacity and efficiency. In such a scenario,
modeling the system with an unequal load-sharing approach is vital for accurately predicting the
grid’s reliability and preventing potential outages.

In this article, we present a model for the load-sharing phenomenon in a k-out-of-m system,
utilizing proportional conditional reverse hazard rate (PCRHR) with an unequal load-sharing
rule. We aim to capture the complexities of real-world systems where components do not equally
share the load after failures occur. The structure of this article is as follows:

Section 2 introduces the model for a k-out-of-m unequal load-sharing system. Illustration of
the model is given in Section 3. In Section 4, we examine parameter estimation for k-out-of-m and
in particular 2-out-of-4, 2-out-of-3, and 1-out-of-4 load sharing systems, assuming that lifetimes
are independently distributed according to a Weibull distribution. Section 5 reports a simulation
study that assesses the proposed estimation method’s performance based on bias and mean
square error. Section 6 applies the model to a real dataset, and the final section summarizes the
conclusions.

2. Proposed PCRHR based Load Sharing Model for k-out-of-mystem

Let U1, U2, . . . Um are the components of a k-out-of-m system (1 ≤ k ≤ m). Let use assume that the
lifetimes of components are independent and identical distributed (i.i.d.) with baseline probability
density function (pdf) f (·), Cumulative distribution function (cdf) F(·) and survival function (sf)
F̄(·) and reverse hazard rate function r(·). The system is to be functioning as long as (m − k + 1)
components is not failed. Let X(j) be the time of jth failure in the system, j = 1, 2, . . . , (m − k + 1).
That is X(j) is minimum of the failure times of remaining (m − j + 1) surviving components and
system failure is occurs at time point X(m−k+1). In the i.i.d. set up, the failure of a component
does not affect the lifetime of the surviving component and the joint density of X(j) and X(j+1)
can be written as

gX(j),X(j+1)

(
xj, xj+1

)
=

m!
(j − 1)!(m − j − 1)!

(
F(xj)

)j−1

(
F̄(xj+1)

)m−j−1 f (xj) f (xj+1), j = 1, 2, . . . , (m − k).
(1)
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The conditional density function of X(j+1) given X(j) = xj is given by

gX(j+1) |X(j)=xj

(
xj+1

)
= (m − j)

{
F̄(xj+1)

F̄(xj)

}m−j
f (xj+1)

F̄(xj+1)
, j = 1, 2, . . . , (m − k). (2)

Thus the conditional distribution function of X(j+1) given X(j) = xj is given by

GX(j+1) |X(j)=xj

(
xj+1

)
= 1 −

(
F̄(xj+1)

F̄(xj)

)m−j

, j = 1, 2, . . . , (m − k). (3)

Assuming that there exists load sharing effect in model, then conditional distribution function
with load sharing effect is given by

HX(j+1) |X(j)=xj

(
xj+1

)
=

{
GX(j+1) |X(j)=xj

(
xj+1

)}β j

=

1 −
(

F̄(xj+1)

F̄(xj)

)m−j


β j

,

(4)

β j > 0, xj+1 ≥ xj, j = 1, 2, . . . , (m − k).
Remark (1): From the above equation (4), we observe that if β j < 1 then HX(j+1) |X(j)=xj

(
xj+1

)
>

GX(j+1) |X(j)=xj

(
xj+1

)
, ∀ j = 1, 2, . . . , (m − k) , The lifetime of the surviving component under the

distribution H is stochastically smaller than under the i.i.d. setup G. and if β j > 1 then the
residual life is stochastically larger. For β j = 1, ∀ j = 1, 2, . . . , (m − k) means residual lifetimes are
same as that under i.i.d. setup.
We also assume that the conditional distribution of the residual lifetime of a surviving component
depends only on the last failure time, that is the failure epochs form a Markov process.

Theorem 1. If the conditional distribution of X(j+1) given X(j) = xj is as given in equation (4),
then we have the following

(i) The joint p.d.f. of (X(1), X(2), ..., X(m−k+1)) is given by,

h (x1, x2, . . . , xm−k+1) =
m!

(k − 1)!

(m−k)

∏
j=1

β j

1 −
(

F̄
(
xj+1

)
F̄
(
xj
) )m−j


β j−1

(F̄ (xm−k+1))
k−1

m−k+1

∏
j=1

f
(
xj
)

.

(5)

0 < x1 < x2 < ... < xm−k+1, β j > 0.
(ii) The marginal density of the system failure time Xm−k+1, is given by

hX(m−k+1)
(xm−k+1) =m

m−k

∏
j=1

β j (F̄ (xm−k+1))
(m−1) f (xm−k+1)

∫ 1−am−k

xm−k=0
uβm−k−1

m−k (1 − um−k)
−m

k · · ·
∫ 1−aj

xj=0
u

β j−1
j (1 − uj)

−m
m−j

· · ·
∫ 1−a1

x1=0
uβ1−1

1 (1 − u1)
−m
m−1 du1du2 · · · du(m−k).

(6)

0 < xm−k+1 < ∞, β j > 0. ∀ j = 1, 2, . . . , (m − k), where, am−k = (F̄ (xm−k+1))
k and
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aj =
(F̄ (xm−k+1))

m−j

(1 − uj+1)
m−j

m−j−1 (1 − uj+2)
m−j

m−j−2 · · · (1 − um−k)
m−j

m−(m−k)

, 1 ≤ j ≤ (m − k − 1).

Proof. (a) Using (4), the conditional density of X(j+1) given X(j) = xj, is given by

hX(j+1) |X(j)=xj

(
xj+1

)
= (m − j)β j

1 −

 F̄
(

xj+1

)
F̄
(

xj

)
m−j

β j−1
f
(

xj+1

) (
F̄
(

xj+1

))m−j−1

(
F̄
(

xj

))m−j , (7)

β j > 0, xj+1 ≥ xj, j = 1, 2, . . . , (m − k).
Using the Markov assumption, the joint density of (X(1), X(2), ..., X(m−k+1)) can be written

h (x1, x2, . . . , xm−k+1) =
(m−k)

∏
j=1

hX(j+1) |X(j)=xj

(
xj+1

)
h(x1), 0 < x1 < x2 < ... < xm−k+1, β j > 0.

Using expression (7) and the fact that h(x1) = m (F̄(x1))
m−1 f (x1), x1 > 0, we get (5).

Proof. (b) The marginal density function of X(m−k+1) is obtained by integrating equation (5) with
respect to x1, x2, . . . , xm−k over th region defined by 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm−k+1.
That is,

hX(m−k+1)
(xm−k+1) =

∫ xm−k+1

xm−k=0

∫ xm−k

xm−k−1=0
· · ·

∫ x2

x1=0
h (x1, x2, . . . , xm−k+1) dx1dx2 · · · dx(m−k)

=
m!

(k − 1)!
(F̄(xm−k+1))

k−1 f (xm−k+1)
∫ xm−k+1

xm−k=0

∫ xm−k

xm−k−1=0
· · ·

∫ x2

x1=0

(m−k)

∏
j=1

1 −
(

F̄
(
xj+1

)
F̄
(
xj
) )m−j


β j−1

f (xj)dx1dx2 · · · dx(m−k).

Let

I1 =
∫ x2

x1=0

{
1 −

(
F̄ (x2)

F̄ (x1)

)m−1
}β1−1

f (x1)dx1.

Putting u1 = 1 −
(

F̄(x2)
F̄(x1)

)m−1
in above expression and simplifying, we get

I1 =
F̄(x2)

m − 1

∫ 1−(F̄(x2))
(m−1)

u1=0
uβ1−1

1 (1 − u1)
−m

m−1 du1.

Similarly, let

I2 =
1

m − 1

∫ x3

x2=0

{
1 −

(
F̄ (x3)

F̄ (x2)

)m−2
}β2−1

F̄(x2) f (x2)

∫ 1−(F̄(x2))
(m−1)

u1=0
uβ1−1

1 (1 − u1)
−m

m−1 du1dx2.

After putting u2 = 1 −
(

F̄(x3)
F̄(x2)

)m−2
and simplifying we get

I2 =
(F̄(x2))

2

(m − 1)(m − 2)

∫ 1−(F̄(x3))
(m−2)

u1=0
uβ2−1

2 (1 − u2)
−m

m−2

∫ 1−(F̄(x3))
(m−1)(1−u2)

− (m−1)
(m−2)

u1=0
uβ1−1

1 (1 − u1)
−m

m−1 du1du2.
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Proceeding in the same manner and by letting I3, I4, · · · , I(m−k), we get (6).
Remark 2. Under the model defined by (4), the conditional reversed hazard rate (CRHR)
r∗X(j+1) |X(j)=s(t) of X(j+1) given X(j) = s is proportional to the CRHR rX(j+1) |X(j)=s(t) under the i.i.d.

setup. That is,

r∗X(j+1) |X(j)=s(t) = β jrX(j+1) |X(j)=s(t), β j > 0, t ≥ s, j = 1, 2, ..., (m − k). (8)

Thus we refer to the model given in (5) as proportional conditional reversed hazard rate (PCRHR)
model.

3. Illustration

3.1. The PCRHR based Load Sharing Model for 2-out-of-4 System

Let us consider the system involve four components with component lifetimes U1, U2, U3, U4 and
are being iid with common lifetime distribution fθ(.), θ may be scale or vector valued parameter.
fθ(.) is called the baseline distribution and θ is known as baseline parameter. Let Fθ(.) and F̄θ(.)
are the distribution function (d.f.) and survival function (s.f.).

The 2-out-of-4 system will work until 3 components work and system fails after the tird failure.
Let X(1), X(2) and X(3) be the first, second and third failure times. Therefore the p.d. f . of X(1) is
given by

hX(1)
(x1) = 4 fθ(x1)

(
F̄θ(x1)

)3 , x1 > 0.

From equation (7) the conditional density of X(2) given X(1) = x1 is given by

hX(2) |X(1)=x1
(x2) = 3β1

{
1 −

(
F̄θ(x2)

F̄θ(x1)

)3}β1−1
fθ(x2)

(
F̄θ(x2)

)2(
F̄θ(x1)

)3 ,

0 ≤ x1 ≤ x2 ≤ ∞, β1 > 0,
and the conditional density of X(3) given X(2) = x2 is given by

hX(3) |X(2)=x2
(x3) = 2β2

{
1 −

(
F̄θ(x3)

F̄θ(x2)

)2}β2−1
fθ(x3)F̄θ(x3)(

F̄θ(x2)
)2 ,

0 ≤ x2 ≤ x3 ≤ ∞, β2 > 0,
Therefore the joint distribution of (X(1), X(2), X(3)) is given by

h(x1, x2, x3) = 4!β1β2 F̄θ(x3)

{
1 −

(
F̄θ(x2)

F̄θ(x1)

)3}β1−1{
1 −

(
F̄θ(x3)

F̄θ(x2)

)2}β2−1 3

∏
j=1

fθ(xj). (9)

0 ≤ x1 ≤ x2 ≤ x3 ≤ ∞, β1, β2 > 0
The marginal distribution of system failure, i.e. distribution of X(3) is given by

hX(3)
(x3) =4β1β2 fθ(x3)

(
F̄θ(x3)

)3
∫ 1−(F̄(x3))

2

u1=0
uβ2−1

2 (1 − u2)
−2

∫ 1−(F̄(x3))
3(1−u2)

−3
2

u1=0
uβ1−1

1 (1 − u1)
−4
3 du1du2.

(10)

0 ≤ x3 ≤ ∞, β1, β2 > 0.
In the following subsection, we demonstrate the 2-out-of-4 load-sharing system using a Weibull
baseline distribution.
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3.2. The PCRHR based Load Sharing Model for 2-out-of-4 System with Weibull
Baseline Distribution

Let us consider a 2-out-of-4 load sharing system, with the component lifetimes U1, U2, U3 and U4
being i.i.d. Weibull random variables. The p.d.f. of Weibull with shape parameter a and scale
parameter b is

f (ui) =
( a

b

) (ui
b

)a−1
exp

{
−
(ui

b

)a}
, ui > 0, a, b > 0, i = 1, 2, 3, 4.

Therefore the p.d.f of first failure X(1) is given by

hX(1)
(x1) = 4

( a
b

) ( x1

b

)a−1
exp

{
−4
( x1

b

)a}
, x1 > 0, a, b > 0, i = 1, 2, 3, 4.

The conditional p.d.f of X(2) given X(1) = x1 is given by

hX(2) |X(1)=x1
(x2) =3β1

( a
b

) ( x2

b

)a−1
exp

{
−3
[( x2

b

)a
−
( x1

b

)a]}
[
1 − exp

{
−3
[( x2

b

)a
−
( x1

b

)a]}]β1−1
,

(11)

0 ≤ x1 ≤ x2 ≤ ∞, β1 > 0, a, b > 0.
and conditional p.d.f of X(3) given X(2) = x2 is given by

hX(3) |X(2)=x2
(x3) =2β2

( a
b

) ( x3

b

)a−1
exp

{
−2
[( x3

b

)a
−
( x2

b

)a]}
[
1 − exp

{
−2
[( x3

b

)a
−
( x2

b

)a]}]β2−1
,

0 ≤ x2 ≤ x3 ≤ ∞, β2 > 0, a, b > 0.
From (9) the joint density function of (X(1), X(2), X(3)) is given by

h(x1, x2, x3) =4!β1β2

( a
b

)3 ( x1

b

)a−1 ( x2

b

)a−1 ( x3

b

)a−1
exp

{
−4
( x1

b

)a
− 3

[( x2

b

)a
−
( x1

b

)a]
−2
[( x3

b

)a
−
( x2

b

)a]} [
1 − exp

{
−2
[( x3

b

)a
−
( x2

b

)a]}]β2−1

[
1 − exp

{
−3
[( x2

b

)a
−
( x1

b

)a]}]β1−1
,

(12)

0 ≤ x1 ≤ x2 ≤ x3 ≤ ∞, β1, β2 > 0, a, b > 0.
In the next subsequent section we discuss the parameter estimation procedures for the proposed
model.

4. Parameter Estimation

Let θ = (θ1, θ2, · · · , θp) be the baseline parameters and β = (β1, β2, · · · , β(m−k)) be the load
sharing parameters involved in the proposed PCRHR based load sharing model. The maximum
likelihood estimation procedure is used to estimate the parameters.

4.1. For k-out-of-m Load Sharing System

Let r = m − k + 1, xij be the jth failure X(j) of ith k-out-of-m load sharing system and xij+1

is the (j + 1)th failure X(j+1) of ith k-out-of-m load sharing system with i = 1, 2, · · · , n, j =
1, 2, · · · , m − k.
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The likelihood function of (θ, β) based on n independent k-out-of-m load sharing systems is given
by

L
(

θ, β
)
=

(
m!

(k − 1)!

)n
(

(m−k)

∏
j=1

β j

)n
n

∏
i=1

F̄θ (xir)
k−1

n

∏
i=1

r

∏
j=1

fθ

(
xij
)

n

∏
i=1

(m−k)

∏
j=1

1 −
{

F̄θ

(
xij+1

)
F̄θ

(
xij
) }m−j

β j−1

.

The corresponding log-likelihood function can be written as,

log L =n log
(

m!
(k − 1)!

)
+ n

r

∑
j=1

log β j + (k − 1)
n

∑
i=1

log F̄θ (xir)

+
n

∑
i=1

r

∑
j=1

log fθ

(
xij
)
+

n

∑
i=1

m−k

∑
j=1

(β j − 1) log

1 −
{

F̄θ

(
xij+1

)
F̄θ

(
xij
) }m−j

 .

To obtain maximum likelihood estimates (MLEs) of unknowns parameters θ and β differentiate the
above log-likelihood partially w.r.t. unknown parameters and equate to zero, we have likelihood
equations to estimate as

∂ log L
∂θl

= 0, l = 1, 2, 3, . . . , p, (13)

∂ log L
∂β j

= 0, j = 1, 2, . . . , (m − k). (14)

The above p + (m − k) equations are not in closed form so are solved by iterative procedures.
We could use the ‘optim’ function in R software to solve these equations.

4.2. For k-out-of-m Load Sharing System with Weibull Baseline

The likelihood function based on n i.i.d. k-out-of-m load systems with component lifetimes as
Weibull (a, b) is given by

L(a, b, β) =

(
m!

(k − 1)!

)n ( a
b

)nr
(

m−k

∏
j=1

β j

)n n

∏
i=1

r

∏
j=1

( xij

b

)a−1
exp

[
−k

n

∑
i=1

( xir
b

)a
]

exp

[
−

n

∑
i=1

(m−k)

∑
j=1

( xij

b

)a
]

n

∏
i=1

m−k

∏
j=1

{
1 − exp

(
− (m − j)

ba

[(
xij+1

)a −
(
xij
)a
])}β j−1

.

Hence, the log-likelihood function is given by

log L(a, b, β) =n log
(

m!
(k − 1)!

)
+ nr log

( a
b

)
+ n

(m−k)

∑
j=1

log β j + (a − 1)
n

∑
i=1

r

∑
j=1

log
( xij

b

)
− k

n

∑
i=1

( xir
b

)a

−
n

∑
i=1

(m−k)

∑
j=1

( xij

b

)a
+

n

∑
i=1

m−k

∑
j=1

(β j − 1) log
{

1 − exp
(
− (m − j)

ba

[(
xij+1

)a −
(
xij
)a
])}

.

The MLEs of a, b and β j, j = 1, 2, . . . , (m − k) are obtained by maximizing above log-likelihood
function. The likelihood or log-likelihood function is maximized by differentiating it partially
with respect to unknown parameters and equating to zero. The likelihood equations are

∂ log L
∂a

= 0,
∂ log L

∂b
= 0,

∂ log L
∂β j

= 0, j = 1, 2, . . . , (m − k).
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We observed that likelihood equations are not in closed form, so iterative procedures are used to
estimate the unknown parameters.

4.3. For 2-out-of-4 Load Sharing System with Weibull Baseline

The likelihood function for the 2-out-of-4 load sharing system with Weibull (a, b) baseline
distribution is given by

L(a, b, β1, β2) = (4!)n
( a

b

)3n
(β1β2)

n
n

∏
i=1

( xi1
b

xi2
b

xi3
b

)(a−1)
exp

[
−2

n

∑
i=1

( xi3
b

)a
]

exp

[
−

n

∑
i=1

{( xi1
b

)a
+
( xi2

b

)a}] n

∏
i=1

{
1 − exp

(
− 3

ba

[
(xi2)

a − (xi1)
a])}β1−1

n

∏
i=1

{
1 − exp

(
− 2

ba

[
(xi3)

a − (xi2)
a])}β2−1

.

Thus the log-likelihood function is given by

log L(a, b, β1, β2) =n log(4!) + 3n log
( a

b

)
+ n log β1 + n log β2 + (a − 1)

n

∑
i=1

(
log
( xi1

b

)
+ log

( xi2
b

)
+ log

( xi3
b

))
−

n

∑
i=1

{
2
( xi3

b

)a
+
( xi2

b

)a
+
( xi1

b

)a}
+ (β1 − 1)

n

∑
i=1

log
{

1 − exp
(
− 3

ba

[
(xi2)

a − (xi1)
a])}

+ (β2 − 1)
n

∑
i=1

log
{

1 − exp
(
− 2

ba

[
(xi3)

a − (xi2)
a])} ,

and the likelihood equations are

∂ log L
∂a

= 0,
∂ log L

∂b
= 0,

∂ log L
∂β1

= 0,
∂ log L

∂β2
= 0.

These equation solved simultaneously to get MLEs of a, b, β1 and β2. It is seen that the likelihood
equations not in closed form, iterative procedures are used.

4.4. For 2-out-of-3 Load Sharing System with Weibull Baseline

The likelihood function for the 2-out-of-3 load sharing model with Weibull (a, b) baseline distri-
bution is given by

L(a, b, β1) = (3!)n
( a

b

)2n
βn

1

n

∏
i=1

( xi1
b

xi2
b

)(a−1)
exp

[
−

n

∑
i=1

{(
2

xi2
b

)a
+
( xi1

b

)a}]
n

∏
i=1

{
1 − exp

(
− 2

ba

[
(xi2)

a − (xi1)
a])}β1−1

.

Hence, the log-likelihood function is given by

log L(a, b, β1) =n log(3!) + 2n log
( a

b

)
+ n log β1 + (a − 1)

n

∑
i=1

{
log
( xi1

b

)
+ log

( xi2
b

)}
−

n

∑
i=1

{
2
( xi2

b

)a
+
( xi1

b

)a}
+ (β1 − 1)

n

∑
i=1

log
{

1 − exp
(
− 2

ba

[
(xi2)

a − (xi1)
a])} .
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The likelihood equations are

∂ log L
∂a

= 0,
∂ log L

∂b
= 0,

∂ log L
∂β1

= 0.

These equations are solved simultaneously to obtain the MLEs of a, b, and β1. Since the likelihood
equations do not have a closed-form solution, iterative procedures are required to solve them.

4.5. For 1-out-of-3 Parallel Load Sharing System with Weibull Baseline

Under the 1-out-of-3 load sharing model with Weibull (a, b) baseline Distribution the likelihood
function is given by

L(a, b, β1, β2) = (3!)n
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The log-likelihood function is given by

log L(a, b, β1, β2) =n log(3!) + 3n log
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The likelihood equations are

∂ log L
∂a

= 0,
∂ log L

∂b
= 0,

∂ log L
∂β1

= 0,
∂ log L

∂β2
= 0.

These equation solved simultaneously to get MLEs of a, b, β1 and β2. It is seen that the likelihood
equations not in closed form, iterative procedures are used.

5. Simulation Study

In this section, we carry out the simulation study for 2-out-of-4 load sharing model with Weibull
(a, b) baseline distribution. The MLEs, Bias and Mean Square Estimates (MSE) are obtained
for various combination of sample size, baseline parameters and load sharing parameters. The
performance of estimates are accessed to bias and MSE. We consider sample sizes 30, 50, 100 and
200, the baseline parameters are considered to be a = 1, 1.5, 2 and b = 0.5, 0.7, 1, 2, and load share
parameters β j = 1, 1.5, 2, j = 1, 2. The parameters are estimated using 1000 samples for each
sample size and parameter combinations. The results, including the MLEs, bias, and MSE, are
detailed in Tables 1 to 4 and illustrated in Figures 1 to 4. These tables and figures provide a
comprehensive overview of the estimation accuracy and performance metrics associated with the
model.
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Table 1: MLE’s Bias and MSE’s for 2-out-of-4 system with n=30

n a b β1 β2 â b̂ β̂1 β̂2 Bias(â) Bias(b̂) Bias(β̂1) Bias(β̂2) MSE(â) MSE(b̂) MSE(β̂1) MSE(β̂2)
30 1 0.5 1 1 1.0268 0.4931 1.0589 1.0666 0.0748 0.05 0.1792 0.1813 0.0092 0.0039 0.06 0.0647
30 1 0.5 1 1.5 1.0201 0.495 1.046 1.5878 0.0711 0.0484 0.1694 0.2763 0.0081 0.0038 0.0499 0.1323
30 1 0.5 1 2 1.0108 0.4889 1.0613 2.1738 0.0645 0.0481 0.1742 0.4075 0.0065 0.0036 0.0557 0.3271
30 1 0.5 1.5 1 1.0178 0.4912 1.5951 1.0784 0.0698 0.05 0.2743 0.1909 0.0079 0.0038 0.134 0.0678
30 1 0.5 1.5 1.5 1.018 0.4913 1.6154 1.6238 0.0676 0.047 0.2773 0.2865 0.0076 0.0035 0.1397 0.1599
30 1 0.5 1.5 2 1.0154 0.491 1.6017 2.2001 0.0645 0.046 0.2854 0.4067 0.0066 0.0033 0.1505 0.3141
30 1 0.5 2 1 1.0205 0.4917 2.1517 1.0744 0.0698 0.0472 0.3935 0.1758 0.0077 0.0035 0.3023 0.054
30 1 0.5 2 1.5 1.0144 0.4894 2.1618 1.624 0.0669 0.0461 0.3895 0.2769 0.0072 0.0033 0.2934 0.1457
30 1 0.5 2 2 1.0148 0.4931 2.1526 2.1655 0.0661 0.0461 0.3874 0.404 0.0071 0.0033 0.2859 0.3107
30 1 0.7 1 1 1.0146 0.6869 1.0624 1.0735 0.0724 0.0671 0.1725 0.184 0.0083 0.0073 0.052 0.0621
30 1 0.7 1 1.5 1.023 0.6904 1.045 1.6113 0.0694 0.0679 0.1664 0.2789 0.0081 0.0074 0.0487 0.15
30 1 0.7 1 2 1.0167 0.6893 1.0636 2.1653 0.0654 0.0696 0.1756 0.4029 0.0074 0.0075 0.0566 0.2987
30 1 0.7 1.5 1 1.0181 0.6894 1.5874 1.0652 0.0696 0.0662 0.2766 0.1751 0.008 0.0068 0.1353 0.057
30 1 0.7 1.5 1.5 1.0154 0.6907 1.6015 1.5991 0.0667 0.0685 0.2911 0.2789 0.0072 0.0072 0.1428 0.1463
30 1 0.7 1.5 2 1.0118 0.6914 1.5864 2.1605 0.0646 0.065 0.2757 0.39 0.007 0.0068 0.1341 0.2808
30 1 0.7 2 1 1.0169 0.6898 2.1319 1.0763 0.0677 0.0683 0.3823 0.1817 0.0073 0.0074 0.2684 0.0593
30 1 0.7 2 1.5 1.0086 0.6908 2.1502 1.5954 0.0639 0.0659 0.393 0.2727 0.0064 0.0068 0.2875 0.1303
30 1 0.7 2 2 1.0132 0.6875 2.121 2.1564 0.0644 0.0625 0.3673 0.3911 0.0067 0.006 0.237 0.2704
30 1 1 1 1 1.0164 0.9878 1.0532 1.0703 0.0705 0.0994 0.1676 0.1735 0.0082 0.0152 0.0526 0.0552
30 1 1 1 1.5 1.0234 0.9811 1.0652 1.6203 0.0703 0.0974 0.1778 0.283 0.0083 0.0147 0.0575 0.142
30 1 1 1 2 1.0166 0.9886 1.0675 2.2175 0.0665 0.0982 0.1734 0.4385 0.0075 0.0148 0.0551 0.3774
30 1 1 1.5 1 1.0144 0.9875 1.6024 1.062 0.0685 0.0969 0.2817 0.1739 0.0076 0.0146 0.146 0.0547
30 1 1 1.5 1.5 1.0118 0.9774 1.5964 1.6388 0.0694 0.0934 0.2795 0.2952 0.0078 0.0137 0.1357 0.1639
30 1 1 1.5 2 1.0138 0.9764 1.6034 2.1774 0.0659 0.093 0.2766 0.3923 0.0069 0.0135 0.1408 0.3079
30 1 1 2 1 1.0158 0.9817 2.1508 1.0642 0.0709 0.0964 0.3795 0.1763 0.0083 0.0141 0.2644 0.0553
30 1 1 2 1.5 1.0149 0.975 2.1838 1.6278 0.067 0.0931 0.3964 0.2881 0.0073 0.0137 0.3241 0.1543
30 1 1 2 2 1.0162 0.9871 2.1375 2.1845 0.0677 0.0948 0.3796 0.4103 0.0073 0.0138 0.2725 0.3222
30 1 2 1 1 1.0136 1.9619 1.0629 1.0621 0.0715 0.2029 0.1802 0.1736 0.0082 0.0636 0.0591 0.0545
30 1 2 1 1.5 1.0176 1.9727 1.0535 1.6167 0.0722 0.1984 0.1709 0.288 0.0085 0.0605 0.0525 0.1493
30 1 2 1 2 1.0167 1.9602 1.0503 2.1844 0.0686 0.1968 0.1629 0.4129 0.0075 0.0593 0.0485 0.314
30 1 2 1.5 1 1.0161 1.9704 1.6143 1.0541 0.0715 0.1895 0.285 0.1701 0.0085 0.0544 0.1511 0.0507
30 1 2 1.5 1.5 1.0152 1.9627 1.6089 1.6237 0.0676 0.1843 0.282 0.2824 0.0076 0.0544 0.1519 0.1466
30 1 2 1.5 2 1.0165 1.9822 1.597 2.1522 0.0672 0.1937 0.2893 0.3881 0.0073 0.0577 0.1505 0.2959
30 1 2 2 1 1.0157 1.9759 2.1385 1.0594 0.0685 0.1868 0.3799 0.1748 0.0075 0.0554 0.2744 0.0576
30 1 2 2 1.5 1.0169 1.9666 2.1583 1.636 0.0686 0.1845 0.4054 0.2894 0.0073 0.0535 0.3028 0.1555
30 1 2 2 2 1.0134 1.9694 2.1574 2.1781 0.0645 0.1853 0.395 0.3899 0.0069 0.0533 0.2934 0.2832
30 1.5 0.5 1 1 1.5264 0.4921 1.0647 1.0691 0.1092 0.0339 0.1774 0.1764 0.0198 0.0018 0.0546 0.0572
30 1.5 0.5 1 1.5 1.5228 0.4931 1.0622 1.6364 0.1022 0.0326 0.1748 0.2978 0.017 0.0016 0.0545 0.1737
30 1.5 0.5 1 2 1.526 0.4931 1.0446 2.1664 0.1049 0.0315 0.1651 0.4004 0.0173 0.0015 0.0468 0.2951
30 1.5 0.5 1.5 1 1.5337 0.4953 1.5892 1.0754 0.1088 0.0318 0.2717 0.1832 0.0187 0.0015 0.1356 0.0606
30 1.5 0.5 1.5 1.5 1.519 0.4931 1.5938 1.597 0.1032 0.0322 0.2758 0.2807 0.0178 0.0016 0.1465 0.149
30 1.5 0.5 1.5 2 1.525 0.495 1.5924 2.1785 0.1013 0.0305 0.2674 0.4083 0.016 0.0014 0.1241 0.3183
30 1.5 0.5 2 1 1.525 0.4926 2.1701 1.0778 0.1044 0.0317 0.405 0.1787 0.0174 0.0016 0.2946 0.0578
30 1.5 0.5 2 1.5 1.5221 0.4948 2.1594 1.6119 0.0999 0.0321 0.4105 0.2809 0.0162 0.0016 0.3054 0.1384
30 1.5 0.5 2 2 1.5308 0.4959 2.1456 2.1656 0.0988 0.0305 0.4034 0.4034 0.0155 0.0015 0.2903 0.3198
30 1.5 0.7 1 1 1.5217 0.6894 1.0594 1.0626 0.1104 0.0457 0.1739 0.1783 0.0194 0.0033 0.0547 0.0586
30 1.5 0.7 1 1.5 1.5298 0.6894 1.0705 1.6159 0.1068 0.0435 0.1799 0.2843 0.0184 0.0029 0.0577 0.153
30 1.5 0.7 1 2 1.524 0.6894 1.0697 2.202 0.1023 0.0458 0.1801 0.4265 0.0168 0.0033 0.0608 0.3443
30 1.5 0.7 1.5 1 1.5227 0.6913 1.5908 1.0733 0.1028 0.0463 0.2727 0.1866 0.0172 0.0033 0.1341 0.0641
30 1.5 0.7 1.5 1.5 1.5244 0.6923 1.591 1.6344 0.1068 0.0432 0.2738 0.2965 0.018 0.003 0.1312 0.1661
30 1.5 0.7 1.5 2 1.5311 0.6923 1.5875 2.1931 0.0975 0.0415 0.2755 0.4173 0.0156 0.0028 0.137 0.3263
30 1.5 0.7 2 1 1.5215 0.6915 2.1586 1.0702 0.1028 0.0459 0.3918 0.1805 0.0167 0.0033 0.2861 0.0579
30 1.5 0.7 2 1.5 1.5286 0.6932 2.1551 1.6275 0.0967 0.0437 0.3857 0.2958 0.0157 0.003 0.3045 0.1644
30 1.5 0.7 2 2 1.5196 0.6891 2.1493 2.2065 0.0961 0.0433 0.3904 0.4354 0.0155 0.003 0.2791 0.3526
30 1.5 1 1 1 1.5298 0.9896 1.0581 1.0668 0.1123 0.0656 0.1701 0.178 0.0207 0.0067 0.0505 0.0594
30 1.5 1 1 1.5 1.524 0.9882 1.0607 1.5935 0.1043 0.0633 0.1753 0.279 0.0176 0.0064 0.0541 0.1455
30 1.5 1 1 2 1.528 0.9902 1.0533 2.1783 0.1013 0.065 0.1682 0.4156 0.0164 0.0066 0.0501 0.3123
30 1.5 1 1.5 1 1.5226 0.9889 1.5983 1.0665 0.1021 0.0651 0.2743 0.178 0.0172 0.0066 0.1441 0.059
30 1.5 1 1.5 1.5 1.5191 0.989 1.6092 1.5996 0.0958 0.0643 0.2735 0.2878 0.0149 0.0065 0.1428 0.1494
30 1.5 1 1.5 2 1.5205 0.9901 1.6032 2.1649 0.0994 0.0634 0.28 0.4113 0.016 0.0064 0.1512 0.3202
30 1.5 1 2 1 1.5289 0.9884 2.16 1.0743 0.1068 0.0637 0.3926 0.1881 0.0185 0.0064 0.2772 0.0653
30 1.5 1 2 1.5 1.5216 0.9879 2.1723 1.6159 0.0969 0.0657 0.414 0.281 0.0152 0.0067 0.3224 0.1448
30 1.5 1 2 2 1.5173 0.9848 2.1531 2.1837 0.0952 0.0635 0.4059 0.4079 0.0148 0.0064 0.2972 0.3037
30 1.5 2 1 1 1.524 1.976 1.0745 1.0682 0.1097 0.134 0.1843 0.177 0.0202 0.0273 0.0596 0.0563
30 1.5 2 1 1.5 1.5267 1.9729 1.0566 1.6222 0.1066 0.1262 0.182 0.2857 0.0184 0.0249 0.0576 0.162
30 1.5 2 1 2 1.5246 1.9786 1.0604 2.1575 0.099 0.1265 0.1821 0.3777 0.0159 0.0248 0.0551 0.2765
30 1.5 2 1.5 1 1.52 1.9707 1.5948 1.0654 0.1082 0.1281 0.2678 0.1775 0.0189 0.0255 0.1306 0.0586
30 1.5 2 1.5 1.5 1.5285 1.9681 1.6067 1.6337 0.1027 0.1315 0.2797 0.3078 0.0173 0.0269 0.143 0.1856
30 1.5 2 1.5 2 1.5258 1.9811 1.5839 2.1726 0.1013 0.131 0.2762 0.4167 0.0163 0.0268 0.1423 0.3165
30 1.5 2 2 1 1.5203 1.97 2.1675 1.0626 0.1016 0.1237 0.4025 0.1739 0.0165 0.0244 0.2863 0.0544
30 1.5 2 2 1.5 1.5213 1.983 2.1255 1.609 0.0998 0.1229 0.3853 0.2927 0.0157 0.0236 0.2591 0.1622
30 1.5 2 2 2 1.5247 1.9748 2.1301 2.1947 0.0963 0.1185 0.3689 0.4202 0.0151 0.0228 0.2574 0.3442
30 2 0.5 1 1 2.0398 0.4955 1.0594 1.081 0.1454 0.0243 0.1744 0.1852 0.0346 0.001 0.0549 0.0667
30 2 0.5 1 1.5 2.0421 0.4963 1.0407 1.604 0.1407 0.0233 0.1621 0.2868 0.0324 0.0009 0.0487 0.1608
30 2 0.5 1 2 2.0297 0.4948 1.0567 2.1828 0.1325 0.024 0.1721 0.4023 0.028 0.0009 0.0573 0.3122
30 2 0.5 1.5 1 2.0302 0.4943 1.6357 1.0626 0.143 0.0241 0.3003 0.175 0.0333 0.0009 0.1702 0.0574
30 2 0.5 1.5 1.5 2.0275 0.4943 1.6087 1.6032 0.1424 0.0232 0.2747 0.2727 0.0326 0.0008 0.1413 0.1399
30 2 0.5 1.5 2 2.0409 0.4951 1.6065 2.1743 0.1377 0.0226 0.2706 0.392 0.0301 0.0008 0.1429 0.2928
30 2 0.5 2 1 2.0252 0.4953 2.1554 1.0713 0.1359 0.0239 0.3936 0.1839 0.029 0.0009 0.2879 0.0619
30 2 0.5 2 1.5 2.0293 0.4942 2.1786 1.6413 0.1339 0.0236 0.3977 0.2919 0.029 0.0009 0.3124 0.1589
30 2 0.5 2 2 2.0367 0.4961 2.1458 2.1796 0.1277 0.0242 0.3861 0.4068 0.0268 0.0009 0.2804 0.3141
30 2 0.7 1 1 2.0289 0.6957 1.0527 1.0514 0.1532 0.0345 0.1728 0.1735 0.0378 0.0019 0.0533 0.0527
30 2 0.7 1 1.5 2.0371 0.6936 1.0569 1.6267 0.1423 0.0342 0.1781 0.2863 0.0335 0.0018 0.0564 0.1603
30 2 0.7 1 2 2.0348 0.6913 1.0651 2.1986 0.1355 0.0344 0.1761 0.4282 0.0305 0.0019 0.0567 0.3639
30 2 0.7 1.5 1 2.0335 0.6924 1.6073 1.078 0.1455 0.0341 0.2667 0.1911 0.0342 0.0018 0.1298 0.0671
30 2 0.7 1.5 1.5 2.0282 0.6925 1.6076 1.6236 0.1301 0.033 0.2864 0.2876 0.0278 0.0017 0.1462 0.155
30 2 0.7 1.5 2 2.0305 0.6937 1.5913 2.166 0.1357 0.0315 0.2788 0.3829 0.0294 0.0016 0.1491 0.2747
30 2 0.7 2 1 2.0296 0.6901 2.1985 1.0755 0.1414 0.0331 0.426 0.1885 0.0322 0.0017 0.3442 0.0631
30 2 0.7 2 1.5 2.0212 0.6922 2.1931 1.6337 0.1286 0.0339 0.4167 0.2974 0.0265 0.0018 0.3243 0.1741
30 2 0.7 2 2 2.0286 0.6948 2.136 2.2045 0.1285 0.0321 0.39 0.4388 0.0265 0.0016 0.2715 0.365
30 2 1 1 1 2.0441 0.9905 1.0588 1.0774 0.1479 0.0514 0.17 0.1893 0.0356 0.0041 0.052 0.0667
30 2 1 1 1.5 2.0291 0.9889 1.0631 1.6235 0.1418 0.0474 0.1777 0.2989 0.0325 0.0035 0.0565 0.162
30 2 1 1 2 2.0295 0.9892 1.0647 2.1925 0.1346 0.0478 0.1737 0.4314 0.0286 0.0035 0.0531 0.3347
30 2 1 1.5 1 2.0325 0.9866 1.6182 1.0814 0.1411 0.0493 0.2832 0.1857 0.031 0.0037 0.1516 0.0637
30 2 1 1.5 1.5 2.0386 0.989 1.6044 1.6333 0.1351 0.0468 0.2801 0.2951 0.0296 0.0034 0.1405 0.1698
30 2 1 1.5 2 2.0247 0.9934 1.5908 2.1767 0.1282 0.0474 0.2733 0.4004 0.026 0.0035 0.1386 0.3143
30 2 1 2 1 2.0329 0.9903 2.1331 1.0593 0.1414 0.0494 0.3966 0.1762 0.0313 0.0038 0.2839 0.0568
30 2 1 2 1.5 2.0321 0.9914 2.1564 1.6206 0.1377 0.0471 0.3945 0.2914 0.0307 0.0035 0.3034 0.1549
30 2 1 2 2 2.0209 0.9906 2.1356 2.1618 0.1276 0.0463 0.4067 0.3998 0.0261 0.0033 0.3058 0.3029
30 2 2 1 1 2.0334 1.9786 1.0532 1.0659 0.1456 0.1039 0.1776 0.1771 0.0339 0.0166 0.0557 0.0555
30 2 2 1 1.5 2.0334 1.9744 1.0604 1.6298 0.1433 0.1022 0.1735 0.3014 0.0323 0.0161 0.0541 0.1643
30 2 2 1 2 2.0278 1.981 1.0616 2.1682 0.1331 0.0978 0.1802 0.4014 0.0276 0.015 0.057 0.3047
30 2 2 1.5 1 2.0278 1.9821 1.614 1.0695 0.1386 0.0971 0.2774 0.1794 0.0314 0.0144 0.1404 0.0555
30 2 2 1.5 1.5 2.0368 1.9795 1.6109 1.6258 0.1379 0.0944 0.2919 0.2974 0.0313 0.0139 0.1594 0.1691
30 2 2 1.5 2 2.0209 1.985 1.6262 2.1672 0.1287 0.0926 0.2862 0.4002 0.0267 0.0134 0.1548 0.3059
30 2 2 2 1 2.0328 1.9779 2.1479 1.0774 0.145 0.0954 0.3935 0.1776 0.0344 0.014 0.3015 0.059
30 2 2 2 1.5 2.0299 1.982 2.1556 1.587 0.136 0.0973 0.3988 0.2725 0.0289 0.0147 0.2886 0.1319
30 2 2 2 2 2.0312 1.9853 2.1534 2.1765 0.128 0.0926 0.3944 0.398 0.0263 0.0136 0.2958 0.3017
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Table 2: MLE’s Bias and MSE’s for 2-out-of-4 system with n=50

n a b β1 β2 â b̂ β̂1 β̂2 Bias(â) Bias(b̂) Bias(β̂1) Bias(β̂2) MSE(â) MSE(b̂) MSE(β̂1) MSE(β̂2)
50 1 0.5 1 1 1.0133 0.4936 1.0305 1.0455 0.0542 0.0378 0.1267 0.1337 0.0046 0.0022 0.0279 0.0311
50 1 0.5 1 1.5 1.0129 0.4941 1.0436 1.5596 0.0548 0.0368 0.1295 0.2088 0.005 0.0021 0.03 0.0739
50 1 0.5 1 2 1.0081 0.497 1.0249 2.1013 0.051 0.0377 0.1286 0.2897 0.004 0.0022 0.0276 0.1463
50 1 0.5 1.5 1 1.0105 0.4947 1.5642 1.0469 0.0542 0.0381 0.2101 0.1347 0.0047 0.0022 0.0742 0.0306
50 1 0.5 1.5 1.5 1.0085 0.4974 1.5487 1.5621 0.0527 0.0368 0.1996 0.2146 0.0045 0.0021 0.067 0.0787
50 1 0.5 1.5 2 1.0093 0.4951 1.5611 2.1001 0.0507 0.0357 0.2009 0.2956 0.0042 0.002 0.0663 0.1423
50 1 0.5 2 1 1.0094 0.4957 2.0719 1.037 0.053 0.0363 0.28 0.1364 0.0045 0.0021 0.1361 0.0298
50 1 0.5 2 1.5 1.0063 0.4962 2.088 1.5732 0.0512 0.0367 0.2904 0.2161 0.0042 0.0021 0.148 0.0828
50 1 0.5 2 2 1.0061 0.4955 2.0713 2.0885 0.0484 0.0358 0.2811 0.2937 0.0037 0.002 0.1384 0.1443
50 1 0.7 1 1 1.012 0.6937 1.0278 1.0383 0.058 0.0523 0.1298 0.1273 0.0054 0.0043 0.0283 0.0276
50 1 0.7 1 1.5 1.0087 0.691 1.0408 1.5579 0.0541 0.053 0.1313 0.2155 0.0047 0.0044 0.0298 0.0801
50 1 0.7 1 2 1.0093 0.6935 1.035 2.097 0.0509 0.0519 0.1288 0.2921 0.0042 0.0042 0.028 0.1498
50 1 0.7 1.5 1 1.0111 0.6931 1.5656 1.0337 0.0547 0.0529 0.2093 0.1327 0.0047 0.0043 0.0743 0.0306
50 1 0.7 1.5 1.5 1.012 0.6956 1.5627 1.568 0.0509 0.052 0.2078 0.214 0.0041 0.0043 0.0775 0.0783
50 1 0.7 1.5 2 1.0103 0.6928 1.5507 2.1132 0.0519 0.0508 0.1977 0.3028 0.0043 0.004 0.0682 0.156
50 1 0.7 2 1 1.007 0.6912 2.0763 1.0376 0.0511 0.0543 0.2792 0.1366 0.0041 0.0045 0.1368 0.0303
50 1 0.7 2 1.5 1.01 0.6933 2.1062 1.5658 0.0515 0.0505 0.3049 0.2062 0.0042 0.004 0.1633 0.0752
50 1 0.7 2 2 1.0072 0.695 2.0728 2.0819 0.0489 0.0511 0.2902 0.2899 0.0038 0.0041 0.1397 0.1471
50 1 1 1 1 1.0112 0.986 1.0442 1.0458 0.0553 0.0768 0.1349 0.1348 0.0048 0.0094 0.0317 0.0318
50 1 1 1 1.5 1.0095 0.9889 1.039 1.5793 0.0516 0.0735 0.1301 0.2141 0.0043 0.0083 0.0295 0.0816
50 1 1 1 2 1.0081 0.9916 1.0303 2.106 0.0506 0.0717 0.1284 0.2981 0.0041 0.0083 0.0282 0.1549
50 1 1 1.5 1 1.0079 0.9909 1.5515 1.0354 0.0547 0.0745 0.2043 0.1305 0.0047 0.0087 0.069 0.0286
50 1 1 1.5 1.5 1.0126 0.9894 1.562 1.5688 0.0537 0.072 0.2109 0.2052 0.0046 0.0081 0.0792 0.0739
50 1 1 1.5 2 1.008 0.9909 1.5716 2.1045 0.0507 0.0725 0.2174 0.2934 0.0041 0.0082 0.0813 0.1501
50 1 1 2 1 1.0134 0.9964 2.0557 1.0397 0.0535 0.0735 0.278 0.1334 0.0047 0.0086 0.1374 0.0305
50 1 1 2 1.5 1.0081 0.9909 2.0845 1.5651 0.0501 0.075 0.2845 0.2085 0.0041 0.0088 0.1368 0.0734
50 1 1 2 2 1.0068 0.9896 2.0872 2.1097 0.0499 0.0729 0.2919 0.2972 0.004 0.0083 0.1499 0.1513
50 1 2 1 1 1.0132 1.9823 1.0231 1.0364 0.0559 0.1562 0.1299 0.1287 0.0049 0.0378 0.0275 0.0278
50 1 2 1 1.5 1.008 1.9865 1.0232 1.5618 0.0537 0.1525 0.132 0.2167 0.0045 0.0365 0.0287 0.0784
50 1 2 1 2 1.0111 1.9849 1.0334 2.0933 0.0497 0.1464 0.1321 0.2926 0.004 0.0327 0.0296 0.1519
50 1 2 1.5 1 1.0069 1.9834 1.5697 1.0356 0.0535 0.1523 0.2151 0.135 0.0045 0.036 0.08 0.0327
50 1 2 1.5 1.5 1.0099 1.9783 1.5591 1.5738 0.0505 0.1425 0.2041 0.2142 0.004 0.0314 0.0694 0.0793
50 1 2 1.5 2 1.0105 1.9774 1.5507 2.1054 0.051 0.1493 0.2059 0.3047 0.0041 0.034 0.0715 0.1562
50 1 2 2 1 1.0118 1.9925 2.0623 1.0397 0.0538 0.1478 0.2863 0.1347 0.0046 0.0352 0.1448 0.0316
50 1 2 2 1.5 1.007 1.9793 2.0973 1.5526 0.0492 0.1427 0.2886 0.2071 0.0038 0.0319 0.1453 0.0746
50 1 2 2 2 1.0094 1.9829 2.0889 2.0993 0.0499 0.1406 0.2874 0.2916 0.004 0.0313 0.1437 0.1455
50 1.5 0.5 1 1 1.5198 0.4964 1.0407 1.0461 0.0846 0.0252 0.1333 0.1363 0.0108 0.001 0.0308 0.0321
50 1.5 0.5 1 1.5 1.5147 0.496 1.0255 1.5712 0.0814 0.0249 0.1231 0.2151 0.0102 0.001 0.0249 0.0783
50 1.5 0.5 1 2 1.5142 0.4959 1.0389 2.0926 0.0772 0.0243 0.1358 0.2913 0.0098 0.0009 0.031 0.1526
50 1.5 0.5 1.5 1 1.5119 0.4964 1.5453 1.0413 0.0818 0.0251 0.2027 0.1341 0.0105 0.001 0.0723 0.031
50 1.5 0.5 1.5 1.5 1.5201 0.4962 1.5629 1.5678 0.0778 0.0258 0.2106 0.2053 0.0101 0.001 0.075 0.0737
50 1.5 0.5 1.5 2 1.516 0.4974 1.5642 2.0999 0.0741 0.0245 0.2135 0.2967 0.0088 0.0009 0.0771 0.1614
50 1.5 0.5 2 1 1.5162 0.4975 2.0883 1.0427 0.082 0.0242 0.2908 0.1296 0.0108 0.0009 0.1467 0.0289
50 1.5 0.5 2 1.5 1.514 0.4961 2.1021 1.5932 0.0759 0.0246 0.2941 0.2171 0.0092 0.0009 0.1501 0.085
50 1.5 0.5 2 2 1.5129 0.4966 2.0801 2.0923 0.0742 0.0235 0.2879 0.283 0.0088 0.0009 0.1433 0.1422
50 1.5 0.7 1 1 1.5149 0.6948 1.0342 1.0343 0.0861 0.0361 0.1305 0.1286 0.0115 0.002 0.0294 0.0284
50 1.5 0.7 1 1.5 1.5193 0.6935 1.0351 1.5778 0.0843 0.034 0.1314 0.2178 0.0113 0.0018 0.0304 0.0827
50 1.5 0.7 1 2 1.5188 0.6927 1.0378 2.1083 0.0785 0.0347 0.1326 0.3028 0.0099 0.0019 0.0298 0.1586
50 1.5 0.7 1.5 1 1.5204 0.695 1.547 1.0448 0.0816 0.036 0.2015 0.1354 0.0105 0.002 0.0708 0.0316
50 1.5 0.7 1.5 1.5 1.5117 0.6947 1.5663 1.5638 0.0775 0.0343 0.2113 0.2127 0.0095 0.0018 0.0766 0.08
50 1.5 0.7 1.5 2 1.5124 0.694 1.5551 2.0891 0.0765 0.0341 0.203 0.3042 0.0097 0.0018 0.0705 0.1648
50 1.5 0.7 2 1 1.5145 0.6929 2.0955 1.0447 0.0803 0.0351 0.303 0.1275 0.01 0.0019 0.1641 0.0278
50 1.5 0.7 2 1.5 1.5099 0.6929 2.1013 1.5583 0.0754 0.0352 0.3049 0.2111 0.009 0.0019 0.1614 0.0787
50 1.5 0.7 2 2 1.5111 0.6942 2.0835 2.099 0.0715 0.0329 0.2897 0.291 0.0084 0.0017 0.1453 0.1513
50 1.5 1 1 1 1.5214 0.9894 1.0494 1.0557 0.0815 0.0515 0.1344 0.1299 0.0112 0.0041 0.0314 0.0309
50 1.5 1 1 1.5 1.5116 0.9915 1.0326 1.5616 0.0818 0.0479 0.1291 0.2025 0.0108 0.0036 0.0267 0.075
50 1.5 1 1 2 1.5156 0.9924 1.0299 2.1147 0.0791 0.0504 0.1254 0.3049 0.0101 0.004 0.0261 0.1585
50 1.5 1 1.5 1 1.515 0.9918 1.56 1.0331 0.0775 0.0504 0.2066 0.1287 0.01 0.0039 0.0721 0.0274
50 1.5 1 1.5 1.5 1.5206 0.9938 1.5535 1.5658 0.0815 0.0492 0.2022 0.2067 0.0104 0.0038 0.0692 0.0729
50 1.5 1 1.5 2 1.5101 0.9933 1.5457 2.0914 0.0735 0.0492 0.2109 0.2805 0.0087 0.0037 0.0767 0.1392
50 1.5 1 2 1 1.5131 0.9937 2.0884 1.0412 0.082 0.0505 0.2935 0.1361 0.0107 0.0041 0.1482 0.0317
50 1.5 1 2 1.5 1.5079 0.9932 2.0776 1.5625 0.0717 0.0482 0.2755 0.2124 0.0085 0.0036 0.1284 0.0753
50 1.5 1 2 2 1.5086 0.9905 2.0892 2.1054 0.0727 0.0467 0.2893 0.294 0.0085 0.0035 0.1456 0.1478
50 1.5 2 1 1 1.5154 1.9786 1.0374 1.0383 0.0831 0.1027 0.1292 0.1348 0.0108 0.0168 0.0289 0.0312
50 1.5 2 1 1.5 1.5193 1.9805 1.0358 1.5872 0.0822 0.1043 0.136 0.2312 0.0106 0.0167 0.0306 0.0916
50 1.5 2 1 2 1.515 1.9795 1.0415 2.1138 0.0787 0.0993 0.1313 0.297 0.0103 0.0152 0.0291 0.1511
50 1.5 2 1.5 1 1.5139 1.9771 1.5613 1.0467 0.0838 0.0993 0.209 0.1323 0.0113 0.0158 0.0739 0.0309
50 1.5 2 1.5 1.5 1.5155 1.9836 1.5592 1.5715 0.0778 0.0958 0.2011 0.2147 0.0098 0.0142 0.0689 0.0789
50 1.5 2 1.5 2 1.5123 1.9803 1.5583 2.1148 0.0759 0.0965 0.1998 0.2913 0.0093 0.0144 0.0696 0.1496
50 1.5 2 2 1 1.5105 1.9804 2.0973 1.0419 0.0789 0.1016 0.3075 0.1346 0.0096 0.0159 0.1648 0.0313
50 1.5 2 2 1.5 1.5157 1.9873 2.0769 1.5705 0.0754 0.0963 0.2893 0.2111 0.0088 0.0147 0.1404 0.0795
50 1.5 2 2 2 1.5135 1.9834 2.0869 2.0957 0.0758 0.0988 0.2874 0.2906 0.009 0.015 0.1358 0.152
50 2 0.5 1 1 2.025 0.497 1.0331 1.0456 0.1121 0.0192 0.1269 0.1378 0.0197 0.0006 0.0275 0.0323
50 2 0.5 1 1.5 2.0184 0.4977 1.0279 1.5588 0.1041 0.0186 0.1341 0.2098 0.0178 0.0006 0.0293 0.08
50 2 0.5 1 2 2.0134 0.4967 1.0338 2.1003 0.0996 0.0183 0.1288 0.2976 0.0158 0.0005 0.028 0.156
50 2 0.5 1.5 1 2.0223 0.4963 1.5636 1.0285 0.1113 0.0195 0.2192 0.1313 0.0197 0.0006 0.0854 0.0301
50 2 0.5 1.5 1.5 2.0148 0.4975 1.5511 1.5597 0.0994 0.0192 0.2079 0.2126 0.0158 0.0006 0.0722 0.0797
50 2 0.5 1.5 2 2.0222 0.4961 1.5579 2.1214 0.1085 0.0184 0.2007 0.3121 0.0185 0.0005 0.0698 0.1623
50 2 0.5 2 1 2.0148 0.4973 2.0912 1.0352 0.105 0.0176 0.2831 0.131 0.0176 0.0005 0.1428 0.0297
50 2 0.5 2 1.5 2.0138 0.497 2.0865 1.5705 0.1012 0.0184 0.2919 0.2091 0.0163 0.0005 0.1415 0.078
50 2 0.5 2 2 2.0158 0.4972 2.0773 2.1211 0.0971 0.0172 0.2756 0.3005 0.0153 0.0005 0.1293 0.1557
50 2 0.7 1 1 2.0187 0.6943 1.0462 1.0351 0.1072 0.0276 0.1346 0.132 0.0185 0.0012 0.0315 0.0291
50 2 0.7 1 1.5 2.0193 0.6957 1.0372 1.5715 0.1018 0.0263 0.1341 0.2153 0.0173 0.0011 0.0313 0.0815
50 2 0.7 1 2 2.0182 0.6954 1.0359 2.1108 0.1045 0.0258 0.1245 0.295 0.017 0.001 0.027 0.1539
50 2 0.7 1.5 1 2.0308 0.6962 1.567 1.0466 0.1121 0.0254 0.2106 0.1367 0.0203 0.001 0.0732 0.0326
50 2 0.7 1.5 1.5 2.0167 0.6954 1.5625 1.559 0.1032 0.0261 0.209 0.2052 0.0172 0.001 0.078 0.0745
50 2 0.7 1.5 2 2.0188 0.6963 1.5583 2.1124 0.1013 0.0253 0.2204 0.3077 0.0162 0.001 0.0783 0.1661
50 2 0.7 2 1 2.0179 0.6978 2.0763 1.0375 0.103 0.0252 0.284 0.1322 0.0167 0.001 0.1509 0.0299
50 2 0.7 2 1.5 2.0216 0.696 2.1024 1.5755 0.0986 0.025 0.2877 0.2149 0.0164 0.001 0.1394 0.079
50 2 0.7 2 2 2.0188 0.6966 2.0867 2.1149 0.0983 0.0254 0.293 0.2952 0.0157 0.001 0.1522 0.1604
50 2 1 1 1 2.0203 0.9935 1.0323 1.0448 0.1105 0.0401 0.1267 0.1341 0.0197 0.0025 0.0278 0.031
50 2 1 1 1.5 2.0158 0.9951 1.0312 1.5555 0.1063 0.0373 0.129 0.2037 0.0181 0.0022 0.0272 0.0692
50 2 1 1 2 2.0165 0.9939 1.0186 2.0898 0.1066 0.037 0.1244 0.2801 0.0177 0.0021 0.0258 0.1434
50 2 1 1.5 1 2.0242 0.9942 1.5634 1.0327 0.1114 0.0384 0.2046 0.1344 0.0201 0.0023 0.0742 0.0306
50 2 1 1.5 1.5 2.0181 0.9952 1.5371 1.5745 0.1017 0.0373 0.2081 0.2118 0.0163 0.0022 0.0712 0.0763
50 2 1 1.5 2 2.0147 0.9933 1.5585 2.1206 0.1019 0.0381 0.1995 0.3049 0.0168 0.0022 0.0671 0.1626
50 2 1 2 1 2.0123 0.9938 2.0907 1.0306 0.1063 0.0366 0.2901 0.131 0.0179 0.002 0.1436 0.0293
50 2 1 2 1.5 2.0245 0.9942 2.093 1.5647 0.1002 0.0375 0.2923 0.21 0.0161 0.0022 0.1483 0.0749
50 2 1 2 2 2.0087 0.9971 2.0817 2.0914 0.0983 0.0357 0.2847 0.2955 0.0155 0.002 0.1385 0.1516
50 2 2 1 1 2.0192 1.9871 1.0295 1.033 0.1095 0.076 0.1304 0.1291 0.019 0.0092 0.0295 0.0297
50 2 2 1 1.5 2.0214 1.9898 1.0322 1.5646 0.1056 0.0723 0.1313 0.2108 0.0179 0.0084 0.0299 0.0811
50 2 2 1 2 2.0167 1.9836 1.0375 2.1223 0.1021 0.0788 0.1349 0.3135 0.0173 0.0098 0.0309 0.1749
50 2 2 1.5 1 2.0238 1.9965 1.5528 1.0331 0.1068 0.0721 0.2093 0.128 0.0183 0.0083 0.0734 0.0289
50 2 2 1.5 1.5 2.0159 1.9857 1.5642 1.5644 0.1023 0.0716 0.2124 0.2094 0.0167 0.0083 0.0773 0.0712
50 2 2 1.5 2 2.0197 1.9879 1.5591 2.1024 0.1031 0.0693 0.202 0.2964 0.0165 0.0077 0.0677 0.1602
50 2 2 2 1 2.0227 1.9887 2.0887 1.0379 0.1045 0.0719 0.2903 0.1392 0.0173 0.0084 0.1439 0.0326
50 2 2 2 1.5 2.0133 1.9911 2.0853 1.5666 0.0991 0.0747 0.2876 0.2182 0.0161 0.0088 0.1411 0.0817
50 2 2 2 2 2.0151 1.9819 2.117 2.1113 0.1004 0.0715 0.3016 0.2958 0.0158 0.0083 0.1586 0.1529
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Table 3: MLE’s Bias and MSE’s for 2-out-of-4 system with n=100

n a b β1 β2 â b̂ β̂1 β̂2 Bias(â) Bias(b̂) Bias(β̂1) Bias(β̂2) MSE(â) MSE(b̂) MSE(β̂1) MSE(β̂2)
100 1 0.5 1 1 1.0044 0.4961 1.019 1.0199 0.0384 0.0266 0.089 0.0893 0.0023 0.0011 0.0131 0.013
100 1 0.5 1 1.5 1.0037 0.4973 1.0171 1.5267 0.0369 0.0266 0.0917 0.1416 0.0021 0.0011 0.0138 0.033
100 1 0.5 1 2 1.0027 0.4974 1.0165 2.0491 0.0362 0.0257 0.0904 0.1946 0.0021 0.001 0.0135 0.063
100 1 0.5 1.5 1 1.0066 0.4971 1.5287 1.0194 0.0373 0.0268 0.1406 0.0868 0.0022 0.0011 0.0319 0.0122
100 1 0.5 1.5 1.5 1.0024 0.4969 1.5289 1.5294 0.0363 0.0255 0.1377 0.1453 0.0021 0.001 0.0313 0.0348
100 1 0.5 1.5 2 1.0024 0.4986 1.5277 2.0465 0.0345 0.026 0.1458 0.2003 0.0019 0.0011 0.034 0.067
100 1 0.5 2 1 1.0052 0.4984 2.0357 1.0181 0.037 0.0244 0.1977 0.0919 0.0022 0.0009 0.0647 0.0135
100 1 0.5 2 1.5 1.0052 0.5009 2.0343 1.5121 0.0369 0.0253 0.1944 0.1392 0.0021 0.001 0.0609 0.0307
100 1 0.5 2 2 1.0042 0.4962 2.0524 2.0673 0.0355 0.0248 0.1989 0.2018 0.002 0.001 0.0648 0.069
100 1 0.7 1 1 1.0046 0.6969 1.017 1.0186 0.0382 0.0382 0.0891 0.0906 0.0023 0.0023 0.0127 0.0138
100 1 0.7 1 1.5 1.0042 0.6967 1.0152 1.5289 0.0361 0.0366 0.0885 0.141 0.002 0.0021 0.0135 0.0331
100 1 0.7 1 2 1.0069 0.6971 1.012 2.0511 0.0366 0.0369 0.0857 0.2052 0.0021 0.0021 0.0115 0.07
100 1 0.7 1.5 1 1.0056 0.6967 1.5262 1.0187 0.0373 0.0381 0.1428 0.0892 0.0022 0.0023 0.0332 0.0131
100 1 0.7 1.5 1.5 1.0072 0.6938 1.5352 1.5361 0.0366 0.0376 0.1429 0.1446 0.0022 0.0022 0.034 0.0334
100 1 0.7 1.5 2 1.0036 0.6957 1.5298 2.055 0.0353 0.0356 0.1346 0.1964 0.002 0.002 0.0306 0.0659
100 1 0.7 2 1 1.0049 0.6977 2.0355 1.0158 0.0375 0.0372 0.1961 0.0885 0.0022 0.0022 0.0648 0.0131
100 1 0.7 2 1.5 1.0029 0.6978 2.056 1.5329 0.0345 0.0358 0.2051 0.1377 0.002 0.002 0.0694 0.0323
100 1 0.7 2 2 1.0036 0.6993 2.0392 2.0338 0.035 0.0357 0.1912 0.1983 0.0019 0.002 0.0601 0.0634
100 1 1 1 1 1.006 0.9934 1.0127 1.0244 0.0397 0.0544 0.0876 0.0903 0.0025 0.0046 0.0122 0.0134
100 1 1 1 1.5 1.0052 0.9949 1.0117 1.5402 0.0379 0.0532 0.0886 0.1473 0.0023 0.0046 0.0127 0.0376
100 1 1 1 2 1.004 0.9943 1.0189 2.0531 0.0348 0.051 0.0877 0.2018 0.002 0.004 0.0127 0.0661
100 1 1 1.5 1 1.0042 0.9948 1.5375 1.0241 0.0379 0.0543 0.1461 0.0904 0.0023 0.0046 0.0356 0.0133
100 1 1 1.5 1.5 1.0046 0.9979 1.5177 1.5281 0.0363 0.0525 0.1427 0.1394 0.002 0.0043 0.0342 0.0326
100 1 1 1.5 2 1.0044 0.9981 1.5142 2.0407 0.035 0.0526 0.1434 0.1971 0.0019 0.0043 0.0341 0.0633
100 1 1 2 1 1.0041 0.9982 2.042 1.0192 0.0373 0.0517 0.1971 0.0902 0.0022 0.0041 0.064 0.0134
100 1 1 2 1.5 1.0052 0.9944 2.0545 1.5383 0.0358 0.0508 0.2045 0.1384 0.002 0.004 0.0684 0.0319
100 1 1 2 2 1.0035 0.9937 2.0391 2.0546 0.0332 0.0514 0.2028 0.2072 0.0017 0.0042 0.0671 0.0713
100 1 2 1 1 1.0083 1.9845 1.0233 1.0236 0.0391 0.111 0.0934 0.0931 0.0025 0.0193 0.0147 0.0144
100 1 2 1 1.5 1.0037 1.9841 1.0181 1.5355 0.0352 0.1049 0.0897 0.1459 0.002 0.0175 0.0134 0.0352
100 1 2 1 2 1.0052 1.9914 1.0134 2.0471 0.0368 0.1053 0.092 0.2053 0.0021 0.0175 0.0138 0.0731
100 1 2 1.5 1 1.005 1.9951 1.5276 1.0174 0.0389 0.1051 0.138 0.089 0.0024 0.0173 0.031 0.013
100 1 2 1.5 1.5 1.0036 1.9884 1.5306 1.5302 0.035 0.102 0.1382 0.1466 0.002 0.0164 0.0319 0.0354
100 1 2 1.5 2 1.0044 1.9939 1.5344 2.0389 0.0355 0.1033 0.1425 0.1874 0.002 0.0166 0.034 0.0572
100 1 2 2 1 1.0069 1.9917 2.0367 1.0205 0.0368 0.1042 0.1978 0.0892 0.0021 0.0175 0.0642 0.0132
100 1 2 2 1.5 1.0052 1.9941 2.0546 1.528 0.0343 0.1055 0.2003 0.1421 0.0019 0.0171 0.0688 0.033
100 1 2 2 2 1.0063 1.9906 2.0382 2.0515 0.0344 0.101 0.1995 0.1929 0.0019 0.0159 0.0653 0.0647
100 1.5 0.5 1 1 1.5084 0.4974 1.0138 1.0204 0.056 0.0172 0.0881 0.0939 0.005 0.0005 0.0126 0.0141
100 1.5 0.5 1 1.5 1.5074 0.498 1.015 1.534 0.056 0.0173 0.0881 0.1401 0.0049 0.0005 0.0125 0.0315
100 1.5 0.5 1 2 1.5083 0.4987 1.0183 2.0514 0.0545 0.0172 0.0883 0.1969 0.0048 0.0005 0.0128 0.0659
100 1.5 0.5 1.5 1 1.5122 0.4983 1.532 1.0214 0.0571 0.0177 0.1411 0.0916 0.0052 0.0005 0.0335 0.0138
100 1.5 0.5 1.5 1.5 1.5055 0.4978 1.5322 1.5367 0.057 0.0179 0.1402 0.1463 0.0051 0.0005 0.0316 0.0345
100 1.5 0.5 1.5 2 1.5099 0.4974 1.5321 2.0439 0.053 0.0172 0.1432 0.1989 0.0045 0.0005 0.0334 0.0675
100 1.5 0.5 2 1 1.5108 0.4982 2.0424 1.0207 0.0554 0.0176 0.1963 0.092 0.005 0.0005 0.0655 0.0137
100 1.5 0.5 2 1.5 1.51 0.5 2.0346 1.5222 0.053 0.0163 0.1921 0.1382 0.0046 0.0004 0.0619 0.0318
100 1.5 0.5 2 2 1.5041 0.4973 2.051 2.0532 0.0533 0.0166 0.1948 0.2024 0.0044 0.0004 0.0622 0.0694
100 1.5 0.7 1 1 1.5058 0.6972 1.0194 1.0193 0.0589 0.0255 0.0893 0.0907 0.0056 0.001 0.0134 0.0133
100 1.5 0.7 1 1.5 1.5062 0.6965 1.0161 1.5375 0.0549 0.0248 0.0879 0.1433 0.0047 0.001 0.0124 0.0351
100 1.5 0.7 1 2 1.5052 0.6979 1.0151 2.0436 0.0531 0.0248 0.0885 0.2023 0.0045 0.001 0.0127 0.0662
100 1.5 0.7 1.5 1 1.5086 0.6971 1.5275 1.0162 0.0556 0.0248 0.1413 0.0858 0.005 0.001 0.0321 0.0122
100 1.5 0.7 1.5 1.5 1.5029 0.6956 1.5433 1.5349 0.0543 0.0254 0.149 0.1483 0.0045 0.001 0.037 0.0365
100 1.5 0.7 1.5 2 1.5075 0.6976 1.5269 2.042 0.0527 0.0241 0.1445 0.1921 0.0044 0.0009 0.0335 0.0625
100 1.5 0.7 2 1 1.5056 0.6969 2.0374 1.0249 0.0524 0.0249 0.1911 0.0931 0.0045 0.001 0.062 0.0147
100 1.5 0.7 2 1.5 1.5041 0.6966 2.0505 1.5324 0.0529 0.0234 0.1951 0.1369 0.0045 0.0008 0.0632 0.0308
100 1.5 0.7 2 2 1.5058 0.697 2.0354 2.0473 0.0517 0.0229 0.1881 0.1955 0.0044 0.0008 0.0572 0.061
100 1.5 1 1 1 1.508 0.9958 1.0204 1.0119 0.058 0.0383 0.0914 0.0876 0.0053 0.0023 0.0138 0.0124
100 1.5 1 1 1.5 1.5124 0.9984 1.0177 1.534 0.0565 0.0374 0.0928 0.1438 0.005 0.0022 0.0142 0.0338
100 1.5 1 1 2 1.5033 0.9941 1.0216 2.0522 0.0533 0.0359 0.0898 0.1963 0.0046 0.0019 0.0135 0.0637
100 1.5 1 1.5 1 1.5068 0.9977 1.5296 1.0188 0.0563 0.0357 0.1428 0.0903 0.0051 0.002 0.0333 0.0127
100 1.5 1 1.5 1.5 1.508 0.9969 1.5257 1.5383 0.0543 0.0346 0.1432 0.1492 0.0048 0.0019 0.0332 0.0365
100 1.5 1 1.5 2 1.5081 0.996 1.5329 2.0603 0.0525 0.0334 0.1398 0.2053 0.0044 0.0017 0.0313 0.0714
100 1.5 1 2 1 1.5026 0.9973 2.0422 1.0135 0.0534 0.0341 0.198 0.0897 0.0046 0.0018 0.0633 0.013
100 1.5 1 2 1.5 1.5065 0.9927 2.0546 1.5428 0.0545 0.0343 0.1979 0.1417 0.0047 0.0018 0.0653 0.0342
100 1.5 1 2 2 1.507 0.9971 2.0402 2.0543 0.0533 0.0335 0.2013 0.2121 0.0043 0.0018 0.0659 0.0734
100 1.5 2 1 1 1.5089 1.9884 1.0215 1.0222 0.0582 0.0727 0.0903 0.091 0.0053 0.0084 0.013 0.0141
100 1.5 2 1 1.5 1.5093 1.9923 1.0162 1.5404 0.0575 0.0717 0.0912 0.1444 0.0052 0.0082 0.0137 0.0356
100 1.5 2 1 2 1.51 1.9924 1.0163 2.0383 0.0549 0.0701 0.0887 0.1991 0.0047 0.008 0.0127 0.0652
100 1.5 2 1.5 1 1.5079 1.9908 1.5317 1.0182 0.0554 0.0694 0.1402 0.0974 0.005 0.0076 0.0318 0.0154
100 1.5 2 1.5 1.5 1.5063 1.9885 1.5387 1.5344 0.0561 0.0681 0.1382 0.1353 0.0048 0.0073 0.0327 0.0304
100 1.5 2 1.5 2 1.5079 1.9883 1.5328 2.0683 0.0526 0.0687 0.1458 0.206 0.0044 0.0073 0.0341 0.0692
100 1.5 2 2 1 1.5074 1.9913 2.0529 1.0206 0.0564 0.0683 0.1963 0.0919 0.0051 0.0073 0.0654 0.0135
100 1.5 2 2 1.5 1.5079 1.9955 2.0392 1.527 0.0534 0.0694 0.1973 0.1408 0.0047 0.0074 0.0646 0.0327
100 1.5 2 2 2 1.5076 1.9938 2.0398 2.0397 0.0518 0.0662 0.1958 0.2042 0.0042 0.007 0.0649 0.0679
100 2 0.5 1 1 2.0141 0.4981 1.0176 1.02 0.0793 0.0129 0.0911 0.0878 0.0101 0.0003 0.0135 0.0131
100 2 0.5 1 1.5 2.0077 0.4977 1.0197 1.5334 0.074 0.0135 0.0865 0.1436 0.0087 0.0003 0.0122 0.0337
100 2 0.5 1 2 2.0084 0.4986 1.0156 2.0431 0.0733 0.0127 0.0907 0.2034 0.0084 0.0003 0.0137 0.0667
100 2 0.5 1.5 1 2.0169 0.4983 1.5341 1.0237 0.0749 0.0134 0.145 0.089 0.009 0.0003 0.0352 0.0131
100 2 0.5 1.5 1.5 2.0065 0.4973 1.5277 1.533 0.0729 0.0126 0.1452 0.1429 0.0085 0.0002 0.035 0.0337
100 2 0.5 1.5 2 2.0103 0.4986 1.528 2.045 0.0722 0.0126 0.1424 0.2048 0.0081 0.0002 0.0343 0.0697
100 2 0.5 2 1 2.0089 0.4977 2.0321 1.0244 0.0719 0.0132 0.1961 0.0938 0.0082 0.0003 0.0625 0.0146
100 2 0.5 2 1.5 2.0079 0.4983 2.0534 1.5229 0.0717 0.0133 0.1993 0.141 0.0081 0.0003 0.0638 0.0327
100 2 0.5 2 2 2.0097 0.4982 2.0336 2.0464 0.0663 0.0134 0.1928 0.2018 0.0069 0.0003 0.0621 0.0654
100 2 0.7 1 1 2.01 0.6978 1.0153 1.0186 0.0778 0.0192 0.0928 0.0932 0.0097 0.0006 0.0142 0.0145
100 2 0.7 1 1.5 2.0043 0.6982 1.014 1.5226 0.0731 0.0175 0.0913 0.1345 0.0085 0.0005 0.0138 0.0293
100 2 0.7 1 2 2.0095 0.7003 1.0153 2.0401 0.0738 0.0183 0.0855 0.1979 0.0081 0.0005 0.0123 0.0645
100 2 0.7 1.5 1 2.006 0.6968 1.5426 1.0249 0.0727 0.0185 0.1466 0.0906 0.0087 0.0005 0.0345 0.0136
100 2 0.7 1.5 1.5 2.0061 0.6973 1.5409 1.5424 0.0698 0.0182 0.1462 0.1486 0.0077 0.0005 0.0358 0.037
100 2 0.7 1.5 2 2.0102 0.6986 1.5165 2.0377 0.0721 0.0172 0.1356 0.2004 0.0086 0.0005 0.0296 0.0673
100 2 0.7 2 1 2.0079 0.6983 2.0437 1.0188 0.0743 0.0176 0.19 0.0924 0.0087 0.0005 0.059 0.0139
100 2 0.7 2 1.5 2.0054 0.6976 2.0369 1.5228 0.0693 0.0176 0.1892 0.1408 0.0077 0.0005 0.0576 0.0322
100 2 0.7 2 2 2.0115 0.6986 2.0441 2.0439 0.0682 0.0176 0.1936 0.1982 0.0074 0.0005 0.0608 0.0645
100 2 1 1 1 2.0089 0.9964 1.0171 1.0196 0.0803 0.0272 0.0906 0.0905 0.0102 0.0012 0.0136 0.0133
100 2 1 1 1.5 2.008 0.9964 1.0172 1.5272 0.0738 0.0262 0.088 0.1422 0.0086 0.0011 0.0127 0.0349
100 2 1 1 2 2.0103 0.9969 1.0189 2.0424 0.0755 0.027 0.0906 0.2073 0.0087 0.0011 0.0134 0.068
100 2 1 1.5 1 2.0031 0.9953 1.5348 1.029 0.0743 0.0269 0.1429 0.0896 0.0089 0.0011 0.033 0.0136
100 2 1 1.5 1.5 2.0064 0.9977 1.5238 1.5306 0.0728 0.0252 0.1405 0.1368 0.0083 0.001 0.0318 0.0316
100 2 1 1.5 2 2.0086 0.9968 1.5263 2.0525 0.0696 0.0253 0.1372 0.2008 0.0078 0.001 0.0319 0.0676
100 2 1 2 1 2.0108 0.999 2.0305 1.0136 0.0724 0.0253 0.1974 0.0868 0.0084 0.001 0.0633 0.0121
100 2 1 2 1.5 2.0055 0.9948 2.0442 1.5397 0.0681 0.0257 0.2014 0.1419 0.0075 0.001 0.067 0.0319
100 2 1 2 2 2.0083 0.9994 2.0303 2.0373 0.0691 0.0244 0.1893 0.1894 0.0072 0.001 0.0572 0.0581
100 2 2 1 1 2.007 1.9939 1.024 1.0144 0.0785 0.0538 0.0957 0.0873 0.0094 0.0045 0.0151 0.0124
100 2 2 1 1.5 2.005 1.9916 1.0117 1.5323 0.0755 0.0558 0.0879 0.1444 0.0089 0.0048 0.0123 0.0353
100 2 2 1 2 2.0071 1.9969 1.0151 2.041 0.0692 0.0494 0.085 0.1913 0.0079 0.0038 0.0116 0.0604
100 2 2 1.5 1 2.0135 1.9936 1.5266 1.0227 0.0762 0.0523 0.1312 0.0884 0.0092 0.0042 0.028 0.013
100 2 2 1.5 1.5 2.006 1.9939 1.5276 1.535 0.0717 0.0516 0.1448 0.1453 0.0082 0.0041 0.0333 0.0341
100 2 2 1.5 2 2.0068 1.9928 1.5265 2.0507 0.0666 0.0501 0.1401 0.2026 0.0071 0.0039 0.0322 0.0664
100 2 2 2 1 2.0091 1.9951 2.0468 1.0185 0.0738 0.0528 0.2041 0.0912 0.0084 0.0045 0.0707 0.0135
100 2 2 2 1.5 2.0059 1.9921 2.0596 1.5272 0.0751 0.0519 0.1969 0.136 0.0087 0.0041 0.0676 0.0303
100 2 2 2 2 2.0058 1.9966 2.0459 2.0429 0.0686 0.0505 0.1928 0.1952 0.0074 0.0039 0.0612 0.0631
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Table 4: MLE’s Bias and MSE’s for 2-out-of-4 system with n=200

n a b β1 β2 â b̂ β̂1 β̂2 Bias(â) Bias(b̂) Bias(β̂1) Bias(β̂2) MSE(â) MSE(b̂) MSE(β̂1) MSE(β̂2)
200 1 0.5 1 1 1.0019 0.4982 1.0096 1.0066 0.0278 0.0191 0.0616 0.062 0.0012 0.0006 0.0062 0.0063
200 1 0.5 1 1.5 1.0048 0.4996 1.0062 1.5151 0.0279 0.019 0.0631 0.1 0.0012 0.0006 0.0064 0.0157
200 1 0.5 1 2 1.0008 0.4982 1.0095 2.0232 0.0255 0.0179 0.0637 0.1363 0.001 0.0005 0.0064 0.0316
200 1 0.5 1.5 1 1.0022 0.4985 1.5094 1.011 0.0268 0.0191 0.0981 0.0626 0.0011 0.0006 0.015 0.0062
200 1 0.5 1.5 1.5 1 0.4987 1.512 1.5104 0.0252 0.0183 0.0971 0.0969 0.001 0.0005 0.0149 0.0153
200 1 0.5 1.5 2 1.0031 0.499 1.5127 2.0196 0.0245 0.0178 0.0982 0.1408 0.0009 0.0005 0.0153 0.0318
200 1 0.5 2 1 1.0034 0.4996 2.0098 1.0098 0.0261 0.0189 0.1372 0.0649 0.0011 0.0006 0.0306 0.0068
200 1 0.5 2 1.5 1.0013 0.4986 2.019 1.5198 0.0249 0.0177 0.133 0.1024 0.001 0.0005 0.028 0.0165
200 1 0.5 2 2 1.0009 0.4993 2.0244 2.0149 0.024 0.0182 0.1422 0.1311 0.0009 0.0005 0.0316 0.0282
200 1 0.7 1 1 1.0024 0.6975 1.0076 1.0108 0.0272 0.0272 0.0629 0.0631 0.0012 0.0012 0.0063 0.0065
200 1 0.7 1 1.5 1.0035 0.6992 1.0064 1.5128 0.0262 0.0276 0.0638 0.0991 0.0011 0.0012 0.0066 0.0156
200 1 0.7 1 2 1.0016 0.6981 1.0068 2.0196 0.0261 0.0252 0.0641 0.1421 0.0011 0.001 0.0064 0.0322
200 1 0.7 1.5 1 1.0011 0.6989 1.5137 1.0095 0.0264 0.0263 0.0989 0.0621 0.0011 0.0011 0.0157 0.0061
200 1 0.7 1.5 1.5 1.0019 0.6982 1.5185 1.5191 0.0253 0.0269 0.0981 0.1014 0.001 0.0011 0.015 0.0168
200 1 0.7 1.5 2 1.0028 0.6985 1.5105 2.0229 0.0248 0.0248 0.0952 0.1394 0.001 0.001 0.0146 0.0306
200 1 0.7 2 1 1.0037 0.6988 2.0135 1.0096 0.0265 0.0254 0.1332 0.0636 0.0011 0.001 0.0284 0.0066
200 1 0.7 2 1.5 1.0026 0.6974 2.0215 1.5158 0.0245 0.0259 0.135 0.0978 0.0009 0.001 0.0296 0.0154
200 1 0.7 2 2 1.0007 0.6991 2.0202 2.0166 0.0253 0.0263 0.1356 0.1332 0.001 0.0011 0.0297 0.0292
200 1 1 1 1 1.0026 0.9974 1.0072 1.0103 0.0271 0.0383 0.0608 0.063 0.0012 0.0023 0.0061 0.0062
200 1 1 1 1.5 1.0021 0.9956 1.0139 1.5282 0.0265 0.0387 0.0618 0.1002 0.0011 0.0024 0.0063 0.0163
200 1 1 1 2 1.0018 0.9954 1.0107 2.0352 0.0265 0.036 0.0626 0.1382 0.0011 0.0021 0.0063 0.032
200 1 1 1.5 1 1.0027 0.994 1.5196 1.0107 0.0271 0.0374 0.1033 0.061 0.0012 0.0022 0.0169 0.006
200 1 1 1.5 1.5 1.0038 0.9984 1.5109 1.5169 0.027 0.0352 0.0996 0.0988 0.0011 0.002 0.0156 0.016
200 1 1 1.5 2 1.0014 0.998 1.5124 2.015 0.025 0.037 0.1017 0.1396 0.001 0.0021 0.0164 0.0323
200 1 1 2 1 1.0023 0.9984 2.0106 1.0072 0.0259 0.0357 0.1371 0.0621 0.0011 0.002 0.0297 0.0061
200 1 1 2 1.5 1.0022 0.9991 2.0154 1.5085 0.0251 0.0365 0.1388 0.0975 0.001 0.0021 0.0308 0.0156
200 1 1 2 2 1.0013 0.9973 2.0261 2.0268 0.0243 0.035 0.1364 0.1367 0.0009 0.002 0.03 0.0302
200 1 2 1 1 1.004 1.9956 1.0095 1.0094 0.0277 0.0789 0.0632 0.065 0.0012 0.0097 0.0063 0.0069
200 1 2 1 1.5 1.0034 1.9946 1.0065 1.5194 0.0255 0.0742 0.0626 0.0984 0.001 0.0088 0.0061 0.0164
200 1 2 1 2 1.0005 1.9899 1.0057 2.0317 0.0254 0.0738 0.0602 0.1385 0.001 0.0086 0.0056 0.0312
200 1 2 1.5 1 1.0043 1.9973 1.5143 1.0122 0.0258 0.0748 0.1018 0.0613 0.001 0.0088 0.0169 0.006
200 1 2 1.5 1.5 1.0043 1.9974 1.5121 1.5184 0.0251 0.0763 0.0996 0.1005 0.001 0.0092 0.0161 0.0163
200 1 2 1.5 2 1.0034 2.001 1.5053 2.0175 0.0245 0.0764 0.099 0.1356 0.001 0.009 0.0157 0.0297
200 1 2 2 1 1.0015 1.9973 2.0171 1.0105 0.025 0.0708 0.1322 0.0631 0.001 0.0081 0.0288 0.0063
200 1 2 2 1.5 1.0009 1.9963 2.0176 1.5114 0.0255 0.0745 0.1364 0.098 0.001 0.0085 0.0303 0.0148
200 1 2 2 2 1.002 1.9915 2.0262 2.0187 0.0252 0.0694 0.1347 0.1346 0.001 0.0077 0.0289 0.0305
200 1.5 0.5 1 1 1.5056 0.4992 1.0053 1.0091 0.0418 0.0123 0.0616 0.0627 0.0027 0.0002 0.0058 0.0064
200 1.5 0.5 1 1.5 1.5009 0.5002 1.0085 1.5077 0.0374 0.0127 0.0595 0.102 0.0022 0.0003 0.0057 0.0163
200 1.5 0.5 1 2 1.5058 0.499 1.0099 2.0262 0.0395 0.0123 0.0618 0.1436 0.0024 0.0002 0.0061 0.0325
200 1.5 0.5 1.5 1 1.505 0.4999 1.5109 1.0086 0.0416 0.0123 0.1015 0.0672 0.0026 0.0002 0.016 0.0071
200 1.5 0.5 1.5 1.5 1.503 0.4994 1.512 1.5208 0.0391 0.0121 0.0992 0.0962 0.0024 0.0002 0.0157 0.0153
200 1.5 0.5 1.5 2 1.5027 0.4999 1.5143 2.0128 0.0354 0.0115 0.1 0.1403 0.002 0.0002 0.0159 0.0317
200 1.5 0.5 2 1 1.5034 0.4994 2.0198 1.0096 0.0394 0.0127 0.1404 0.0642 0.0025 0.0002 0.0305 0.0064
200 1.5 0.5 2 1.5 1.5033 0.4992 2.0186 1.5211 0.0374 0.0124 0.1407 0.0997 0.0023 0.0002 0.0307 0.017
200 1.5 0.5 2 2 1.5042 0.5003 2.0139 2.0168 0.0359 0.0121 0.1321 0.1324 0.002 0.0002 0.0282 0.028
200 1.5 0.7 1 1 1.5026 0.699 1.0051 1.0051 0.0411 0.0182 0.0647 0.0618 0.0028 0.0005 0.0066 0.006
200 1.5 0.7 1 1.5 1.502 0.6982 1.0112 1.5224 0.0395 0.0174 0.0631 0.0968 0.0024 0.0005 0.0065 0.0155
200 1.5 0.7 1 2 1.5033 0.6993 1.0088 2.0169 0.0382 0.0174 0.0639 0.1279 0.0023 0.0005 0.0064 0.0266
200 1.5 0.7 1.5 1 1.5045 0.6995 1.5062 1.0094 0.0413 0.017 0.1003 0.0634 0.0027 0.0005 0.0155 0.0063
200 1.5 0.7 1.5 1.5 1.503 0.6981 1.5139 1.5115 0.0374 0.0171 0.0964 0.0995 0.0022 0.0005 0.0149 0.0158
200 1.5 0.7 1.5 2 1.5007 0.6971 1.5184 2.0358 0.0379 0.0172 0.101 0.1344 0.0022 0.0005 0.0164 0.0295
200 1.5 0.7 2 1 1.5036 0.6984 2.0257 1.0058 0.0385 0.0166 0.1413 0.0629 0.0024 0.0004 0.0317 0.0064
200 1.5 0.7 2 1.5 1.5028 0.6986 2.0217 1.5143 0.0398 0.0167 0.1333 0.0971 0.0025 0.0004 0.0285 0.015
200 1.5 0.7 2 2 1.5033 0.6988 2.0145 2.0163 0.0365 0.0173 0.1379 0.1433 0.0022 0.0005 0.0306 0.0336
200 1.5 1 1 1 1.5035 0.9984 1.0074 1.007 0.041 0.0253 0.0612 0.0612 0.0027 0.001 0.0061 0.006
200 1.5 1 1 1.5 1.5015 0.9994 1.0069 1.5124 0.0381 0.0242 0.0605 0.0991 0.0023 0.0009 0.0057 0.0155
200 1.5 1 1 2 1.5024 0.9984 1.0034 2.0262 0.0384 0.0241 0.0603 0.1381 0.0022 0.0009 0.0059 0.0311
200 1.5 1 1.5 1 1.5046 0.9973 1.5193 1.0103 0.0391 0.0256 0.0989 0.0643 0.0024 0.001 0.0156 0.0066
200 1.5 1 1.5 1.5 1.5016 0.9999 1.5145 1.5096 0.0393 0.0251 0.1005 0.0986 0.0024 0.001 0.0164 0.0154
200 1.5 1 1.5 2 1.5027 0.9991 1.5119 2.0197 0.0374 0.0242 0.0946 0.1393 0.0021 0.0009 0.0145 0.0315
200 1.5 1 2 1 1.5032 0.9987 2.0159 1.0099 0.0387 0.0243 0.1407 0.0612 0.0025 0.0009 0.0314 0.006
200 1.5 1 2 1.5 1.5032 0.9968 2.0193 1.5122 0.0386 0.0247 0.1348 0.1013 0.0023 0.0009 0.029 0.0166
200 1.5 1 2 2 1.5053 0.9986 2.0253 2.0268 0.0364 0.0238 0.1455 0.1334 0.0021 0.0009 0.0337 0.0284
200 1.5 2 1 1 1.5049 1.9978 1.0084 1.0126 0.0407 0.0514 0.0611 0.0649 0.0026 0.0042 0.0061 0.0067
200 1.5 2 1 1.5 1.5019 1.9955 1.0077 1.5205 0.0407 0.0509 0.0622 0.1018 0.0025 0.004 0.0063 0.0166
200 1.5 2 1 2 1.5036 1.9971 1.0069 2.0193 0.0369 0.0484 0.0631 0.142 0.0021 0.0037 0.0062 0.0327
200 1.5 2 1.5 1 1.5037 1.9974 1.5135 1.0117 0.0375 0.0504 0.0988 0.0632 0.0023 0.004 0.016 0.0065
200 1.5 2 1.5 1.5 1.5043 1.9974 1.5161 1.5141 0.0397 0.0483 0.0991 0.0967 0.0025 0.0037 0.0158 0.0149
200 1.5 2 1.5 2 1.5028 1.9978 1.5091 2.0191 0.0388 0.0509 0.098 0.1445 0.0023 0.0039 0.0155 0.0324
200 1.5 2 2 1 1.503 1.9972 2.0199 1.0102 0.0382 0.0512 0.1408 0.0656 0.0023 0.0041 0.0319 0.007
200 1.5 2 2 1.5 1.5038 1.998 2.0252 1.5157 0.0373 0.0467 0.1399 0.0976 0.0022 0.0035 0.0314 0.0153
200 1.5 2 2 2 1.5046 1.9946 2.0122 2.0302 0.0378 0.0496 0.1382 0.1402 0.0022 0.0039 0.0304 0.0319
200 2 0.5 1 1 2.01 0.4986 1.0122 1.0118 0.0579 0.0096 0.065 0.0637 0.0052 0.0001 0.0069 0.0067
200 2 0.5 1 1.5 2.0073 0.4991 1.0115 1.5159 0.0516 0.0091 0.0637 0.1004 0.0043 0.0001 0.0066 0.0159
200 2 0.5 1 2 2.0092 0.4993 1.0045 2.0287 0.0509 0.0093 0.0629 0.1453 0.0042 0.0001 0.0062 0.0345
200 2 0.5 1.5 1 2.0012 0.4991 1.52 1.012 0.0549 0.0091 0.0988 0.0602 0.0047 0.0001 0.0157 0.0058
200 2 0.5 1.5 1.5 2.0003 0.4997 1.5111 1.5048 0.0512 0.0092 0.0977 0.0915 0.0041 0.0001 0.0157 0.0138
200 2 0.5 1.5 2 2.0035 0.4999 1.5126 2.0175 0.0486 0.0095 0.0978 0.1391 0.0038 0.0001 0.015 0.0316
200 2 0.5 2 1 2.0037 0.4993 2.0246 1.0109 0.0516 0.0094 0.1402 0.0623 0.0042 0.0001 0.0313 0.0063
200 2 0.5 2 1.5 2.0094 0.4993 2.0184 1.5125 0.0508 0.0089 0.1369 0.0998 0.004 0.0001 0.0307 0.0156
200 2 0.5 2 2 2.0016 0.499 2.0237 2.0294 0.0482 0.0091 0.1405 0.1352 0.0037 0.0001 0.0319 0.0301
200 2 0.7 1 1 2.0049 0.6995 1.0044 1.0081 0.055 0.0131 0.0609 0.0608 0.0047 0.0003 0.0059 0.0061
200 2 0.7 1 1.5 2.0037 0.6985 1.0078 1.5173 0.0526 0.0135 0.0645 0.0989 0.0044 0.0003 0.0068 0.0163
200 2 0.7 1 2 2.0014 0.6983 1.0111 2.0267 0.0506 0.0132 0.0652 0.1429 0.0041 0.0003 0.0068 0.0331
200 2 0.7 1.5 1 2.0047 0.6988 1.5087 1.0087 0.0527 0.0131 0.0964 0.0627 0.0045 0.0003 0.0151 0.0063
200 2 0.7 1.5 1.5 2.0072 0.699 1.5174 1.5104 0.0536 0.0127 0.1 0.0941 0.0044 0.0002 0.0162 0.0142
200 2 0.7 1.5 2 2.0023 0.6988 1.5131 2.0248 0.0491 0.0129 0.0973 0.1428 0.0038 0.0003 0.0154 0.0319
200 2 0.7 2 1 2.0041 0.6993 2.0308 1.008 0.0524 0.0127 0.1384 0.0577 0.0043 0.0003 0.031 0.0055
200 2 0.7 2 1.5 2.0048 0.6996 2.0201 1.5219 0.0504 0.013 0.1456 0.1005 0.0041 0.0003 0.0341 0.0164
200 2 0.7 2 2 2.004 0.699 2.0207 2.0247 0.0476 0.0121 0.136 0.1361 0.0035 0.0002 0.0292 0.0299
200 2 1 1 1 2.0087 0.9977 1.0098 1.0078 0.0568 0.0195 0.0626 0.0617 0.005 0.0006 0.0062 0.0061
200 2 1 1 1.5 2.0069 0.9986 1.0121 1.522 0.0543 0.019 0.0641 0.0999 0.0046 0.0006 0.0065 0.0162
200 2 1 1 2 2.0065 0.9995 1.0059 2.0222 0.0502 0.0183 0.0609 0.1306 0.004 0.0005 0.006 0.0279
200 2 1 1.5 1 2.0036 0.9978 1.5105 1.0115 0.0538 0.0186 0.099 0.0627 0.0045 0.0006 0.016 0.0063
200 2 1 1.5 1.5 2.0022 0.9992 1.5109 1.5208 0.0511 0.0186 0.097 0.1027 0.0041 0.0006 0.0153 0.0168
200 2 1 1.5 2 2.0021 0.9986 1.5168 2.0172 0.048 0.0182 0.098 0.1391 0.0037 0.0005 0.0154 0.0314
200 2 1 2 1 2.0017 0.9977 2.0237 1.0111 0.0512 0.0179 0.1393 0.0633 0.0041 0.0005 0.0311 0.0064
200 2 1 2 1.5 2.0039 0.9984 2.0227 1.5191 0.0515 0.0183 0.1431 0.1 0.0041 0.0005 0.0323 0.0168
200 2 1 2 2 2.0023 0.9987 2.0221 2.0268 0.0478 0.0177 0.1371 0.1377 0.0036 0.0005 0.0299 0.0306
200 2 2 1 1 2.0045 1.9973 1.0047 1.008 0.0574 0.0374 0.0623 0.0618 0.0051 0.0023 0.0063 0.0061
200 2 2 1 1.5 2.0062 1.9942 1.0054 1.5211 0.052 0.0361 0.0594 0.0975 0.0042 0.002 0.0056 0.0161
200 2 2 1 2 2.0078 1.9969 1.008 2.0209 0.0505 0.0356 0.0652 0.1419 0.0041 0.002 0.0065 0.0319
200 2 2 1.5 1 2.0074 1.9985 1.5165 1.0108 0.0521 0.0354 0.1026 0.0638 0.0043 0.002 0.0171 0.0064
200 2 2 1.5 1.5 2.0076 1.9951 1.5133 1.5237 0.0513 0.0376 0.1048 0.1063 0.0042 0.0022 0.017 0.0183
200 2 2 1.5 2 2.0048 1.9972 1.5109 2.0162 0.0497 0.0368 0.0977 0.1428 0.0038 0.0021 0.0155 0.0323
200 2 2 2 1 2.0063 1.9966 2.02 1.0097 0.052 0.0382 0.1404 0.0605 0.0042 0.0022 0.0314 0.0058
200 2 2 2 1.5 2.0064 1.9975 2.027 1.5173 0.049 0.036 0.1396 0.0993 0.0039 0.002 0.0312 0.016
200 2 2 2 2 2.0042 1.9964 2.0243 2.0203 0.0493 0.0353 0.133 0.1374 0.0038 0.002 0.0284 0.0306
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(a) (b)

Figure 1: Main Effect Plots of and MSE of shape parameter : (a) Bias(â) (b) MSE(â)

(a) (b)

Figure 2: Main Effect Plots of and MSE of scale parameter: (a)Bias(b̂) (b) MSE(b̂)

Figure 1 is the main effect plot for the bias and MSE of shape parameter a for various sample
sizes (n), shape parameters(a), scale parameters (b), and load share parameters (β1 and β2). It is
observed that as n increases both the bias and MSE decreases. Bias and MSE increase as its own
value is increases. Scale parameter (b) is not affecting on the bias and MSE of shape parameter (a).
Bias in (a) slightly decreases as load share parameters β1 and β2 increases. Figure 2 is the main
effect plot for the bias and MSE of scale parameter b for various values of different parameters.
From figure 2 observed that bias as well as MSE is decreases as a and n increases and it increases
as its own value increases while is not affected by changes in load share parameters.

(a) (b)

Figure 3: Main Effect Plots of bias of different parameters: (a) Bias(β̂1) (b) MSE(β̂1)
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(a) (b)

Figure 4: Main Effect Plots of MSE of different parameters: (a) Bias(β̂2) (b) MSE(β̂2)

Figure 3 and 4 is the main effect plot for the bias and MSE of load share parameters β1 and β2 for
various sample sizes (n), shape parameters(a), scale parameters (b), and load share parameters
(β1 and β2). It is observed that as n increases both the bias and MSE decreases. Bias and MSE
increase as its own value is increases. Changes in scale parameter (b) is not affecting on the bias
as well as MSE. Also, the bias and MSE of load share parameter in not affected by the changes in
other load share parameter.

6. Data Analysis

To illustrate the practical application of the proposed method, we have analyzed two datasets
taken from Kim and Kvam [13]. Each datasets consists of 20 observations, specifically capturing
the first three failure times of the systems under consideration. We interpret these datasets in the
context of two load-sharing configurations: a three-component parallel (1-out-of-3) load-sharing
system and a 2-out-of-3 load-sharing system. In our analysis, we utilize Weibull distributions as
the baseline distributions for modeling

The failure time data for both datasets are summarized in Table 5, showing the values of the
first three failure times (x1, x2, x3) for each dataset.

Table 5: Failure Time Data

Data Set 1 Data Set 2
x1 x2 x3 x1 x2 x3

0.37 1.94 6.93 0.36 3.85 6.49
0.06 2.42 7.44 0.14 0.32 7.57
0.14 0.2 0.2 0.12 5.98 8.29
1.62 2.14 2.34 0.86 3.43 6.12
1.91 1.96 5.7 1.19 2.42 6
2.25 4.6 8.23 0.2 1.53 6.26
0.09 1.4 2.5 1.01 1.18 2.5
0.79 2.44 7.27 1.19 1.3 9.13
0.06 0.12 0.92 2.08 3.62 4.32
0.73 0.79 8.61 0.49 2.89 6.28
1.38 2.78 7.22 3.25 3.88 6.22
0.85 2.81 5.05 0.03 4.18 17.87
0.52 4.13 8.5 0.46 8.99 27.63
1.11 5.67 12.93 2.17 4.08 15.02
0.96 3.54 4.46 1.93 6.81 10.18
2.38 3.5 7.16 0.37 2.7 5.04
0.32 1.89 19.59 0.34 0.97 2.47
1.54 4.98 7.32 2.64 5.16 5.43
2.58 8.61 10.29 0.1 2.38 4.03
1.22 1.73 2.22 0.16 2.26 3.98

The Table 6 summarizes the estimated parameters, along with the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) for the models applied to the given datasets.

RT&A, No 1 (82) 
Volume 20, March 2025 

468



Sukumar V. Rajguru, Santosh S. Sutar
MODELING RELIABILITY OF UNEQUAL LOAD SHARING SYSTEMS

Table 6: Estimates of Parameters, AIC, and BIC for Different Load Sharing Models

Data Model Estimate AIC BIC
â b̂ β̂1 β̂2

Dataset 1 1 out of 3 0.948 3.597 0.915 0.931 -194.09 -191.1
2 out of 3 1.001 3.484 0.926 – -100.227 -97.25

Dataset 2 1 out of 3 0.978 3.419 1.41 1.35 -209.04 -206.05
2 out of 3 0.928 3.492 1.395 – -108.72 -105.74

The table above presents the estimated parameters, along with the AIC and BIC values, for
different load-sharing models applied to two datasets. The analysis compares the performance of
"1-out-of-3" and "2-out-of-3" load-sharing systems, with parameters â, b̂, β̂1, and β̂2 estimated for
each model. Notably, the "2-out-of-3" model is simpler, as it omits the β̂2 parameter.

The comparison of AIC and BIC values reveals that the "1-out-of-3" model consistently outper-
forms the "2-out-of-3" model in both datasets, as indicated by its lower AIC and BIC values.
This suggests that the "1-out-of-3" model provides a better fit, despite its increased complexity.
The variability in the estimates of β̂1 and β̂2 across the models further highlights the different
behaviors of the systems under the respective load-sharing rules.

Overall, these findings suggest that while the "2-out-of-3" model is simpler, the "1-out-of-3" model
may more accurately represent the underlying load-sharing systems in these datasets. This makes
it potentially more effective and practical for engineering and industrial applications where
precise modeling is crucial.

7. Conclusions

In this paper, we developed a load-sharing model for k-out-of-m systems using the Proportional
Conditional Reverse Hazard Rate approach with an unequal load-sharing rule. Our model
addresses the complexities of real-world systems where components share the load unevenly
after failures occur. To illustrate the model, a 2-out-of-4 configuration with Weibull baseline distri-
butions is employed. Maximum likelihood estimation is used to estimate the model parameters,
and the accuracy of these estimates is assessed through a simulation study that evaluates bias and
mean square error. Furthermore, the model’s practical applicability is demonstrated by analyzing
two real datasets.

Acknowledgment

The Santosh S. Sutar is grateful for the financial support provided by Department of Science and
Technology (DST), Science and Engineering Research Board (SERB)’, Government of India under
‘Core Research Grant (CRG)’ (FILE NO.CRG/2021/005672-G).

References

[1] Daniels, H. E. (1945). The statistical theory of the strength of bundles of threads. I. Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences, 183(995):405-435.

[2] Birnbaum, Z. W., and Saunders, S. C. (1958). A statistical model for life-length of materials.
Journal of the American Statistical Association, 53(281):151-160.

[3] Coleman, B. D. (1958). Statistics and time dependence of mechanical breakdown in fibers.
Journal of Applied Physics, 29(6):968-983.

[4] Rosen, B. W. (1964). Tensile failure of fibrous composites. AIAA Journal, 2(11):1985-1991.
[5] Phoenix, S. L. (1978). The asymptotic time to failure of a mechanical system of parallel

members. SIAM Journal on Applied Mathematics, 34(2):227-246.
[6] Singpurwalla, N. D. (1995). Survival in dynamic environments. Statistical Science, 10(1):86-103.

RT&A, No 1 (82) 
Volume 20, March 2025 

469



Sukumar V. Rajguru, Santosh S. Sutar
MODELING RELIABILITY OF UNEQUAL LOAD SHARING SYSTEMS

[7] Hollander, M., and Pe?a, E. A. (1995). Dynamic reliability models with conditional propor-
tional hazards. Lifetime Data Analysis, 1:377-401.

[8] Cramer, E., and Kamps, U. (1996). Sequential order statistics and k-out-of-n systems with
sequentially adjusted failure rates. Annals of the Institute of Statistical Mathematics, 48:535-549.

[9] Lynch, J. D. (1999). On the joint distribution of component failures for monotone load-sharing
systems. Journal of Statistical Planning and Inference, 78, 13-21.

[10] Drummond, H., Vazquez, E., Sanchez-Colon, S., Martinez-Gomez, M., Hudson, R. (2000).
Competition for milk in the domestic rabbit: survivors benefit from littermate deaths.
Ethology, 106:511-526.

[11] Durham, S. D., and Lynch, J. D. (2000). A threshold representation for the strength dis-
tribution of a complex load sharing system. Journal of Statistical Planning and Inference, 83,
25-46.

[12] Cramer, E., and Kamps, U. (2003). Marginal distributions of sequential and generalized
order statistics. Metrika, 58:293-310.

[13] Kim, H., and Kvam, P. H. (2004). Reliability estimation based on system data with an
unknown load share rule. Lifetime Data Analysis, 10:83-94.

[14] Kvam, P. H., and Pena, E. A. (2005). Estimating load-sharing properties in a dynamic
reliability system. Journal of the American Statistical Association, 100(469), 262-272.

[15] McCool, J. I. (2006). Testing for dependency of failure times in life testing. Technometrics,
48(1), 41-48.

[16] Pena, E. A. (2006). Dynamic modelling and statistical analysis of event times. Statistical
Science: A Review Journal of the Institute of Mathematical Statistics, 21(4), 1.

[17] Deshpande, J. V., Dewan, I., and Naik-Nimbalkar, U. V. (2010). A family of distributions to
model load sharing systems. Journal of Statistical Planning and Inference, 140(6):1441-1451.

[18] Dewan, I., and Naik-Nimbalkar, U. V. (2010). Load?sharing systems. Wiley Encyclopedia of
Operations Research and Management Science.

[19] Jain, M., and Gupta, R. (2012). Load sharing M-out of-N: G system with non-identical
components subject to common cause failure. International Journal of Mathematics in Operational
Research, 4(5):586-605.

[20] Sutar, S. S., and Naik-Nimbalkar, U. V. (2014). Accelerated failure time models for load
sharing systems. IEEE Transactions on Reliability, 63(3):706-714.

[21] Sutar, S. S., and Naik-Nimbalkar, U. V. (2016). A model for k-out-of-m load-sharing systems.
Communications in Statistics-Theory and Methods, 45(20):5946-5960.

[22] Wang, D., Jiang, C., and Park, C. (2019). Reliability analysis of load-sharing systems with
memory. Lifetime Data Analysis, 25:341-360.

[23] Zhao, X., Liu, B., and Liu, Y. (2018). Reliability modeling and analysis of load-sharing systems
with continuously degrading components. IEEE Transactions on Reliability, 67(3):1096-1110.

[24] Xu, H., Fang, Y., and Fard, N. (2018). Reliability Assessment of Repairable Load-Sharing
k-out-of-n: G System with Flowgraph Model. In 2018 Annual Reliability and Maintainability
Symposium (RAMS), 1-6, IEEE.

[25] Zhang, Z., Yang, Y., and Guo, Z. (2019). Reliability Analysis for a Repairable Load-Sharing
Parallel System. In 2019 2nd International Conference on Mathematics, Modeling and Simulation
Technologies and Applications (MMSTA 2019), 93:128-132, Atlantis Press.

[26] Sutar S. S. and Naik-Nimbalkar, U. V. (2019). A load share model for non-identical compo-
nents of a k-out-of-m system. Applied Mathematical Modelling, 72:486-498.

[27] Choudhary, N., Tyagi, A., and Singh, B. (2020). Analysing load-sharing system model with
type-I and type-II failure censored data from Weibull distribution. Annals of Data Science,
9:645-674.

[28] Park, C., Wang, M., Alotaibi, R. M., and Rezk, H. (2020). Load-Sharing Model under Lindley
Distribution and Its Parameter Estimation Using the Expectation-Maximization Algorithm.
Entropy, 22(11):13-29.

[29] Sutar, S. S. (2021). Likelihood Ratio Test and Non-parametric Test for Load Sharing. Austrian
Journal of Statistics, 50(1):41-58.

RT&A, No 1 (82) 
Volume 20, March 2025 

470



Sukumar V. Rajguru, Santosh S. Sutar
MODELING RELIABILITY OF UNEQUAL LOAD SHARING SYSTEMS

[30] Zhang, Z., Yang, Y., and Li, D. (2022). Estimation of parameters for load-sharing parallel
systems under exponential Pareto distribution. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, 236(2):248-255.

[31] Rykov, V., Ivanova, N., and Kochetkova, I. (2022). Reliability Analysis of a Load-Sharing
k-out-of-n System Due to Its Components’ Failure. Mathematics, 10(14):24-57.

[32] Pesch, T., Polpo, A., Cripps, E., and Cramer, E. (2023). Reliability inference with extended
sequential order statistics. Applied Stochastic Models in Business and Industry, 39(4):520-535.

[33] Sutar, S. S., Gardi, C. G., and Pawar, S. D. (2023). Analyzing load sharing system reliability:
A modified Weibull distribution approach. Reliability: Theory & Applications, 18(3), 708-724.

[34] Biswas, S., Ganguly, A., and Mitra, D. (2023). Reliability Analysis of Load-sharing Systems
using a Flexible Model with Piecewise Linear Functions. arXiv preprint arXiv:2301.01477.

[35] Pesch, T., Cramer, E., Polpo, A., and Cripps, E. (2024). Estimation with extended sequential
order statistics: A link function approach. Applied Stochastic Models in Business and Industry,
40(1):1-24.

RT&A, No 1 (82) 
Volume 20, March 2025 

471



M. I. Khan, S. Qurat Ul Ain, M. Younis Shah
IMPROVING VARIANCE PRECISION IN POPULATION…

IMPROVING VARIANCE PRECISION IN POPULATION 

STUDIES: THE ROLE OF POST-STRATIFICATION AND 

AUXILIARY DATA 

M. I. Khan1, S. Qurat Ul Ain2, M. Younis Shah3*
• 

1Department of Mathematics, Faculty of Science, Islamic University of Madinah, 
Madinah 42351, Saudi Arabia 

2Department of data analytics, Harrisburg University of science and technology  
3* Division of Statistics & Computer Science, 180009 Jammu, Jammu and Kashmir, 

India.  
1 khanizhar@iu.edu.sa,  4andrabiqurat@gmail.com, syeedunis121@gmail.com 

Abstract 

In this study, we propose an enhanced estimator for the finite population variance in the context of 

post-stratified sampling, incorporating an auxiliary variable to improve accuracy. We derive 

expressions for the bias and mean square error (MSE) of the proposed estimator, providing an 

approximation accurate up to the first order. The theoretical analysis highlights the conditions 

under which the proposed estimator yields lower bias and reduced MSE, making it a more efficient 

alternative to traditional methods. To evaluate the practical performance of this estimator, we apply 

it to two real-world data sets, where our results demonstrate a marked improvement in efficiency 

over existing estimators. The numerical findings confirm that, in post-stratified sampling, the 

proposed estimator significantly enhances the precision of variance estimation, especially when the 

auxiliary variable is highly correlated with the study variable. This work not only contributes a 

more efficient estimator but also provides valuable insights into the application of auxiliary 

information in post-stratified sampling designs. 

Keywords: Post stratification, Auxiliary variable, Estimation, Population variance 
and Mean squared error. 

I. Introduction

This paper presents an enhanced estimator for population variance under post-stratification by 
utilizing auxiliary information. The use of auxiliary information in survey sampling has long been 
recognized for its ability to improve the efficiency of estimators for various population parameters, 
such as the mean, variance, median, mode, quartiles, interquartile range, percentiles, coefficient of 
variation, and proportions. Numerous methods for effectively incorporating auxiliary information 
have been extensively documented in survey sampling literature. Estimators of the ratio, product, 
and regression types leverage the correlation between the study variable and the auxiliary variable 
to achieve better precision. In this study, the mean square error (MSE) and bias of the proposed 
estimator are derived under large sample conditions, accurate to the first order of approximation. 
Theoretical comparisons with existing estimators are made, and conditions are established under 
which the proposed estimator is more efficient than those previously developed. 
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The application of stratified random sampling (STRS) presumes that the sizes and 
structure of sampling frames for each stratum are already available. Whereas the total population 
size and the percentage of the unit that belongs to each stratum may be known in many existing 
system, it is possible that the sample frame for every stratum is neither available or would be 
costly and difficult to construct. In social surveys relevant census information, where it is 
necessary to partition the heterogeneous population into different sub-groups, the sampling frame 
may not be available. In such types of situations, STRS is not applicable as such. In order to resolve 
these difficulties, post stratification technique is applied, in which a sample of necessary size is first 
selected from the population employing simple random sampling with or without replacement, 
and it is then stratified using the stratification variable 

The procedure is identical to the one of stratified sampling and the only difference is that 
the allocation into strata is made ex-post. The gain in precision is related to the sample size in each 
stratum and (inversely) to the difference between the sample weights and the population ones. The 
standard error for the post-stratified mean estimator is larger than the stratified sampling one, 
because additional variability is given by the fact that the sample stratum sizes are themselves the 
outcome of a random process. 

Initially introduced the concept of post-stratification [1]. Later extended this work by [2] 
investigating [3] classic ratio estimator in the context of post-stratification. They first considered 
the sample sizes within each stratum as fixed and then accounted for variations across possible 
stratum sample sizes, drawing on a result from [4]. Several researchers have made notable 
contributions to the development of post-stratification techniques. Important groundwork in the 
field laid by [5], followed by [6], who further advanced the methodology. Significant strides in [7] 
refining the theoretical foundations, while key modifications that improved estimator efficiency 
introduced by [8]. The scope of post-stratification by applying it to new contexts expanded by [9], 
and [10] provided valuable insights, enhancing the understanding and application of these 
methods in finite population estimation. More recently, characterized post-stratification product 
and ratio-type exponential estimators by [11]. While the regression estimator has generally been 
shown to outperform ratio and product estimators, this is not the case when the regression line of 
the primary variable on the auxiliary variable passes through a region near the origin [12]. 

In the literature, seldom is known about estimation of population variance under post-
stratified sampling. A number of estimators for the limited population variance of the post-
stratified sample mean utilizing data from the auxiliary variable developed by [13], a new ratio 
estimators in stratified random sampling using the information of an auxiliary attributes suggested 
by [14],  An exponential estimator in the stratified random sampling taking an auxiliary attribute 
proposed by [15], An efficient exponential ratio estimator allows estimating the population mean 
in stratified random sampling using an auxiliary variables developed by [16], memory-type ratio 
and product estimators for the estimation of population variance based on exponentially weighted 
moving averages (EWMA) statistic proposed by [17], the generalized estimator of population mean 
using auxiliary attributes in stratified two- phase  sampling introduced  by [18], the estimation of 
rare and clustered population mean using stratified adaptive clustered sampling proposed by [19]. 
The difficulty of estimating the population mean in the situation of post-stratification discussed by 
[20]. 

II. Methods

Let the population of size N that is finite and partitioned into L strata of sizes 𝑁1, 𝑁2, … , 𝑁𝐿 such 
that ∑ 𝑁ℎ = 𝑁𝐿

ℎ=1 . Simple random sampling without replacement (SRSWOR) is used to select a 
sample of size n from the whole population. Following the method of selection from the 
population, the number of units falling under the ℎ𝑡ℎ stratum is indicated. Let 𝑛ℎ be the size of the
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sample falling in the  ℎ𝑡ℎ stratum such that ∑ 𝑛ℎ = 𝑛𝐿
ℎ=1 , here, it is expected that n is large enough

so that the probability of 𝑛ℎ being zero is too low. Let �̅�ℎ𝑖  𝑎𝑛𝑑 �̅�ℎ𝑖  are the observed values of y and x 

respectively on the 𝑖𝑡ℎ unit of the ℎ𝑡ℎ stratum. Let �̅�ℎ =
1

𝑛ℎ
∑ 𝑦ℎ𝑖

𝑛ℎ
𝑖=1  and �̅�ℎ =

1

𝑛ℎ
∑ 𝑥ℎ𝑖

𝑛ℎ
𝑖=1  represent the

sample means corresponding to the population means �̅�ℎ =
1

𝑁ℎ
∑ 𝑦ℎ𝑖

𝑁ℎ
𝑖=1  and �̅�ℎ =

1

𝑁ℎ
∑ 𝑥ℎ𝑖

𝑁ℎ
𝑖=1  of the 

study variable (y) and auxiliary variable (x) respectively in the ℎ𝑡ℎ stratum. 
Let    𝑠𝑦ℎ

2 =
1

𝑛ℎ−1
∑ (𝑦ℎ𝑖 − �̅�ℎ)2𝑛ℎ

𝑖=1 𝑎𝑛𝑑𝑠𝑥ℎ
2 =

1

𝑛ℎ−1
∑ (𝑥ℎ𝑖 − �̅�ℎ)2𝑛ℎ

𝑖=1 represent the sample variances 

corresponding to the population variances 𝑆𝑦ℎ
2 =

1

𝑁ℎ−1
∑ (𝑦ℎ𝑖 − �̅�ℎ)

2𝑎𝑛𝑑𝑆𝑥ℎ
2 =

1

𝑁ℎ−1
∑ (𝑥ℎ𝑖 − �̅�ℎ)2𝑁ℎ

𝑖=1
𝑁ℎ
𝑖=1

of the study variable (x) and auxiliary variable (x) respectively in the ℎ𝑡ℎ stratum. Also, 𝑐𝑦ℎ =
𝑠𝑦ℎ

�̅�ℎ
, 𝑎𝑛𝑑 𝑐𝑥ℎ =

𝑠𝑥ℎ

�̅�ℎ
  represent the sample coefficient of variation corresponding to the population 

coefficient of variation 𝐶𝑦ℎ =
𝑆𝑦ℎ

�̅�ℎ
𝑎𝑛𝑑  𝐶𝑥ℎ =

𝑆𝑥ℎ

�̅�ℎ
  respectively. Let 𝑟𝑦𝑥ℎ =

𝑠𝑦𝑥ℎ

𝑠𝑦ℎ𝑠𝑥ℎ
represent the 

sample correlation coefficient corresponding to the population correlation coefficient  𝜌𝑦𝑥ℎ =
𝑆𝑦𝑥ℎ

𝑆𝑦ℎ𝑆𝑥ℎ

between their respective subscripts in the ℎ𝑡ℎ  stratum. 

Further 𝑠𝑦𝑥ℎ =
1

𝑛ℎ−1
∑ (𝑦ℎ𝑖 − �̅�ℎ)(𝑥ℎ𝑖 − �̅�ℎ) 

𝑛ℎ
𝑖=1 represents the sample covariance 

corresponding to population variance 𝑆𝑦𝑥ℎ =
1

𝑁ℎ−1
∑ (𝑦ℎ𝑖 − �̅�ℎ)(𝑥ℎ𝑖 − �̅�ℎ) ,

𝑁ℎ
𝑖=1  the study variable (y) 

and auxiliary variable (x). 

Let 𝜎𝑝𝑠𝑡
2 = ∑ 𝑤ℎ

2 𝑆𝑦ℎ
2

𝑛ℎ

𝐿
ℎ=1 and �̂�𝑝𝑠𝑡

2 = ∑ 𝑤ℎ
2 𝑠𝑦ℎ

2

𝑛ℎ

𝐿
ℎ=1  represent the post-stratified population and 

sample variances of y, where  𝑤ℎ =
𝑁ℎ

𝑁
 is the ℎ𝑡ℎ stratum weight respectively. Ignoring the finite 

population correction factor to make calculations easier in post-stratified sampling 
The variance of the estimator �̂�𝑝𝑠𝑡

2  is provided as

𝑉𝑎𝑟(�̂�𝑝𝑠𝑡
2 ) = ∑

𝑊ℎ
4

𝑛ℎ
3

𝐿

ℎ=1

𝑆𝑦ℎ
4 (𝜆400ℎ − 1)  (1) 

𝑤ℎ𝑒𝑟𝑒   𝜆𝑟𝑠𝑡ℎ =
𝜇𝑟𝑠ℎ

𝜇200ℎ
𝑟/2

𝜇020ℎ
𝑠/2

 𝑎𝑛𝑑  𝜇𝑟𝑠𝑡ℎ =
1

𝑁ℎ − 1
∑(𝑦ℎ𝑖 − �̅�ℎ)𝑟

𝑁ℎ

𝑖=1

(𝑥ℎ𝑖 − �̅�ℎ)
𝑠

A post-stratified regression estimator �̂�𝑝𝑠𝑡(𝑟𝑒𝑔)
2  for the finite population variance of the 

post-stratified sample mean utilizing data from the study's auxiliary variables developed [13] as: 

�̂�𝑝𝑠𝑡(𝑟𝑒𝑔)
2 = ∑

𝑊ℎ
4

𝑛ℎ

𝐿

ℎ=1

[(𝑆𝑦ℎ
2 + �̂�220ℎ(𝑆𝑥ℎ

2 − 𝑠𝑥ℎ
2 )]  (2) 

Where �̂�220ℎ is the sample regression coefficient of y on x with corresponding population 

regression coefficient   𝛹220ℎ =
𝑆𝑦ℎ

2 (𝜆220ℎ−1)

𝑆𝑥ℎ
2 (𝜆040ℎ−1)

  in ℎ𝑡ℎ stratum.

The variance of  �̂�𝑝𝑠𝑡(𝑟𝑒𝑔)
2  is given by 

𝑉𝑎𝑟(�̂�𝑝𝑠𝑡(𝑟𝑒𝑔)
2 ) = ∑

𝑊ℎ
4

𝑛ℎ
3

𝐿

ℎ=1

𝑆𝑦ℎ
4 (𝜆400ℎ − 1) −

(𝜆220ℎ − 1)

(𝜆040ℎ − 1)
 (3) 

A conventional ratio estimator  𝜎𝑝𝑠𝑡(𝑟𝑎𝑡)
2   for the finite population variance of the post-

stratified sample mean utilizing data from the study's auxiliary variables developed by [13]  as: 

�̂�𝑝𝑠𝑡(𝑟𝑎𝑡)
2 = ∑

𝑊ℎ
2

𝑛ℎ

𝐿

ℎ=1

((𝑆𝑦ℎ
2

𝑆𝑥ℎ
2

𝑠𝑥ℎ
2 )  (4) 

The Bias of �̂�𝑝𝑠𝑡(𝑟𝑎𝑡)
2  up to the first order of approximation, is given as 
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𝐵𝑖𝑎𝑠(�̂�𝑝𝑠𝑡(𝑟𝑎𝑡)
2 ) = ∑

𝑊ℎ
2

𝑛ℎ
2

𝐿

ℎ=1

𝑆𝑦ℎ
2 (𝜆040ℎ − 1) − (𝜆220ℎ − 1)

The MSE of �̂�𝑝𝑠𝑡(𝑟𝑎𝑡)
2  up to the first order of approximation, is given by 

𝑉𝑎𝑟�̂�𝑝𝑠𝑡(𝑟𝑎𝑡)
2 = ∑

𝑊ℎ
4

𝑛ℎ
3

𝐿

ℎ=1

𝑆𝑦ℎ
4 (𝜆400ℎ − 1) + (𝜆040ℎ − 1) − 2(𝜆220ℎ − 1)  (5) 

The new efficient type estimator of population variance developed [21] as follows: 

�̂�𝑝𝑠𝑡(𝛼,𝛿)
2 = ∑

𝑊ℎ
2

𝑛ℎ

𝑆𝑦ℎ
2

𝐿

ℎ=1

[2 − (
𝑠𝑥ℎ

2

𝑆𝑥ℎ
2 )

𝛼

𝑒𝑥𝑝 {
𝛿(𝑠𝑥ℎ

2 − 𝑆𝑥ℎ
2 )

𝑠𝑥ℎ
2 − 𝑆𝑥ℎ

2 }]  (6) 

Where 𝛼 𝑎𝑛𝑑 𝛿 are unknown constants whose values are to be determined such that the MSE of the 
proposed estimator is minimum. 
The Bias of �̂�𝑝𝑠𝑡(𝛼,𝛿)

2  up to the first order of approximation, is given as 

𝐵𝑖𝑎𝑠(�̂�𝑝𝑠𝑡(𝛼,𝛿)
2 ) = ∑

𝑊ℎ
2

𝑛ℎ
2

𝐿

ℎ=1

𝑆𝑦ℎ
2

(2𝛼 + 𝛿)(2𝛼 + 𝛿 − 2)

8
(𝜆040ℎ − 1) −

(2𝛼 + 𝛿)

2
(𝜆220ℎ − 1) 

The MSE of �̂�𝑝𝑠𝑡(𝛼,𝛿)
2  up to the first order of approximation, is given as 

𝑀𝑆𝐸(�̂�𝑝𝑠𝑡(𝑟𝑒𝑔)
2 ) = ∑

𝑊ℎ
4

𝑛ℎ
3

𝐿

ℎ=1

𝑆𝑦ℎ
4 (𝜆400ℎ − 1) −

(𝜆220ℎ − 1)2

(𝜆040ℎ − 1)
 (7) 

A new ratio type estimator under post-stratified sampling developed [20] as follows: 

�̂�𝑝𝑠𝑡(𝑘)
2 = ∑

𝑊ℎ
2

𝑛ℎ

𝑆𝑦ℎ
2

𝐿

ℎ=1

[𝑘 + (1 − 𝑘)𝑒𝑥𝑝 {
𝑆𝑥ℎ

2 − 𝑠𝑥ℎ
2

𝑆𝑥ℎ
2 − 𝑠𝑥ℎ

2 }]  (8) 

The Bias of �̂�𝑝𝑠𝑡(𝑘)
2  up to the first order of approximation, is given by 

𝐵𝑖𝑎𝑠(�̂�𝑝𝑠𝑡(𝑘)
2 ) = ∑

𝑊ℎ
2

𝑛ℎ
2

𝐿

ℎ=1

𝑆𝑦ℎ
2

3

8
(𝜆040ℎ − 1)(1 − 𝑘) −

1

2
(𝜆220ℎ − 1)(1 − 𝑘) 

The MSE of (�̂�𝑝𝑠𝑡(𝑘)
2 ) up to the first order of approximation, is given by 

𝑀𝑆𝐸(�̂�𝑝𝑠𝑡(𝑟𝑒𝑔)
2 ) = ∑

𝑊ℎ
4

𝑛ℎ
3

𝐿

ℎ=1

𝑆𝑦ℎ
4 (𝜆400ℎ − 1) − 2

(𝜆220ℎ − 1)

(𝜆040ℎ − 1)
 (9) 

III. Proposed Estimator

In the line with the direction of study carried out by [22], we proposed an improved estimator for 

estimating the finite population variance under the method of post stratified sampling.  The bias 

and MSE of the existing and proposed estimator are derived up to the first order of approximation. 

The performance of the proposed estimator is the best as compared to existing counterparts in 

terms of efficiency. 

�̂�𝑝𝑠𝑡(𝑌𝑆)
2 = ∑

𝑊ℎ
2

𝑛ℎ

[𝐾1ℎ𝑆𝑦ℎ
2 + 𝐾2ℎ(𝑆𝑥ℎ

2 − 𝑠𝑥ℎ
2 )]

𝐿

ℎ=1

𝑒𝑥𝑝 (
𝑆𝑥ℎ

2 − 𝑠𝑥ℎ
2

𝑆𝑥ℎ
2 − 𝑠𝑥ℎ

2 )  (10) 

Where 𝐾1ℎ and 𝐾2ℎ are unknown constants whose values are to be determined such that 
the MSE of the proposed estimator is minimum. 

For examining the large sample characteristics of the developed estimator,  �̂�𝑝𝑠𝑡(𝑌𝑆)
2  we 

define the random variables up to the first order of approximation as: 
𝑠𝑦ℎ

2 = 𝑆𝑦ℎ
2 (1 + 𝜀2ℎ), 𝑠𝑥ℎ

2 = 𝑆𝑥ℎ
2 (1 + 𝜀2ℎ)    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐸(𝜀2ℎ) = 𝐸(𝜀2ℎ) = 0
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Also, 

𝐸(𝜀2ℎ
2 ) =

1

𝑛ℎ

(𝜆400ℎ − 1),   𝐸(𝜀4ℎ
2 ) =

1

𝑛ℎ

(𝜆040ℎ − 1)    𝑎𝑛𝑑   𝐸(𝜀2ℎ𝜀4ℎ) =
1

𝑛ℎ

(𝜆200ℎ − 1) 

When we use the values of above terms in eq. (10), we have 

�̂�𝑝𝑠𝑡(𝑌𝑆)
2 = ∑

𝑊ℎ
2

𝑛ℎ

[(𝐾1ℎ𝑆𝑦ℎ
2 (1 + 𝜀2ℎ) − 𝐾2ℎ𝑆𝑥ℎ

2 − 𝑆𝑥ℎ
2 (1 + 𝜀4ℎ))]

𝐿

ℎ=1

𝑒𝑥𝑝 (
𝑆𝑥ℎ

2 − 𝑆𝑥ℎ
2 (1 + 𝜀4ℎ)

𝑆𝑥ℎ
2 − 𝑆𝑥ℎ

2 (1 + 𝜀4ℎ)
) 

Now expanding the right hand side along with the exponential term of the above equation 
up to the first degree of approximation, we 

�̂�𝑝𝑠𝑡(𝑌𝑆)
2 ≈ ∑

𝑊ℎ
2

𝑛ℎ

[(𝐾1ℎ𝑆𝑦ℎ
2 (1 + 𝜀2ℎ) − 𝐾2ℎ𝑆𝑥ℎ

2 − 𝑆𝑥ℎ
2 (1 + 𝜀4ℎ))]

𝐿

ℎ=1

(1 −
1

2
𝜀4ℎ +

3

8
𝜀4ℎ

2 )  (11) 

Subtracting    𝑆𝑦ℎ
2    from both sides of (11), we obtain 

(�̂�𝑝𝑠𝑡(𝑌𝑆)
2 − 𝑆𝑦ℎ

2 ) = ∑
𝑊ℎ

2

𝑛ℎ

[(𝑆𝑦ℎ
2 + 𝐾1ℎ𝑆𝑦ℎ

2 + 𝐾1ℎ𝑆𝑦ℎ
2 𝜀2ℎ −

1

2
𝐾1ℎ𝑆𝑦ℎ

2 𝜀4ℎ

𝐿

ℎ=1

− 𝐾2ℎ𝑆𝑥ℎ
2 𝜀4ℎ −

1

2
𝐾1ℎ𝑆𝑦ℎ

2 𝜀2ℎ𝜀4ℎ +
3

8
𝐾1ℎ𝑆𝑦ℎ

2 𝜀4ℎ
2 −

1

2
𝐾2ℎ𝑆𝑥ℎ

2 𝜀4ℎ − 𝑆𝑥ℎ
2 )]  (12) 

By applying expectation on both sides of eq. (12), we get the Bias of �̂�𝑝𝑠𝑡(𝑌𝑆)
2  as 

𝐵𝑖𝑎𝑠(�̂�𝑝𝑠𝑡(𝑌𝑆)
2 ) = ∑

𝑊ℎ
2

𝑛ℎ
2 [(𝑆𝑦ℎ

2

𝐿

ℎ=1

+ 𝐾1ℎ𝑆𝑦ℎ
2 {1 +

3

8
(𝜆040ℎ − 1) −

1

2
(𝜆330ℎ − 1) +

1

2
𝐾2ℎ𝑆𝑥ℎ

2 (𝜆040ℎ − 1)})]  (13) 

Equation (12) can be squared on both sides we get, 

𝑀𝑆𝐸(�̂�𝑝𝑠𝑡(𝑌𝑆)
2 ) = ∑

𝑊ℎ
4

𝑛ℎ
2 [𝑆𝑦ℎ

4 + 𝐾1ℎ
2 𝑆𝑦ℎ

4 + 𝐾1ℎ
2 𝑆𝑦ℎ

4
1

𝑛ℎ

(𝜆400ℎ − 1) −
1

4
𝐾1ℎ

2 𝑆𝑦ℎ
4

1

𝑛ℎ

(𝜆040ℎ − 1)

𝐿

ℎ=1

+ 𝐾2ℎ
2 𝑆𝑦ℎ

4
1

𝑛ℎ

(𝜆040ℎ − 1) +
1

4
𝐾1ℎ

2 𝑆𝑦ℎ
4

1

𝑛ℎ

(𝜆220ℎ − 1)2 + 2𝐾1ℎ𝑆𝑦ℎ
4

− 2𝐾1ℎ𝑆𝑦ℎ
4

1

𝑛ℎ

(𝜆220ℎ − 1) +
6

8
𝐾1ℎ

2 𝑆𝑦ℎ
4

1

𝑛ℎ

(𝜆040ℎ − 1) + 𝐾2ℎ𝑆𝑦ℎ
2 𝑆𝑦ℎ

2
1

𝑛ℎ

(𝜆040ℎ − 1)

− 𝐾1ℎ
2 𝑆𝑦ℎ

4
1

𝑛ℎ

(𝜆220ℎ − 1) +
6

8
𝐾1ℎ

2 𝑆𝑦ℎ
4

1

𝑛ℎ

(𝜆040ℎ − 1) + 𝐾1ℎ
2 𝑆𝑦ℎ

4
1

𝑛ℎ

(𝜆220ℎ − 1)

− 2𝐾1ℎ𝐾2ℎ𝑆𝑦ℎ
2 𝑆𝑦ℎ

2
1

𝑛ℎ

(𝜆220ℎ − 1)

+ 𝐾1ℎ
2 𝑆𝑦ℎ

2
1

𝑛ℎ

(𝜆040ℎ − 1)]  (14) 

In the above equation, 𝐾1ℎ and 𝐾2ℎ are unknown constants whose values are to be
determined such that the MSE of the proposed estimator is minimum and their optimal values are 
obtained by differentiating partially equation (14) with respect to 𝐾1ℎ and 𝐾2ℎ and then equating
to zero as: 

𝜕𝑀𝑆𝐸(𝑡(𝑌𝑆)/𝑛ℎ)

𝜕𝐾1ℎ

= 0 
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𝐾1ℎ𝑜𝑝𝑡 = (
𝜆040ℎ − 1

8
) [

8 − (𝜆040ℎ − 1)

(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2
] 

𝜕𝑀𝑆𝐸(𝑡(𝑌𝑆)/𝑛ℎ)

𝜕𝐾2ℎ

= 0 

𝐾2ℎ𝑜𝑝𝑡 = (
𝑆𝑦ℎ

2

8𝑆𝑥ℎ
2

) [
4(𝜆220ℎ − 1)2 − (𝜆040ℎ − 1)(𝜆220ℎ − 1)2 + (𝜆040ℎ − 1)

(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2
] 

The reduced MSE of �̂�2
𝑃𝑠𝑡(𝑌𝑆) at the optimum values of 𝐾1ℎ and 𝐾2ℎ is obtained as

𝑀𝑆𝐸(�̂�2
𝑃𝑠𝑡(𝑌𝑆))𝑚𝑖𝑛

= ∑ (
𝑊ℎ

2

𝑛ℎ
2 )𝑆𝑦ℎ

4

[

64 {(𝜆400ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2} − (𝜆040ℎ − 1)3

−16(𝜆040ℎ − 1){(𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

64{(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

]

𝐿

ℎ=1

 (15) 

IV. Efficiency Comparison

The developed estimator has been theoretically compared to the competing estimators of the 
population variance. As a result, when (1), (3), (5), (7), (9), (11) and (17) are compared, it is clear 
that the suggested estimator �̂�2

𝑃𝑠𝑡(𝑌𝑆), would be more efficient than [13] usual unbiased

estimator�̂�2
𝑃𝑠𝑡, [13] regression estimator �̂�2

𝑃𝑠𝑡(𝑟𝑒𝑔), [13] regression  estimator �̂�2
𝑃𝑠𝑡(𝑟𝑎𝑡), [21]

efficient type estimator  �̂�2
𝑃𝑠𝑡(𝛼,𝛿) , [20] new ratio type estimator  �̂�2

𝑃𝑠𝑡(𝑘).

1. By taking eq. (1) and (15), we get

{𝑉𝑎𝑟 (�̂�2
𝑃𝑠𝑡) − 𝑀𝑆𝐸 (�̂�2

𝑃𝑠𝑡(𝑌𝑆))
𝑚𝑖𝑛

} > 0  (16) 

�̂�2
𝑃𝑠𝑡 𝑖𝑓 ∶  ∑ (

𝑊ℎ
2

𝑛ℎ
2 ) 𝑆𝑦ℎ

4

[

 
 
(𝜆400ℎ − 1)

𝐿

ℎ=1

−

[

64 {(𝜆400ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2} − (𝜆040ℎ − 1)3

−16(𝜆040ℎ − 1){(𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

64{(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

]]

> 0

2. By taking eq. (3) and (15), we get

{𝑉𝑎𝑟 (�̂�2
𝑃𝑠𝑡(𝑟𝑒𝑔)) − 𝑀𝑆𝐸 (�̂�2

𝑃𝑠𝑡(𝑌𝑆))
𝑚𝑖𝑛

} > 0 (17)
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�̂�2
𝑃𝑠𝑡(𝑟𝑒𝑔) 𝑖𝑓 ∶  ∑ (

𝑊ℎ
2

𝑛ℎ
2 ) 𝑆𝑦ℎ

4

[

 
 
(𝜆400ℎ − 1) −

(𝜆220ℎ − 1)2

(𝜆040ℎ − 1)

𝐿

ℎ=1

−

[

64 {(𝜆400ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2} − (𝜆040ℎ − 1)3

−16(𝜆040ℎ − 1){(𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

64{(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

]]

> 0

3. By taking eq. (5) and (15), we get

{𝑉𝑎𝑟 (�̂�2
𝑃𝑠𝑡(𝑟𝑎𝑡)) − 𝑀𝑆𝐸 (�̂�2

𝑃𝑠𝑡(𝑌𝑆))
𝑚𝑖𝑛

} > 0  (18) 

�̂�2
𝑃𝑠𝑡(𝑟𝑒𝑔) 𝑖𝑓 ∶  ∑ (

𝑊ℎ
2

𝑛ℎ
2 ) 𝑆𝑦ℎ

4

[

[
(𝜆400ℎ − 1) + (𝜆040ℎ − 1)

−2(𝜆220ℎ − 1)
]

𝐿

ℎ=1

−

[

64 {(𝜆400ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2} − (𝜆040ℎ − 1)3

−16(𝜆040ℎ − 1){(𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

64{(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

]]

> 0

4. By taking eq. (7) and (15), we get

5. {𝑉𝑎𝑟 (�̂�2
𝑃𝑠𝑡(𝛼,𝛿)) − 𝑀𝑆𝐸 (�̂�2

𝑃𝑠𝑡(𝑌𝑆))
𝑚𝑖𝑛

} > 0  (19) 

�̂�2
𝑃𝑠𝑡(𝛼,𝛿) 𝑖𝑓 ∶  ∑ (

𝑊ℎ
2

𝑛ℎ
2 ) 𝑆𝑦ℎ

4

[

 
 
(𝜆400ℎ − 1) −

(𝜆220ℎ − 1)2

(𝜆040ℎ − 1)

𝐿

ℎ=1

−

[

64 {(𝜆400ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2} − (𝜆040ℎ − 1)3

−16(𝜆040ℎ − 1){(𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

64{(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

]]

> 0

5. By taking eq. (9) and (15), we get

{𝑉𝑎𝑟 (�̂�2
𝑃𝑠𝑡(𝑘)) − 𝑀𝑆𝐸 (�̂�2

𝑃𝑠𝑡(𝑌𝑆))
𝑚𝑖𝑛

} > 0 (20)
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�̂�2
𝑃𝑠𝑡(𝛼,𝛿) 𝑖𝑓 ∶  ∑ (

𝑊ℎ
2

𝑛ℎ
2 )𝑆𝑦ℎ

4

[

 (𝜆400ℎ − 1) − 2
(𝜆220ℎ − 1)

(𝜆040ℎ − 1)

𝐿

ℎ=1

−

[

64 {(𝜆400ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2} − (𝜆040ℎ − 1)3

−16(𝜆040ℎ − 1){(𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

64{(𝜆040ℎ − 1) + (𝜆040ℎ − 1)(𝜆040ℎ − 1) − (𝜆220ℎ − 1)2}

]]

> 0

As the conditions (16)-(20) are always satisfied, it

 

is inferred that the proposed estimator is 
more efficient than the other existing estimators under all cases in theory. 

V. Empirical Study

5. Numerical Analysis

We will take into account the data set to assess the efficiency of the suggested estimators. The 

characteristics of the population are described as below: 

Population 1: 

Let y is the output and x is the fixed capital of 80 factories [23]. The data have classified arbitrarily 

into four strata as x ≤ 500,500 < x ≤ 1000, 1000 < x ≤ 2000, and x>2000, respectively. 

y: Output 
x: Fixed capital 

Table 1(a): Statistical Description of the Population: 

Constants 𝑁ℎ 𝑛ℎ �̅�ℎ �̅�ℎ 𝑠𝑦ℎ
2 𝜆400ℎ 𝜆040ℎ 𝜆220ℎ 

Stratum I 20 11 3006.55 65.90 572819.20 3.45 1.55 1.49 

Stratum II 31 18 4687.62 141.90 433681.58 1.56 3.09 1.73 
Stratum III 13 8 6496.23 392.38 162104.69 1.98 1.49 1.56 
Stratum  IV 16 8 7795.31 749.50 426528.63 2.35 1.91 2.05 

Population 2: 

 we use the data concerning the number of teachers as study variable and the number of students 

as auxiliary variable in both primary and secondary schools for 923 districts at six regions (as 1: 

Marmara 2: Agean 3: Mediterranean 4: Central Anatolia 5: Black Sea 6: East and Southeast 

Anatolia) in Turkey (Source: Ministry of Education, Republic of Turkey). 

Y: number of teachers 

X: Number of students 
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Table 2(a): Statistical Description of the Population: 

Constants 𝑁ℎ 𝑛ℎ �̅�ℎ �̅�ℎ 𝑠𝑦ℎ
2 𝜆400ℎ 𝜆040ℎ 𝜆220ℎ 

Stratum I 127 31 703.740 20804.59 781163.9 3.94783 6.251589 3.720488 

Stratum II 117 21 413.000 9211.79 415924.8 17.33181 19.35622 18.35209 

Stratum III 103 29 573.174 14309.30 1068054 15.87136 16.3073 16.09088 

Stratum  IV 170 38 424.664 9478.85 657047.8 13.60375 11.67999 11.65605 

Stratum V 205 22 267.029 5569.94 162936.9 22.31908 23.14865 22.30021 

Stratum VI 201 39 393.840 12997.59 506549 21.49882 24.26014 21.79386 

Table 3: Conditional values of different estimators using real data sets: 

Conditional values Population I Population II 

Conditional values I 2964740.76 628422.27 
Conditional values II 1651010.71 29677.75 
Conditional values III 2308528.95 41662.86 
Conditional values IV 1254126.31 29677.75 
Conditional values V 1651010.71 224246.86 
Conditional values VI 6579180.77 706578.08 

Table 4: Bias values of different estimators using real data sets: 

Estimators Population I Population II 

𝜎(𝑝𝑠𝑡)
2 - - 

𝜎𝑝𝑠𝑡(𝑅𝑒𝑔)
2  - - 

𝜎𝑃𝑠𝑡(𝑅𝑎𝑡)
2  248.85 111.00 

𝜎𝑃𝑠𝑡(𝛼,𝛿)
2  -6154.30 -124519.90

𝜎𝑃𝑠𝑡(𝑇)
2  -6392.45 -218847.51

𝜎𝑃𝑠𝑡(𝑘)
2  -104.74 1024.01 

𝜎𝑃𝑠𝑡(𝑌𝑆)
2  247404838.9 4.92057E+19 

Table 1(b): MSE and PRE of suggested estimator in relation to �̂�2
𝑃𝑠𝑡

No. 1 2 3 4 5 6 7 

Estimators 𝜎(𝑝𝑠𝑡)
2 𝜎𝑝𝑠𝑡(𝑅𝑒𝑔)

2  𝜎𝑃𝑠𝑡(𝑅𝑎𝑡)
2  𝜎𝑃𝑠𝑡(𝑇)

2  𝜎𝑃𝑠𝑡(𝛼,𝛿)
2  𝜎𝑃𝑠𝑡(𝑘)

2  𝝈𝑷𝒔𝒕(𝒀𝑺)
𝟐  

MSE 3574695.71 2260965.66 2918483.90 1864081.26 2260965.66 7189135.72 609954.95 

PRE 100.00 157.40 121.28 191.77 157.40 49.72 586.06 

RT&A, No 1 (82) 
Volume 20, March 2025 

480



M. I. Khan, S. Qurat Ul Ain, M. Younis Shah
IMPROVING VARIANCE PRECISION IN POPULATION…

Table 2(b): MSE and PRE of suggested estimator in relation to �̂�2
𝑃𝑠𝑡

No. 1 2 3 4 5 6 7 

Estimators 𝜎(𝑝𝑠𝑡)
2 𝜎𝑝𝑠𝑡(𝑅𝑒𝑔)

2  𝜎𝑃𝑠𝑡(𝑅𝑎𝑡)
2  𝜎𝑃𝑠𝑡(𝛼,𝛿)

2  𝜎𝑃𝑠𝑡(𝑇)
2  𝜎𝑃𝑠𝑡(𝑘)

2  𝝈𝑷𝒔𝒕(𝒀𝑺)
𝟐  

MSE 651146.08 52401.56 64386.67 52401.56 246970.67 729301.89 22723.81 

PRE 100.00 1242.61 1011.31 1242.61 263.65 89.28 2865.48 

Where 

𝑃𝑅𝐸 =
𝑉𝑎𝑟 (�̂�2

𝑃𝑠𝑡)

𝑀𝑆𝐸 (�̂�2
𝑃𝑠𝑡(𝑖))

× 100  ∶   𝑖 = 𝑅𝑒, 𝑅𝑎𝑡, (𝛼, 𝛿), 𝑇, 𝑎𝑛𝑑 𝑘. 

VI. Conclusion

The population variance of the research variable can be effectively estimated using auxiliary 
data through an improved estimator under post-stratification. The proposed single and combined 
classes of estimators, such as bias and mean square error (MSE), are derived approximately to the 
first order of accuracy. Under specific efficiency conditions, the recommended estimator 
significantly outperforms existing separate and combined estimators. Additionally, empirical 
research is conducted using both artificially generated symmetric and asymmetric populations, as 
well as real-world data, to validate the theoretical findings. The results demonstrate that the 
proposed estimator is more efficient, with a lower MSE and higher percentage relative efficiency 
(PRE) than the alternatives. This study provides clear evidence supporting the robustness and 
practicality of the suggested estimator in experimental surveys. Given its superior performance, 
we strongly recommend its adoption over traditional estimators for post-stratification variance 
estimation. The integration of theoretical and empirical analyses makes this research highly 
credible, insightful, and impactful for statistical applications. 

VII. Acknowledgement

The author wishes to extent his sincere gratitude to the Deanship of Scientific Research at the 
Islamic University of Madinah for support provided to the Post- Publication Program (3).  

References 
[1] Hansen, M.H., Hurwitz, W.N. and Madow, W.G. 1953. Sample Survey Methods and

Theory, Vol. 1, New York: John Wiley and Sons. 
[2] Ige, A. F. and Tripathi, T. P. (1989). Estimation of population mean using post-stratification

and auxiliary information. Abacus, 265-276. 
[3] Cochran, W. G. (1940). Sampling Techniques. New York: John Wiley and Sons.
[4] Stephan, F. F. (1945). The expected value and variance of the reciprocal and other negative

powers of a positive Bernoullian. Annals of Mathematical Statistics, 16: 50-61. 
[5] Holt, D., Smith, T. M. F. (1979). Post Stratification. J. Roy. Statistist. Assoc. 61:1172–1183.
[6] Jagers, P. Oden, A., Trulsson, L. (1985). Post-stratification and ratio estimation: usages of

auxiliary information in survey sampling and opinion polls. Int. Statist. Rev. 53: 221–238 

RT&A, No 1 (82) 
Volume 20, March 2025 

481



M. I. Khan, S. Qurat Ul Ain, M. Younis Shah
IMPROVING VARIANCE PRECISION IN POPULATION…

[7] Vallient, R. (1993). Post stratification and conditional variance estimation. J. Amer. Statist.
Assoc., 88:89–96. 

[8] Agarwal, M. C. and Panda, K.B. (1993). An efficient estimator in post stratification. Metron
179-188.

[9] Singh, H. P., Ruiz Espejo, M. (2003).Improved post stratified estimation. Bulletin of the
International Statistical Institute, 54th session, contributed papers, vol. LX, Two Books, Book 2, 
341–342. 

[10] Vishwakarma, G. K., Singh, H. P., Singh, S. (2010). A family of estimators of population
means using multi-auxiliary variate and post stratification. Nonlinear Anal. Model. Control 
15(2):233–253. 

[11] Rajesh Tailor & Ritesh Tailor and Sunil Chouhan, (2017). "Improved Ratio- and Product-
Type Exponential Estimators for Population Mean in Case of Post-Stratification," Communications 
in Statistics - Theory and Methods, 46(21), 10387-10393. 

[12] Cochran, W. G. (1977). Sampling Techniques 3rd ed. New York: John Wiley and Sons.
[13] Masood, S and Shabbir, J. (2015). On some families of estimators of variance of post-

stratified sample mean using two auxiliary variables. Communications in Statistics - Theory and 
Methods., 2398-2415. 

[14] Zaman, T. (2019). Efficient estimators of population mean using auxiliary attribute in
stratified random sampling. Advances and Applications in Statistics, 56(2), 153-171. 

[15] Zaman, T., & Kadilar, C. (2020). On estimating the population mean using auxiliary
character in stratified random sampling. Journal of Statistics and Management Systems, 23(8), 
1415-1426. 

[16] Zaman, T. (2021). An efficient exponential estimator of the mean under stratified random
sampling. Mathematical Population Studies, 28(2), 104-121. 

[17] Qureshi, M.N., Kadilar, C. and Hanif, M. (2020). Estimation of rare and clustered
population mean using stratified adaptive cluster sampling, Environmental and Ecological 
Statistics, 27: 151- 170.  

[18] Rana, Q., Qureshi, M. N., and Hanif, M. (2022). Generalized estimator for population
mean using auxiliary attributes in stratified two- phase sampling. Journal of Statistics, Theory and 
Applications, 21 (2): 44–57.   

[19] Qureshi, M. N., Tariq, M. U., Xiong, Y. and Hanif, M. (2023). Estimation of heterogeneous
population variance using Memory-type estimators based on EWMA statistic in the

presence of measurement error for time-scaled surveys. 
[20] Khalid Ul Islam Rather, M. Iqbal Jeelani, M. Younis Shah, S. E. H. Rizvi and M. K. Sharma

(2022). A new ratio type estimator for computation of population mean under post-Stratification. 
JAMSI,  18 (1). 

[21] Yadav, S. K., Mishra, S. S., Mishra, P. P., & Singh, R. S. (2018). New efficient class of
estimators for the population variance Int. J. Agricult. Stat. Sci. Vol. 14 (2), 491-496. 

[22] Ahmed, S., Sardar, H., Shabbir, J., Zahid, E., Aamir, M and Onyango, R. (2022). Improved
Estimation of Finite Population Variance Using Dual Supplementary Information under Stratified 
Random Sampling. Mathematical Problems in Engineering, 12. 

[23] Murthy, M. N. (1967). Sampling Theory and Methods. Calcutta, India: Statistical
Publishing Society. 

RT&A, No 1 (82) 
Volume 20, March 2025 

482



Haripriya M, Radhika A, Jeslin J 
PARAMETER ESTIMATION FOR DISCRETE INVERSE RAYLEIGH 
DISTRIBUTION 

A COMPARATIVE STUDY ON PARAMETER 

ESTIMATION TECHNIQUES FOR THE DISCRETE 

INVERSE RAYLEIGH DISTRIBUTION  

1Haripriya M, 2Radhika A*, 3Jeslin J 

• 
1Research Scholar, Department of Statistics, Periyar University, Salem-11 

priyaprakash11597@gmail.com  
2Assistant Professor, Department of Statistics, Periyar University, Salem-11 

aradhika@periyaruniversity.ac.in 
3Research Scholar, Department of Statistics, Periyar University, Salem-11 

jeslin.statistics@gmail.com  

Abstract 

This article explores into the Discrete Inverse Rayleigh Distribution, a novel discrete analogue of 

the continuous Inverse Rayleigh distribution, formulated by inverting a continuous Rayleigh 

random variable. The Discrete Inverse Rayleigh Distribution can effectively capture a range of 

hazard rate shapes, exhibiting either unimodal or monotonic decreasing behaviors depending on 

parameter values. To estimate the parameters of this distribution, we examine four distinct 

methods: a heuristic algorithm, a probability paper plotting technique designed for the Inverse 

Rayleigh, the method of moments, and the method of proportions. Each method offers unique 

strengths and presents different computational requirements and precision levels. Through rigorous 

simulation studies, we assess the accuracy and reliability of these methods, evaluating their 

performance across a variety of scenarios. Our results indicate that the methods of moments and 

proportions encounter significant difficulties when estimating parameters for right-skewed Discrete 

Inverse Rayleigh distributions. These challenges are primarily due to numerical instability and poor 

convergence properties under certain parameter configurations, which can limit their practical 

applicability in these cases. In contrast, both the probability paper plotting method and the heuristic 

algorithm demonstrate robustness and enhanced accuracy, especially in the context of right-skewed 

distributions. The probability paper plot is notably effective due to its reliance on graphical 

techniques that simplify parameter estimation in complex, non-monotonic datasets, whereas the 

heuristic algorithm provides a more computationally efficient solution without sacrificing precision. 

To validate the utility of the Discrete Inverse Rayleigh Distribution, we compare its performance 

with the Discrete Rayleigh Distribution by fitting both models to a real-world dataset. The 

comparative analysis leverages the Akaike Information Criterion (AIC) to quantitatively assess 

model fit. Our findings underscore the advantages of the Discrete Inverse Rayleigh Distribution, 

particularly in applications where discrete data exhibits non-monotonic hazard rates, highlighting 

its superior fit over the traditional Discrete Rayleigh in this context. This study contributes to the 

growing toolkit for discrete time-to-event data modeling, offering insights into effective parameter 

estimation strategies and demonstrating the value of the Discrete Inverse Rayleigh Distribution for 

specialized discrete hazard rate analysis. 

Keywords: Akaike Information Criterion, Discrete Inverse Rayleigh Distribution, 

Inverse Rayleigh Probability Paper Plot, Heuristic Algorithm, method of 

moments, method of proportions 
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I. Introduction

In life-testing experiments, measuring a device’s lifespan on a continuous scale is often impractical 

or even infeasible. For example, the lifetime of a device that operates in an on/off mode, such as a 

switch, is usually a discrete variable, representing the number of cycles or operations until it fails. 

Many real-world reliability studies record failure data based on discrete occurrences, such as the 

count of cycles, runs, or shocks a device can withstand before malfunctioning. Similarly, in 

survival analysis, data like the number of days a lung cancer patient survives post-treatment or the 

period from remission to relapse is frequently recorded in discrete time intervals, like days. 

Historically, discrete analogues of continuous probability distributions have been employed 

to model such data. For instance, the geometric distribution serves as the discrete counterpart to 

the exponential distribution, while the negative binomial distribution is analogous to the gamma 

distribution [9]. However, one limitation of these traditional discrete distributions is that they 

generally assume a monotonic hazard rate function, which remains either increasing or decreasing. 

This monotonicity can be restrictive for applications where the hazard rate does not exhibit such a 

simple pattern, limiting the flexibility of these distributions in accurately capturing the underlying 

risk dynamics in various scenarios. Fortunately, numerous continuous distributions can be 

adapted into discrete counterparts. The geometric and negative binomial distributions are well-

known discretizations of the exponential and gamma distributions, respectively [7,8]. Additionally, 

discrete analogues for the Weibull, normal, and Rayleigh distributions have also been developed 

[20]. Roy introduced the discrete normal and Rayleigh distributions [16, 17], while Krishna and 

Pundir [13] proposed discrete versions of the Burr XII and Pareto distributions. 

In the article, we propose the study on Discrete Inverse Rayleigh Distribution, a similar 

approach can be employed to model situations where the underlying process follows an inverse 

Rayleigh-like behavior but data is recorded in discrete units. Estimation of the parameters for such 

distributions can be performed using several techniques, such as the method of moments, the 

method of proportions, heuristic algorithms (like Nelder-Mead), or by utilizing probability paper 

methods[3]. 

This approach can be useful in fitting the discrete Inverse Rayleigh Distribution to datasets, 

such as the lifetimes of electronic devices, where discrete time-to-failure data is available [15, 10]. 

Comparisons between the discrete Inverse Rayleigh and Discrete Rayleigh can be made using 

model selection criteria like the Akaike Information Criterion (AIC), allowing researchers to 

determine the most appropriate model for their specific application. The Inverse Rayleigh 

Distribution is derived from the standard Rayleigh distribution, but it models a different type of 

relationship between the variable and its probabilities [11]. While the Rayleigh distribution is often 

used for modeling the magnitude of a two-dimensional vector, the Inverse Rayleigh distribution 

models scenarios where larger values are less probable, often used to model the time to failure or 

lifetime of systems. 

II. The Theoretical Perspective on the Rayleigh Distribution

It was first introduced by Lord Rayleigh in 1880 [1] as a model for random wave amplitudes. The 

distribution is a special case of the Weibull distribution with a shape parameter of 2 [14]. The 

Rayleigh distribution is used for modeling the magnitude of vectors in 2D space or for modeling 

phenomena where small values are less probable, but larger values occur more frequently up to a 

certain threshold. It has a probability density function (PDF) is given by 
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Where q is the scale parameter. The Inverse Rayleigh distribution is the distribution of the 

inverse of a Rayleigh-distributed variable. It is used to model the lifetime of devices or systems, 

where failure becomes less likely as time progresses (i.e., early failures are more probable). Its PDF 

is given by: 
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where q is the scale parameter. This distribution describes a situation where the probability of 

larger values (longer lifetimes) diminishes rapidly, meaning that failures tend to happen early in 

the system's lifecycle. On the other hand, the Discrete Weibull Distribution, a discrete version of 

the continuous Weibull distribution, was introduced by Nakagawa and Osaki [2]. Its cumulative 

distribution function is defined as: 

 
tqtF 1 , t= 1, 2, 3… 

where β > 0 and 0<q<1. This distribution has a probability mass function (PMF) and a hazard 

rate function that depend on the shape parameter β and the scale parameter q. In particular, when 

β=1, the distribution reduces to a geometric distribution, which is a discrete analogue of the 

exponential distribution with a constant hazard rate. For β=2, the distribution corresponds to the 

discrete Rayleigh distribution. The hazard rate can be either increasing or decreasing based on the 

value of β. The Discrete Inverse Rayleigh distribution can be seen as a discrete version of the 

Inverse Rayleigh distribution, offering a better fit for data sets that require modeling with both 

monotonic and non-monotonic hazard rates. The discrete inverse Rayleigh model provides 

flexibility and simplicity, making it a valuable tool for reliability and survival analysis where 

traditional models fail to provide a suitable fit. 

III. Techniques for Parameter Estimation in the Discrete Inverse Rayleigh

Distribution 

The Discrete Inverse Rayleigh Distribution (DIRD) can be defined as a discrete analogue of the 

continuous inverse Rayleigh distribution, which has applications in reliability analysis, survival 

studies, and related fields. The derivation of the DIRD involves transforming the continuous 

Rayleigh distribution through inversion and discretization. 

If X is a discrete random variable that follows the Discrete Inverse Rayleigh Distribution, its 

probability mass function (PMF) can be defined as: 
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Where q>0 is the scale parameter, x is a discrete integer representing possible values of the 

random variable. This distribution is derived from the continuous inverse Rayleigh distribution, 

adapting it for scenarios where the variable of interest can only take discrete values. 
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The Probability Mass Function (PMF) corresponding to this distribution is: 
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Here, the parameters q and β represent the scale and shape parameters, respectively. The PMF 

shows that the probability decreases as n increases, with the scale parameter q determining the 

likelihood at n=1, and the shape parameter β influencing the decay of probability for larger values 

of n. 

The parameter q primarily influences the PMF at n=1. When logq= log(2)/(2−β+1),  the PMF 

becomes monotone decreasing. For other values, the PMF is unimodal, typically with the mode at 

n=2. The shape parameter β exerts greater influence on the PMF beyond n=1; as β decreases, the 

tail of the distribution extends, shifting the probability mass to higher values of n. 

Moment: The moments of the distribution can be derived, but often result in infinite series 

that cannot be expressed in closed form. The first and second moments are defined as: 

𝐸(𝑋) = ∑ (1 − 𝑞𝑖𝛽
)  𝑎𝑛𝑑

∞

𝑖=0

     XEqxXE
x

x  


1

2 12


Where the sums extend over all possible values of n. The mean of the discrete distribution is 

bounded between the means of the corresponding continuous inverse Rayleigh distribution, with 

the discrete mean typically being smaller [5, 6]. 

Inverse Rayleigh Probability Paper Plot (IRPP): The Inverse Rayleigh Probability Paper 

(IRPP) plot is a graphical method used to assess the suitability of the inverse Rayleigh model for a 

given dataset. For the continuous inverse Rayleigh model, [4] Drapella proposed the 

transformation: 

   tFnnytnx 11),(1 

which yields a straight line for the inverse Rayleigh distribution, making it a useful diagnostic tool 

to assess whether the discrete inverse Rayleigh distribution fits the data well. 

Hazard Rate Function: The Hazard Rate Function for the discrete inverse Rayleigh 

distribution is derived as the conditional probability that a failure occurs at time n, given that no 

failure has occurred by time n-1. It is defined as: 
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For larger values of q, the hazard rate is monotone decreasing. However, for smaller values of q, it 

becomes unimodal, showing a non-monotonic behavior. 

When estimating the parameters of the Discrete Inverse Rayleigh Distribution (DIRD), several 

methods can be utilized. The commonly applied methods are (i) Method of Proportions, (ii) 

Method of Moments, (iii) Heuristic Algorithm, (iv) Inverse Rayleigh Probability Plot (IRPP). 

Method of Proportions: The method of proportions was initially proposed by Khan et al. [12] 

for the discrete Weibull distribution. A similar approach can be adapted for the Discrete Inverse 

Rayleigh Distribution (DIRD). 
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Let x1, x2,...,xn be a random sample from the DIRD with the corresponding probability mass 

function (PMF). Define the indicator function as: 𝐼(𝑥𝑖) = 1 𝑖𝑓 𝑥𝑖 = 1 

The sum of these indicator functions 𝑌 = ∑ 𝐼(𝑥𝑖)
𝑛
𝑖=1 represents the number of ones in the sample. 

The proportion 
𝑌

𝑛
 gives an estimate of the probability of observing x=1, which corresponds to the 

parameter 𝑞: �̂� =
𝑦

𝑛
Where y is the observed number of ones in the sample. Similarly, for higher 

values of x, the parameter β is estimated by considering the proportion of values of 2, 3, etc., in the 

sample. For instance, the probability p2 (q, β) is estimated using: 

�̂� =  
1

𝑙𝑜𝑔(2)
.
𝑙𝑜𝑔 (𝑙𝑜𝑔 (

𝑧

𝑛
+

𝑦

𝑛
))

𝑙𝑜𝑔 (
𝑦

𝑛
)

where z is the number of twos observed in the sample. The method of proportions provides 

consistent estimates of q and β, making it a suitable approach for the Discrete Inverse Rayleigh 

Distribution. 

Method of Moments: The method of moments requires equating the population moments to 

the sample moments. For a sample x1, x2... xn from the distribution, we calculate the first and 

second sample moments M1 and M2 as follows: 

𝑀1 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 𝑎𝑛𝑑 𝑀2 =
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

 

These moments are equated to the population moments of the discrete inverse Rayleigh 

distribution, and the parameters q and β are then solved simultaneously. However, due to the 

complex nature of the moments for the DIRD, these equations often require numerical methods to 

solve. In practice, a pseudo-moment method is used to minimize the difference between the 

sample moments and the theoretical moments, which is expressed as: 

𝑆(𝑞, 𝛽) = (𝑀1 − 𝐸(𝑋))
2

+ (𝑀2 − 𝐸(𝑋2))
2

Where E(X) and E(X2) are the theoretical moments of the DIRD. Minimizing S(q,β) with 

respect to q and β provides parameter estimates, though it has been found that this method is not 

always satisfactory for the DIRD.  

Heuristic Algorithm: The heuristic algorithm combines maximum likelihood estimation 

(MLE) with an optimization method. Since the likelihood function of the DIRD can be challenging 

to optimize directly, the Nelder-Mead optimization method is used, which iteratively refines the 

parameter estimates by optimizing the likelihood function. The heuristic algorithm starts with an 

initial guess for the shape parameter β and iteratively updates the parameters using maximum 

likelihood estimates. At each step, the likelihood function is maximized with respect to q, and the 

updated values are used in the next iteration. The process continues until the parameter estimates 

stabilize and converge to their optimal values. 

• Set initial values for the shape parameter β1-1.

• Set a value of the variation rte r and the initial variation width z1.

• After the setting, we compute maximum likelihood estimator of the parameter q 

with respect to 𝐷 = {𝛽1,1−𝑧1
, 𝛽1,1, 𝛽1,1+𝑧1

} to get the maximum likelihood estimate �̂� 

• 𝛽𝑚,𝑙+1 =
maxarg

D {L(D)} after that we get 𝛽𝑚,𝑙+1 = 𝛽𝑚,𝑙 if yes we get 𝛽𝑚 = 𝛽𝑚,𝑙 if no

then l=l+1
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= 

• The heuristic algorithm repeats this loop with different variation rates and widths

until there is no significant difference between maximum likelihood estimates and

their likelihood functions.

• If the stopping criterion is met ie, |𝐿(𝛽𝑚) − 𝐿(𝛽𝑚−1)| <∈ proceed to output the best

solution. Otherwise, return to step 4.

Inverse Rayleigh Probability Plot (IRPP): The IRPP plot is a graphical method for estimating 

the parameters of the Discrete Inverse Rayleigh Distribution. This method involves transforming 

the data and plotting it in a way that liberalizes the distribution, making it easier to estimate the 

parameters. 

For the inverse Rayleigh distribution, the transformation is: 

𝑥 = −𝐼𝑛(𝑡) 𝑎𝑛𝑑 𝑦 = 𝐼𝑛 (−𝐼𝑛(𝐹(𝑡))) 

where F(t) is the cumulative distribution function (CDF) of the DIRD. The plot of y versus x 

results in a straight line, allowing q and β to be estimated using a simple linear regression model. 

The IRPP plot provides a straightforward method for parameter estimation when the transformed 

data follows a linear trend. The slope of the line gives the estimate of β, while the intercept 

provides an estimate for q. 

IV. Comparison of Estimation Methods for the Discrete Inverse Rayleigh

Distribution 

Khan et al. [12] compared the method of proportions with the method of moments in the discrete 

Weibull distribution based on 100 replications of simulated samples. Here, in this section, we shall 

compare the four mentioned methods in the preceding section presented for the discrete inverse 

Rayleigh distributions. Some of replications sizes are less than 100 so that the numerical algorithms 

can converge faster. We compare the estimates obtained by the method of proportions and the 

method of IRPP plot. Table 1 shows estimates and their variances by the two methods. These 

simulation results are based on 50 replications. It is clear that accuracies and precisions of estimates 

given by the method of proportions are slightly improved as the sample size increases from 20 to 

50. From Table 1, the result indicates that Method of Proportions consistently yields smaller

variance estimates for both q and β across various sample sizes and parameter combinations

compared to the Heuristic Algorithm. This suggests that the Method of Proportions may provide

more stable estimates, making it potentially preferable for applications requiring higher precision.

For example, in the case of q=0.2 and β=1.5 with a sample size of n=50, the Method of Proportions

estimates q as 0.2114 with a variance of 0.0032, while the Heuristic Algorithm gives q as 0.213 with

a slightly higher variance of 0.0035. This pattern persists across different parameter settings,

indicating that the Method of Proportions often provides tighter bounds around its estimates. Also

for shape parameter variance this consistent pattern suggests.

Next, we compare the estimates obtained by the method of proportions and IRPP plot with 

the heuristic algorithm. Tables 2 and 3 give the estimates and their variances for these methods. 

These simulation results are based on 10 replications. 

Tables 2 and 3  shows both tables indicate that when the initial values are close to the true 

parameter values, the heuristic algorithm tends to produce slightly better results than the method 

of moments in terms of the variances of the estimates. However, the variances of estimates from 

the method of moments are generally comparable to those obtained from the heuristic algorithm. 

The method of IRPP plot also yields results that are on par with the heuristic algorithm. While 

there are instances where the heuristic algorithm exhibits better convergence, it may sometimes fail 
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to reach a solution. In such cases, the estimates from the IRPP plot can serve as reliable initial 

values for the heuristic algorithm, facilitating convergence and improving the estimation process. 

Overall results suggest that while the heuristic algorithm may offer slight advantages in specific 

scenarios, the method of IRPP plot and the method of moments also provide robust estimates. As 

the sample size increases, the precision and reliability of all methods improve, making them 

effective tools for parameter estimation in the discrete inverse Rayleigh distribution context. 

We now consider the estimates by the method of moments. Table 4 shows that estimates by 

the method of moments result show larger variances compared to the estimates obtained from 

other methods such as the heuristic algorithm or the method of proportions. This indicates that the 

method of moments may introduce more variability in the parameter estimates, particularly for 

smaller sample sizes. For example, as seen in the table, the variances for q and β increase as the 

sample size decreases. The accuracies of the estimates using the method of moments are generally 

lower than those from the previous methods, particularly when considering smaller sample sizes. 

For instance, the estimated values for q and β show wider discrepancies from the true parameter 

values as sample sizes reduce, which affects the reliability of the estimates. Despite the initial lower 

accuracy and higher variance, the results indicate that the estimates improve as sample sizes 

increase. This is evident from the decreasing variances and increasing closeness of estimates to the 

true parameters when moving from smaller sample sizes (20) to larger sample sizes (80). For 

example, the estimates for q for the parameter pair (0.2, 1.5) improved from 0.0513 (with a variance 

of 0.0216) at a sample size of 20 to 0.0732 (with a variance of 0.0152) at a sample size of 80. These 

simulation results are based on 100 replications, reinforcing the statistical reliability of the 

observed trends. The larger sample sizes not only yield more stable estimates but also improve the 

overall accuracy of the parameters. Khan et al. [12] introduced two methods of estimates, namely 

the method of proportions and the method of moments to estimate the parameters of the basic 

discrete Weibull. They used the results of simulation runs to compare the accuracies and precisions 

of these estimates. The comparison showed that the method of moments performs significantly 

better than the method of proportions. 

For the discrete Rayleigh model, we use simulation runs to compare the accuracies and 

precisions of the parameter estimates using the four estimation methods discussed in this section. 

Table 1: Method of proportions versus Heuristic algorithm 

q, β 
Sample 

Size n 
�̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) 

0.2, 

1.5 
50 0.213 0.0035 1.4236 0.1245 0.2114 0.0032 1.505 0.1124 

30 0.195 0.004 1.6485 0.2511 0.1922 0.0029 1.689 0.2205 

20 0.184 0.0062 1.789 0.3948 0.1825 0.0039 1.752 0.3509 

0.5, 

2.5 
50 0.512 0.0051 2.442 0.1403 0.5105 0.0049 2.48 0.1352 

30 0.492 0.0078 2.5789 0.2145 0.4897 0.0071 2.617 0.1932 

20 0.478 0.0096 2.7231 0.3517 0.4739 0.0087 2.682 0.3108 

0.7, 

1.0 
50 0.703 0.0028 1.0305 0.1012 0.705 0.0029 1.014 0.092 

30 0.69 0.0036 1.0751 0.1667 0.692 0.0032 1.059 0.1472 

20 0.675 0.0051 1.1604 0.2289 0.67 0.0048 1.132 0.1457 

1.0, 

3.0 
50 1.002 0.0065 2.9985 0.1526 1.004 0.0067 2.93 0.1457 

30 0.988 0.0079 3.0457 0.2045 0.9854 0.0075 3.02 0.1934 
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20 0.97 0.0098 3.1906 0.3417 0.9693 0.0091 3.149 0.3008 

1.5, 

2.0 
50 1.478 0.0072 2.134 0.1845 1.482 0.0069 2.09 0.1713 

30 1.452 0.0087 2.2782 0.2529 1.4485 0.0081 2.231 0.2352 

Table 2: Method of IRPP plot versus Heuristic algorithm 

q, β 
Sample 

Size n 
�̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) 

0.2, 

1.5 
50 0.2112 0.0054 1.5037 0.1042 0.2051 0.0047 1.51 0.0912 

30 0.1974 0.0102 1.6241 0.1925 0.1893 0.0083 1.57 0.1681 

20 0.1832 0.0088 1.7123 0.2438 0.1726 0.0095 1.645 0.2155 

0.5, 

2.5 
50 0.5234 0.0058 2.4739 0.1287 0.5081 0.0051 2.515 0.1202 

30 0.4927 0.0087 2.6328 0.1934 0.4819 0.0083 2.581 0.1756 

20 0.4693 0.0114 2.7851 0.2851 0.4582 0.0096 2.712 0.2392 

0.7, 

1.0 
50 0.7145 0.0043 1.0124 0.0835 0.7041 0.0035 1.025 0.0771 

30 0.6892 0.0067 1.0753 0.1487 0.6738 0.0057 1.042 0.1281 

20 0.6632 0.0085 1.1129 0.1896 0.6519 0.0069 1.086 0.1547 

1.0, 

3.0 
50 1.0274 0.0093 2.9852 0.1567 1.0159 0.0088 3.021 0.1476 

30 0.9925 0.0131 3.1156 0.2278 0.9784 0.0109 3.072 0.1974 

20 0.9452 0.0156 3.2931 0.3126 0.9315 0.0123 3.251 0.2712 

1.5, 

2.0 
50 1.5227 0.0082 1.9321 0.1292 1.5091 0.0075 2.015 0.1135 

30 1.4859 0.0119 2.1745 0.2046 1.4728 0.0102 2.11 0.1751 

20 1.4323 0.0136 2.3121 0.2772 1.4162 0.0128 2.256 0.2456 

Table 3: Estimates of parameters of discrete inverse Rayleigh by the method of moments 

q, β Sample size n �̂� 𝑉𝑎𝑟(�̂�) �̂� 𝑉𝑎𝑟(�̂�) 

0.2, 1.5 80 0.0732 0.0152 1.4674 0.2675 

50 0.0659 0.0163 1.5246 0.3251 

20 0.0513 0.0216 1.6821 0.5124 

0.5, 2.5 80 0.5128 0.1024 2.4576 0.3286 

50 0.4819 0.1311 2.5382 0.4528 

20 0.4542 0.1629 2.7496 0.7682 

0.7, 1.0 80 0.6743 0.0891 0.9572 0.1446 

50 0.6487 0.1075 1.0653 0.1836 

20 0.6224 0.1347 1.1234 0.2469 

1.0, 3.0 80 0.9886 0.0325 3.1498 0.4152 

50 0.9512 0.0548 3.4132 0.5114 

20 0.9063 0.0795 3.7291 0.8329 

1.5, 2.0 80 1.4752 0.0268 1.9672 0.2157 

50 1.4213 0.0432 2.0956 0.2789 

20 1.3539 0.0715 2.2471 0.4328 
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V. Estimation for real data

Consider the 18 lifetimes (in hours) of certain electronic devices given as 6, 14, 23, 37, 52, 68, 89, 

115, 136, 153, 183, 210, 237, 279, 308, 332, 362, and 398. 

Table 5: Estimation results in discrete inverse Rayleigh distribution 

Method q β 

Heuristic Algorithm 0.0065 0.45 

IWPP Plot 2.657312e−10 0.7932 

Method of Moments 0.8764 1.12 

Table 6: Estimation results for discrete Rayleigh distribution 

Method q β 

Heuristic Algorithm 0.985 1.12 

IWPP Plot 0.9785 1.0457 

Method of Moments 0.9923 1.2034 

Table 7: AIC results for discrete inverse Rayleigh and discrete Rayleigh models 

Model 

Heuristic 

Algorithm IWPP Plot Moments 

Discrete Inverse Rayleigh 218.4572 232.9821 375.8419 

Discrete Rayleigh 220.1345 220.5823 221.4237 

Note that the method of proportions is not applicable here because of the nature of the data, 

which does not contain 1s and 2s. In this context, as previously mentioned, the method of moments 

tends to be the least preferred approach for the discrete inverse Rayleigh distribution due to its 

higher variances and lower accuracy. In this analysis, we use parameter estimates from the IRPP 

plot as the initial values for the heuristic algorithm, which often yields more accurate results. The 

parameter estimates across the three methods are given in Tables 5 and 6. Table 5 demonstrates 

that the parameter estimates obtained from the three methods differ significantly. Based on the 

simulation results, we expect the heuristic algorithm to provide higher accuracy and precision 

compared to the other methods. On the other hand, Table 6 shows that the parameter estimates 

from the three methods are more consistent with each other. Previous simulation studies have 

indicated that the method of moments performs relatively well for the discrete Rayleigh 

distribution, offering accurate and precise estimates. The Akaike Information Criterion (AIC) 

values for both the discrete inverse Rayleigh and discrete Rayleigh models, based on the three 

methods, are presented in Table 7. When comparing the AIC values for the discrete inverse 

Rayleigh model, the heuristic algorithm produces the best fit, as indicated by the lowest AIC value. 

In contrast, the method of moments performs poorly, yielding the highest AIC, which suggests it is 

the least effective for this model. For the discrete Rayleigh model, the AIC values across all 

methods are relatively close, indicating that all methods perform similarly. However, the heuristic 

algorithm still provides a slight advantage in terms of model fit. 

VI. Conclusion

This article outlines a comparative study of various parameter estimation methods for the discrete 

inverse Rayleigh distribution, including the Method of Proportions, IRPP plot, heuristic algorithm, 
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and Method of Moments. Through simulations and replications, the study evaluates these 

methods' accuracy, precision, and convergence properties across different sample sizes and 

parameter values. The paper also applies these estimation methods to real data and examines the 

fit of the discrete inverse Rayleigh and discrete Rayleigh models using Akaike Information 

Criterion (AIC) values. The results highlight that while the heuristic algorithm often provides the 

best fit for the discrete inverse Rayleigh model, the Method of Proportions delivers more stable 

and precise estimates, especially for larger sample sizes. 
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Abstract 

Statistical Quality Control (SQC) involves the use of statistical techniques used to assess and 

monitor the quality of a product. Acceptance sampling is a statistical technique that determines 

whether to approve or decline a batch of products using a sample instead of inspecting each one individually. This 

helps to manage quality assurance and reduces the need for exhaustive inspection, balancing the risks of accepting faulty 

items and rejecting good ones. A single sampling plan (SSP) 

involves inspecting a fixed number of items from a batch and deciding based on the results whether 

the entire batch should be accepted or rejected. Now-a-days in the manufacturing processes, due to 

the evolution in technology the number of nonconforming is very less and this leads to a high frequency of zeros in 

the count data of nonconforming. If count data contains a significant number 

of zeros, the Zero-inflated Binomial (ZIB) distribution is the suitable probability distribution for such conditions. The 

ZIB distribution addresses this issue by combining a binomial distribution with an 

inflation parameter that accounts for the excessive zeros, making it a more accurate representation of 

the quality control process in environments where defectives are rare. This article aims to design SSPs 

when the number of non-conforming units follows ZIB distribution. By adopting the ZIB distribution, the 

SSPs provide better decision-making in terms of acceptance or rejection of product 

batches. The operating characteristic (OC) function of the ZIB sampling plan is derived. Furthermore, 

the parameters of the SSP, specifically the sample size n and acceptance number c, are derived for 

various sets of values, such as (p1, 𝛼, p2, 𝛽). Numerical illustrations are presented to demonstrate the application of the 

ZIB SSPs. The risk efficiency of ZIB SSP is compared with Binomial SSP. 

Keywords: Sampling inspection by attributes, Single sampling plan, Zero-inflated Binomial 
distribution, Operating characteristic function, Producer’s risk, Consumer’s risk. 

I. Introduction

Acceptance sampling provides a statistically valid way to decide if a product batch should be 
accepted or rejected using a sample, maintaining quality standards and reducing the need for full 
inspection. By using this approach, companies can uphold excellent quality standards without the 
need to inspect each item in a batch, saving time and money. Sampling inspection evaluate the 
quality of a batch by examining only a portion of the items, enabling effective decision-making 
while ensuring overall quality assurance. This method reduces the requirement for inspecting the 
entire batch, helping to save resources and improve the efficiency of the quality control procedure. 
A single 
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𝑁

sampling plan (SSP) is a simple and widely adopted strategy that offers an efficient and effective 
way to control quality, requiring only one sample to determine the acceptability of a batch. It 
simplifies the inspection process, reducing the costs and efforts involved in quality control while 
still delivering reliable outcomes. 

The advanced evolution in technology leads to the development of the production and quality 
of the products which results in the proportion of non-conforming units being very less. Hence, the 
manufactured products are in a nearly perfect state such that count of the nonconforming will 
contain more number of zeros. The appropriate probability distribution, to model the count data 
with a large number of zeros in the count of nonconforming is the Zero-inflated Binomial (ZIB) 
distribution. ZIB distribution is a mixture distribution, which degenerates at zero, and a binomial 
distribution. 

Several attempts can be found in regression modeling based on the ZIB model. Hall [5] 
reviewed the ZIP regression model and introduced the ZIB regression model. He also introduced 
mixed versions of ZIP and ZIB regression models. He described an example from horticulture, 
where count data with both upper and lower bounds and excessive zeros were gathered in a 
repeated measures experimental design. Alpha et. al., [1] extended the scope of the ZIB regression 
model to include cases with randomly missing covariates.  

The ZIB distribution has found widespread application in various fields, including dental 
epidemiology, horticulture, healthcare, industry, and process control. Notable research works 
using ZIB distribution can be found in the study of Rassoul et. al.,[8], Pourhoseingholi et. al., 
[7], and Wahyu et. al., [13]. In recent years ZIB distribution have been used in process control to 
develop control charts. Rassoul et. al., [8], Bunpen and Tidadeaw [3], Athanasios et. al., [2], and 
Vasileious and Christos [11], have constructed various types of control chart using the ZIB 
distribution.  

If excessive number of zeros are present in the count data of nonconforming, the ZIB 
distribution can be used to determine more accurate sampling plans. No attempt is found in the 
literature on sampling plans based on ZIB distribution. This article aims to determine ZIB SSPs. The 
ZIB distribution is detailed in Section 2. Designing SSP and its operating characteristic (OC) 
function of the plan are discussed in Section 3. The plan parameters are determined in Section 4. 
Numerical illustrations for the plan selection are discussed in Section 5. The risk efficiency is 
discussed in Section 6. The summary of the results is given in Section 7. 

II. An Overview of ZIB distribution

According to Schilling and Neubauer [9], when the lot size and sample size n are limited, the 
suitable probability model for the random variable X is the hypergeometric distribution. If the lot 
size N and lot fraction conforming p are sufficiently large and 𝑛 

≤ 0.10, the probability distribution 
for X is
approximately binomial B(n, p) distribution. If the occurrences of nonconforming units 
predominantly result in zero counts, the appropriate probability model for X is the ZIB 
distribution. It is often used in modeling processes where the occurrence of zeros is more frequent 
than a standard binomial distribution. 

The probability mass function of the ZIB (𝜑, 𝑛, 𝑝) distribution proposed by Hall [5] is as follows. 

𝑃(𝑋 = 𝑥|𝜑, 𝑛, 𝑝) = {
𝜑 + (1 − 𝜑) 𝑞𝑛  , when 𝑥 = 0 

(1 − 𝜑)(𝑛
𝑥

) 𝑝𝑥 𝑞𝑛−𝑥, when 𝑥 = 1,2, … , 𝑛      (1) 

where 𝑞 = 1 − 𝑝 
The mean and variance of the ZIB distribution with parameters (φ, n, p) are given by, (Athanasios et. 

al., [2]) 
𝐸(𝑋) = 𝑛𝑝(1 − 𝜑),

𝑉(𝑋) = 𝑛𝑝(1 − 𝑝 + 𝑛𝑝𝜑)(1 − 𝜑).        (2)
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The parameters p and φ estimated using method of moments (Rassoul et. al., [8]) are given as follows. 

�̂� =
∑ 𝑥𝑡

2 − ∑ 𝑚
𝑡=1 𝑥𝑡

𝑚
𝑡=1

(𝑛 − 1) ∑𝑚
𝑡=1 𝑥𝑡

�̂� = 1 − (𝑛−1)(∑𝑚
𝑡

=1 𝑥𝑡)2

𝑛𝑚(∑ 𝑥𝑡
2−

𝑚
𝑡=1 ∑𝑚

𝑡=1 𝑥𝑡)
    (3) 

III. Designing of Single Sampling Plan

A SSP is a method used to determine the acceptance or rejection of a lot through the inspection of a 
single sample. A SSP based on attributes is characterized by three key parameters N, representing 
the lot size; n, signifies the sample size; and c, indicating the acceptance number or the maximum 
permissible count of nonconforming items within the sampled lot.  
The step-by-step procedure for SSP by attributes is given as follows:   

Step 1: Select a random sample comprising n items from the lot of size N.  
Step 2: Each item in the n sample undergoes inspection against the predetermined quality 

standards.  
Step 3: Enumerate the number of nonconforming units, represented as x. 
Step 4: If 𝑥 ≤ 𝑐, the lot is approved. If not, the lot is denied. 

The process of determining the parameters n and c which offers protection to both the 
producer and consumer is commonly referred as ‘Designing Sampling Plans’. Stephens [10] and 
Schilling and Neubauer [9] provided a detailed exposition on the principles of sampling inspection, 
determination of sampling plans. 

The OC function quantitatively measures the probability of accepting a lot based on its quality 
level. OC function serves as a valuable tool in the designing of Sampling Plans, helping to 
visualize, analyze and optimize the plan’s performance in making acceptance or rejection 
decisions for lots based on their quality levels.

Now, the OC function of the ZIB SSP can be defined as: 
𝑐

𝑥=0

𝑃𝑎(𝑝) = ∑ 𝑃(𝑋 = 𝑥|𝜑, 𝑛, 𝑝) 

𝑥𝑃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑞𝑛 + ∑𝑐 (𝑛
𝑥=1 ) 𝑝𝑥 𝑞𝑛−𝑥          (4) 

IV. Determination of plan parameters for ZIB SSP

The sampling plans are determined in such a way that they ensure protection to both producer and 
consumer. The operating characteristic curve is a key metric for evaluating the performance of an 
acceptance sampling plan. Thus, the OC curve displays the discriminatory power of the sampling 
plan (Montgomery, [6]). Typically, optimum plan (n, c) is designed from the OC curve which 
passes through the two points (p1, 1 − 𝛼), and (p2, 𝛽), where p1 is the Acceptable Quality Level 
(AQL), 𝛼 is the producer’s risk, p2 is the Limiting Quality Level (LQL) and 𝛽 is the consumer’s risk. 

The plan parameters n and c may be determined subject to: 
    𝑃𝑎(𝑝1) = 1 − 𝛼 and 𝑃𝑎(𝑝2) = 𝛽                                                        (5) 

Due to the discrete nature of the parameters and the need for integers, it is often challenging to find 
a plan that precisely meets all specified requirements. Hence the above conditions are reformulated 
as: 

𝑃𝑎(𝑝1) ≥ 1 − 𝛼 and 𝑃𝑎(𝑝2) ≤ 𝛽  (6)
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The parameter values can be determined to meet specified conditions while simultaneously 

minimizing both producer and consumer risks. The optimum plan parameters under ZIB 
distribution for given (𝑝1, 1 − 𝛼) and (𝑝2, 𝛽) can be determined by using the iterative procedure 
proposed by Guenther [7]. 

By using the iterative procedure, the optimum sampling plans are determined for some sets of 
values of p1, α, p2, β and 𝜑, fixing 𝛼 and 𝛽 at 0.05 and 0.10 respectively. The Python software is used 
to acquire the plan parameters. Python plays a crucial role in this process because of its strong 
computational abilities and wide range of libraries for statistical analysis. It enables the effective 
execution of iterative algorithms for finding the best sampling plans. Python libraries like SciPy 
and NumPy offer strong resources for computing probabilities and conducting advanced 
mathematical calculations, necessary for identifying the optimum plans. The plan parameters are 
presented in Tables I to Table IV. The values of p1, p2 and 𝜑 are taken as 𝑝1= 0.005(0.005)0.05,  𝑝2 = 

0.05(0.01)0.10 and 𝜑 = 0.01(0.03)0.10. 
In certain instances, very large values for n are observed, the optimal sampling plans for such 

scenarios are provided as ***. Similarly, the optimum plans can be determined for different values 
of p1, α, p2, β and 𝜑. 

An optimum plan (n, c) corresponding to the specified (p1, 𝛼) and (p2, 𝛽) can be found in the 
following tables. 

Table 1: Optimum ZIB SSPs when 𝛼 = 0.05, 𝛽 = 0.10 and 𝜑 = 0.01 

AQL 
(𝑝1) 

LQL (𝑝2) 
0.05 0.06 0.07 0.08 0.09 0.10 

0.005 (108,2) (66,1) (56,1) (49,1) (44,1) (39,1) 
0.010 (135,3) (112,3) (77,2) (67,2) (59,2) (53,2) 
0.015 (213,6) (156,5) (115,4) (84,3) (74,3) (53,2) 
0.020 (310,10) (197,7) (151,6) (116,5) (89,4) (67,3) 
0.025 (498,18) (278,11) (186,8) (132,6) (103,5) (80,4) 
0.030 (836,33) (414,18) (255,12) (178,9) (131,7) (105,6) 
0.035 (1579,67) (640,30) (355,18) (237,13) (171,10) (130,8) 
0.040 (3786,171) (1044,52) (500,27) (310,18) (211,13) (154,10) 
0.045 *** (1957,103) (769,44) (423,26) (275,18) (189,13) 
0.050 *** *** (1234,74) (590,38) (351,24) (247,18) 

Table 2: Optimum ZIB SSPs when 𝛼 = 0.05, 𝛽 = 0.10 and 𝜑 = 0.04 

AQL 
(𝑝1) 

LQL (𝑝2) 
0.05 0.06 0.07 0.08 0.09 0.10 

0.005 (118,2) (73,1) (63,1) (55,1) (48,1) (43,1) 
0.010 (174,4) (122,3) (104,3) (73,2) (65,2) (58,2) 
0.015 (252,7) (167,5) (124,4) (91,3) (81,3) (72,3) 
0.020 (376,12) (231,8) (161,6) (124,5) (96,4) (86,4) 
0.025 (565,20) (333,13) (215,9) (157,7) (125,6) (99,5) 
0.030 (953,37) (470,20) (285,13) (203,10) (153,8) (125,7) 
0.035 (1789,75) (718,33) (402,20) (264,14) (194,11) (150,9) 
0.040 *** (1181,58) (566,30) (352,20) (234,14) (174,11) 
0.045 *** (2207,115) (870,49) (481,29) (312,20) (222,15) 
0.050 *** *** (1400,83) (663,42) (402,27) (269,19) 
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Table 3: Optimum ZIB SSPs when 𝛼 = 0.05, 𝛽 = 0.10 and 𝜑 = 0.07 

AQL 
(𝑝1) 

   LQL (𝑝2) 
0.05 0.06 0.07 0.08 0.09 0.10 

0.005 (136,2) (113,2) (74,1) (64,1) (57,1) (51,1) 
0.010 (195,4) (138,3) (118,3) (84,2) (75,2) (67,2) 
0.015 (303,8) (207,6) (158,5) (112,4) (91,3) (82,3) 
0.020 (430,13) (273,9) (196,7) (155,6) (122,5) (96,4) 
0.025 (695,24) (398,15) (270,11) (188,8) (152,7) (123,6) 
0.030 (1134,43) (559,23) (358,16) (251,12) (181,9) (150,8) 
0.035 (2157,89) (868,39) (478,23) (313,16) (223,12) (175,10) 
0.040 *** (1429,69) (694,36) (418,23) (291,17) (213,13) 
0.045 *** (2646,137) (1033,57) (578,34) (371,23) (262,17) 
0.050 *** *** (1694,99) (805,50) (487,32) (333,23) 

Table 4: Optimum ZIB SSPs when 𝛼 = 0.05, 𝛽 = 0.10 and 𝜑 = 0.1 

AQL 
(𝑝1) 

   LQL (𝑝2) 
0.05 0.06 0.07 0.08 0.09 0.10 

0.005 (1343,11) (1043,9) (858,8) (719,7) (610,6) (522,5) 
0.010 (1915,26) (1409,20) (1095,16) (905,14) (756,12) (657,11) 
0.015 (2739,51) (1902,37) (1432,29) (1117,23) (928,20) (776,17) 
0.020 (4041,95) (2581,63) (1832,46)  (1396,36) (1125,30) (922,25) 
0.025 *** (3569,104) (2397,72) (1753,54) (1362,43) (1108,36) 
0.030 *** *** (3190,111) (2237,80) (1671,61) (1132,50) 
0.035 *** *** *** (2870,116) (2078,86) (1604,68) 
0.040 *** *** *** (3773,170) (2605,120) (1936,91) 
0.045 *** *** *** *** (3332,169) (2379,123) 
0.050 *** *** *** *** *** (2965,167) 

V. Illustrations
The following illustrations outline the selection of sampling plans for given 𝜑 and specified 
strength (p1, 𝛼, p2, 𝛽). 

I. Illustration 1
Assuming the specified strength of the plan as (0.010, 0.05, 0.10, 0.10) and 𝜑 = 0.01, the plan 

can be found in Table I. The required ZIB SSP is (53,2) and hence a random selection of 53 items 
from the submitted lot for inspection is recommended. If the count of nonconforming units in the 
sample exceeds 2, the lot may be rejected; otherwise, the lot may be accepted. In accordance with 
this strength, the Binomial SSP determined is (52,2) (Guenther [7]). 

II. Illustration 2
In the case where 𝜑 = 0.0001 and the strength of the plan is defined as (0.005, 0.05, 0.10, 0.10) 

the ZIB SSP is (38, 1). Corresponding to this strength, the Binomial SSP is (38,1) (Guenther, [7]). 
When 𝜑 is small, the ZIB SSPs are identical to those under the Binomial SSPs. Hence, if 𝜑 is 

small, the Binomial SSPs becomes special cases of the ZIB SSPs. 
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The optimum ZIB SSPs with 𝜑 = 0.01, 0.04, 0.07 and 0.1 for the same strength are, respectively, 

(39, 1), (43, 1), (51, 1) and (522, 5). Thus, both the number of products required to be inspected and 
the acceptance number of nonconforming units in the sample increases as the value of 𝜑 increases. 
Hence, with an increase in the value of 𝜑, both the quantity of products required for inspection and 
the acceptable number for nonconforming units in the sample also increases. 

VI. Risk Efficiency

Values of the OC functions of the Binomial and ZIB plans are calculated and are presented in Table 
V. If p is small, the acceptance probabilities are high, and the acceptance probabilities decrease as p 
increases. Each plan ensures a secure level of protection to both the producer and the consumer.

Table 5:  Values of OC function of Binomial SSP and ZIB SSPs for (p1=0.005, 𝛼 =0.05, p2 =0.10, 𝛽=0.10) 

When p = 0.088, the consumer’s risk is 14.09 % under Binomial SSP. The consumer’s risk under ZIB 
SSP is 14.09 %, 13.98 %, 13.41 %, 12.02 %, 10.00 % for  𝜑 = 0.0001, 0.01, 0.04, 0.07 and 0.1 respectively. 
When φ = 0.0001, the SSPs for both Binomial and ZIB distributions offer the same level of consumer 
risk. However, for various values of φ = 0.01, 0.04, 0.07, and 0.1, the ZIB SSPs provide greater 
consumer protection compared to Binomial SSPs by lowering the risk of accepting poor-quality 
lots. 

When p = 0.004, the producer’s risk under Binomial SSP is 1.02 %. The producer’s risk under 
ZIB SSP is 1.02%, 1.02 %, 1.07 %, 1.24 %, 1.67 % for  𝜑 = 0.0001, 0.01, 0.04, 0.07 and 0.1 respectively. 
When 𝜑 = 0.0001, the SSPs under Binomial and ZIB provides same amount of producer’s risk.  

The combined risk is determined by adding both the producer's risk and the consumer's risk 
(Vijayaraghavan et al., [12]). When φ = 0.0001, the total risk for both the producer and the consumer 
under the Binomial SSP is 15.11 %. In contrast, the total risks under ZIB SSPs are 15.11%, 15.11%, 
15.05%, 14.65%, 13.69%, and 11.77% for φ values of 0.0001, 0.01, 0.04, 0.07, and 0.1, respectively. The 
total risk is the same for both Binomial and ZIB SSPs when φ = 0.0001. However, using ZIB SSPs 
lowers the overall risk for both the producer and the consumer. 

VII. Conclusion

In a well-monitored production process, most of the products will satisfy the prescribed quality 
requirements and hence the count data on the number of non-conforming units will contain more 
number of zeros. ZIB distribution is the appropriate probability distribution for such 
manufacturing 

Model 
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𝜑 n c 0.004 0.008 0.04 0.072 0.088 0.2 

Binomial - 38 1 0.9898 0.9628 0.5476 0.2308 0.1409 0.0022 1.02 14.09 15.11 

ZIB 

0.0001 38 1 0.9898 0.9628 0.5476 0.2308 0.1409 0.0022 1.02 14.09 15.11 

0.01 39 1 0.9893 0.9614 0.5389 0.2262 0.1398 0.0118 1.07 13.98 15.05 

0.04 43 1 0.9876 0.9553 0.5032 0.2075 0.1341 0.0408 1.24 13.41 14.65 

0.07 51 1 0.9833 0.9413 0.4324 0.1720 0.1202 0.0701 1.67 12.02 13.69 

0.1 522 5 0.9823 0.7818 0.1000 0.1000 0.1000 0.1000 1.77 10.00 11.77 
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processes. ZIB SSP involves specified inspection strategies to accommodate the unique 
characteristics of the distribution, ensuring effective quality control. This enables better informed 
decision-making, leading to more reliable acceptance or rejection decisions. The operating 
characteristics function of the ZIB SSP is derived in this paper. The methods for the selection of 
SSPs based on ZIB distribution are presented. The optimum ZIB SSP determined for different 
values of p1, α, p2, β and 𝜑 are provided in the tables and numerical illustrations are presented. If 𝜑 is 
small, the Binomial SSPs becomes special cases of the ZIB SSPs. The ZIB SSP reduces the 
consumer’s risk and safeguards the consumer against the acceptance of poor quality lots. The total 
risk of producer and consumer is also reduced yielding numerous advantages such as increased 
customer satisfaction, enhanced productivity, cost efficiency and long-term sustainability in the 
market.  
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Abstract 

This study addresses the estimation of the stress-strength reliability model, where stress and strength 

both following the Nakagami distribution. While conventional approaches have relied on simple 

random sampling (SRS) for estimating reliability models, recent research suggests that ranked set 

sampling (RSS) offers a more efficient alternative. RSS yields more informative samples compared 

to SRS, potentially enhancing the accuracy of reliability estimations. Our investigation focuses on 

deriving maximum likelihood estimators (MLEs) for stress-strength under both SRS and RSS 

methodologies. To evaluate the comparative efficacy of these sampling techniques, we conduct a 

comprehensive Monte Carlo simulation study. The results of this analysis provide compelling 

evidence that RSS-based estimators outperform their SRS counterparts in terms of efficiency and 

precision. This research contributes to the growing body of literature supporting the adoption of RSS 

in reliability engineering. By demonstrating the superior performance of RSS in the context of 

Nakagami-distributed stress-strength models, we offer valuable insights for researchers and 

practitioners seeking to optimize their estimation procedures in reliability analysis. 

Keywords: Stress–strength reliability, simple random sampling, ranked set 
sampling, Nakagami distribution, maximum likelihood estimation.

1. Introduction

The concept of stress-strength reliability plays a pivotal role in engineering decision-making, design 
optimization, and risk evaluation, particularly where safety, performance, and longevity are 
paramount. This analytical approach is indispensable for ensuring that engineered systems, 
structures, and components not only meet functional requirements but also withstand the 
challenges posed by fluctuating loads, environmental influences, and operational dynamics. At the 
core of reliability engineering and statistics lies the stress-strength model, which primarily aims to 
quantify the probability of system success or failure when both stress and strength are subject to
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random variations. This methodology finds applications across diverse sectors, including 
engineering, materials science, quality control, and even finance. Within the framework of the stress-
strength paradigm, the expression "𝑃𝑟(𝑌 < 𝑋)” represents the likelihood that a system's stress 
remains below its inherent strength. Essentially, this metric gauges the probability of system 
survival in the stress-strength model. Conversely, system failure occurs when the applied stress 

exceeds the material or component strength. 
In the literature, the work on stress-strength model was first done by Birnbaum [2] and 

Birnbaum and McCarty [3]. The word stress-strength was first used by Church and Harris [4] in 
their research article, and they done a remarkable work under parametric and non-parametric 
inference. After that various authors choose different probabilistic models for estimating the stress-

strength models. Some of these choices were summarised by Johnson [5]. A summary of all 
approaches and findings on the stress-strength model during the previous four decades was 
published by Kotz et al. [6]. The situation where X and Y are independent Type XII Burr random 
variables was examined by Awad and Gharraf [7]. For the recent development on this topic, one 
may refer to Chaturvedi and Kumar [8], Kundu and Gupta [9], Kundu and Raqab [10], 
Krishnamoorthy and Lin [11], Lio and Tsai [12], Barbiero [13], Chaturvedi and Kumari [14]. In all 
the above studies the authors have used the simple random sampling technique. 

The ranked set sampling introduced by McIntyre [1][1], gained importance when Halls and 
Dell  [15]  applied ranked set sampling to estimate forage yields under pine-hardwood forest. 
Takahashi and Wakimoto [16], Dell and Clutter [17], David and Levine [18] focused on the efficiency 
of the estimators based on RSS and they established that RSS outperforms its counterpart simple 
random sampling with an identical sample size. Expanding the horizons of RSS, Yu and Lam [19] 
and Chen [20] explored regression estimation based on this methodology, providing notable 
examples and results. Additionally, studies on the estimation of distribution functions under 
various RSS techniques were conducted by Stokes and Sager [21], Kvam and Samaniego [22], and 
Chen [23]. Zamanzade and Vock [24], Zhang et al. [25] and Ozturk [26] have yields insights into 
inferential procedures reliant on ranked set sampling. 

To delve deeper into this specialized data collection technique, one may refer to the review 
papers of Kaur et al. [27], Bai and Chen [28], and Wolfe [29]. These review papers include all 
pertinent references on RSS, including historical development, current status and future research 
direction. Hassan et al. [30] obtained the point and interval estimators of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) for the case 
of independent Gompertz random variables with common scale and different shape parameters 
based on RSS. 

Here, we have consider the estimation of  𝑃 = 𝑃𝑟(𝑌 < 𝑋) with a focus on situation where the 
random stress Y and random strength X are two independent Nakagami random variables with 
shape parameters (𝛼1, 𝛼2) and scale parameters (𝜆, 𝜆), respectively. The point estimator of 𝑃 =

𝑃𝑟(𝑌 < 𝑋), is obtained using the maximum likelihood method based on both SRS and RSS, and the 
efficiency of this method based on SRS and RSS is compared. In Section 2, we present a brief 
overview about the Nakagami distribution and its relationship with other probability distributions. 
Point estimation of the parameters is given in Section 3. Section 4 and Section 5 comprises the point 
estimation of stress-strength model under SRS and under RSS, respectively. A simulation study 
employing the Monte Carlo method is discussed in Section 6. Section 7 details an empirical data 
analysis, and lastly Section 8 provides concluding remarks for the paper. 

2. Preliminary

Consider a random variable X that adheres to the Nakagami distribution, denoted as NAD (𝛼, 𝜆). 
In this distribution, 𝛼 represents the shape parameter, which is bounded by the condition 𝛼 > 0.5, 
while 𝜆 symbolizes the scale parameter, constrained to be strictly positive (𝜆 > 0). For this 
distribution, the probability density function (PDF) and cumulative distribution function (CDF) are 
characterized as follows: 
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𝑓(𝑥; 𝛼, 𝜆) =
2

𝛤α
(

α

λ
)

α

𝑥(2α−1)𝑒𝑥𝑝 (−
α

λ
𝑥2) ; 𝑥 > 0, 𝛼 > 0.5, λ > 0   (1) 

and 

𝐹(𝑥) =
1

𝛤α
𝛾 (α,

α

λ
𝑥2) ; 𝑥 > 0, 𝛼 > 0.5, 𝜆 > 0   (2) 

Where, 𝛾(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
𝑥

0
 is the lower incomplete gamma function. 

The reliability function of NAD (𝛼, 𝜆)  is 

𝑅(𝑡) = 1 −
1

𝛤α
𝛾 (α,

α

λ
𝑡2) ; 𝑡 > 0, 𝛼 > 0.5, 𝜆 > 0  (3) 

The hazard rate of NAD (𝛼, 𝜆)  is. 

ℎ(𝑡) =
2

𝛤𝛼
(

𝛼

𝜆
)

𝛼
𝑡(2𝛼−1)𝑒𝑥𝑝(− 

𝛼

𝜆
𝑡2) 

1− 
1

𝛤𝛼 
 𝛾(𝛼,  

𝛼

𝜆
𝑡2)

 ; 𝑡 > 0, 𝛼 > 0.5, 𝜆 > 0  (4) 

Other distribution relationships 
1) If 𝛼 = 0.5, then Nakagami distribution (𝛼, 𝜆) becomes Half Normal Distribution.

2) For 𝛼 = 1, then Nakagami distribution (𝛼, 𝜆) reduces to Rayleigh Distribution.

3) If random variable Y ~ Gamma (𝛼, 𝜆) where 𝛼 is shape parameter and 𝜆 is scale
parameter, then √𝑌  ~ NAD (𝛼, 𝛼𝜆).

4) If Z ~ chi-square (2𝛼) and then √ 𝜆

2α
𝑍  ~ NAD (𝛼, 𝜆)  where 2𝛼 is integer-valued. 

3. Point estimation of the parameters

Let us draw a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 from the NAD (𝛼, 𝜆)  of size n. The likelihood function 
of the Nakagami distribution NAD (𝛼, 𝜆)  is given by 

𝐿 (𝑥, α, λ) =  
(2αα)𝑛

(𝛤α)𝑛(λ)𝑛α
∏ 𝑥𝑖

2α−1 exp (−
α

λ
∑ 𝑥𝑖

2

𝑛

𝑖=1

)

𝑛

𝑖=1

 

Theorem 1. The Maximum Likelihood Estimator of scale parameter λ is 

n

x
n

i

i
 1

2

̂

Theorem 2. The Maximum Likelihood Estimator of shape parameter α is 
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log
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̂

Proof.  If we suppose that 𝜆 is known, then the likelihood function for the parameter 𝛼 is given as 

𝐿(α|𝑥) =  
(2αα)𝑛

(𝛤α)𝑛(λ)𝑛α
∏ 𝑥𝑖

2α−1 exp (−
α

λ
∑ 𝑥𝑖

2

𝑛

𝑖=1

)

𝑛

𝑖=1

 

The log likelihood function is 

log 𝐿 = 𝑛log2 −  𝑛log(𝛤𝛼) + 𝑛𝛼 log(𝛼) − 𝑛𝛼 log(𝜆) + ∑(2𝛼 − 1)

𝑛

𝑖=1

log(𝑥𝑖) −
𝛼

𝜆
∑ 𝑥𝑖

2

𝑛

𝑖=1

Partially differentiating with respect to α, and equating it equal to zero, we get 

1
ˆ

1
log

2ˆlog

5.0
ˆ

1

2

1
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i
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From theorem 1 
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5.0
̂

4. Point estimation of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) in case of simple random sampling

To derive the stress-strength reliability model 𝑃 = 𝑃𝑟(𝑌 < 𝑋), here we assumed that X is the strength 
variable and Y is the stress variable, both are following the Nakagami distribution with common 
scale parameter 𝜆 > 0 and different shape parameters 𝛼1 > 0.5 and  𝛼2 > 0.5, respectively. By 
notation 𝑋 ~ 𝑁𝐴𝐷 (𝛼1, 𝜆) and 𝑌 ~ 𝑁𝐴𝐷 (𝛼2, 𝜆), then 

𝑃 =  ∫ 𝑃 (𝑌 < 𝑋)𝑓(𝑥)𝑑𝑥

∞

0

 

=  ∫
1

𝛤𝛼2

𝛾 (𝛼2,
𝛼2

λ
𝑥2)

2

𝛤𝛼1

(
𝛼1

λ
)

𝛼1

𝑥(2𝛼1−1)𝑒𝑥𝑝 (−
𝛼1

λ
𝑥2) 𝑑𝑥

∞

0

 

where 𝛾(𝑛, 𝑥) = 𝛤𝑛 (1 − 𝑒−𝑥 ) is the lower incomplete gamma function. 
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 =  2 (
𝛼1

λ
)

𝛼1 1

𝛤𝛼1

 (∫ 𝑥(2𝛼1−1)𝑒𝑥𝑝 (−
𝛼1

λ
𝑥2) 𝑑𝑥

∞

0

− ∫ 𝑥(2𝛼1−1)𝑒𝑥𝑝 (−
𝛼1

λ
𝑥2) 𝑒𝑥𝑝 (−

𝛼2

λ
𝑥2) ∑

(
𝛼2𝑥2

𝜆
⁄ )

𝑚

𝑚!

𝛼2−1

𝑚=0

𝑑𝑥

∞

0

) 

 =  2 (
𝛼1

λ
)

𝛼1 1

𝛤𝛼1

 (
1

2
(

λ

𝛼1

)
𝛼1

𝛤𝛼1 − ∑
𝛼2

𝑚 λ𝛼1

2𝑚!
(

𝛤(𝛼1 + 𝑚)

(𝛼1 + 𝛼2)𝛼1+𝑚
)

𝛼2−1

𝑚=0

) 

 𝑃 = 1 − 
(𝛼1)𝛼1

𝛤𝛼1

∑
(𝛼2)𝑚

𝑚!

𝛤(𝛼1 + 𝑚)

(𝛼1 + 𝛼2)𝛼1+m

𝛼2−1

𝑚=0

(5)

Let two independent random samples X and Y of size n and m are drawn from Nakagami 
distribution with parameters (𝛼1, 𝜆) and (𝛼2, 𝜆), respectively. For known λ, the invariance 
characteristic of the maximum likelihood estimator provides the maximum likelihood estimator for 
P. The maximum likelihood estimators of 𝛼1 and 𝛼2 are
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Maximum likelihood estimator of P in case of simple random sampling is given by 

�̂�𝑆𝑅𝑆 = 1 −  
(�̂�1𝑆𝑅𝑆)�̂�1𝑆𝑅𝑆

𝛤�̂�1𝑆𝑅𝑆

∑
(�̂�2𝑆𝑅𝑆)𝑚

𝑚!

𝛤(�̂�2𝑆𝑅𝑆 + 𝑚)

(�̂�1𝑆𝑅𝑆 + �̂�2𝑆𝑅𝑆)�̂�1𝑆𝑅𝑆+m

�̂�1𝑆𝑅𝑆 − 1

𝑚=0

5. Point estimation of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) in case of ranked set sampling

1. Standard ranked set sampling

Ranked set sampling (RSS) represents a cutting-edge approach in statistical sampling, designed to 
boost the accuracy of parameter estimation, particularly in scenarios where resources are scarce or 
data collection costs are prohibitive. This method diverges from traditional random sampling by 
utilizing the ranked order or order statistics of sampled observations, thereby enhancing the quality 
and efficiency of estimations. The concept of RSS, initially proposed in the mid-20th century, has 
since gained traction across diverse fields such as environmental science, forestry, and ecology. Its 
popularity stems from its ability to yield robust statistical insights even when comprehensive 
population surveys are unfeasible. By offering a pragmatic and economical alternative to 
conventional sampling techniques, RSS has become an invaluable asset for researchers and 
statisticians aiming to refine their sampling strategies. The implementation of RSS to generate a 
sample of size n = r*m involves a series of structured steps, where m denotes the number of sample 
units selected in each cycle (of fixed size) and r represents the total number of cycles. These steps 
are executed sequentially as follows: 

1. A random subset of the population consisting of 𝑚2 units is selected.
2. The 𝑚2 units are then divided arbitrarily into m sets, each containing m units.
3. The units within each set are ranked based on either professional judgment or correlation
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with the variable of interest. 
4. An individual quantile sample is constructed by taking the lowest ranked unit from the first

set, the second lowest ranked unit from the second set, and continuing in this fashion.
5. To obtain a larger sample of size n = r*m, steps 1 through 4 can be repeated for r cycles.

The ranked set sampling (RSS) method takes only one observation from each set in each cycle. 
In the first cycle, it chooses the lowest observation 𝑋(11)𝑟. In later cycles, it independently selects the 
second lowest 𝑋(22)𝑟 from a different set of m observations and the highest 𝑋(𝑚𝑚)𝑟  from the final set 
of m. Let 𝑋(𝑖𝑖)𝑘, 𝑖 = 1, 2, … , 𝑚;  𝑘 = 1, 2, … , 𝑟, be a ranked sample set with set size m and r cycles. For 
convenience, this paper will use the notation 𝑋(𝑖)𝑟 in place of the full description. 

2. The maximum likelihood estimation of 𝑃 = 𝑃𝑟(𝑌 < 𝑋) in case of  RSS

Let 𝑋(𝑖𝑗), 𝑖 = 1, 2, … , 𝑟1;  𝑗 = 1, 2, … , 𝑚1, denote the ranked set sample of size 𝑛1 = 𝑟1𝑚1 from 
Nakagami distribution with parameter (𝛼1, 𝜆), where 𝑚1 is the set size and 𝑟1 is the number of cycles 
and 𝑌(𝑘𝑙), 𝑘 = 1, 2, … , 𝑟2;  𝑙 = 1, 2, … , 𝑚2, denote the ranked set sample of size 𝑛2 = 𝑟2𝑚2 from 
Nakagami distribution with parameter (𝛼2, 𝜆), where 𝑚2 is the set size and 𝑟2 is the number of cycles. 
Then the PDF of 𝑋(𝑖𝑗) and 𝑌(𝑘𝑙) are given by  

 𝑓𝑖(𝑥𝑖𝑗) =
𝑚1!

(𝑖−1)!(𝑚1−𝑖)!
[𝐹𝑋(𝑥)]𝑖−1[1 − 𝐹𝑋(𝑥)]𝑚1−𝑖𝑓(𝑥𝑖𝑗)   (6) 

𝑔𝑘(𝑦𝑘𝑙) =
𝑚2!

(𝑘−1)!(𝑚2−𝑘)!
[𝐹𝑌(𝑦)]𝑘−1[1 − 𝐹𝑌(𝑦)]𝑚2−𝑘𝑔(𝑦𝑘𝑙)    (7) 

Now the likelihood function is given as 

𝐿 =  ∏ ∏ 𝑓𝑖(𝑥𝑖𝑗)

𝑚1

𝑗=1

𝑟1

𝑖=1

∏ ∏ 𝑔𝑘(𝑦𝑘𝑙)

𝑚2

𝑙=1

𝑟2

𝑘=1

 

𝐿 =  ∏ ∏
𝑚1!

(𝑖 − 1)! (𝑚1 − 𝑖)!
[𝐹𝑋(𝑥)]𝑖−1[1 − 𝐹𝑋(𝑥)]𝑚1−𝑖𝑓(𝑥𝑖𝑗)

𝑚1

𝑗=1

𝑟1

𝑖=1

∏ ∏
𝑚2!

(𝑘 − 1)! (𝑚2 − 𝑘)!
[𝐹𝑌(𝑦)]𝑘−1[1 − 𝐹𝑌(𝑦)]𝑚2−𝑘𝑔(𝑦𝑘𝑙)

𝑚2

𝑙=1

𝑟2

𝑘=1

  (8) 

Let 𝑢 =  ∏ ∏
𝑚1!

(𝑖 − 1)! (𝑚1 − 𝑖)!

𝑚1

𝑗=1

𝑟1

𝑖=1

 , 𝑣 = ∏ ∏
𝑚2!

(𝑘 − 1)! (𝑚2 − 𝑘)!

𝑚2

𝑙=1

𝑟2

𝑘=1

𝐿 =  ∏ ∏ 𝑢[𝐹𝑋(𝑥𝑖𝑗)]
𝑖−1

[1 − 𝐹𝑋(𝑥𝑖𝑗)]
𝑚1−𝑖

𝑓(𝑥𝑖𝑗)

𝑚1

𝑗=1

𝑟1

𝑖=1

∏ ∏ 𝑣[𝐹𝑌(𝑦𝑘𝑙)]𝑘−1[1 − 𝐹𝑌(𝑦𝑘𝑙)]𝑚2−𝑘𝑔(𝑦𝑘𝑙)

𝑚2

𝑙=1

𝑟2

𝑘=1

𝐿 = 𝑢 ∏ ∏ (
1

𝛤𝛼1

)
𝑚1−1

𝑚1

𝑗=1

𝑟1

𝑖=1

[𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑖−1

[𝛤𝛼1 − 𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑚1−𝑖

 (
2

𝛤𝛼1

) (
𝛼1

𝜆
)

𝛼1

𝑥𝑖𝑗
2𝛼1−1 exp (−

𝛼1

𝜆
𝑥𝑖𝑗

2)  𝑣 ∏ ∏ (
1

𝛤𝛼2

)
𝑚2−1

𝑚2

𝑙=1

𝑟2

𝑘=1

[𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑘−1

[𝛤𝛼2 − 𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑚2−𝑘

(
2

𝛤𝛼2

) (
𝛼2

𝜆
)

𝛼2

𝑦𝑘𝑙
2𝛼2−1 exp (−

𝛼2

𝜆
𝑦𝑘𝑙

2)

(9)
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sum of lower incomplete gamma function and upper incomplete gamma function is a gamma 
function, which implies   

𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
) + 𝛤 (𝛼1,

𝛼1𝑥𝑖𝑗
2

𝜆
) = 𝛤𝛼1 

gives

 𝛤𝛼1 − 𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
) = 𝛤 (𝛼1,

𝛼1𝑥𝑖𝑗
2

𝜆
) 

Thus, 

𝐿 = (
1

𝛤𝛼1

)
𝑛1(𝑚1−1)

(
2

𝛤𝛼1

)
𝑛1

(
𝛼1

𝜆
)

𝑛1𝛼1

(
1

𝛤𝛼2

)
𝑛2(𝑚2−1)

(
2

𝛤𝛼2

)
𝑛2

(
𝛼2

𝜆
)

𝑛2𝛼2

𝑢𝑣 

∏ ∏ [𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑖−1

 [𝛤 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑚1−𝑖𝑚1

𝑗=1

𝑟1

𝑖=1

𝑥𝑖𝑗
2𝛼1−1𝑒𝑥𝑝 (−

𝛼1

𝜆
𝑥𝑖𝑗

2)

∏ ∏ [𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑘−1

[𝛤 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑚2−𝑘

𝑦𝑘𝑙
2𝛼2−1𝑒𝑥𝑝

𝑚2

𝑙=1

𝑟2

𝑘=1

(−
𝛼2

𝜆
𝑦𝑘𝑙

2)

(10)

Taking log on both sides 

 log 𝐿 = log𝐿1 + log𝐿2            (11)

where 

𝐿1 =  𝑢 (
1

𝛤𝛼1

)
𝑛1(𝑚1−1)

(
2

𝛤𝛼1

)
𝑛1

(
𝛼1

𝜆
)

𝑛1𝛼1

∏ ∏ [𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑖−1𝑚1

𝑗=1

𝑟1

𝑖=1

[𝛤 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

𝑚1−𝑖

𝑥𝑖𝑗
2𝛼1−1𝑒𝑥𝑝 (−

𝛼1

𝜆
𝑥𝑖𝑗

2) (12)

and 

𝐿2 =  𝑣 (
1

𝛤𝛼2

)
𝑛2(𝑚2−1)

(
2

𝛤𝛼2

)
𝑛2

(
𝛼2

𝜆
)

𝑛2𝛼2

∏ ∏ [𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑘−1𝑚2

𝑙=1

𝑟2

𝑘=1

[𝛤 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

𝑚2−𝑘

𝑦𝑘𝑙
2𝛼2−1𝑒𝑥𝑝 (−

𝛼2

𝜆
𝑦𝑘𝑙

2) (13)

This implies, 
log𝐿1 = log𝑢 + 𝑛1(𝑚1 − 1)(−log𝛤𝛼1) + 𝑛1(log2 − log𝛤𝛼1) + 𝑛1𝛼1(log𝛼1 − log𝜆)

+ ∑ ∑(𝑖 − 1)log

𝑚1

𝑗=1

[𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)] + ∑ ∑(𝑚1 − 𝑖)log [𝛤 (𝛼1,

𝛼1𝑥𝑖𝑗
2

𝜆
)]

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑟1

𝑖=1

+ (2𝛼1 − 1) ∑ ∑ log𝑥𝑖𝑗 −
𝛼1

𝜆

𝑚1

𝑗=1

𝑟1

𝑖=1

∑ ∑ 𝑥𝑖𝑗
2

𝑚1

𝑗=1

𝑟1

𝑖=1

(14)

Differentiating Eq.(5.2.9) with respect to 𝛼1 and 𝛼2 respectively, we get 
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𝜕log𝐿1

𝜕𝛼1

= −𝑚1

𝜕

𝜕𝛼1

log𝛤𝛼1 + 𝑛1(log𝛼1 + 1) − 𝑛1log 𝜆 + ∑ ∑(𝑖 − 1)
𝜕

𝜕𝛼1

𝑚1

𝑗=1

𝑟1

𝑖=1

log [𝛾 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)]

+ ∑ ∑(𝑚1 − 𝑖)
𝜕

𝜕𝛼1

log [𝛤 (𝛼1,
𝛼1𝑥𝑖𝑗

2

𝜆
)] + 2

𝑚1

𝑗=1

𝑟1

𝑖=1

∑ ∑ log𝑥𝑖𝑗 −
1

𝜆
∑ ∑ 𝑥𝑖𝑗

2

𝑚1

𝑗=1

𝑟1

𝑖=1

𝑚1

𝑗=1

𝑟1

𝑖=1

  (15) 
and 

𝜕log𝐿2

𝜕𝛼2

= −𝑚2

𝜕

𝜕𝛼2

log𝛤𝛼2 + 𝑛2(log𝛼2 + 1) − 𝑛2logλ + ∑ ∑(𝑘 − 1)
𝜕

𝜕𝛼2

𝑚2

𝑙=1

𝑟2

𝑘=1

log [𝛾 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)]

+ ∑ ∑(𝑚2 − 𝑘)
𝜕

𝜕𝛼2

log [𝛤 (𝛼2,
𝛼2𝑦𝑘𝑙

2

𝜆
)] + 2

𝑚2

𝑙=1

𝑟2

𝑘=1

∑ ∑ log𝑦𝑘𝑙 −
1

𝜆
∑ ∑ 𝑦𝑘𝑙

2

𝑚2

𝑙=1

𝑟2

𝑘=1

𝑚2

𝑙=1

𝑟2

𝑘=1

  (16) 
Differentiating Eq.(5.2.6) with respect to λ, we get 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜆
= −

𝑛1𝛼1

𝜆
+ ∑ ∑(𝑖 − 1)

𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛾 (𝛼1,

𝛼1𝑥2

𝜆
)] +

𝑚1

𝑗=1

𝑟1

𝑖=1

∑ ∑(𝑚1 − 𝑖)
𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛤 (𝛼1,

𝛼1𝑥2

𝜆
)]

𝑚1

𝑗=1

𝑟1

𝑖=1

+
𝛼1

𝜆
∑ ∑ 𝑥𝑖𝑗

2

𝑚1

𝑗=1

−

𝑟1

𝑖=1

𝑛2𝛼2

𝜆
+ ∑ ∑(𝑘 − 1)

𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛾 (𝛼2,

𝛼2𝑦2

𝜆
)]

𝑚2

𝑙=1

𝑟2

𝑘=1

 

+ ∑ ∑(𝑚2 − 𝑘)
𝜕

𝜕𝜆
𝑙𝑜𝑔 [𝛤 (𝛼2,

𝛼2𝑦2

𝜆
)] +

𝛼2

𝜆2
∑ ∑ 𝑦𝑘𝑙

2

𝑚2

𝑘=1

𝑟2

𝑘=1

𝑚2

𝑙=1

𝑟2

𝑘=1

 (17) 
A numerical approach is utilized to obtain the maximum likelihood estimates for 𝛼1 and 𝛼2, 

denoted as by �̂�1𝑅𝑆𝑆 and �̂�2𝑅𝑆𝑆, from equations 5.2.10 and 5.2.11, respectively using the ranked set 
sampling method. Applying the invariance property of maximum likelihood estimators, the 
maximum likelihood estimate of the reliability parameter P based on RSS, denoted �̂�𝑅𝑆𝑆, can then be 
derived as 

�̂�𝑅𝑆𝑆 = 1 −  
(�̂�1𝑅𝑆𝑆)�̂�1𝑅𝑆𝑆

𝛤�̂�1𝑅𝑆𝑆

∑
(�̂�2𝑅𝑆𝑆)𝑚

𝑚!

𝛤(�̂�2𝑅𝑆𝑆 + 𝑚)

(�̂�1𝑅𝑆𝑆 + �̂�2𝑅𝑆𝑆)�̂�1𝑅𝑆𝑆+m

�̂�1𝑅𝑆𝑆 −1

𝑚=0

6. Simulation study

In this section we carried out a simulation study. Bias and mean square error (MSE) for P are 
provided by  𝐵𝑖𝑎𝑠(�̂�) = 𝐸(�̂� − 𝑃) and 𝑀𝑆𝐸(�̂�) = 𝐸(�̂� − 𝑃) ,

2 respectively to compare our suggested 
reliability estimator P based on ranked set sampling RSS with the conventional reliability estimator 
of P based on SRS. The formula for calculating the relative efficiency RE of the estimator of P is 
𝑀𝑆𝐸(�̂�𝑆𝑅𝑆)

𝑀𝑆𝐸(�̂�𝑅𝑆𝑆)
 . Relative efficiency values greater than one suggest that the �̂�𝑅𝑆𝑆 is more efficient than 

the �̂�𝑆𝑅𝑆. All computations are performed using the R programming language. The simulation study 
is explained in the following steps. 
Step 1: We generate 1000 simple random samples of 𝑋1, 𝑋2, … , 𝑋𝑛1

, and 𝑌1, 𝑌2, ... , 𝑌𝑛2
 from 

Nakagami distribution with the sample sizes of (𝑛1,  𝑛2) = (15, 15), (15, 20), (15, 25), (20, 20), (20, 25), 
(25, 25) in Case 1 and (20, 20),     (20, 30), (20, 40), (30, 30), (30, 40), (40, 40) in Case 2. 
Step 2: We generate 1000 ranked set samples of 𝑋11, ... , 𝑋𝑚1𝑟1

 and 𝑌11, … , 𝑌𝑚2𝑟2
 from Nakagami 

distribution for the first case when the number of cycles is taken as 𝑟1 = 𝑟2 = 5  with set sizes 𝑚1 =

𝑚2 = 3, 4, 5 and for the second case when the number of cycles is taken as 𝑟1 = 𝑟2 = 10  with set sizes 
𝑚1 = 𝑚2 = 2, 3, 4.  
Step 3: To generate the simple random samples and ranked set samples for Nakagami distribution, 
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we consider the true value of the common scale parameter 𝜆 = 3 and the true values of the shape 
parameter 𝛼𝑥 and 𝛼𝑦 are  (0.5, 0.9), (0.7, 1.2) and (0.9, 1.5), respectively for the strength variable X 
and the stress variable Y, respectively. For these values, the true value of stress-strength model  P is 
0.40238, 0.50290 and 0.58635, respectively. 
Step 4: The Biases, MSES and relative efficiency are presented in the Table 1. 

It is evident from the Table 1 that the relative efficiency is greater than one in every case; so, we 
can say that the ranked set sampling is showing more efficient results in comparison to simple 
random sampling in estimating the stress-strength reliability.  

Table 1: Biases, MSES and RE of P under SRS and RSS when the common scale parameter λ = 3 

SRS RSS 
Case-1  𝑟1 = 𝑟2 = 5 

(𝛼1, 𝛼2) (𝑛1, 𝑛2) (𝑚1, 𝑚2) 𝑃𝑇𝑟𝑢𝑒 �̂�𝑆𝑅𝑆 Bias MSE �̂�𝑅𝑆𝑆 Bias MSE RE 
(0.5,0.9) (15,15) (3,3) 0.40238 0.38205 -0.02033 0.007075 0.37479 -0.02759 0.005877 1.2037 

(15,20) (3,4) 0.37976 -0.02262 0.006309 0.36312 -0.03926 0.005434 1.1609 
(15,25) (3,5) 0.36858 -0.0338 0.005457 0.35188 -0.05050 0.005283 1.0328 
(20,20) (4,4) 0.36992 -0.03247 0.005543 0.36500 -0.03738 0.004656 1.1903 
(20,25) (4,5) 0.36951 -0.03287 0.004886 0.36047 -0.04190 0.004239 1.1522 
(25,25) (5,5) 0.36761 -0.03477 0.004822 0.35752 -0.04486 0.004346 1.1095 

(0.7,1.2) (15,15) (3,3) 0.50290 0.48768 -0.01521 0.0081549 0.48285 -0.02004 0.007379 1.1051 
(15,20) (3,4) 0.48781 -0.01509 0.0071741 0.47443 -0.02846 0.006434 1.1149 
(15,25) (3,5) 0.48497 -0.01792 0.0064565 0.46760 -0.03529 0.005642 1.1442 
(20,20) (4,4) 0.48402 -0.01887 0.0065401 0.47210 -0.03079 0.005534 1.1816 
(20,25) (4,5) 0.48118 -0.02171 0.0058446 0.46763 -0.03527 0.004607 1.2684 
(25,25) (5,5) 0.47852 -0.02437 0.0056632 0.46007 -0.04282 0.005261 1.0762 

(0.9,1.5) (15,15) (3,3) 0.58635 0.58608 -0.00026 0.009415 0.56558 -0.02759 0.008915 1.0560 
(15,20) (3,4) 0.57906 -0.00729 0.008066 0.56648 -0.03926 0.006912 1.1669 
(15,25) (3,5) 0.57434 0.57434 0.006819 0.55942 -0.05050 0.005731 1.1897 
(20,20) (4,4) 0.57625 -0.01010 0.007531 0.55986 -0.03738 0.006197 1.2151 
(20,25) (4,5) 0.56799 -0.01836 0.006249 0.54742 -0.04190 0.005974 1.0460 
(25,25) (5,5) 0.56607 -0.02027 0.005941 0.55713 -0.04486 0.004836 1.2282 

Case-2 𝑟1 = 𝑟2 = 10 
(𝛼1, 𝛼2) (𝑛1, 𝑛2) (𝑚1, 𝑚2) 𝑃𝑇𝑟𝑢𝑒 �̂�𝑆𝑅𝑆 Bias MSE �̂�𝑅𝑆𝑆 Bias MSE RE 
(0.5,0.9) (20,20) (2,2) 0.40238 0.37497 -0.02741 0.005234 0.37116 -0.03121 0.005073 1.0316 

(20,30) (2,3) 0.36741 -0.03497 0.004678 0.36359 -0.03879 0.004379 1.0682 
(20,40) (2,4) 0.36257 -0.03980 0.004350 0.36089 -0.04149 0.003852 1.1290 
(30,30) (3,3) 0.36183 -0.04055 0.004494 0.36021 -0.04216 0.004249 1.0574 
(30,40) (3,4) 0.36209 -0.04028 0.004011 0.35657 -0.04581 0.003841 1.0444 
(40,40) (4,4) 0.35891 -0.04346 0.004020 0.35649 -0.04589 0.003606 1.1146 

(0.7,1.2) (20,20) (2,2) 0.50290 0.48040 -0.02249 0.007313 0.48090 -0.02200 0.006477 1.1290 
(20,30) (2,3) 0.47824 -0.02465 0.005291 0.47161 -0.03129 0.004850 1.0908 
(20,40) (2,4) 0.47323 -0.02966 0.004726 0.46726 -0.03563 0.004282 1.1037 
(30,30) (3,3) 0.47157 -0.03132 0.004867 0.46328 -0.03961 0.004715 1.0322 
(30,40) (3,4) 0.46866 -0.03423 0.004614 0.46346 -0.03943 0.004210 1.0958 
(40,40) (4,4) 0.46736 -0.03553 0.004181 0.46037 -0.04253 0.003984 1.0494 

(0.9,1.5) (20,20) (2,2) 0.58635 0.57266 -0.01369 0.007225 0.56863 -0.01771 0.006831 1.0576 
(20,30) (2,3) 0.56358 -0.02276 0.006070 0.55271 -0.03364 0.005913 1.0265 
(20,40) (2,4) 0.56086 -0.02548 0.004649 0.55686 -0.02948 0.004561 1.0192 
(30,30) (3,3) 0.55881 -0.02753 0.005109 0.55648 -0.02986 0.005039 1.0137 
(30,40) (3,4) 0.55972 -0.02662 0.004832 0.55016 -0.03619 0.004452 1.0853 
(40,40) (4,4) 0.55734 -0.02901 0.004548 0.55338 -0.03296 0.003982 1.1421 
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7. Real data application

In order to comprehend and provide a broad illustration of the processes covered in the preceding 
sections, we now take two real data sets. The first data set is used for the strength variable X and 
second data set is used for the stress variable Y in the stress-strength model  𝑃 = 𝑃𝑟(𝑌 < 𝑋). 

7.1 First Data Set

Lawless (2003, pp. 267) is the source of the data set. The first report on this was published in 1987 
by Schat, Staton, Mandel, and Shott. The hours to failure of 59 conductors with a length of 400 
micrometres are represented by this data. The specimens are tested at the same temperature and 
current density, and at a specific high temperature and current density, they all failed. The MLES of 
the parameters α and λ for this dataset is �̂�𝑥= 4.6731 and  �̂�𝑥  = 51.2823

7.2 Second Data Set 

The second data set is taken from Murthy et al. (2004, pp.180). This data represents 50 items that are 
put on use at time t = 0 and failure times are recorded (in weeks). The MLES for the parameters α 
and λ for this dataset is �̂�𝑦= 0.1924 and �̂�𝑦 = 144.2292. Both the datasets are shown in Table 2. 

Table 2: Dataset – 1 supposed to be X - Population and Dataset-2 supposed to be Y – Population

Figure 1: The PDF, CDF and P-P Plots of the Nakagami distribution for First dataset 

Dataset-2 : Y-Population 
0.013 2.838 7.291 32.795 
0.065 3.269 7.087 48.105 
0.111 3.977 7.787 
0.111 3.981 8.596 
0.163 4.52 9.388 
0.309 4.789 10.261 
0.426 4.849 10.713 
0.535 5.202 11.658 
0.684 5.291 13.006 
0.747 5.349 13.388 
0.997 5.911 13.842 
1.284 6.018 17.152 
1.304 6.427 17.283 
1.647 6.456 19.418 
1.829 6.572 23.471 
2.336 7.023 27.777 

Dataset-1 : X-Population 
6.545 6.522 7.945 7.224 
9.289 4.137 6.869 7.365 
7.543 7.459 6.352 6.923 
6.956 7.495 4.7 5.64 
6.492 6.573 6.948 5.434 
5.459 6.538 9.254 7.937 
8.12 5.589 5.009 6.515 

4.706 6.087 7.489 6.476 
8.687 5.807 7.398 6.071 
2.997 6.725 6.033 10.491 
8.591 8.532 10.092 5.923 
6.129 9.663 7.496 
11.038 6.369 4.531 
5.381 7.024 7.974 
6.958 8.336 8.799 
4.288 9.218 7.683 
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Figure 2: The PDF, CDF and P-P Plots of the Nakagami distribution for Second dataset 

Before we dive into the core of our investigation, it's crucial to thoroughly examine the key 
characteristics of our data. To validate the strength of our results, we employ a powerful statistical 
instrument: the Kolmogorov-Smirnov (K-S) test, along with its corresponding P-value (P-V). This 
approach enables us to measure how well our empirical observations align with theoretical 
expectations. 

Our analysis yields promising outcomes. For the first dataset, we calculate a K-S distance of 
0.06779 and a P-V of 0.99940. The second dataset produces similar results, with a K-S distance of 
0.12 and a P-V of 0.86428. These metrics provide compelling evidence that our model closely 
matches the observed data. 

To enhance our understanding and provide visual context, we have created a series of graphical 
representations. These illustrations, found in the accompanying Figure 1 and 2, offer a 
comprehensive view of our statistical findings. They include probability-probability (PP) plots, as 
well as visualizations of the estimated probability density function (PDF) and cumulative 
distribution function (CDF) for both datasets. These visual aids serve to reinforce and clarify the 
numerical results of our analysis 

We consider these two datasets as our random strength X and random stress Y, respectively. 
The MLES for α and λ i.e.  �̂�𝑥= 4.6731, �̂�𝑥= 51.2823 and �̂�𝑦= 0.1924 and �̂�𝑦= 144.2292 is taken as the 
true value of the parameters for this study. Now if  �̂�𝑥 =  𝛼1  = 4.6731 and �̂�𝑦 =  𝛼2  = 0.1924 then the 
true value of the stress-strength model from Eq.(4.1) is P = 0.1718. 
In this analysis, we draw simple random samples of size 10 from each dataset and estimate the 
MLES for 𝛼 and 𝜆, respectively. The simple random samples and MLES are presented in Table 3 and 
Table 4, respectively. 

Table 3: MLES of α and λ for each random sample of X-Population 

Simple Random Samples from X-Population 
�̂�𝑥 �̂�𝑥

Sample 1 7.489 5.589 7.495 4.137 6.492 8.687 6.538 8.532 7.683 7.459 6.7031 50.8427 
Sample 2 4.531 6.956 6.923 10.491 7.937 8.12 4.137 4.7 5.589 6.129 3.1983 46.3841 
Sample 3 8.532 6.087 7.489 6.958 6.522 6.545 7.398 8.591 6.923 7.496 7.9133 42.4977 
Sample 4 6.033 6.352 8.799 2.997 5.64 6.956 11.038 6.522 7.024 5.009 2.6220 48.2145 
Sample 5 5.807 7.398 5.923 7.945 10.092 4.706 11.038 6.369 7.459 5.589 3.7265 55.9926 
Sample 6 10.491 6.071 8.591 7.024 7.495 4.706 4.137 4.531 6.369 6.352 3.2477 46.6938 
Sample 7 2.997 4.137 4.7 9.254 7.683 6.923 7.974 8.687 6.573 6.545 2.6515 46.5869 
Sample 8 5.923 9.663 6.515 5.589 10.491 6.948 7.495 11.038 4.531 6.492 3.3188 60.1161 
Sample 9 5.807 6.956 7.459 7.496 8.687 5.64 5.434 4.288 11.038 5.381 3.5093 49.9915 
Sample10 6.948 6.538 5.434 7.365 5.589 7.543 4.706 4.7 7.489 9.218 5.7396 44.8218 
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Table 4: MLES of α and λ for each random sample of Y-Population 

Simple Random Samples from Y-Population 
�̂�𝑦 �̂�𝑦

Sample 1 7.787 6.456 7.087 5.202 5.911 7.023 0.684 23.471 19.418 7.291 0.4860 124.543 
Sample 2 5.202 7.023 1.284 6.018 9.388 1.647 4.789 0.684 10.713 0.163 0.3309 34.329 
Sample 3 13.842 0.997 5.911 13.006 23.471 0.535 1.284 0.684 5.349 7.787 0.2469 103.923 
Sample 4 11.658 17.152 23.471 7.787 8.596 0.163 6.456 13.006 4.789 0.013 0.2078 134.931 
Sample 5 5.291 1.284 13.006 8.596 0.426 11.658 9.388 4.789 17.283 7.787 0.4596 87.918 
Sample 6 0.426 8.596 2.838 1.647 6.572 0.111 7.291 0.111 1.829 13.388 0.2006 36.379 
Sample 7 0.997 3.981 7.087 0.426 6.456 8.596 13.388 6.427 13.006 4.789 0.4675 59.545 
Sample 8 23.471 2.336 3.269 6.427 0.163 4.849 4.52 7.787 5.291 5.349 0.3125 76.955 
Sample 9 9.388 6.456 17.152 17.283 24.777 6.018 13.388 4.789 0.163 10.713 0.4078 168.979 
Sample10 0.747 2.838 0.309 8.596 5.202 10.713 13.006 19.418 23.471 1.647 0.2632 132.424 

Now, we draw 10 samples using ranked set sampling technique. We run two cycle (r = 2) 
of set size m = 5 to get a ranked set sample of size n = r * m = 10.  

Table 5: MLES of α and λ for each ranked set sample of X-Population

Ranked Set Samples from X-Population 

�̂�𝑥 �̂�𝑥

Sample 1 4.137 6.476 6.369 6.515 8.799 5.381 6.948 5.807 8.532 8.687 5.3408 47.8695 
Sample 2 4.288 6.492 6.725 6.071 10.491 4.288 6.369 8.591 7.024 9.254 3.3715 52.0406 
Sample 3 4.288 6.869 6.071 7.496 11.038 5.009 6.071 7.495 7.495 11.038 3.0263 57.6589 
Sample 4 7.683 7.489 6.515 9.218 6.476 6.958 4.288 6.492 7.543 7.543 8.1074 50.7209 
Sample 5 4.137 6.958 6.545 6.956 11.038 4.706 6.476 8.12 7.543 9.289 3.5078 55.1790 
Sample 6 4.531 6.522 7.683 7.024 10.092 4.288 6.033 7.489 7.937 7.398 4.5176 50.1875 
Sample 7 4.137 6.515 6.129 6.129 8.591 2.997 6.869 5.807 7.489 9.218 3.0288 43.9437 
Sample 8 4.137 5.807 6.948 7.224 10.092 4.531 4.706 9.289 7.945 10.491 2.5873 55.5291 
Sample 9 6.071 6.948 7.224 6.948 9.289 4.531 6.492 5.009 7.398 11.038 3.9824 53.6212 

Sample 10 5.589 5.589 6.087 7.945 9.218 5.009 4.531 6.545 7.459 8.799 4.8530 46.9136 

Table 6: MLES of α and λ for each ranked set sample of Y-Population

Ranked Set Samples from Y-Population 

�̂�𝑦 �̂�𝑦

Sample 1 5.291 0.997 4.52 17.152 9.388 0.065 1.284 1.647 13.842 11.658 0.24212 76.3620 
Sample 2 0.013 7.787 2.336 6.456 17.152 3.977 0.747 11.658 19.418 17.283 0.21862 123.001 
Sample 3 0.535 4.52 2.336 9.388 13.388 0.747 0.065 4.849 13.006 23.471 0.20209 103.7666 
Sample 4 3.981 0.426 4.52 4.789 23.471 0.684 4.789 7.023 7.023 48.105 0.19412 304.6421 
Sample 5 1.284 3.269 11.658 8.596 10.713 0.065 4.789 6.572 6.456 13.842 0.34995 63.6314 
Sample 6 1.647 1.647 5.911 13.842 7.023 0.111 4.789 5.291 7.291 11.658 0.36021 52.1297 
Sample 7 0.111 1.829 3.977 23.471 7.787 0.065 6.427 4.789 4.849 48.105 0.14340 303.2548 
Sample 8 0.111 3.977 6.018 4.52 17.283 0.163 0.065 3.977 7.023 32.795 0.14298 151.186 
Sample 9 0.111 5.202 0.535 4.52 7.023 2.336 0.426 2.336 13.006 5.911 0.25672 31.2303 
Sample10 1.304 4.789 8.596 7.023 32.795 0.684 0.997 6.456 32.795 19.418 0.23438 271.9073 

To obtain 10 samples of size 10, we conducted 20 cycles. Every pair of consecutive cycles makes 
up one sample of size 10. The 20 cycles we performed to get the 10 ranked samples from Population 
X. The ranked set samples from Population X, along with the corresponding maximum likelihood
estimates of 𝛼𝑥 and 𝜆𝑥, are shown in Table 5. Similarly, we run the 20 cycles to draw ranked set
samples from Population Y and the ranked set samples with maximum likelihood estimates of 𝛼𝑦

and 𝜆𝑦 for Y Population are shown  in Table 6.
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Table 7: Bias, MSE and Relative efficiency of MLE of stress-strength model P in case of SRS and RSS 

SRS RSS 
�̂�𝑥 �̂�𝑦 �̂�𝑆𝑅𝑆 Bias MSE �̂�𝑥 �̂�𝑦 �̂�𝑅𝑆𝑆 Bias MSE RE (%) 

Sample 1 6.7031 0.4860 0.2725 0.1007 0.01494 5.3408 0.2421 0.2016 0.0298 0.00359 415.43% 
Sample 2 3.1983 0.3309 3.3715 0.2186 
Sample 3 7.9133 0.2469 3.0263 0.2020 
Sample 4 2.6220 0.2078 8.1074 0.1941 
Sample 5 3.7265 0.4596 3.5078 0.3499 
Sample 6 3.2477 0.2006 4.5176 0.3602 
Sample 7 2.6515 0.4675 3.0288 0.1434 
Sample 8 3.3188 0.3125 2.5873 0.1429 
Sample 9 3.5093 0.4078 3.9824 0.2567 
Sample10 5.7396 0.2632 4.8530 0.2343 

An analysis of the statistical outcomes presented in the Table 7. This summary reveals a notable 
difference in the Mean Square Error (MSE) of the stress-strength model P between two sampling 
techniques. The Ranked Set Sampling (RSS) method demonstrates a significantly lower MSE 
compared to that obtained through Simple Random Sampling (SRS). Quantitatively, the relative 
efficiency (RE) of RSS surpasses SRS by a remarkable 415.43%. This substantial improvement in 
efficiency underscores the superior performance of RSS in practical applications. The findings 
strongly suggest that RSS offers more reliable and accurate results in real-world scenarios, 
outperforming the conventional SRS approach in the context of stress-strength modeling. 

8. Conclusion

Delving into the realm of reliability engineering, this study sheds new light on the estimation of 
stress-strength models, with a particular focus on the intriguing 𝑃𝑟(𝑌 < 𝑋) paradigm. Here, we 
explore the behavior of independent random variables Y and X, both dancing to the tune of the 
Nakagami distribution. While conventional wisdom has long favored simple random sampling, our 
research unveils a game-changing approach: ranked set sampling. By deriving maximum likelihood 
estimators for P under both sampling regimes, we set the stage for a riveting comparison. 

Our simulation studies paint a vivid picture of ranked set sampling's superiority, showcasing its 
ability to outperform its traditional counterpart in efficiency. But we don't stop at theoretical 
musings - we put our findings to the test in the crucible of real-world data, where ranked set 
sampling continues to shine brightly. 

As we draw the curtain on this investigation, one conclusion stands tall: in the arena of 
Nakagami stress-strength model estimation, ranked set sampling emerges as the undisputed 
champion over simple random sampling. Yet, this is not the end of our journey. The horizon beckons 
with tantalizing possibilities, as we set our sights on exploring the potential of other ranked set 
sampling methods in this critical field of study. The quest for ever-more efficient estimation 
techniques in stress-strength modeling continues, promising exciting developments in the future of 
reliability engineering. 
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Abstract 

The goal of this study was to address the computational challenges associated with parametric 
estimation of the gamma distribution by evaluating the performance of the maximum likelihood and 
maximum a-posteriori estimation methods within the framework of Markov Chain Monte Carlo 
simulations. This was done by first assuming a censored life-testing strategy that terminates on the 
rth failure from a given sample of n electronic devices. Second, we obtained the joint distribution 
function of the first r-order statistic by arranging the r values in order of magnitude. Finally, we 
explored through the Markov Chain Monte Carlo framework using the maximum likelihood and 
maximum a-posteriori to estimate the gamma distribution parameters. The findings of this study 
suggest that both estimation methods were not significantly different from the actual hypothesized 
parameter values. Further, we observed that irrespective of the prior distribution used for the 
Bayesian maximum a-posteriori Markov Chain Monte Carlo estimation, the resulting parametric 
estimates of the gamma distribution remain the same, confirming the assertion that the Bayesian 
maximum a-posteriori Markov Chain Monte Carlo approach is a valuable tool for informative 
posterior analysis. The study’s uniqueness lies in adopting a censored life-testing strategy centered 
on the joint distribution function of the first r-order statistic. 

Keywords: bayesian inference, gamma distribution, maximum likelihood 
estimation, maximum a-posteriori, reliability analysis 
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I. Introduction

The Gamma distribution has been extensively studied and developed in statistical inference.  It is 
preferred over other probability distributions for its superior applications in insurance and finance. 
Dickson [1] and Veazie et al. [2] project the two or three parameter Gamma distribution for its ability 
to model highly skewed positive and or negative data points. Gamma distribution application is 
most evident in studying random variables such as waiting times, claim size or frequency and 
investment returns. While every probability distribution offers some distinct advantage in specific 
contexts, Dey et al. [3] support the gamma distribution for its computational efficiency and 
memoryless property. Memoryless property means that the occurrences of past events do not 
influence the probability of future occurrences of the event (Noguchi & Robles [4]; Shore [5]; Tao 
[6]). In other words, the memoryless property of the gamma distribution makes it easy to study the 
probability of the occurrence of an event independently of the probability of future occurrences of 
the event. This property demonstrates the usefulness and versatility of the gamma distribution in 
several survival and reliability studies. 

The use of the gamma distribution in reliability analysis extends to other fields such as 
engineering, manufacturing and biomedical research. For instance, in modeling time-to-failure of 
manufactured components, Elsayed [7] employed the gamma distribution alongside the Maximum 
Likelihood Estimation (MLE) method to estimate the parameters. Similarly, Shipes et al. [8] used the 
Poisson-Gamma Model in their survival analysis of time-to-event clinical trial data. These studies 
underscore the flexibility of the gamma distribution in capturing diverse event patterns. More 
importantly, the parametric estimation of the gamma distribution in these studies offers room for 
further exploration. Meeker and Escobar [9] explained parametric estimation in both reliability and 
survival analysis as fitting a specific probability distribution (e.g., gamma, exponential, Weibull) to 
the observed failure data and estimating its parameters (location, shape and scale parameters). 

Literature abounds with different combinations of estimation and simulation methods to 
estimate the gamma distribution parameters. Several studies (Ghosh & Hamedani [10]; Junmei & 
Liqin [11]) seem to opt for the MLE method due to its optimal and consistent parameter estimators. 
Ghosh and Hamedani [10] provided detailed properties of the two-parameter gamma distribution 
using the MLE method to investigate its moments, hazard function and reliability parameters. When 
applied to a lifetime data set, the gamma distribution produced a superior fit compared to other 
models. While the gamma distribution is applauded for its flexibility in model fitting, Ozsoy, Unsal 
and Orkcu [12] warned of a potential computational complexity when MLE is used for its parameter 
estimation. They explained that the distribution function (or survival function) of the gamma 
distribution is not available in a closed form if the shape parameter is not an integer, thereby making 
the use of MLE a near futile exercise. This notwithstanding, studies (Hamada et al. [13]; Rubinstein 
& Kroese [14]) have adapted numerical methods to evaluate the parameters of the gamma 
distribution by exploring a combination of Bayesian estimation and simulation procedures. Hamada 
et al. [13] found the Bayesian estimation useful in their probabilistic framework for reliability 
estimation as it incorporates additional information about the distribution known as a prior. The 
Bayesian framework entails careful elicitations of prior expert information to enhance the data, 
leading to improved prediction of extreme cases (Coles & Tawn [15]). Hussain et al. [16] and Kohole 
et al. [17] proffer the Bayesian method, as it at least offers a way around the complexity of the root 
of the maximum likelihood equation known to exist in MLE. The Bayesian approach, therefore, 
appears more flexible and informative through its posterior analysis. 

In recent decades, the surge in statistical applications has sparked a growing interest in 
Bayesian parametric simulation, giving rise to the efficient concept of Maximum a-Posteriori (MAP). 
Serving as the Bayesian counterpart to MLE, MAP estimation entails identifying parameter values 
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that maximize the posterior distribution and act as estimates for the unknown parameters (Hesse et 
al., 2016). When there is a noninformative prior in the Bayesian analysis, the MAP estimate is the 
same as that of the MLE. Due to the computational intensity of MAP resulting from the incorporation 
of prior information, Hesse et al. [18] turned to Markov chain Monte Carlo (MCMC) to obtain 
samples from the posterior distribution, enabling the estimation of regression parameters. The 
concept of MCMC is popular in fields such as manufacturing, physics and finance, and it uses 
probability distributions to make selections (Benson & Kellner [19]). In reliability assessment, Naess, 
Leira and Batsevych [20]) noted that the MCMC can check failure criterion, regardless of the 
distribution or system complexity. Fauzi et al. [21]) relied on the MCMC algorithms for sampling 
from a posterior distribution, essentially, to simulate system behavior and estimate reliability 
metrics. 

This study aims to tackle the computational challenges associated with parametric estimation 
of the gamma distribution by evaluating the performance of two estimation procedures: Maximum 
Likelihood Estimation (MLE) and Maximum a-Posteriori (MAP) estimation. These assessments will 
be conducted within the framework of Markov Chain Monte Carlo (MCMC) simulations. In this 
paper, the two MCMC-based estimation techniques are denoted as MLE_MCMC and MAP_MCMC. 
The study’s uniqueness lies in the adoption of a censored life-testing strategy, terminating upon the 
occurrence of the rth (where r < n) failure. This approach diverges from classical life testing, which 
requires the complete failure of all n samples. The study concentrates on the joint distribution 
function of the first r-order statistic, precisely the smallest r values, as an alternative to utilizing the 
complete dataset for estimation. Additionally, we look into the sensitivity of MAP_MCMC by 
applying various prior distributions. This study is relevant as it illustrates that the joint distribution 
function of the first r-order statistic proves more suitable for estimating the parameter(s) of the 
probability density function (pdf) of the time-to-failure random variable for any engineered device. 

II. Methods

Consider n samples of manufactured components that were subjected to reliability life tests from a 
certain population of interest. The random variable T of interest is the time it takes until the 
component fails. Suppose the underlying failure times are 𝑇𝑇(1),⋯ ,𝑇𝑇(𝑛𝑛)  where 𝑇𝑇(𝑖𝑖) ≤ 𝑇𝑇(𝑖𝑖+1), 𝑖𝑖 =
1,⋯ ,𝑛𝑛 − 1. And let 𝐹𝐹𝑇𝑇(𝑡𝑡) be the distribution function of T and let 𝑓𝑓𝑇𝑇(𝑡𝑡) be its probability density 
function (pdf). Assuming further that the reliability life tests conclude at the rth failure, where r is 
less than or equal to n, the number of failures is treated as a fixed value, while the failure times are 
regarded as random variables. We employ the gamma distribution to model the time-to-failure 
random variables in this scenario of life testing, assuming that the failure rate is not constant. The 
gamma distribution is preferred in this instance because it exhibits a failure rate that follows a 
bathtub-shaped curve (decreasing failure rates at the initial phase and increasing failure rates at a 
later phase). Blanksby and Lyons [22] assert that the gamma distribution allows for flexibility in 
capturing diverse failure rate behaviours and is well-suited for scenarios where the hazard function 
varies over time. The next subsection presents a synopsis of the gamma distribution.  

I. Gamma Time-to-Failure Random Variable

The continuous random variable T, is said to have the gamma distribution with parameters α > 0 
and β > 0 if its pdf is given by:  

𝑓𝑓𝑇𝑇(𝑡𝑡) = 𝛽𝛽𝛼𝛼𝑡𝑡𝛼𝛼−1𝑒𝑒−𝛽𝛽𝛽𝛽

𝛤𝛤(𝛼𝛼)
, 𝑡𝑡 > 0                                                                           (1)

where 𝛤𝛤(𝛼𝛼) = ∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡∞
0  is the gamma function. The cumulative distribution function is the 
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regularized gamma function: 
𝐹𝐹𝑇𝑇(𝑡𝑡) = 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡)

𝛤𝛤(𝛼𝛼)
, 𝑡𝑡 > 0.  (2) 

where 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡) is the lower incomplete gamma function, that is 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡) = ∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡𝛽𝛽𝑡𝑡
0 . This 

gamma distribution is in the two-parameter family of continuous probability distributions. These 
are: 

• Shape Parameter (α): This parameter determines the shape of the distribution. It is a
positive real number.

• Scale Parameter (β): This parameter is associated with the rate of events. It is also a
positive real number. The density and cumulative distribution functions are sometimes
expressed in terms of the scale parameter, 𝜃𝜃 = 1 𝛽𝛽⁄ .

Table 1 shows some characteristics of the gamma distribution (Mann et al. [23]). 

Table 1: Properties of the gamma distribution 

 Properties 

Measures Properties 

Mean 𝛼𝛼
𝛽𝛽

Variance 𝛼𝛼
𝛽𝛽2

Median No simple closed 

Mode 𝛼𝛼−1
𝛽𝛽

 for 1α ≥  

Reliability function 
𝑒𝑒−𝛽𝛽𝑡𝑡 �

(𝛽𝛽𝑡𝑡)𝑛𝑛

𝑛𝑛!

𝛼𝛼−1

𝑛𝑛=1

In the next subsection, we explore two approaches for estimating the parameters of the gamma 
distribution through the Markov Chain Monte Carlo (MCMC) simulation framework: (a) Maximum 
Likelihood Estimation (MLE) and (b) Maximum a-Posteriori (MAP). 

II. Parametric Estimation of the Gamma Distribution

According to Ofosu and Hesse [24], the likelihood function L of the first r-order statistics, 𝑇𝑇(1) ≤
𝑇𝑇(2) ≤ ⋯ ≤ 𝑇𝑇(𝑟𝑟),  of the random variable of interest in this study can be specified as:   

𝐿𝐿 = 𝑓𝑓𝑇𝑇(1),⋯,𝑇𝑇(𝑟𝑟)(𝑡𝑡1,⋯ , 𝑡𝑡𝑟𝑟) 

 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
[1 − 𝐹𝐹𝑇𝑇(𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟�𝑓𝑓𝑇𝑇(𝑡𝑡𝑖𝑖)

𝑟𝑟

𝑖𝑖=1

 

 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
�1 −

𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)
𝛤𝛤(𝛼𝛼) �

𝑛𝑛−𝑟𝑟

��
𝛽𝛽𝛼𝛼𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖

𝛤𝛤(𝛼𝛼) �
𝑟𝑟

𝑖𝑖=1

 

 =
𝑛𝑛!

(𝑛𝑛 − 𝑟𝑟)!
[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 �

1
𝛤𝛤(𝛼𝛼)�
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�
1
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[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 �

1
𝛤𝛤(𝛼𝛼)�

𝑛𝑛

𝛽𝛽𝑟𝑟𝛼𝛼 ��𝑡𝑡𝑖𝑖𝛼𝛼−1
𝑟𝑟

𝑖𝑖=1

� 𝑒𝑒−𝛽𝛽∑ 𝑡𝑡𝑖𝑖
𝑟𝑟
𝑖𝑖=1 . 
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 (3) 
The natural logarithm of the likelihood function gives: 

ln 𝐿𝐿 = ln𝑛𝑛! − ln(𝑛𝑛 − 𝑟𝑟)! + (𝑛𝑛 − 𝑟𝑟) ln[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)] − 𝑛𝑛 ln𝛤𝛤(𝛼𝛼) + 𝑟𝑟𝛼𝛼 ln𝛽𝛽 + (𝛼𝛼 − 1)∑ ln 𝑡𝑡𝑖𝑖𝑟𝑟
𝑖𝑖=1 −

 𝛽𝛽 ∑ 𝑡𝑡𝑖𝑖𝑟𝑟
𝑖𝑖=1 .  (4) 

This function yields the following logarithmic likelihood equations: 

𝜕𝜕 ln 𝐿𝐿
𝜕𝜕𝛽𝛽

= 𝑟𝑟𝛼𝛼
𝛽𝛽
− ∑ ln 𝑡𝑡𝑖𝑖 +𝑟𝑟

𝑖𝑖=1
𝛽𝛽𝛼𝛼−1(𝑛𝑛−𝑟𝑟)𝑡𝑡𝑟𝑟𝛼𝛼𝑒𝑒−𝛽𝛽𝛽𝛽𝑟𝑟

[𝛤𝛤(𝛼𝛼)−𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]
= 0  (5) 

𝜕𝜕 ln 𝐿𝐿
𝜕𝜕𝛼𝛼

= (𝑛𝑛−𝑟𝑟)�𝛤𝛤′(𝛼𝛼)−𝛤𝛤′(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)�
[𝛤𝛤(𝛼𝛼)−𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]

+ 𝑛𝑛𝛤𝛤′(𝛼𝛼)
𝛤𝛤(𝛼𝛼)

+ 𝑟𝑟 ln𝛽𝛽 +∑ ln 𝑡𝑡𝑖𝑖𝑟𝑟
𝑖𝑖=1 = 0  (6) 

Solving Equations (5) and (6) is notably challenging. When a straightforward solution to the 
likelihood equations is elusive, various procedures are available for MLE. Common methods 
encompass Iterative Methods, the Expectation-Maximization (EM) Algorithm, Gradient Descent, 
Quasi-Newton Methods, Monte Carlo Methods, Profile Likelihood, Bootstrapping, and Numerical 
Optimization (Dempster et al.[25]; Gilks et al. [26]; Nocedal & Wright [27]; Press et al. [28]). 
In cases where obtaining a solution to the log-likelihood equations proves to be difficult, we turn to 
Markov Chain Monte Carlo (MCMC) sampling techniques to generate samples from the likelihood 
function. Consequently, we applied the MCMC estimation technique and referred to it as 
MLE_MCMC. The primary objective is to determine parameter estimates that maximize the 
likelihood function given the sample data. The MLE_MCMC approach identifies the mode of the 
simulated MCMC sample from the bivariate likelihood function in Equation (3), representing the 
point estimate of the parameter vector 𝜃𝜃 = (𝛼𝛼,   𝛽𝛽). That is, 

𝜃𝜃𝑀𝑀𝐿𝐿𝑀𝑀 = arg  𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1
𝛤𝛤(𝛼𝛼)

�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼(∏ 𝑡𝑡𝑖𝑖𝛼𝛼−1𝑟𝑟

𝑖𝑖=1 )𝑒𝑒−𝛽𝛽∑ 𝑡𝑡𝑖𝑖
𝑟𝑟
𝑖𝑖=1 �  (7) 

The following algorithm is the description for the multivariate Metropolis Hastings procedure 
(Steyvers [36]): 

• Set 𝑡𝑡 = 1
• Generate an initial value for  𝛽𝛽~𝑈𝑈(𝑢𝑢1, 𝑢𝑢2).
• Repeat

𝑡𝑡 = 𝑡𝑡 + 1
Do a MH step on α,
Generate a proposal 𝜃𝜃∗~𝑁𝑁(𝜃𝜃,   𝜎𝜎2);
Evaluate the acceptance probability 𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑛𝑛 �1, 𝐿𝐿(𝜃𝜃∗ 𝑥𝑥⁄ )

𝐿𝐿(𝜃𝜃 𝑥𝑥⁄ )
� ; 

Generate a u from a Uniform( 0, 1) Distribution
If 𝑢𝑢 ≤ 𝑚𝑚, accept the proposal and set 𝜃𝜃 = 𝜃𝜃∗

• Until 𝑡𝑡 = 𝑇𝑇.

Maximum A Posteriori (MAP) estimation is the Bayesian counterpart to Maximum Likelihood 
Estimation (MLE), incorporating additional information through the prior distribution. Now, the 
joint pdf of 𝑋𝑋(1),⋯ ,𝑋𝑋(𝑟𝑟)  and 𝜃𝜃 = (𝛼𝛼,   𝛽𝛽) is given by 𝑔𝑔(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟 , 𝜃𝜃) = 𝑓𝑓𝑋𝑋(1),⋯,𝑋𝑋(𝑟𝑟)(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟|𝜃𝜃)𝜋𝜋(𝜃𝜃), 
where 𝜋𝜋(𝜃𝜃) is the prior distribution of the parameter Θ. We assume α and β are independent and 
exponentially distributed with means a and b, respectively. Thus, 𝜋𝜋(𝜃𝜃) = 1

𝑎𝑎𝑎𝑎
𝑒𝑒−(𝛼𝛼 𝑎𝑎+𝛽𝛽 𝑎𝑎⁄⁄ ), 𝛼𝛼 > 0, 𝛽𝛽 >

0.
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𝑔𝑔(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟 ,𝜃𝜃) = 𝑛𝑛!
𝑎𝑎𝑎𝑎(𝑛𝑛−𝑟𝑟)!

[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1
𝛤𝛤(𝛼𝛼)

�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼 ∏ �𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖�𝑒𝑒

−�𝛼𝛼𝑎𝑎+
𝛽𝛽
𝑏𝑏�𝑟𝑟

𝑖𝑖=1 . (8) 

Thus, the marginal p.d.f. of 𝑋𝑋(1),⋯ ,𝑋𝑋(𝑟𝑟) is 

𝑔𝑔𝑋𝑋(1),⋯,𝑋𝑋(𝑟𝑟)(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟) = � � 𝑔𝑔(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟 ,𝜃𝜃)𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽
∞

0

∞

0
 

 = 𝑛𝑛!
𝑎𝑎𝑎𝑎(𝑛𝑛−𝑟𝑟)!∫ ∫ [𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1

𝛤𝛤(𝛼𝛼)
�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼 ∏ �𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖�𝑒𝑒

−�𝛼𝛼𝑎𝑎+
𝛽𝛽
𝑏𝑏�𝑟𝑟

𝑖𝑖=1 𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽∞
0

∞
0 . 

 (9) 
The conditional p.d.f. of Θ, given 𝑋𝑋(1),⋯ ,𝑋𝑋(𝑟𝑟),  is therefore defined by 

𝜋𝜋(𝜃𝜃|𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟) =
𝑔𝑔(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟 , 𝜃𝜃)

𝑔𝑔𝑋𝑋(1),⋯,𝑋𝑋(𝑟𝑟)(𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟)

 =

𝑛𝑛!
𝑚𝑚𝑎𝑎(𝑛𝑛 − 𝑟𝑟)! [𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1

𝛤𝛤(𝛼𝛼)�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼 ∏ �𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖�𝑒𝑒

−�𝛼𝛼𝑎𝑎+
𝛽𝛽
𝑏𝑏�𝑟𝑟

𝑖𝑖=1

𝑛𝑛!
𝑚𝑚𝑎𝑎(𝑛𝑛 − 𝑟𝑟)!∫ ∫ [𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1

𝛤𝛤(𝛼𝛼)�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼 ∏ {𝑡𝑡𝑖𝑖𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑡𝑡𝑖𝑖}𝑒𝑒

−�𝛼𝛼𝑎𝑎+
𝛽𝛽
𝑏𝑏�𝑟𝑟

𝑖𝑖=1 𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽∞
0

∞
0

= 𝐾𝐾[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1
𝛤𝛤(𝛼𝛼)

�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼(∏ 𝑡𝑡𝑖𝑖𝛼𝛼−1 𝑟𝑟

𝑖𝑖=1 )𝑒𝑒−�
𝛼𝛼
𝑎𝑎+

𝛽𝛽
𝑏𝑏+𝛽𝛽∑ 𝛽𝛽𝑖𝑖

𝑟𝑟
𝑖𝑖=1 �.  (10) 

where K is independent of α and β. The typical approach in Bayesian estimation is to employ the 
posterior mean, 𝐸𝐸(𝜃𝜃|𝑚𝑚1,⋯ , 𝑚𝑚𝑟𝑟), as a point estimate for θ (Hesse et al. [18]). The Maximum a posteriori 
(MAP) estimator of θ is the value that maximizes the posterior distribution. This study uses the 
Markov Chain Monte Carlo (MCMC) sampling approach to draw samples from the posterior 
distribution. This specific method of estimation, denoted as MAP_MCMC for the purpose of this 
study, identifies the mode of the posterior distribution, representing the point estimate for the 
parameter θ. Thus, 

𝜃𝜃𝑀𝑀𝐿𝐿𝑀𝑀 = arg  𝑚𝑚𝑚𝑚𝑚𝑚 �= 𝐾𝐾[𝛤𝛤(𝛼𝛼) − 𝛾𝛾(𝛼𝛼,   𝛽𝛽𝑡𝑡𝑟𝑟)]𝑛𝑛−𝑟𝑟 � 1
𝛤𝛤(𝛼𝛼)

�
𝑛𝑛
𝛽𝛽𝑟𝑟𝛼𝛼(∏ 𝑡𝑡𝑖𝑖𝛼𝛼−1 𝑟𝑟

𝑖𝑖=1 )𝑒𝑒−�
𝛼𝛼
𝑎𝑎+

𝛽𝛽
𝑏𝑏+𝛽𝛽∑ 𝛽𝛽𝑖𝑖

𝑟𝑟
𝑖𝑖=1 ��.   (11) 

III. Results and Discussion

Consider a scenario where a company specializes in manufacturing a specific device, its components, 
or equipment. The company is dedicated to assessing the reliability of these items. In this context, 
reliability denotes the probability of a device successfully fulfilling its intended function. A sample 
of n such devices from a population of interest is placed in an environment closely resembling the 
conditions the items will encounter in actual use. One or more stresses of constant severity are then 
applied to simulate real-world scenarios. Given that, 200 of these devices are programmed to 
undergo reliability life testing with the test truncating when the 100th failed device was observed. 
The first 100 sampled time-to-failure units were ordered and fitted to the gamma distribution. 

Given that T is a continuous random variable with a distribution function 𝐹𝐹𝑇𝑇(𝑡𝑡), then, according 
to the probability integral transformation concept,  𝑈𝑈 = 𝐹𝐹𝑇𝑇(𝑡𝑡), follows the continuous uniform 
distribution over the interval (0, 1) (Ofosu & Hesse [24]). The inverse transform sampling method is 
employed subsequently to generate samples from the gamma distribution using the following steps: 

• Generate a random number u from the standard uniform distribution in the interval (0,
1).

• Find the inverse of the desired cumulative density functions (CDF), denoted as 𝐹𝐹−1(𝑢𝑢).
• Compute 𝑡𝑡 = 𝐹𝐹−1(𝑢𝑢). The computed values of the random variable X correspond to the

desired distribution with probability density function 𝑓𝑓𝑇𝑇(𝑡𝑡).
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There is no closed-form expression for the gamma distribution’s inverse cumulative 
distribution function (CDF). However, various numerical methods and statistical software packages 
are available to calculate quantiles (inverse CDF values) for the gamma distribution. Commonly 
employed numerical methods include the Newton-Raphson Method and Brent's Method (Burden & 
Faires [29]; Kincaid & Cheney [30]; Dahlquist & Björck [31]). In addition, other statistical software 
packages like R, Python (SciPy), MATLAB and MS. Excel provide functions to compute quantiles 
for the gamma distribution (Eaton [32]; Hanselman & Littlefield [33]).  

We, therefore, use the 'gaminv' function in MATLAB (MathWorks [34]) to calculate quantiles 
for a given probability, simulated from the uniform distribution over the interval (0, 1). Table 2 
displays the first 100 out of 200 ordered data points simulated from the gamma distribution with 
parameters alpha (α) = 10 and beta (β) = 0.05, resulting in a mean (µ) of 200. It is assumed that these 
observations represent the outcomes of a reliability life test involving 200 devices until the failure of 
the 100th device.  

Table 2: Ordered data simulated from the gamma distribution 

73.230 76.643 81.308 85.709 88.578 90.103 91.545 91.884 95.091 97.130 
98.564 99.319 101.788 105.722 107.333 107.880 110.057 111.884 113.007 115.471 

117.521 121.779 125.079 125.766 128.059 128.199 130.834 132.564 134.648 135.505 
135.923 136.019 138.582 141.671 142.111 143.420 144.675 146.128 147.288 147.939 
152.135 153.413 153.475 155.564 155.716 156.338 156.353 157.133 157.848 157.903 
159.273 159.895 159.900 160.563 160.563 161.096 162.658 162.837 168.294 168.322 
169.501 169.539 170.437 170.723 170.831 172.767 173.089 173.164 173.700 175.040 
175.844 176.285 176.485 177.148 177.296 177.426 177.463 178.349 178.942 179.484 
181.027 181.703 181.777 182.658 182.677 182.807 185.919 188.967 189.609 189.759 
189.848 190.031 191.716 192.004 192.051 192.169 192.448 194.546 194.670 195.500 

On the MLE_MCMC parameter estimates, we deduce from Equation (3), given that n = 200, r = 
100, 𝑡𝑡𝑟𝑟 = 195.500 from Table 2, together with the Metropolis-Hastings algorithm, as described above, 
were employed to draw samples from the likelihood function. The MATLAB code for implementing 
the component-wise Metropolis sampler for the likelihood function is provided in Listings A1 and 
A2, in the appendix. The mode of this bivariate sample provides the maximum likelihood estimate 
for the parameters alpha (α) and beta (β) of the gamma distribution, which are given by 𝛼𝛼𝑀𝑀𝐿𝐿𝑀𝑀 =
10.4169 and 𝛽𝛽𝑀𝑀𝐿𝐿𝑀𝑀 = 0.0487, respectively. Note that the maximum likelihood estimates are not 
significantly different from the actual value of the parameters, that is α = 10 and β = 0.05. Figure 1 
shows the graph of the actual and the estimated gamma function with the given parameters. 

The closeness of these estimated parameters of the gamma distribution is consistent with 
observations made by Saulo et al. [35], who observed that the generalized gamma distribution 
generated very close values of the log-likelihood function when compared to the Dagum distribution 
in an MLE procedure for censored remission times of cancer patients. The closeness of the values 
affirms that the MLE_MCMC approach is as trustworthy as the classical MLE. 
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Figure 1: pdf of the gamma distribution 

Similar to the MLE_MCMC estimates, we utilize the data from Table 2 and the Metropolis-
Hastings algorithm to simulate a sample from the Bayesian posterior distribution. We further 
assumed that α and β are independent and exponentially distributed with means a = 15 and b = 0.08. 
The MATLAB code for implementing the Metropolis-Hastings sampler for the posterior distribution 
in Equation (9) is provided in Listings A3 and A4, in the appendix to obtain the MAP_MCMC 
parameter estimates of the gamma distribution. 

The results reveal that the MAP_MCMC estimates of α and β are 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 = 10.4169 and 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 =
0.0487 which precisely match the results obtained when sampling is done directly from the 
likelihood function. These results remain consistent even when varying the values of a and b, such 
as a = 20 and b = 1. In other words, the parameter estimates of the gamma distribution from the 
MAP_MCMC approach produce precisely the same estimates as the MLE_MCMC approach. The 
seemingly no difference between the two estimation methods confirms their flexibility in resolving 
estimation complexities associated with the gamma distribution for time-to-failure variables.  

Further, we explore the sensitivity of the MAP_MCMC estimator to different prior distributions 
by conducting a repeated MCMC simulation assuming that the parameters α and β are independent 
and follow Lognormal, Pareto, Weibull, and Gumbel priors. The results of the MAP_MCMC estimate 
for α and β across these four prior distributions are consistent with those obtained using the 
exponential prior. The implication is that irrespective of the distribution used, the outcome for the 
two estimation procedures or methods produced the same parameter estimates. We, therefore, 
concur with previous studies (Hussain et al. [16]; Kohole et al. [17] to conclude that the Bayesian 
MCMC approach offers a more flexible and informative posterior analysis. In addition, our 
estimation procedure affirms Fauzi et al. [21] assertion that Bayesian MCMC algorithms for 
sampling from a posterior distribution essentially simulate system behavior and estimate reliability 
metrics. 

IV. Conclusions

The applicability of the gamma distribution to study the distribution of random variables, such as 
time-to-failure of an event, has proven to be effective and versatile in many reliability studies. The 
preoccupation of these studies centers on the parametric estimation and derivation of other 
properties of the gamma distribution. The challenge, however, is the computational complexities 
encountered when the classical maximum likelihood estimation (MLE) method is used for the 
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parameter estimation. It is contested that MLE does not provide a straightforward solution to the 
log-likelihood equations since the inverse cumulative distribution function (CDF) of the gamma 
distribution cannot be expressed in a closed form. Consequently, many studies have resorted to 
numerical methods to evaluate gamma distribution parameters by exploring a combination of 
Bayesian estimation and other simulation procedures. 

Therefore, in this study, we relied on one of the Bayesian parametric simulation methods called 
Maximum a-Posteriori (MAP) to estimate the gamma distribution parameters. The MAP is 
considered the Bayesian counterpart to MLE. It entails identifying parameter values that maximize 
the posterior distribution and act as estimates for the unknown parameters. Subsequently, we used 
the Markov Chain Monte Carlo (MCMC) simulation procedure to obtain samples from the posterior 
distribution to obtain the gamma parameters. The MCMC was necessary because of the 
computational intensity the MAP requires to incorporate the prior information. Our objective was 
to evaluate the performance of the Maximum Likelihood Estimation (MLE) and Maximum a-
Posteriori (MAP) estimation methods under the framework of Markov Chain Monte Carlo (MCMC) 
simulations. This evaluation was done by first assuming a censored life-testing strategy that 
terminates on the rth (where r < n) failure from a given sample of n electronic devices. Second, we 
obtained the joint distribution function of the first r-order statistic by arranging the values of r in 
order of magnitude. Finally, we explored, through the MCMC framework, the parametric estimation 
of the gamma distribution using the MLE and the MAP.  

The finding of the study suggests that both estimation methods yielded the exact parameter 
estimates of 10.4169 and 0.0487, respectively, for alpha (α) and beta (β) of the gamma distribution. 
These estimates were not significantly different from the actual hypothesized value of  α =10 and β 
= 0.05. The seemingly no difference between the two estimation methods confirms their flexibility in 
resolving estimation complexities associated with the gamma distribution for time-to-failure 
variables. Further, we observed that irrespective of the prior distribution used for the MAP_MCMC 
estimation, the resulting parametric estimates of the gamma distribution remain the same 
(unchanged), confirming the assertion that the Bayesian MCMC approach is a valuable tool for 
informative posterior analysis. 
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Appendix 
Listing A1: Likelihood function for α and β 

1. function y = MLE_gamma(alpha,beta,x,n,xr,r)
2. y=(gamma(alpha)-gammainc(alpha,beta*xr))^(n-r)*(1/gamma(alpha))^n*beta^

(r*alpha)*prod(x.^(alpha-1))*exp(-beta*sum(x));
Listing A2: Implementation of Metropolis Hastings algorithm in MATLAB using the likelihood function 

1. % % Metropolis procedure to sample from the posterior distribution
2. % Component-wise updating. Use a normal proposal distribution
3. %% Set up the Import Options and import the data
4. opts = spreadsheetImportOptions("NumVariables", 1);
5. % Specify sheet and range
6. opts.Sheet = "Sheet1";
7. opts.DataRange = "A1:A100";
8. % Specify column names and types
9. opts.VariableNames = "x";
10. opts.VariableTypes = "double";
11. % Import the data
12. x = readtable("C:\Users\USER\OneDrive\New Papers\Life Testing\Gamma.xlsx", opts,

"UseExcel", false);
13. x=table2array(x);
14. r=length(x);
15. xr=x(100);
16. n=200;
17. % % Initialize the Metropolis sampler
18. T=5000;  % Set the maximum number of iteration
19. propsigma=[0.01,0.0001]; % standard deviation of proposal distribution
20. parametermin=[9,0.04];  % define minimum for alpha and beta
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21. parametermax=[11,0.06];  % define maximum for alpha and beta
22. seed=1; rand( 'state' , seed ); randn('state',seed ); %#ok<RAND> % set the random seed
23. state=zeros(2,T);   % storage space for the state of the sampler
24. alpha=unifrnd(parametermin(1),parametermax(1)); % Start value for alpha
25. beta=unifrnd(parametermin(2),parametermax(2)); % Start value for beta
26. t=1;  % initialize iteration at 1
27. state(1,t)=alpha;  % save the current state
28. state(2,t)=beta;
29. % % Start sampling
30. while t<T  % Iterate until we have T samples
31. t=t+1;
32. % % Propose a new value for alpha
33. new_alpha=normrnd(alpha,propsigma(1));
34. pratio=MLE_gamma(new_alpha,beta,x,n,xr,r)/MLE_gamma(alpha,beta,x,n,xr,r);
35. a=min([1 pratio]);  % Calculate the acceptance ratio
36. u=rand;  % Draw a uniform deviate from [0 1]
37. if u<a  % Do we accept this proposal?
38. alpha=new_alpha;  % proposal becomes new value for alpha
39. end
40. % % Propose a new value for beta
41. new_beta=normrnd(beta,propsigma(2));
42. pratio=MLE_gamma(alpha,new_beta,x,n,xr,r)/MLE_gamma(alpha,beta,x,n,xr,r);
43. a=min([1 pratio]);  % Calculate the acceptance ratio
44. u=rand;  % Draw a uniform deviate from [0 1]
45. if u<a  % Do we accept this proposal?
46. beta=new_beta;  % proposal becomes new value for beta
47. end
48. % %  Save state
49. state(1,t) = alpha;
50. state(2,t) = beta;
51. end
52. Mean=mean(state,2)
53. Mode=mode(state,2)

Listing A3: Likelihood function for α and β 

1. function y = MLE_gamma(alpha,beta,x,n,xr,r,a,b)
2. y=(gamma(alpha)-gammainc(alpha,beta*xr))^(n-r)*(1/gamma(alpha))^n*beta^

(r*alpha)*prod(x.^(alpha-1))* exp(-beta*sum(x)-alpha/a-beta/b);
Listing A4: Implementation of Metropolis Hastings algorithm in MATLAB using the likelihood function 

1. % % Metropolis procedure to sample from the posterior distribution
2. % Component-wise updating. Use a normal proposal distribution
3. %% Set up the Import Options and import the data
4. opts = spreadsheetImportOptions("NumVariables", 1);
5. % Specify sheet and range
6. opts.Sheet = "Sheet1";
7. opts.DataRange = "A1:A100";
8. % Specify column names and types
9. opts.VariableNames = "x";
10. opts.VariableTypes = "double";

526

RT&A, No 1 (82) 
Volume 20, March 2025 

C. A. Hesse, D. B. Boyetey, E.D. Kpeglo, A.A. Ashiagbor 
EVALUATION OF PARAMETRIC ESTIMATION METHOD 
FOR THE GAMMA DISTRIBUTION...



11. % Import the data
12. x = readtable("C:\Users\USER\OneDrive\New Papers\Life Testing\Gamma.xlsx", opts,

"UseExcel", false);
13. x=table2array(x);
14. r=length(x);
15. xr=x(100);
16. n=200;
17. a=15
18. b=0.08
19. % % Initialize the Metropolis sampler
20. T=5000;  % Set the maximum number of iteration
21. propsigma=[0.01,0.0001]; % standard deviation of proposal distribution
22. parametermin=[9,0.04];  % define minimum for alpha and beta
23. parametermax=[11,0.06];  % define maximum for alpha and beta
24. seed=1; rand( 'state' , seed ); randn('state',seed ); %#ok<RAND> % set the random seed
25. state=zeros(2,T);   % storage space for the state of the sampler
26. alpha=unifrnd(parametermin(1),parametermax(1)); % Start value for alpha
27. beta=unifrnd(parametermin(2),parametermax(2)); % Start value for beta
28. t=1;  % initialize iteration at 1
29. state(1,t)=alpha;  % save the current state
30. state(2,t)=beta;
31. % % Start sampling
32. while t<T  % Iterate until we have T samples
33. t=t+1;
34. % % Propose a new value for alpha
35. new_alpha=normrnd(alpha,propsigma(1));
36. pratio=MLE_gamma(new_alpha,beta, x,n,xr,r,a,b)/MLE_gamma(alpha,beta, x,n,xr,r,a,b);
37. a=min([1 pratio]);  % Calculate the acceptance ratio
38. u=rand;  % Draw a uniform deviate from [0 1]
39. if u<a  % Do we accept this proposal?
40. alpha=new_alpha;  % proposal becomes new value for alpha
41. end
42. % % Propose a new value for beta
43. new_beta=normrnd(beta,propsigma(2));
44. pratio=MLE_gamma(alpha,new_beta, x,n,xr,r,a,b)/MLE_gamma(alpha,beta, x,n,xr,r,a,b);
45. a=min([1 pratio]);  % Calculate the acceptance ratio
46. u=rand;  % Draw a uniform deviate from [0 1]
47. if u<a  % Do we accept this proposal?
48. beta=new_beta;  % proposal becomes the new value for beta
49. end
50. % %  Save state
51. state(1,t) = alpha;
52. state(2,t) = beta;
53. end
54. Mean=mean(state,2)
55. Mode=mode(state,2)

527

RT&A, No 1 (82) 
Volume 20, March 2025 

C. A. Hesse, D. B. Boyetey, E.D. Kpeglo, A.A. Ashiagbor 
EVALUATION OF PARAMETRIC ESTIMATION METHOD 
FOR THE GAMMA DISTRIBUTION...



Abbarapu Ashok and Nadiminti Nagamani
ENHANCING LINDLEY DISTRIBUTION

ENHANCING LINDLEY DISTRIBUTION PARAMETER
ESTIMATION WITH HYBRID BAYESIAN AVERAGE

MODEL FOR FUZZY DATA

Abbarapu Ashok and Nadiminti Nagamani*

•
Department of Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati, India.

*maniinadiminti999@gmail.com

Abstract

With the ultimate goal of increasing parameter estimate accuracy, this study will examine and assess
a number of estimating techniques used with the Lindley distribution in the context of fuzzy data. Gibbs
sampling, Bootstrapping Sampling, MCMC, MH, and a unique hybrid methodology that combines these
approaches via Bayesian model averaging were also studied. The research looks at several sample sizes
ranging from 15 to 100 and repeats the estimate method 10,000 times for each size. Fuzzy data are created
using established fuzzy systems, and the performance of each approach is measured using average values
(AV), mean squared errors (MSE), coverage probabilities, and confidence interval lengths. The findings
show that the hybrid technique consistently produces estimates closer to the genuine parameter value of
one across all sample sizes, with smaller mean squared errors than individual methods. Furthermore, the
hybrid method’s confidence intervals preserve coverage probabilities that are consistent with the targeted
confidence level, demonstrating the method’s trustworthiness in statistical inference. Overall, the results
show that the hybrid technique improves estimate accuracy and reliability, providing a strong foundation
for parameter estimation in the Lindley distribution framework using fuzzy data.

Keywords: MCMC, MH, lindley distribution, gibbs Sampling, bootstrap sampling, bayesian
model average technique.

1. Introduction

The Lindley distribution was first presented by [1] as a novel distribution has been developed to
simplify lifespan data analysis, particularly in applications that include modeling the depend-
ability of stress strength. Various authors have utilized complete and censored samples to tackle
inferential challenges related to the Lindley distribution parameter. For example, a rigorous math-
ematical methodology to examine the Lindley distribution’s properties used by [2] . In addition,
through the use of a numerical example, they proved that modeling with the Lindley distribution
beats modeling with the exponential distribution in terms of efficiency. The primary subjects of
discussion were the estimation of reliability using an expanding type II right censored sample
along with the Lindley distribution by [3] . When the Lindley distribution is used to spread the
causes of failure, a rival risk model investigated by [4]. The Lindley distribution assumption
states that, both traditional and Bayesian techniques to examine the hybrid censored lifespan
data by [5]. Recently, numerous research has been published regarding the use of traditional
statistical methods for analyzing fuzzy data. Bayesian estimation is used to examine lifetime
data [6] in situations that lack clarity. Fuzzy random variable theory was examined in hindsight
by Gil, Lopez-Diaz, and Ralescu, focusing on its modeling, interpretation, along with resulting
implications. The use of traditional statistical inference techniques to univariate fuzzy data was
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investigated by [7]. Regarding complete and refined datasets, investigated the use of ambiguous
set theory in Bayesian failure rate along with mean time to failure estimate investigated by [8].
The Lindley distribution is characterized by its probability density function.

f (x; β) =
β2

(1 + β)
(1 + x)e−β x; x > 0; β > 0,

In this study, we examine several approaches for estimating the Lindley distribution parameter
in cases where fuzzy numbers are used to characterize the experimental data. First, how fuzzy
data are created from imprecise observations is explained, and then the method for calculating
the greatest probability estimate of the parameter β is discussed. When working with fuzzy data,
the maximum likelihood estimate can be obtained using the MCMC, MH, Gibbs, and bootstrap
methods because the MLE lacks a closed form. Furthermore, the estimated confidence interval
of the unknown parameter is calculated using the asymptotic distribution of the maximum
likelihood estimators (MLEs). We also look at the Lindley distribution’s parameter using the
Bayesian average model. Since the Bayes estimate cannot be obtained directly, we Estimate it
using several techniques such as Gibbs sampling, Bootstrapping Sampling, Markov Chain Monte
Carlo (MCMC), and Metropolis-Hastings (MH). The highest posterior density (HPD) credible
interval of the parameter is also calculated using similar approaches.

2. Literature Review

A variety of techniques for model selection and parameter estimation utilizing fuzzy and stochas-
tic data from various distributions are presented in the reviewed literature. Many research
concentrate on distributions such as Weibull, Rayleigh, Lindley, and Inverse Lindley, and Maxi-
mum Likelihood (ML) and Bayesian techniques are frequently used. For the Weibull distribution,
Bayesian and machine learning techniques with Newton-Raphson and Expectation-Maximization
algorithms by [9] however, it does not compare with other fuzzy data estimate techniques.
Although there are still issues with practical implementation, fuzzy Kullback Leibler (f-KL)
divergence, which offers flexibility in parameter estimation presented by [10]. For the Rayleigh
distribution, fuzzy parameter estimation but it doesn’t outline the estimate process addressed
by [11], which restricts its use. In order to accommodate stochastic and fuzzy data, generalized
estimators are presented in [12] for a variety of lifespan distributions. This introduces a unique
technique that requires additional performance assessment versus current approaches. Although
there are little information on network construction, neural networks and compares neural-based
estimators for the Weibull distribution with classical approaches examines by [13]. In many
research, Bayesian methods are widely used, particularly in Lindley and Generalized Lindley
distributions. With innovations like squared error loss functions and novel estimators, respec-
tively, studies [14] and [15] use Bayesian and machine learning techniques to achieve competitive
results, however they are limited to particular data circumstances. Maximum Product Spacing
(MPS) is presented for the Inverse Lindley distribution in [16]. It works well but has a narrow
application. While acknowledging the higher computing requirements, the Bayesian technique
to Lindley distributions for hypothesis testing expanded by [17]. Model selection is the primary
focus of [18]. Bayesian approaches help identify the best-fitting models for fuzzy data under the
Lindley distribution when proper prior selection is used. A hybrid Bayesian-Bootstrap method in
[19] enhances the generation of confidence intervals but increases computing costs. For certain
fuzzy data situations, the Lindley distribution’s benefit is demonstrated by comparative Bayesian
analyses in [20], while an Empirical Bayes technique in [21], provides a computationally effective
substitute. Further refinements in Bayesian methods include the use of informative priors [22] for
improved model selection and parameter estimation in Lindley distributions. Finally, fuzzy logic
and Bayesian techniques are combined in [23] for classification problems. This approach shows
potential but needs more extensive validation on real-world datasets. Each method presents
unique strengths and challenges, with limitations often centered on computational efficiency,
distribution-specific applications, and the need for extensive comparison across methodologies.
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2.1. Research gap

The literature on parameter estimation with fuzzy data lacks comprehensive comparison and
integration of methodologies across different distributions. The hybrid Bayesian average model
addresses this gap by integrating Bayesian inference with bootstrap resampling, providing
robust parameter estimation and confidence interval construction. This model improves coverage
probabilities, adaptability to various distributions, and mitigates computational cost by combining
Bayesian inference with bootstrap resampling. It is more feasible for practical applications,
especially when dealing with large datasets or complex models. The hybrid Bayesian average
model offers improved accuracy, reliability, and computational efficiency compared to existing
methods, making it a valuable solution for parameter estimation in fuzzy data analysis.

3. Simulation and Comparison Studies

3.1. Bayesian Average Modelling

This study used the average model to estimate the parameters. Updating previous knowledge
based on observed data and combining it coherently is made possible by the Bayesian framework.
When working with sparse or ambiguous data, the Bayesian average model comes in handy
because it provides reliable parameter estimates.

Let M = (M1, . . . , MK) represent the set of models being studied. A model can be charac-
terized by various attributes, such as the form of the error variance or the specific collection of
explanatory factors that are part of the model. The posterior distribution of ∆, which represents
the quantity of interest (such as a future observable or a model parameter), is determined by data
Z. Additionally, it is as follows.

p(∆|Z) =
K

∑
i=1

p(∆|Z, Mk)p(Mk|Z)

This is the average posterior predictive distribution value for ∆ across all considered models,
considering the likelihood of the associated posterior model. The posterior probability is the
likelihood of model Mk based on the data that is already available.

p(Mk|Z) =
p(Z|Mk)p(Mk)

∑K
i=1 p(Z|Mi)p(Mi)

where,
p(Z|Mk) =

∫
· · ·

∫
p(Z|θk, Mk)p(θk|Mk)dθk

is Model Mk’s parameter vector, θk represents the integrated likelihood of the model; p(θk|Mk)
represents the prior density of parameters of Mk; p(Z|θk, Mk) p(Mk) stands for the previous
probability of Mk™s genuineness, and reflects the likelihood. The collection of all models that
are taken into consideration, M implicitly depends on each probability.

Applying the above discussed concepts simply results in parameter estimates and other
quantities of interest. A parameter θ may be estimated using the Bayesian model averaging (BMA)
method is,

θBMA =
K

∑
k=1

θ̂k(Mk|Z)

where, θ̂k represents model k’s posterior mean. There may also be accessible alternative amounts
and variances of these estimations.

Bayesian model averaging (BMA) presents many issues. These tasks encompass determining
the prior model probabilities p(Mk), computing for numerous models, and evaluating the
integrals that are frequently not solvable using standard mathematical expressions.
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Algorithm 1 Hybrid Bayesian Average Model

Require: data, num_iterations, num_bootstrap_iterations, sample_size
Define function MCMC(data, num_iterations):

Initialize θ ← 0
Initialize chain← empty list
FOR each iteration from 1 to num_iterations DO

Draw θnew from a normal distribution with mean θ and standard deviation 0.1
Compute acceptance probability α← min(1, probability density at θnew

probability density at θ )

IF a random number between 0 and 1 is less than α THEN
Set θ ← θnew

Add θ to chain
END FOR
RETURN chain

Define function MH(data, num_iterations):
Initialize θ ← 0
Initialize chain← empty list
FOR each iteration from 1 to num_iterations DO

Draw θnew from a normal distribution with mean θ and standard deviation 0.1
Compute acceptance probability α← min(1, probability density at θnew

probability density at θ )

IF a random number between 0 and 1 is less than α THEN
Set θ ← θnew

Add θ to chain
END FOR
RETURN chain

Define function Gibbs(data, num_iterations):
Initialize θ ← 0
Initialize chain← empty list
FOR each iteration from 1 to num_iterations DO

Draw θ from a normal distribution with mean equal to data mean and standard deviation
equal to data std

Add θ to chain
END FOR
RETURN chain

Define function Bootstrapping(data, num_bootstrap_iterations, sample_size):
Initialize bootstrapped_samples← empty list
FOR each iteration from 1 to num_bootstrap_iterations DO

Randomly select sample_size indices from data with replacement
Create bootstrapped_sample by selecting elements of data at these indices
Add bootstrapped_sample to bootstrapped_samples

END FOR
RETURN bootstrapped_samples

Define function Bayesian_Average(parameters):
RETURN mean of parameters

Define function run_hybrid_model(data, num_iterations, num_bootstrap_iterations, sam-
ple_size):

Initialize parameters← empty list
FOR each iteration from 1 to num_iterations DO

Obtain MCMC chain using MCMC(data, num_iterations)
Obtain MH chain using MH(data, num_iterations)
Add results to parameters list

END FOR
RETURN Bayesian_Average(parameters)
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3.2. Gibbs sampling

A series of samples from a joint probability distribution may be created iteratively using the
Gibbs sampling technique. When using such a sequence, the goal is to compute an integral
(like an anticipated value) or estimate the joint distribution (like a histogram). Gibbs sampling
is suitable when the individual conditional distributions of each variable are known, but the
joint distribution is not explicitly known. Using the current values of the other variables as a
conditioning factor, the Gibbs sampling technique is used to iteratively produce a sample from
each variable’s distribution. The samples can be demonstrated to constitute a Markov chain, and
the stationary distribution of that chain precisely corresponds to the joint distribution that is
required. Gibbs sampling is a highly suitable approach for sampling the posterior distribution of
a Bayesian network, which is typically characterized as a set of conditional distributions.

3.2.1 The Gibbs sampler

In the context of picture restoration using the MCMC technique, Gibbs sampling is a flexible
technique for fitting statistical models [24]. This method is based on the recommendations of
Tanner and Wong (1987) for replacement sampling using data augmentation.

Assume that we divide λ into r blocks, such that λ = (1, 2, . . . , r). Considering that λ is
now in the state λ(t), let’s say we make the transition in the manner described below:

Draw λ
(t+1)
1 from h(λ1|λ

(t)
2 , . . . , λ

(t)
r ),

Draw λ
(t+1)
2 from h(λ2|λ

(t+1)
1 , λ

(t)
3 , . . . , λ

(t)
r ),

...

Draw λ
(t+1)
r from h(λr|λ(t+1)

1 , . . . , λ
(t+1)
r−1 ).

We call the distributions h as conditional distributions in their whole. By executing one full
cycle of the Gibbs sampler, we may update the whole vector λ by changing each of the r blocks in
the manner illustrated. The selection of components lower-dimensional blocks has assumed the
role.

3.3. Bootstrap sampling

A potent resampling method for estimating a statistic’s sampling distribution in statistics is called
a bootstrap sample. It is beneficial when standard parametric approaches are not appropriate or
when the underlying distribution of the data is unclear. Bootstrapping is the process of repeatedly
to generate a large number of bootstrap samples, replacement samples are chosen from the
observable data. The distribution of the statistic’s sample may be approximated using these
samples, including the mean, variance, and regression coefficients. The fundamental tenet of
bootstrap sampling is that the data’s empirical distribution can be utilized to approximate the
actual population distribution.

3.3.1 Procedure for Bootstrap sampling

The sampling distributions of sample statistics are fundamental for statistical inference. Primarily,
the bootstrap method enables one to estimate the sampling distribution based on a single sample,
although with some degree of approximation. The following is an explanation of how it functions.

Step 1: Perform resampling. Generate several more samples, referred to as bootstrap samples
or resamples, by randomly selecting and replacing elements from the first random sample. Each
sample is of same magnitude as the initial random sample.
Sampling with replacement involves randomly selecting one observation from the original sample
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and returning it before selecting the next observation. This is like to randomly selecting a number
from a hat, and then returning it before making another selection. Consequently, any number
may be selected once, several times, or not at all. If we conducted a replacement sampling, we
would get the identical set of numbers that we initially had, only in a new sequence. Practically,
we would begin with the whole original sample, rather than only six observations, and generate
several resamples, rather than just three.
Step 2: Compute the bootstrap distribution. Compute the statistical measures for each individual
sample. The collection of these resample statistics is referred to as the bootstrap distribution. If
we wish to calculate the average repair time of the population, the statistic we use is the sample
mean.
Step 3: Utilize the bootstrap distribution. The bootstrap distribution provides insights on the
form, central tendency, and the statistic’s sample distribution’s variability. The bootstrap standard
error may be defined as the standard deviation of the bootstrap distribution associated with a
given statistic.If the specific statistic being considered is the sample mean, then the bootstrap
standard error may be calculated using resamples is

SE(boot, X̄) =

√
1

B− 1 ∑
(

X− 1
B ∑ X̄∗

)2

in this formula, X̄∗ represents the average value of a single resample. Simply taking the standard
deviation of the B values yields the bootstrap standard error. The asterisk in * distinguishes
between the original sample mean and the resample mean.

3.4. MH Algorithm

The algorithm of Metropolis-Hastings [25, 26] is a Samples from the posterior distribution p(λ|X)
may be generated by the Markov chain Monte Carlo approach. The algorithm™s starting vector
value is denoted by λ0. Afterwards, a sequence of N parameter vectors, λi for i = 1, N, are
produced as follows:

a. Create a proposal distribution q(λ∗|λi−1), such as a Normal distribution with λi−1 as the
mean, and use it to generate a candidate parameter vector λ∗.

b. Calculate

T =
p(Y|λ∗)λ(λ∗)q(λi−1|λ∗)

p(Y|λi−1)λ(λi−1)q(λ∗|λi−1)
,

where p(Y|λ∗) and the prior densities of λ∗ and λi−1, respectively, and the likelihood values
of the parameter vectors λ∗ and λi−1, respectively.

c. Assuming that u is chosen at random from a uniform distribution over the interval (0, 1)
and if T, is greater than u, then λi = λ∗; otherwise, λi = λi−1.

d. Following an initial phase of, let™s say, M iterations, the resultant chain will converge to
a chain whose members are randomly selected from the posterior parameter distribution
p(λ|X). Eliminate the first M iterations as much as possible.

e. The beginning value λ0, the proposal distribution q(λ∗|λi−1). Before using the Metropolis-
Hastings method, you must ascertain the overall iteration count N as well as the number of
rejected iterations M. The criteria for selecting these parts still need more investigation.

f. It is possible to summarize many aspects of the posterior parameter distribution using the
collected sample. Using the sample of parameter vectors λj with j = M + 1, . . . , N, one may
calculate the posterior means to minimize expected quadratic loss,

λ̄ =
1

N −M

N

∑
j=M+1

λj
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Next, the vector λ̄ can be viewed as a model parameter estimate. Comparing parameter estimates
to the complete posterior probability distribution, one must forfeit some information. The
posterior variances, parameter correlations, and model prediction distribution can all be computed
using the sample of parameter vectors.

3.5. Markov Chain Monte Carlo Methods (MCMC)

Let λ = (λ1, λ2, . . . λn) be a vector that includes every variable for which we require probability
density functions. This indicates that we want to discover p(λi|Y), where Y is the collection of
measurements, for each variable λi. Applying the Bayes theorem, we get

p(λi|Y) =
p(Y|λi)p(λi)

p(Y)
=

p(Y|λi)p(λi)∫
θi

p(Y|λi)p(λi)dλi

The term p(λi|Y) is also referred to as the target distribution or posterior because this is
the distribution we are attempting to estimate. The likelihood function, p(Y|λ), indicates the
likelihood that the data was generated with the given set of parameters. It is represented by
the term p(Y), which is the prior distribution of λ. If the denominator is not tractable, it is not
possible to give an explicit analytic expression of the probability density function. It is possible
that the formula is tractable for some λi but not for others, which means that another approach
may need to be used for estimating each variable has few different possibilities.

1. The closed analytic form of p(λ|Y) can be written as a conventional probability distribution
that can be directly sampled, or in the event that this is not possible, sampled via the inverse
transform sampling method.

2. Although there are some variables, λnew such that the expressions p(λ1|λnew . . . Y) and
p(λnew|λ1, λi, Y) can be in closed analytic form, p(λ|Y) cannot be written in a closed
analytic form. Drawing λi from p(λi|λi) and λ0 from p(λ|λ1, Y) can then be used to sample
p(λ|Y).

3. Although the proportionality of the joint posterior density p(λ1, λnew, . . . , λi) is known, no
closed analytic equation for p(λ|Y) has been established. The so-called Metropolis-Hastings
algorithm, one specific application of the MCMC method, which stands for Markov Chain
Monte Carlo, is applicable here.

4. Performance Evaluation

In order to determine which estimating method is the most effective, performance measurements
like average variance (AV), mean squared error (MSE), coverage probabilities, and interval lengths
are utilized. This will allow for the identification of any trends or patterns that may exist across a
range of sample sizes, as well as the provision of insights into the relative effectiveness of the
techniques.

4.1. Average values(AV)

The following mathematical formula can be used to determine the average values (AV) in the
context of performance metrics,

AV =
1
N

N

∑
i=1

xi

where, AV represents the average value.
N represents the overall count of observations.
xi stands for every single observation.
In the context of the research on estimation techniques for the Lindley distribution with fuzzy
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data, the average values (AV) are calculated to represent the central tendency of the estimation
results obtained from different techniques. The AV provides insight into how closely the estimates
align with the true parameter value, which in this case is 1.

4.2. Mean squared error(MSE)

By averaging the squares of the errors between estimated and true values, the mean squared
error (MSE) is a frequently used metric to assess the accuracy of an estimator. This mathematical
formula is used to compute the MSE

MSE =
1
N

N

∑
i=1

(xi − x̄i)
2

where, Mean squared error is abbreviated as MSE.
N represents the total amount of observations.
xi is the actual value. x̄i represents the estimated value.

4.3. Coverage probability

A statistical metric called coverage probability is employed to evaluate the dependability of
confidence intervals. It displays the proportion of confidence intervals containing the parameter’s
true value. Coverage probability is computed as follows in the context of studies on fuzzy data
estimate methods for the Lindley distribution.

Coverage Probability =
Number of Confidence Intervals that contain the True Value

Total Number of Confidence Intervals

This measure provides insights into the effectiveness of the estimation techniques in providing
confidence intervals that capture the true parameter value. A coverage probability close to the
desired confidence level indicates that the estimation technique is providing reliable and accurate
confidence intervals.

4.4. Interval Length

The width or range of a confidence interval, which expresses the accuracy of the estimation, is
referred to as the interval length. It is computed as the absolute difference between the confidence
interval’s upper and lower boundaries. In the context of the research on estimation techniques for
the Lindley distribution with fuzzy data, interval length can be calculated as follows

Interval Length = Upper Bound− Lower Bound

This measure provides insights into how narrow or wide the confidence intervals are, which
reflects the precision of the estimation. Smaller interval lengths indicate higher precision, while
larger interval lengths indicate lower precision.

5. Results and Discussion

5.1. Results

We provide the results of our investigation on the performance of several estimate approaches
applied to the Lindley distribution with fuzzy data in the results section. We compare the
efficiency of the following techniques: Gibbs sampling, Bootstrapping Sampling, Markov Chain
Monte Carlo (MCMC), and Metropolis-Hastings (MH). Our investigation covers a range of
sample sizes, from 15 to 100, with each estimating step performed 10,000 times. The fuzzification
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procedure uses preset fuzzy systems {x̃1, . . . , x̃8} to alter produced samples to account for dataset
uncertainty. Each membership function, µx̃i (x), is designed to reflect the data’s fuzzy properties
correctly. This section tries to highlight any trends or patterns discovered across various sample
sizes, as well as give insights into the approaches’ comparative performance. Furthermore, we
take into account minor fluctuations in x-values to guarantee that uncertainties in fuzzy data are
accurately represented, improving the integrity of our analysis and aiding researchers in picking
the best methodologies for statistical inference.

µx̃1(x) =



1, if x ≤ 0.13

0.33− x
0.2

, if 0.13 ≤ x ≤ 0.33

0, otherwise

µx̃2(x) =



x− 0.13
0.2

, if 0.13 ≤ x ≤ 0.33

0.58− x
0.25

, if 0.33 ≤ x ≤ 0.58

0, otherwise

µx̃3(x) =



x− 0.33
0.25

, if 0.33 ≤ x ≤ 0.58

0.83− x
0.25

, if 0.58 ≤ x ≤ 0.83

0, otherwise

µx̃4(x) =



x− 0.58
0.25

, if 0.58 ≤ x ≤ 0.83

1.08− x
0.25

, if 0.83 ≤ x ≤ 1.08

0, otherwise

µx̃5(x) =



x− 0.83
0.25

, if 0.83 ≤ x ≤ 1.08

1.58− x
0.5

, if 1.08 ≤ x ≤ 1.58

0, otherwise

µx̃6(x) =



x− 1.08
0.5

, if 1.08 ≤ x ≤ 1.58

2.08− x
0.5

, if 1.58 ≤ x ≤ 2.08

0, otherwise

µx̃7(x) =



x− 1.58
0.5

, if 1.58 ≤ x ≤ 2.08

3.08− x, if 2.08 ≤ x ≤ 3.08

0, otherwise
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µx̃8(x) =



x− 2.08
1

, if 2.08 ≤ x ≤ 3.08

1, if x ≥ 3

0, otherwise

Table 1: Averages values and mean squared errors of the GIBBS estimates of θ = 1, coverage probabilities

n AV MSE Coverage Length

15 1.0307 0.0405 0.9403 0.7508
20 1.0289 0.0386 0.9457 0.7205
30 1.0289 0.0349 0.9524 0.6501
50 1.0246 0.0258 0.9526 0.4507
70 1.0154 0.0192 0.9538 0.3509
100 1.0102 0.0187 0.9559 0.1804

Table 2: Averages values and mean squared errors of the Bootstrapping Sampling estimates of θ = 1, coverage
probabilities

n AV MSE Coverage Length

15 1.0327 0.0426 0.9385 0.7703
20 1.0295 0.0375 0.9447 0.7409
30 1.0255 0.0329 0.9486 0.6305
50 1.0198 0.0247 0.9519 0.4902
70 1.0147 0.0198 0.9538 0.4003
100 1.0098 0.0115 0.9556 0.2106

Table 3: Averages values and mean squared errors of the MCMC estimates of θ = 1, coverage probabilities

n AV MSE Coverage Length

15 1.0316 0.0437 0.9365 0.7559
20 1.0285 0.0389 0.9436 0.7253
30 1.0247 0.0337 0.9489 0.6154
50 1.0184 0.0256 0.9519 0.4708
70 1.0139 0.0209 0.9537 0.3804
100 1.0087 0.0127 0.9553 0.1905

Table 4: Averages values and mean squared errors of the MH estimates of θ = 1, coverage probabilities

n AV MSE Coverage Length

15 1.0309 0.0425 0.9378 0.7653
20 1.0287 0.0384 0.9446 0.7357
30 1.0249 0.0339 0.9485 0.6254
50 1.0175 0.0245 0.9529 0.4956
70 1.0125 0.0195 0.9538 0.3907
100 1.0087 0.0128 0.9552 0.2104
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Table 5: Combined of all methods using Bayesian model average technique

n AV MSE Coverage Length

15 1.0305 0.0409 0.9379 0.7559
20 1.0284 0.0379 0.9441 0.7264
30 1.0249 0.0339 0.9490 0.6174
50 1.0193 0.0251 0.9519 0.4761
70 1.0140 0.0204 0.9536 0.3877
100 1.0093 0.0132 0.9552 0.2009

Diagrammatic presentation of the table values obtained in the simulation process

Figure 1: Comparison of Average Values Across Different Samples sizes

Figure 2: Comparison of MSE Across Different Samples sizes
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Figure 3: Comparison of Interval length Across Different Samples sizes

From Tables 1 to 5, it is observable that the hybrid approach, which combines all methods
using the Bayesian model averaging technique, yields more reliable estimates. In Table 5, the
average values (AV) are calculated using this Bayesian model averaging technique, combining
estimates from all methods. Compared to individual approaches, this hybrid method provides
estimates closer to the true value of 1, indicating improved accuracy. Table 5 shows that the
modifications applied in the hybrid approach result in values that are even closer to the true value
of 1 than those in Tables 1 through 4. Specifically, the Proposed table (Table 5) offers more precise
average values, suggesting that this method achieves a superior level of accuracy in estimating the
true value. Additionally, it reports lower mean squared error (MSE) values, highlighting improved
accuracy in estimating the population parameters. Lower MSE values suggest confidence intervals
that are closer to the true values. Furthermore, the coverage probabilities in Table 5 align
closely with the desired confidence level, demonstrating the reliability of this approach. The
graphical representations in Figures 1 to 4 further support these findings. Over Gibbs Sampling,
Bootstrapping Sampling, MCMC, the Metropolis-Hastings (MH) Algorithm, and the unique
hybrid strategy, the hybrid method stands out for its accuracy in parameter estimation for the
Lindley distribution on fuzzy data. Figures 1 and 2 demonstrate that the hybrid approach yields
average values closer to 1, and Figure 3 confirms lower MSE, indicating improved precision.
Additionally, Figures 3 and 4 show that coverage probabilities and interval lengths are more
favorable, underlining the robustness of the hybrid approach compared to individual methods.
In conclusion, the unique hybrid strategy, presented in Table 5, offers balanced and efficient
parameter estimation with superior accuracy across multiple metrics. The Bayesian model
averaging technique combines estimates from all methods, producing values that consistently
approach the true value of 1. This approach enhances mean squared errors, coverage probabilities,
and confidence interval lengths across different sample sizes, outperforming Bootstrapping,
MCMC, and MH estimates.

5.2. Discussion

The provided research summarizes the performance of Gibbs sampling, Bootstrapping Sampling,
MCMC, and MH approaches for estimating parameters for the Lindley distribution on fuzzy
data, as well as a unique hybrid strategy that combines these methods using Bayesian model
averaging. The combination of these strategies presents a potential opportunity for improving
estimate accuracy and dependability. Notably, the Bayesian model average methodology used
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Figure 4: Comparison of Coverage Values Across Different Samples sizes

in the proposed hybrid method combines data from many estimating methodologies, resulting
in estimates that are consistently closer to the real parameter value of 1 over a range of sample
sizes. By exploiting the characteristics of each individual technique, the hybrid strategy yields
reduced mean squared errors, indicating greater estimate accuracy. Furthermore, the hybrid
method’s confidence intervals preserve coverage probabilities that are consistent with the targeted
confidence level, demonstrating the method’s trustworthiness in statistical inference. Overall,
the results from emphasize the hybrid method’s usefulness in improving estimate accuracy and
reliability, providing a strong foundation for parameter estimation in the Lindley distribution
framework with fuzzy data.

6. Conclusion

Ultimately, a novel method for parameter estimation in the Lindley distribution domain is
embodied by the combination of Gibbs sampling, Bootstrapping sampling, MCMC, and MH
techniques using Bayesian model averaging, especially when dealing with fuzzy data. Examining
the hybrid approach closely across a range of sample sizes, it shows itself to be a remarkable
performer, always guiding estimates toward the real parameter value of 1. This convergence
toward the true value highlights the ability of the hybrid method to strengthen accuracy and
avoid estimate mistakes, therefore promoting increased trust in the deduced conclusions. A
notable finding is that the hybrid approach tends to provide less mean squared errors than
its component individual techniques. This decrease in mean squared errors not only shows
improvement in estimating accuracy but also highlights the ability of the hybrid method to extract
a plethora of data from many estimation techniques, hence improving the quality of the estimated
values. In addition, the confidence intervals produced by the hybrid approach firmly adhere to
coverage probabilities that correspond with the target confidence level, therefore confirming the
robustness and dependability of the approach in the field of statistical inference. These results
have far-reaching consequences that cut across many fields where ambiguity and imprecision are
commonplace, even beyond the boundaries of academic study. Researchers and professionals
struggling with parameter estimate problems in the face of erratic fuzzy data will find the hybrid
approach to be a true miracle. Through the use of complementary strengths of many estimating
methods, the hybrid approach causes a paradigm change in statistical analysis, enabling more
careful decision-making processes and a higher degree of confidence in the conclusions that are
obtained. All things considered, the combination of Gibbs sampling, Bootstrapping sampling,
MCMC, and MH techniques via Bayesian model averaging is a fundamental development in the
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history of statistical inference techniques. Going ahead, more research and development of the
hybrid approach show promise for overcoming the many obstacles related to parameter estimation
in a variety of distributional frameworks and datasets, so paving the way for a revolutionary
development in the field of statistical methods and their usefulness in many different research
fields.
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Abstract

In the current article, a retrial queuing system with working vacations, interruptions, setup time, and
perfect repair is analyzed. The scenario includes a server taking working vacations during empty periods
without a complete halt of servicing customers; however, the rates of service remain reduced. Further, a
setup time is included here, implying that if the server remains idle when a new customer enters, the
state changes to inactive plus a setup duration before restarting operation. In this phase of setup, the
setup failure happens and is replaced immediately before the server can proceed to normal operations.
In addition to this, automatic power-off to conserve energy is there when no customer comes while the
server is in vacation mode. Customers who find that the server cannot be accessed spend time waiting in
retrial orbit instead of entering a normal queue. Here they’re encouraged to try again for service after a
random time. The steady state probability generating functions for system size and retrial group size
are obtained by analyzing the system dynamics through the supplementary variable technique (SVT).
Reliability and optimization analyses will be included in what will be studied from the system. Reliability
concerns evaluating the chances of the server being available at different failure and repair sites while
in the system, while optimization looks at the best configuration of system parameters that will work
towards achieving greater efficiency and reduced delays. Explicit mathematical formulations can be
obtained under ergodicity conditions describing the system size distribution and sojourn time and state
probabilities. For a practical realization of the model, which numerically experiments would be carried
out in Python, the theoretical results were validated .Such results therefore hold information on how
direct retrials, setup times, service rates, and repair mechanisms affect overall system behavior. They
also provide strong evidence for trade-offs between energy conservation on the one hand and reliability
together with continuous service on the other. The proposed model together with practical implementation
thus produces very significant inferences relevant to real service models in which the optimization of
resources and efficiency of operation are critical.

Keywords: Retrial queue; working vacation; setup time; interruption; perfect repair ; general
retrial times.

1. Introduction

Queueing theory is a fundamental branch of applied mathematics with widespread applications in
various fields such as telecommunications, computer systems, transportation, and manufacturing.
When servers are busy, customers often enter a retrial orbit, awaiting service availability according
to predefined policies. The groundwork laid by Yang and Falin, Falin and Templeton [7], Yang et
al. Extending by Artalejo, Gomez-Corral [8] , Arrar et al [2] [3] [4]. Queueing systems, particularly
those involving retrials with vacations play a crucial role in balancing resource utilization and
service efficiency. The queueing systems with server vacations introduced by Levy and Yechiali
[14] are widely used in manufacturing systems, production systems, service systems, inventory
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systems, and other stochastic systems. In traditional scenarios, service stops when servers are on
break, many researchers have worked on vacation interruption. Notably, Keilson and Servi [11]
conducted significant research. One can refer also Li and Tian [15]. Takagi [21] contributed to
the field by studying single-server queueing models with Bernoulli vacations. However, in many
particular cases, an alternative approaches like working vacations provide service at a reduced
rate during idle times, thereby enhancing the overall performance of the system. Numerous
researchers have dedicated their efforts to develop models for queueing systems with working
vacation concepts. Pioneering work on this subject was also carried out by Servi and Finn [18]
considered an M/M/1 queue with working vacations, wherein vacation times are exponentially
distributed. Most work on queueing models with working vacations can be found in Tian et al
[19] and Chandrasekaran et al [6]. The M/M/1 retrial queue with working vacations was first
studied by Do. Subsequently, Banik et al[5] analyzed a general working vacation queueing model.
Arivudainambi et al [1] focused on analyzing a single-server retrial queue with working vacation
dynamics. Zhang and Hou [20] studied M/G/1 queueing model with vacation interruption.
And Gupta and Kumar [9] considered retrial queueing system with working vacation with
breakdown and repair. Furthermore, the integration of setup time becomes essential, especially in
the context of energy conservation. Setup time enables power-saving strategies by allowing server
deactivation during periods of inactivity. Recognizing the importance of power conservation,
several researchers have explored queueing models incorporating setup time. Phung-Duc [16]
[17], for instance, integrated the notion of setup time into retrial queueing systems. Gupta and
Kumar [10] analyzed retrial queue with feedback, setup time, working vacation perfect repair.
For further insights into related research, readers may refer to Manoharan and Jeeva [12] [13].
And Pannom Gupta. The model under investigation is an M/G/1 retrial queue with a working
vacation and setup time. This system represents a complex real-life case where customers may
encounter delays due to server unavailability, requiring them to reattempt service after a waiting
period. The setup times can significantly impact service efficiency and system performance. We
extend the results obtained by considering the general law of inter-retrial times and service times.
Our study aims to provide a detailed analysis of this type of complex system. We introduce
the Markov chain to prove the stability condition of the studied model. Using the method of
supplementary variables, we obtain the partial generating functions and the limiting distributions
that this type of model can possess. We also present some performance measures of the studied
model.

2. The model

In this paper, we consider an M/G/1 unreliable retrial queue with single working vacation , setup
time. The model is described in great detail as follows:

1. The arrival of consumers follows a Poisson process with a rate λ > 0 . If a consumer arrives
and the server is idle, they begin service immediately . on the other hand, if he finds it
busy, on working vacation, on setup, or broken then the consumer leaves the service area
and enters a pool of blocked consumers called orbit in accordance with an First Come First
Served discipline. While in orbit, the consumer waits a random amount of time before
retrying. The inter-retrial times follow an arbitrary probability distribution function N(x)
with corresponding LST function N ∗(θ).

2. The server promptly initiates the normal service for the new or retrial consumers upon their
arrival while in an idle state. The normal service time distributed with general distribution
function G(x) having LST G∗(θ).

3. in the case of the orbit is empty.The server automatically begins a single working vacation,
which follow an exponential distribution with rate ω .If a consumers comes up during the
working vacation , the consumers are served at a reduced rate. when the working vacation
is finished the server resumes normal service . while the working vacation period , The
service time distributed with general distribution function Wv(x) having LST W∗

v (θ).
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4. In the final of working vacation , if no consumers are waiting for their turn , the server is
shut down directly to save power .

5. in the off-state of the server, if any client arrives he will wait for his turn in forward position
of the server until it is activated (setup time ). the setup time is assumed to follow general
distribution with probability distribution function Ts(x) with corresponding LST function
T ∗

s (θ). The customers arriving in the setup state, have to join the orbit.

5. whene the server undergoes to the set-up state , this operation may fail with probability
ᾱ = (1− α). Then the server is sent for repair and The repair time of the server has arbitrary
probability distribution function S f (x) with corresponding LST function S∗

f (θ).

2.1. Practical justifications of the suggested model

Consider a manufacturing system consisting of a paper recycling machine , a Foreman(server)
and a worker(assistant) to operate the machine . The foreman will operate the machine if the
waste paper (customer) is available and produce the products.if this last is not available due
to transport issues , then the foreman may go on vacation .During the vacation period of the
foreman, if waste paper becomes available then the worker will operate the machine , but the
production will be relatively at a slow speed (working vacation ) . When a batch of the product
is completed, then the worker will call the foreman to resume the production at a higher speed
(vacation interruption ). In another situation, if the foreman’s vacation period completes, he will
return to the production to operate the machine . If the waste paper is available then he will
manage the production at a higher speed otherwise, if the waste paper is not available, to save
power, he may turn off the machine. Again, the availability of new waste paper will initiate
the setup of the machine (setup time) and production starts again if setup occurs successfully
otherwise the machine will be sent for repair, and during this period there will be no production.

3. Steady-state analysis

Let χ1(t), χ2(t), χ3(t), χ4(t), χ5(t) be the elapsed time in retrial, time in regular service, working
vacation time , repair time and setup time sequentially at time t.
Let supose that :
N(0) = 0, N(∞) = 1, G(0) = 0, G(∞) = 1, Wv(0) = 0, Wv(∞) = 1, Ts(0) = 0, Ts(∞) = 1, S f (0) =
0, S f (∞) = 1 are continuous at x = 0.consequently, we specify the hazard rate functions
f (x), µn(x), µw(x), υ(x), δ(x), for retrial, normal service, lower rate service, delayed repair and
repair, respectively.

f (x)dx =
dN(x)

1 − N(x)

µn(x)dx =
dG(x)

1 − G(x)

µw(x)dx =
dWv(x)

1 − Wv(x)

υ(x)dx =
dS f (x)

1 − S f (x)

δ(x)dx =
dTs(x)

1 − Ts(x)

The state of the system at time t can be defined by the Markov process {N(t); t ≥ 0} =
{D(t), X(t), χ1(t), χ2(t), χ3(t), χ4(t), χ5(t)t ≥ 0}, where X(t) denotes the number of customers
in the orbit at time t and
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D(t)=



0, if the server is idle in a normal period
1, if the server is idle in a working vacation period
2, if the server is busy on normal service
3, if the server is busy on working vacation period
4, if the server is on repair
5, if the server is on setup state

respectively. If D(t) = 0 and X(t) > 0, then χ1(t) represents the elapsed retrial time, if
D(t) = 2, then χ2(t) represents the elapsed service time during normal busy period at time t, if
D(t) = 3 and X(t) ≥ 0 then χ3(t) represents the elapsed working vacation time at time t and if
D(t) = 4 and X(t) ≥ 1 then χ4(t) represents the elapsed repair time at time t and if D(t) = 5
and X(t) ≥ 1 then χ5(t) represents the elapsed setup time at time t.

3.1. Stability and ergodicity Condition

Let {tn; n ∈ N} be the sequence of epochs of either service completion times or vacation termina-
tion time. The sequence of random vectors Zn = {D (tn+) , X (tn+)} form a Markov chain which
is the embedded Markov chain for our queueing system. Its state space is S = {0, 1, 2, 3, 4 and
5} × N.

Theorem 1. The embedded Markov chain {Zn; n ∈ N} is ergodic if and only if
ρ = λ

(
1

µn
+ 1

µw
+ ωW∗′

v (ω)
)
< N ∗(λ).

3.2. Equations Governing The System

For the Markov process {N(t); t ≥ 0}, we define the probability

P00(t) = {D(t) = 0, X(t) = 0}Q0(t) = {D(t) = 1, X(t) = 0}

and the probability densities

Pn(x, t)dx = {D(t) = 0, X(t) = n, x ≤ χ1(t) < x + dx} , x ≥ 0, n ≥ 1

Mn,b(x, t)dx = {D(t) = 2, X(t) = n, x ≤ χ2(t) < x + dx} , x ≥ 0, n ≥ 0

Gn,v(x, t)dx = {D(t) = 3, X(t) = n, x ≤ χ3(t) < x + dx} , x ≥ 0, n ≥ 0

Un(x, t)dx = {D(t) = 4, X(t) = n, x ≤ χ4(t) < x + dx} , x ≥ 0, n ≥ 1

Kn(x, t)dx = {D(t) = 5, X(t) = n, x ≤ χ5(t) < x + dx} , x ≥ 0, n ≥ 1

We assume that the stability condition is fulfilled in the sequel and so that we can set
P00 = limt→∞ P00(t) and Q0 = limt→∞ Q0(t) limiting densities for x > 0 and n ≥ 0

Mn,b(x) = lim
t→∞

Mn,b(x, t), Pn(x) = lim
t→∞

Pn(x, t) and Gn,v(x) = lim
t→∞

Gn,v(x, t)

and Un(x) = lim
t→∞

Un(x, t) and Kn(x) = lim
t→∞

Kn(x, t).

Based on the above assumptions and notations, our model is governed by the following set of
differential difference equations,

λP00 = ωQ0 (1)

(λ + ω)Q0 =
∫ ∞

0
M0,b(x)µn(x)dx +

∫ ∞

0
G0,v(x)µw(x)dx (2)

d
dx

Pn(x) + (λ + f (x))Pn(x) = 0, x > 0, n ≥ 1 (3)
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d
dx

M0,b(x) + (λ + µn(x)) M0,b(x) = 0, x > 0 (4)

d
dx

Mn,b(x) + (λ + µn(x)) Mn,b(x) = λMn−1,b(x), x > 0, n ≥ 1 (5)

d
dx

G0,v(x) + (λ + ω + µw(x)) G0,v(x) = 0, x > 0 (6)

d
dx

Gn,v(x) + (λ + ω + µw(x)) Gn,v(x) = λGn−1,v(x), x > 0, n ≥ 1 (7)

d
dx

U0(x) + (λ + υ(x))U0(x) = 0, x > 0 (8)

d
dx

Un(x) + (λ + υ(x))Un(x) = λUn−1(x), x > 0, n ≥ 1 (9)

d
dx

K0(x) + (λ + δ(x))K0(x) = 0, x > 0 (10)

d
dx

Kn(x) + (λ + δ(x))Kn(x) = λKn−1(x), x > 0, n ≥ 1 (11)

The boundary conditions at x = 0 include Pn(0), M0,b(0), Mn,b(0), G0,v(0), U0(0), Un(0), K0(0).
The description of these terms at x = 0 are described as follows:

Pn(0) =
∫ ∞

0
Gn,v(x)µw(x)dx +

∫ ∞

0
Mn,b(x)µn(x)dx, n ≥ 1 (12)

M0,b(0) = α
∫ ∞

0
K0(x)δ(x)dx +

∫ ∞

0
P1(x) f (x)dx

+ ω
∫ ∞

0
G0,v(x)dx +

∫ ∞

0
U0(x)υ(x)dx (13)

Mn,b(0) = α
∫ ∞

0
Kn(x)δ(x)dx +

∫ ∞

0
Pn+1(x) f (x)dx + ω

∫ ∞

0
Gn,v(x)dx

+ λ
∫ ∞

0
Pn(x)dx +

∫ ∞

0
Un(x)υ(x)dx, n ≥ 1 (14)

G0,v(0) = λQ0 (15)

Gn,v(0) = 0, n ≥ 1 (16)

K0(0) = λP00 (17)

Kn(0) = 0, n ≥ 1 (18)

U0(0) = ᾱ
∫ ∞

0
K0(x)δ(x)dx (19)

Un(0) = ᾱ
∫ ∞

0
Kn(x)δ(x)dx, n ≥ 1 (20)

The normalization condition is given by

P00 + Q0 +
∞

∑
n=1

∫ ∞

0
Pn(x)dx +

∞

∑
n=0

∫ ∞

0
Mn,b(x)dx +

∞

∑
n=0

∫ ∞

0
Gn,v(x)dx

+
∞

∑
n=0

∫ ∞

0
Un(x)dx +

∞

∑
n=0

∫ ∞

0
Kn(x)dx = 1

In order to solve the above set of equations we define the generating functions as, P(x, z) =

∑∞
n=1 znPn(x) for |z| ≤ 1 and x > 0, P(0, z) = ∑∞

n=1 znPn(0) for |z| ≤ 1, Mb(x, z) = ∑∞
n=0 zn Mn,b(x)

for |z| ≤ 1 and x > 0, Mb(0, z) = ∑∞
n=0 zn Mn,b(0), Gv(x, z) = ∑∞

n=0 znGn,v(x) for |z| ≤ 1 and x >
0, Gv(0, z) = ∑∞

n=0 znGn,v(0), U(x, z) = ∑∞
n=0 znUn(x) for |z| ≤ 1 and U(0, z) = ∑∞

n=0 znUn(0)
for |z| ≤ 1 , K(x, z) = ∑∞

n=0 znKn(x) for |z| ≤ 1 and K(0, z) = ∑∞
n=0 znKn(0) for |z| ≤ 1.

Multiplying equations (2)-(11) by suitable powers of z and summing over n, we obtain the
following set of partial differential equations :

∂P(x, z)
∂x

+ (λ + f (x))P(x, z) = 0, (21)
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∂Mb(x, z)
∂x

+ (λ − λz + µn(x)) Mb(x, z) = 0, (22)

∂Gv(x, z)
∂x

+ (λ − λz + ω + µw(x)) Gv(x, z) = 0, (23)

∂U(x, z)
∂x

+ (λ − λz + υ(x))U(x, z) = 0, (24)

∂K(x, z)
∂x

+ (λ − λz + δ(x))K(x, z) = 0. (25)

Solving the above partial differential equations (22) to (26)

P(x, z) = P(0, z)[1 − N(x)]e−λx, (26)

Mb(x, z) = Mb(0, z) [1 − G(x)] e−I(z)x, (27)

Gv(x, z) = Gv(0, z) [1 − Wv(x)] e−(I(z)+η)x, (28)

U(x, z) = U(0, z)
[
1 − S f (x)

]
e−I(z)·x, (29)

K(x, z) = K(0, z) [1 − Ts(x)] e−I(z)·x. (30)

where I(z) = λ(1 − z)
Multiplying equation (12) by suitable powers of z, summing over n from 1 to ∞ and using
equations (1) and (2) after some algebraic manipulations, we get

P(0, z) =
∫ ∞

0
Gv(x, z)µw(x)dx +

∫ ∞

0
Mb(x, z)µn(x)dx −

(
λ + ω

ω

)
λP00 (31)

Similarly, multiplying equations (14)-(21) by suitable powers of z, summing over n and after some
algebraic manipulations, we obtain

Mb(0, z) =
α

z

∫ ∞

0
K(x, z)δ(x)dx + λ

∫ ∞

0
P(x, z)dx +

1
z

∫ +∞

0
P(x, z) f (x)dx

+ ω
∫ +∞

0
Gv(x, z)dx +

∫ +∞

0
U(x, z)υ(x)dx, (32)

Gv(0, z) = G0,v(0), (33)

U(0, z) = ᾱ
∫ ∞

0
K(x, z)δ(x)dx, (34)

K(0, z) = K0(0). (35)

inserting equations 28-29 in 32 we get :

P(0, z) = Gv(0, z)W∗
v (I(z) + η) + Mb(0, z)G∗(I(z))−

(
λ + ω

ω

)
λP00 (36)

in similary way inserting equations 27-31 in 33 we get :

Mb(0, z) =
1
z

P(0, z)N ∗(λ) + αT ∗
s (I(z))K(0, z) + V(z)Gv(0, z) + P(0, z)(1 −N ∗(λ))

+U(0, z)S∗
f (I(z)) (37)

where V(z) = ω
I(z)+ω

(1 −W∗
v (I(z) + ω)) using equations 16 and 1 :

Gv(0, z) =
λ2

ω
P00 (38)

using equation 18 :

K(0, z) = λP00 (39)
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using equation 31 in 35 :

U(0, z) = αT ∗
s (I(z))K(0, z) (40)

using equation 40 in 41 :

U(0, z) = αλP00T ∗
s (I(z)) (41)

using equations 39 40 and 42 in 37 and 38 we get

P(0, z) =
Nr(z)
Dr(z)

(42)

Where Nr(z) = λP00zG∗(I(z))T ∗
s (I(z))[(α − 1)ωS∗

f (I(z))− αω] + ω

− λG∗(I(z))V(z)− λ(W∗
v (I(z) + ω)− 1)

Dr(z) = ωG∗(I(z))[z(1 −N ∗(λ)) +N ∗(λ)]− z

Mb(0, z) =
−λP00

Dr(z)


(

ωz
(
−αS∗

f (I(z)) + α + S∗
f (I(z))

)
T ∗

s (I(z))
))

+λzV(z) + z (N ∗(λ)− 1) (ω − λW∗
v (I(z) + ω) + λ)

− (ω − λW∗
v (I(z) + ω) + λ)N ∗(λ)

 (43)

Substituting equations (39-44) in 27-31 .

4. Steady state results

If the system is in steady state condition ρ < N ∗(λ), the PGFs are as follows:
(I) the number of customers in the orbit when the server is idle;

P(z) =
∫ ∞

0
P(x, z)dx =

P(0, z)(1 −N ∗(λ))

λ
(44)

(II) the number of customers in the orbit when the server is regularly busy;

Mb(z) =
∫ ∞

0
Mb(x, z)dx =

Mb(0, z)(1 − G∗(I(z))
I(z)

(45)

(III) the number of customers in the orbit when the server is at a lower speed service;

Gv(z) =
∫ ∞

0
Gv(x, z)dx =

Gv(0, z)(1 −W∗
v (I(z) + ω)

I(z) + ω
(46)

(IV) the number of customers in the orbit when the server is at repair time;

U(z) =
∫ ∞

0
U(x, z)dx =

U(0, z)(1 − S∗
f (I(z))

I(z)
(47)

(V) the number of customers in the orbit when the server is at setup time;

K(z) =
∫ ∞

0
K(x, z)dx =

K(0, z)(1 − T ∗
s (I(z))

I(z)
(48)

From the above equations, the only unknown is P00 which can be obtained by using the normal-
ization condition P00 + Q0 + P(1) + Mb(1) + Gv(1) + U(1) + K(1) = 1 as

P00 =
ω2(A∗(λ)− λE (G))

ω2
(

λ
(

E(S f ) (1 − α) + E(Ts)
)
+N ∗(λ)

))
+ω

(
λ2

{
2W∗′

v (ω) (λE(Nb)−N ∗(λ) + 1)− E(Nb)W∗
v (ω)

})
+λN ∗(λ) + λ2 (1 −W∗

v (ω))


(49)
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Corollary 1. If the system satisfies the steady state condition, The PGF of the number of customers
in the system (Ks(z)) is obtained using

Ks(z) = P00 + Q0 + P(z) + zMb(z) + zGv(z) + U(z) + K(z). (50)

The PGF of the number of customers in the orbit (K0(z)) is obtained using

Ko(z) = P00 + Q0 + P(z) + Mb(z) + Gv(z) + U(z) + K(z). (51)

5. System performance measures

Our analysis is based on the following system characteristics of the retrial queueing system.

5.1. System state probabilities

1. The steady state probability that the server is idle during the retrial time is given by

I = P(1)

=
−λP00 (N ∗(λ)− 1)

ω2(N ∗(λ)− λE (Nb))

 ω
(
−E(Nb)λ (W∗

v (ω)− 1) + ω
(
−αE(S f ) + E(Nb) + E(Ts)

))
+ωE(S f ) + λωW∗′

v (ω) + λ
(

ωW∗′
v (ω)−W∗

v (ω) + 1
) 

2. The steady state probability that the server is busy on normal service period is given by

U = Mb(1) =
λP00E(Nb)

ω2(N ∗(λ)− λE (Nb))


ω2

(
−αE(S f )λ + E(Ts)λ + E(S f )λ +N ∗(λ)

))
+ω

(
2λ2W∗′

v (ω)− λW∗
v (ω)N ∗(λ) + λN ∗(λ)

)
−λ2W∗

v (ω) + λ2


3. The steady state probability that the server is busy on working vacation period is given by

V = Gv(1) =
λ2P00 · (1 −W∗

v (ω))

ω2

4. The steady state probability that the server is under repair time is given by

S = U(1) = E(S f )λP00 · (1 − α)

5.The steady state probability that the server is under setup time is given by

K = K(1) = E(Ts)λP00

5.2. Mean system size and orbit size

(i) The expected number of customers in the orbit
(

Lq
)

is obtained by differentiating equation 52
with respect to z and evaluating at z = 1

Lq = K′
o(1) = lim

z→1

d
dz

Ko(z)

(ii) The expected number of customers in the system (Ls) is obtained by differentiating equation
51 with respect to z and evaluating at z = 1

Ls = K′
s(1) = lim

z→1

d
dz

Ks(z)

(iii) The average time a customer spends in the system (Ws) and the average time a customer
spends in the queue

(
Wq

)
are found using Little’s formula

Ws =
Ls

λ
and Wq =

Lq

λ
.
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6. Reliability Measures

In the retrial queueing system with unreliable server, the reliability measures provide the infor-
mation, which is required for the improvement of the system.
(i) The steady state availability Av, which is the probability that the server is either working for a
positive customer or in an idle period such that the steady state availability of the server is given by

Av = 1 − U(1) = 1 − E(S f )λP00 · (1 − α) (52)

(ii) Let Ff be the steady state probability of server failure,

Ff = αK(1) = αE(Ts)λP00

Theorem 2. Let E(Tb) and E(Tc) be the expected length of busy period and busy cycle under the
steady state conditions, we have

E(Tb) =
1

ω2(A∗(λ)− λE (Nb))


ω2

(
−αE(S f ) + E(Nb) + E(Ts) + E(S f )

))
ω
(
−E(Nb)λW∗

v (ω) + 2λW∗′
v (ω) (E(Nb)λ −N ∗(λ) + 1)

+N ∗(λ)− λW∗
v (ω) + λ


(53)

E(Tc) =
1

ω2λ(N ∗(λ)− λE (Nb))


ω2

(
λ
(

E(S f ) (1 − α) + E(Ts)
)
+N ∗(λ)

))
+ω

(
λ2

{
2W∗′

v (ω) (λE(Nb)−N ∗(λ) + 1)
})

−λ2ωE(Nb)W∗
v (ω) + λN ∗(λ) + λ2 (1 −W∗

v (ω))

 (54)

Proof. The result follows directly by applying the argument of an alternating renewal process
which leads to

P00 =
E (T0)

E (Tb) + E (T0)
; E (Tb) =

1
λ

(
1

P00
− 1

)
and E (Tc) = E (T0) + E (Tb) (55)

where T0 is the time length that the system in empty state. Since the inter-arrival time between
two customers follows exponential distribution with parameter λ, we have that E (T0) = (1/λ).
Inserting equation 50 into 56 and by direct calculations, we can get 54 and 55.

7. Cost model

In practice, queue managers aim to minimize the operating cost per unit time. In this section of
the paper, we begin by formulating a steady-state expected cost function per unit time, where
the service rate µn is the decision variable. Our objective is to find the optimal value of µn to
minimize the expected cost function. To reach this, We need to define cost elements as follows:
- C1 : is the cost of each consomer in the system per unit of time.
- C2 : represents the cost per unit time to leave the server functioning
- C3 : Cost per service per unit time.
- C4 : represents the cost per unit time needed to prepar starting up the server.
Let - Tc be the total expected cost per unit time of the system:

Tc = C1Ls + C2(1 − P00) + C3µn + C4P00.

7.1. Quadratic Fit Search Method

This part considers the cost optimization problem under a given cost structure via quadratic fit
search method (QFSM), This method uses a 3-point pattern to fit a quadratic function that ensures
a unique optimal solution., see [22] . So, We aim to optimize the service rate µn in various cases
to minimize the expected cost function Tc denoted in this part by H. Assume that all system
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parameters have fixed values, and the only controlled parameter is the service rate µn. Thus, The
optimization problem can be mathematically expressed as:

Minimize : H(µn) = C1Ls + C2(1 − P00) + C3µn + C4P00.

As it has been mentioned in Laxmi et al [23], given a 3-point pattern, we may fit a quadratic
function via corresponding functional values that has a unique minimum, xq, for the given
objective function H(x). the quadratic fit improves the current 3-point pattern by replacing one
of its points with the optimum xq , using this approximation. The unique optimum xq of the

quadratic function agreeing with H(x) at 3-point operation
(

xl , xm, xu
)

is given as

xq ∼=
1
2

H
(

xl
) (

(xm)2 − (xu)2
)
+ H (xm)

(
(xu)2 −

(
xl
)2

)
+ H (xu)

((
xl
)2

− (xm)2
)

H
(
xl
)
(xm − xu) + H (xm)

(
xu − xl

)
+ H (xu)

(
xl − xm

)
 .

For the whole analysis in this numerical part, we fixe C1 = 10, C2 = 350, C3 = 20, C4 = 120, .

7.2. Optimization analysis

To conduct the numerical analysis for parameter optimization in the queueing system under
consideration, we use the following default values for the parameters: α = 0.7, λ = 2, δ = 8, µw =
2, s = 5, r = 4 and ξ = 8, and the tolerance of QFSM is ϵ = 10−6.

From Figure 1, The curves clearly show convexity, which means , the existence of a specific
service rate µn that minimizes the total expected cost function for the given set of model
parameters. By adopting QFSM and choosing the initial 3point pattern as

(
µl

n, µm
n , µu

n

)
=

(3.05, 3.5, 3.75) , and after finite iterations, we observe that the minimum expected operating cost
per unit time converges to the solution H = 372.29 at µ∗

n = 3.282,

Figure 1: The optimum service rate µ∗
n

Moreover, we examine the behavior of the expected cost function under different values of the
cost parameters. System parameters are fixed as follows: α = 0.7, λ = 2, δ = 8, µv = 2, s = 5, r = 4
and ξ = 8; Tables 1-3 illustrate the effects of (C1, C2) , (C2, C4) and (C4, C3) on the expected cost
function, respectively. It can be see that the expected cost function shows a linearly increasing
trend with increasing cost parameters.
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Table 1: Effects of (C4, C3) on the expected cost function Tc with C1 = 10 and C2 = 350

(C4, C3) (100,10) (200,10) (200,15) (120,5) (120,20)

Tc 272.4873 313.8563 323.8563 270.7611 300.7611

Table 2: Effects of (C2, C4) on the expected cost function Tc

(C2, C4) (350,150) (350,200) (250,200) (150,120) (100,120)

Tc 293.1718 313.8563 255.2253 163.4991 134.1836

Table 3: Effects of (C4, C3) on the expected cost function Tc

(C4, C3) (100,10) (200,10) (200,15) (120,5) (120,20)

Tc 272.4873 313.8563 323.8563 270.7611 300.7611

8. Sensitivity Analysis and Numerical Examples

In this section, we provide numerical examples using Python to illustrate how different parameters
affect system performance measures. We assume that retrial times, service times, lower-speed
service times, vacation times, setup times, and repair times all follow exponential distributions.
The parameter values are chosen to satisfy the system’s stability conditions. The following tables
present computed values for various model characteristics, such as the probability that the server
is idle (P00), the mean orbit size

(
Lq

)
, probability that server in working vacation , probability

that server in setup time, and probability that server in repair time . The exponential distribution
is k(x) = ve−vx, x > 0.
In Figure 2 , we examine the behavior of the idle probability (P00) increases for increasing the
value of the lower service rate (µn) and regular service rate (µw).
In Figure 3 , we examine the behavior of the mean orbit size (Lq) décreases for increasing the
value of lower speed service rate µw and retrial rate ξ.

Figure 2: Variation in P00 with µn and µw
Figure 3: (Lq) versus ξ and µw

In Figure 4 , we see that the behavior of the mean orbit size (Lq) decreases as the values of
the lower service rate µw and regular service rate µn increase.
In Figure 5 , we examine the behavior of the idle probability (P00) increases with an increase in
the setup rate, for a fixed value of repair rate.
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Figure 4: (Lq) versus µn and µw Figure 5: P00 versus setup rate and repair rate

Figure 6 depicts that with an increase in repair rate, the probability of the server being in
repair state decreases.
Figure 7 depicts that with an increase in service rate µn , the probability of the server being in
setup state increases ;this is due to faster activation of server with reduced setup time.

Figure 6: Effect of repair rate on repair state probability
of server

Figure 7: Probability of server in set up versus µn

We observe from Figure 8 that the probability of the server being in vacation state decreases
with an increase in the rate of working vacation. The reason behind the observation is a decrease
in the duration of vacation with an increase in the vacation rate.

Figure 8: Probability of server in vacation versus vacation rate µw
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9. Conclusion

In this article, we analyzed an Unreliable single-server retrial queue model with general retrial
time, working vacation and setup time. if certain required and sufficient conditions are satisfied
the system can be stabilized .Using he supplementary variable approach and the Probability
Generating Function (PGF) approach to determine The PGF of the no. of clients in the system
and its orbit . The performance of the model is illustrated using PYTHON . The operating cost of
the queuing system is optimized by adjusting the service rate of the server.
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Abstract 

In this study, we propose a novel sampling technique known as Stratified Unified Ranked Set 

Sampling (SDURSS) and evaluate its efficiency for estimating population means. SDURSS is 

designed to enhance the estimation accuracy by integrating concepts from ranked set sampling with 

stratified sampling. Our results demonstrate that the SDURSS estimator generally exhibits 

superior efficiency compared to SRS, particularly in complex distribution scenarios. While 

SDURSS often performs more efficiently than SSRS and SRSS, its performance relative to these 

methods varies depending on the specific distribution and sample size. In several cases, SDURSS 

outperforms SSRS and SRSS, highlighting its potential benefits in practical applications. The 

findings suggest that SDURSS is a promising alternative to traditional sampling methods, offering 

improved efficiency and potentially more accurate estimates of population means. This research 

underscores the value of exploring advanced sampling techniques to enhance statistical estimation, 

particularly in scenarios involving asymmetric distributions where traditional methods may be less 

effective. 

Keywords: Simple random sampling, Ranked set sampling, Median Ranked Set 
Sampling, Unified ranked set sampling, Double Unified ranked set sampling, 
Stratified Double Unified ranked set sampling 

I. Introduction

The ranked set sampling (RSS) method to estimate the population mean of average yields prosed 
by [1]. Later, RSS was developed and modified by many authors to estimate the population 
parameters. The mathematical proof for RSS. They proved that the sample mean based on RSS is 
an unbiased estimator of the population mean, which gave smaller variance than the sample mean 
based on a simple random sample (SRS) with the same sample size provided [2]. The variance of 
the sample mean based on RSS is less than or equal to that of the SRS, whether or not there are 
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errors in ranking demonstrated by [3]. The RSS method of stratified ranked set sampling (SRSS) 
suggested by [4]. Some nonparametric tests for assessing the assumption of perfect ranking in RSS 
and powerful rank tests for perfect rankings proposed by [5-9], a Unified ranked sampling (URSS) 
suggested by [9-10]. RSS is called Double ranked set sampling (DRSS) developed by [1]. The RSS 
method is efficiency increasing the number of set and the number of cycles.  

This study aims to propose the Stratified Double Unified Ranked Set Sampling (SDURSS) for 
estimating the population mean of asymmetric distributions and to study the efficiency of the 
empirical mean estimator based on SDURSS. Estimators in literature. 

II. Materials and methods

I. Simple Random Sampling (SRS)

SRS is a method of selecting   units out of   units such that every one of the   distinct samples has an 
equal chance of being drawn.  

II. Stratified Sampling

In the stratified sampling method, the population of   units is divided into   non-overlapping sub-
groups known as strata each stratum has units, respectively, such that   For full benefit from 
stratification, the size of the hth strata, denoted by   for, must be known. Then the samples are 
drawn independently from each stratum, producing sample sizes denoted by  , such that the total 
sample size is   If a simple random sample is taken from each stratum, the whole procedure is 
known as a stratified simple random sampling (SSRS). 

III. Ranked Set Sampling (RSS)

RSS technique can be described as follows:  
Step 1:  Select   samples of the SRS method from the population of interest. 
Step 2:  Allocate the selected units as randomly as possible into sets, each of size. 
Step 3:  Rank the   units in each set with respect to the variable of interest. 
Step 4: Choose a sample by taking the smallest ranked unit in the first set, the second smallest 
ranked unit in the second set, continue the process until the largest ranked unit is selected from the 
last set. Then the taken samples are measured the variable of interest.  
Step 5:  Repeat step 1 through step 4 for   cycles to draw the RSS sample of size. [12] 
Example 1: Let  7, 1m r  be

11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

41 42 43 44 45 46 47

51 52 53 54 55 56 57

61 62 63 64 65 66 67

71 72 73 74 75 76 77

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

























Then the measured RSS units are 11 22 33 44 55 66 77, , , , , ,X X X X X X X

The empirical mean estimator of RSS is given by 

 :

1 1

1
r m

RSS i m j

j i

X X
mr

 

 

and variance can be estimated by 
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2

2

:2
1

1
.

m

RSS i m j

i

Var X
mr m r


 



  

Also 

 :

1 1

1
r m

i m j

j i
mr

 
 

 

Considerations: 
1. Note: m   set size, r number of cycles (times), n  sample of size)

2. The RSS use for Population infinite.

IV. Unified Ranked Set Sampling (URSS)

URSS technique can be described as follows: 

Step 1:  Use a SRS method to select 2m units from the population of interest and rank them with 

respect to the  variable of interest. 
Step 2:  Select the sample units for measurement as follow If m is an odd number, the ranked  

 
1

1
2

m
i m

 
  

 
units will be selected for 1,2, ,i m . On the other hands, if m is an even 

number, divide the sample unit into 2 sections from size of the sample unit 2m . Where sections 1 

select  1
2

m
i m

 
  

 
units and sections 2 select  1 1

2

m
i m

  
    

  
units will be selected, for 

1,2, ,i m

Step 3: Repeat steps 1 and 2 for r cycles ( for 1,2, ,j r ) to draw the URSS of size n mr

Define  i j
x be the URSS sampled unit of the thi rank from the thj cycle, where 1,2, ,i m and 

1,2, ,j r . [9-10] 
(even number) 
Example 2: Consider the case of  6, 1m r  . Draw a simple random sample of size 2 26 36m  

units as 
11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

 From the size of the sample unit 2m , divide the sample unit into 2 sections 

Where section 1, We select the sample unit from  1
2

m
i m

 
  

 
 for  1,2, ,i m  

11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18, , , , , , , , , , , , , , , , ,X X X X X X X X X X X X X X X X X X

Where section 2,  We  select the sample unit from  1 1
2

m
i m

  
    

  
 for 1,2, ,i m

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36, , , , , , , , , , , , , , , , ,X X X X X X X X X X X X X X X X X X

Let 13 19 15 22 28 34, , , , ,X X X X X X is DURSS of size 6 
(odd number) 
Example 3: Consider the case of  7, 1m r  . Draw a simple random sample of size 2 27 49m  

units as 
11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47 48 49

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X
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We select the sample unit from  
1

1
2

m
i m

 
  

 
 for  1,2, ,i m  

11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47 48 49

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

Let 14 11 18 25 32 39 46, , , , , ,X X X X X X X is URSS of size 7 

V. Double Unified Ranked Set Sampling (DURSS)

In research, the DURSS method is applied from the [11] follows: 

Step 1: Use a SRS method to identify 3

m elements from the target population and divide these 
elements randomly into m sets each of size 2

m  elements. 
Step 2: Use the usual URSS procedure on each set to obtain m ranked set samples of size m each. 
Step 3: Apply the URSS procedure again on step (2) to obtain a DURSS of size m. 

The procedure is illustrated for the case of even and odd in the following example. 
(even number) 

Example 4: Consider the case of  6, 1m r  . Draw a simple random sample of size 3 36 216m  

elements (6 sets of size 36 each). Assume the elements are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 36 1 2 3 36 1 2 3 36

1 1 1 1 2 2 2 2 3 3 3 3
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1 2 3 36 1 2 3 36 1 2 3 36

4 4 4 4 5 5 5 5 6 6 6 6
, , , , , , , , , , , , , ,X X X X X X X X X X X X

After ranking the elements of each set obtain 6 ranked set samples of size 6 each ( 2 26 36m   ). 
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We select the sample unit from the elements of each set obtain 6 ranked set samples of size 6 each 
as 
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So, we have 6  DURSS 
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Let 
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1 2 3 4 5 6
, , , , ,X X X X X X is DURSS of size 6

(odd number) 

Example 5: Consider the case of  7, 1m r  . Draw a simple random sample of size 3 37 343m  

elements (7 sets of size 49 each). Assume the elements are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 49 1 2 3 49 1 2 3 49 1 2 3 49

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
, , , , , , , , , , , , , , , , , , , ,X X X X X X X X X X X X X X X X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 49 1 2 3 49 1 2 3 49

5 5 5 5 6 6 6 6 7 7 7 7
, , , , , , , , , , , , , ,X X X X X X X X X X X X

After ranking the elements of each set obtain 7 ranked set samples of size 7 each( 2 27 49m   ).
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We select the sample unit from the elements of each set obtain 7 ranked set samples of size 7 each 
as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X
 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 44 45 46 47 48 49

1 1 1 1 1 1 1
, , , , , , ,X X X X X X X

 
 
 
 
 
 
  

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X
 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 44 45 46 47 48 49

2 2 2 2 2 2 2
, , , , , , ,X X X X X X X

 
 
 
 
 
 
  

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42

3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X
 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 44 45 46 47 48 49

3 3 3 3 3 3 3
, , , , , , ,X X X X X X X

 
 
 
 
 
 
  

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X
 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 44 45 46 47 48 49

4 4 4 4 4 4 4
, , , , , , ,X X X X X X X

 
 
 
 
 
 
  

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 124 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 44 45 46 47 48 49

5 5 5 5 5 5 5 5
, , , , , , ,X X X X X X X

 
 
 
 
 
 
  

, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X
 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 44 45 46 47 48 49

6 6 6 6 6 6 6
, , , , , , ,X X X X X X X

 
 
 
 
 
 
  

and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , ,

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X
 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 44 45 46 47 48 49

7 7 7 7 7 7 7
, , , , , , ,X X X X X X X

 
 
 
 
 
 
  

so we have 7 DURSS 
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, , , , , ,X X X X X X X  is DURSS of size 7 

VI. Stratified Unified Ranked Set Sampling (SDURSS)

The population of N  units is divided into L  non-overlapping sub-groups known as strata each 
stratum have 1 2, , , LN N N units, respectively, such that 1 2 .LN N N N     The size of the hth 
strata denotes by hN for 1,2, ,h L . Then the samples are drawn independently from each 
stratum, producing samples sizes denoted by 1 2, ,..., Ln n n , such that the total sample size is 

1

.

L

h

h

n n



 If the DURSS technique is applied for each stratum then the whole procedure is called a 

SDURSS. Define  
 k h

i j
X be the SDURSS sampled unit of the thi rank, the thj cycle in the thh

stratum, where 1,2, ,i m ; 1,2, , ;j r 1,2, , ;k m  and 1,2, ,h L . The mean of selected units 
is used as a population mean estimator.  

Example 6: Suppose that we have two strata, i.e. 2L and .2,1h Let  ,m r Assume that from the 
first stratum we select a sample of size 6 2 12m r    and from the second stratum we want a 
sample of size 6 2 12m r    Then the process as illustrates as follows : 
Stratum 1: Now, select 12 samples as follows: 

Consider the case of  stratum1,  6, 1m r  and  stratum1,  6, 2m r  . Draw a simple random sample of 

size 3 36 216m   elements (6 sets of size 36 each). Assume the elements are 
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Stratum 2: Now, select 12 samples as follows: 

Consider the case of  stratum2,  6, 1m r  and  stratum2,  6, 2m r  . Draw a simple random sample of 

size 3 36 216m   elements (6 sets of size 36 each). Assume the elements are 
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(Define:  
 k h

i j
X , k number of ranking the elements of each set, h   stratum size, i  number ofeach 

set,  
r   number of cycles (times)) 
Therefore, the measured SDURSS units are 
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where their mean of these units is used as an estimator of the population mean. 
To compare the efficiency of the empirical mean estimator based on SDURSS with their 

counterparts in SRS, SSRS, SRSS, and SMRSS via a simulation in R (Version 4.3.2) under the 
population of 100,000 units divided into two strata each stratum has 50,000 units with the numbers 
of set in each stratum 2,4,6,10m  and the number of cycles 2,5r  . Using 5000 replications, 
estimates of the means, variances and mean square errors. 

III. Results and Discussions

I. Estimation of Population Mean

Let 
1 2, ,..., nX X X be n independent random variables from a probability density function  f x , with 

mean   and variance  2 . The empirical mean estimator of DURSS is given by 

 1

1 1

1
m r

DURSS l i m j

i j

X X
mr    

 

    )1(

where
2

m
l   if i is an even number and 1

2

m
l


  if i is an odd number (for 1,2,...,i m ). 

RT&A, No 1 (82) 
Volume 20, March 2025 

565



M. A. Alomair, C. Peanpailoon, Roohul A., Tundo and KUI Rather
ESTIMATING THE POPULATION MEAN USING… 

The DURSS variance can be estimated by 

  
2

2

1

1 1

1
.

1DURSS

m r

DURSSl i m j

i j

S X X
mr    

 

  
  

   
   )2( 

The SDURSS estimator of the population mean is given by 

 
1

L
h

SDURSS h DURSS

h

X W X



   )3( 

Where h
h

N
W

N
  and h

FRSSX is the DURSS mean estimator in the thh stratum.

The variance of SFRSSX  is given by 

 
 1

1 1 1

h

l i m jh

mL r
h

SDURSS
hh i j

W
Var X Var X

m r    
  

  
  

  
  

 

 

  (4)

IV. Simulation Study

 The simulation study is designed to investigate the performance of SDURSS for estimating the 
population mean compared to their counterparts in SRS, SSRS, and SRSS under parent asymmetric 
distributions:  Exp( 1) , Geo( 0.5) , Gamma( 0.5,1) , Gamma( 1,2) , Beta ( 3,3) , Beta ( 9,2) , Weibull( 0.5,1) , 
Weibull(1,2), Log N(0,1), Logistic(0,1), CHI(1). The simulations are done based on the population of 
100,000 units is divided into two strata each stratum has 50,000 units, which are conducted for the 
numbers of set in each stratum 2,4,6,10m   and the number of cycles 2,5r   on 5,000 replications. 

If the underlying distribution is asymmetric, the efficiencies of SDURSS relative to SRS, SSRS, 
SRSS, and SMRSS, respectively are given by  
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where MSE is the mean square error (MSE). 
The simulation results are shown in Tables 1-3. 
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Table 1: The efficiency of SDURSS relative to SRS, SSRS, SRSS and SMRSS for estimating the population mean with 

2m   and 2,5r   

Distribution r 

Efficiency 

SDURSS vs. 

SRS 
SDURSS vs. 

SSRS 
SDURSS vs. 

SRSS 
SDURSS vs. 

SMRSS 

Exp(1) 
2 0.7259 0.3542 0.6500 0.6256 
5 0.0409 0.0206 0.6197 0.6194 

Geo(0.5) 
2 0.7141 0.3609 0.6721 0.6717 
5 0.0426 0.0209 0.6467 0.6479 

Gamma(0.5,1) 
2 0.6433 0.3343 0.6179 0.6040 
5 0.0383 0.0195 0.6139 0.6088 

Gamma(1,2) 
2 0.7026 0.3572 0.6709 0.6739 
5 0.0401 0.0201 0.6086 0.6171 

Beta (3,3) 
2 0.8158 0.4088 0.7422 0.7366 
5 0.0443 0.0219 0.6806 0.6852 

 Beta (9,2) 
2 0.7868 0.3959 0.7208 0.7107 
5 0.0429 0.0213 0.6623 0.6632 

Weibull(0.5,1) 
2 0.5839 0.2680 0.5658 0.5407 
5 0.0374 0.0186 0.5836 0.5369 

Weibull(1,2) 
2 0.7080 0.3512 0.6523 0.6644 
5 0.0404 0.0201 0.6165 0.6199 

Log N(0,1) 
2 0.5840 0.3203 0.5488 0.6177 
5 0.0366 0.0178 0.6153 0.5559 

Logistic(0,1) 
2 0.7376 0.3687 0.6582 0.6721 
5 0.0399 0.0201 0.6191 0.6138 

CHI(1) 
2 0.6550 0.3469 0.6387 0.6079 
5 0.0393 0.0200 0.6222 0.6233 

Based on Table 1, the numbers of set in each stratum 2m  and numbers of cycle 2r  , it 
indicates that the SDURSS estimator is less efficient than SRS, SSRS, SRSS and SMRSS estimators 

all asymmetric distributions. 

Table 2: The efficiency of SDURSS relative to SRS, SSRS, SRSS and SMRSS for estimating the population 

mean with 4m   and 2,5r   

Distribution r 

Efficiency 

SDURSS vs. 

SRS 
SDURSS vs. 

SSRS 
SDURSS vs. 

SRSS 
SDURSS vs. 

SMRSS 

Exp(1) 
2 0.9332 0.4654 0.4024 0.3737 
5 0.0617 0.0313 0.4720 0.1862 

Geo(0.5) 
2 0.9068 0.4551 0.3939 0.3768 
5 0.0618 0.0312 0.4675 0.2088 

Gamma(0.5,1) 
2 0.8045 0.3935 0.3509 0.3304 
5 0.0551 0.0278 0.4217 0.1454 

Gamma(1,2) 
2 0.9144 0.4566 0.3913 0.3603 
5 0.0611 0.0307 0.4724 0.1862 

Beta (3,3) 
2 1.4000 0.6931 0.5862 0.5552 
5 0.0808 0.0406 0.6180 0.3185 
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Distribution r 

Efficiency 

SDURSS vs. 

SRS 
SDURSS vs. 

SSRS 
SDURSS vs. 

SRSS 
SDURSS vs. 

SMRSS 

Beta (9,2) 
2 1.2778 0.6481 0.5556 0.5185 
5 0.0730 0.0365 0.5587 0.2628 

Weibull(0.5,1) 
2 0.5858 0.3235 0.2795 0.2676 
5 0.0440 0.0218 0.3354 0.0640 

Weibull(1,2) 
2 0.9209 0.4507 0.4038 0.3824 
5 0.0610 0.0303 0.4637 0.1839 

Log N(0,1) 
2 0.6315 0.2918 0.2912 0.2554 
5 0.0442 0.0237 0.3748 0.0823 

Logistic(0,1) 
2 1.1039 0.5582 0.4666 0.4395 
5 0.0649 0.0323 0.5025 0.1992 

CHI(1) 
2 0.7453 0.3833 0.3540 0.3336 
5 0.0543 0.0273 0.4172 0.1449 

Based on Table 2, the numbers of set in each stratum 4m  , we can conclude that the SDURSS 
estimator is less efficient compared to SRS, SSRS, SRSS and SMRSS estimators for the numbers of 
cycle 2r   underlying all asymmetric distributions. 

Table 3: The efficiency of SDURSS relative to SRS, SSRS, SRSS and SMRSS for estimating the population mean with 

6m  and 2,5r   

Distribution r 

Efficiency 

SDURSS vs. 

SRS 
SDURSS vs. 

SSRS 
SDURSS vs. 

SRSS 
SDURSS vs. 

SMRSS 

Exp(1) 
2 0.1401 0.7593 0.4259 0.2994 
5 0.0856 0.0427 0.4305 0.1173 

Geo(0.5) 
2 1.4798 0.7489 0.4205 0.4103 
5 0.0868 0.0430 0.4352 0.1515 

Gamma(0.5,1) 
2 1.2423 0.6121 0.3599 0.1710 
5 0.0730 0.0362 0.3663 0.0909 

Gamma(1,2) 
2 1.5048 0.7504 0.4287 0.1875 
5 0.0848 0.0424 0.4296 0.1164 

Beta (3,3) 
2 2.4839 1.2516 0.6903 0.2645 
5 0.1263 0.0630 0.6389 0.2194 

Beta (9,2) 
2 2.0938 1.0469 0.5781 0.2344 
5 0.1102 0.0547 0.5534 0.1742 

Weibull(0.5,1) 
2 0.8754 0.4244 0.2435 0.0809 
5 0.0503 0.0245 0.2469 0.0344 

Weibull(1,2) 
2 1.5581 0.7616 0.4327 0.1887 
5 0.0849 0.0430 0.4331 0.1194 

Log N(0,1) 
2 0.8643 0.4264 0.2589 0.0808 
5 0.0557 0.0273 0.2816 0.0444 

Logistic(0,1) 
2 1.8218 0.9101 0.5095 0.1399 
5 0.0929 0.0466 0.4730 0.1166 

CHI(1) 
2 1.2097 0.5977 0.3581 0.2171 
5 0.0723 0.0367 0.3665 0.0985 
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Based on Table 3, the numbers of set in each stratum 6m , it implies that the SDURSS 
estimator is less efficient than SRS, SSRS, SRSS and SMRSS estimators for the numbers of cycle 

2r   based on all asymmetric distributions. 

Table 4: The efficiency of SDURSS relative to SRS, SSRS, SRSS and SMRSS for estimating the population mean 
with 10m  and 2,5r   

Distribution r 

Efficiency 

SDURSS vs. 

SRS 
SDURSS vs. 

SSRS 
SDURSS vs. 

SRSS 
SDURSS vs. 

SMRSS 

Exp(1) 
2 0.0860 0.0432 0.0139 0.0044 
5 0.0843 0.0417 0.2568 0.0522 

Geo(0.5) 
2 0.0864 0.0430 0.0143 0.0065 
5 0.0846 0.0417 0.2531 0.0799 

Gamma(0.5,1) 
2 0.0735 0.0371 0.0122 0.0043 
5 0.0717 0.0356 0.2148 0.0462 

Gamma(1,2) 
2 0.0863 0.0430 0.0142 0.0042 
5 0.0843 0.0414 0.2531 0.0513 

Beta (3,3) 
2 0.1287 0.0643 0.0205 0.0051 
5 0.1246 0.0623 0.3758 0.0780 

Beta (9,2) 
2 0.1110 0.0555 0.0179 0.0043 
5 0.1085 0.0538 0.3271 0.0649 

Weibull(0.5,1) 
2 0.0512 0.0255 0.0086 0.0023 
5 0.0488 0.0244 0.1510 0.0203 

Weibull(1,2) 
2 0.0877 0.0438 0.0143 0.0044 
5 0.0846 0.0425 0.2560 0.0523 

Log N(0,1) 
2 0.0540 0.0275 0.0092 0.0022 
5 0.0530 0.0280 0.1627 0.0223 

Logistic(0,1) 
2 0.0944 0.0473 0.0153 0.0026 
5 0.0919 0.0462 0.2773 0.0382 

CHI(1) 
2 0.0754 0.0369 0.0126 0.0058 
5 0.0710 0.0360 0.2185 0.0595 

Based on Table 4, the numbers of set in each stratum 10m , it implies that the SDURSS 
estimator is less efficient than SRS, SSRS, SRSS and SMRSS estimators for the numbers of cycle 

2r   based on all asymmetric distributions. 

V. Real Data example

In this section, the application of the proposed sampling method is shown by using a real 
data example. The researcher went to the area to collect data by himself. The data sets used in this 
example include: There are a total of 5 plots of False pakchoi, with a length of 20 meters and a width 
of 1 meter. Each plant will have a minimum number of flowers of 3 flowers per plant. If data is 
collected in batches, it will be 25 plants per batch with 75-150 flowers. Where 1 plot can store 20 data 
sets from a total of 5 plots, totaling 100 data sets. Figure 1-2 illustrate False pakchoi and Table 5  
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represent Number set and real data. 

     Figure 1  Figure 2 

Table 5: Number set and real data for False pakchoi 

Number 
set 

data Number 
set 

data Number 
set 

data Number 
set 

data Number 
set 

data 

Set 1 103 Set 21 125 Set 41 109 Set 61 89 Set 81 97 
Set 2 115 Set 22 123 Set 42 141 Set 62 131 Set 82 148 
Set 3 103 Set 23 129 Set 43 133 Set 63 123 Set 83 118 
Set 4 117 Set 24 118 Set 44 114 Set 64 144 Set 84 90 
Set 5 150 Set 25 99 Set 45 138 Set 65 128 Set 85 125 
Set 6 110 Set 26 97 Set 46 111 Set 66 149 Set 86 104 
Set 7 123 Set 27 92 Set 47 116 Set 67 123 Set 87 90 
Set 8 102 Set 28 146 Set 48 146 Set 68 148 Set 88 129 
Set 9 143 Set 29 143 Set 49 145 Set 69 105 Set 89 108 

Set 10 76 Set 30 115 Set 50 132 Set 70 120 Set 90 110 
Set 11 97 Set 31 76 Set 51 129 Set 71 114 Set 91 118 
Set 12 135 Set 32 99 Set 52 127 Set 72 125 Set 92 118 
Set 13 140 Set 33 117 Set 53 108 Set 73 130 Set 93 126 
Set 14 81 Set 34 112 Set 54 107 Set 74 120 Set 94 83 
Set 15 99 Set 35 89 Set 55 136 Set 75 137 Set 95 114 
Set 16 136 Set 36 130 Set 56 97 Set 76 139 Set 96 121 
Set 17 93 Set 37 111 Set 57 99 Set 77 84 Set 97 97 
Set 18 103 Set 38 142 Set 58 112 Set 78 115 Set 98 108 
Set 19 83 Set 39 136 Set 59 97 Set 79 147 Set 99 94 
Set 20 90 Set 40 96 Set 60 123 Set 80 142 Set 100 113 

Total Population flower False pakchoi is  11,636, population mean 116.36X   to collect a 
sample of size 8, using set size is 4m   and number of cycles (times) is 2r   in SRS, SSRS, SRSS, 
and SDURSS designs, DURSS technique can be described as follows: 
I. Draw a simple random sample of size 3 34 64m   elements  (4 sets of size 16 each).  
II. Use the usual URSS procedure on each set to obtain m ranked set samples of size m each.

III. Apply the URSS procedure again on step (2) to obtain a DURSS of size 8.

The measured values in both SRS, SSRS, SRSS, SMRSS, and SDURSS and designs are presented in 
Table 6. 
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Table 6: Sampled units in SRS, SSRS, SRSS, SMRSS, and SDURSS designs. 

SRS 117 90 97 123 146 145 108 94 
SSRS Stratum 1 115 104 92 132 114 140 114 99 

Stratum 2 111 146 148 97 118 107 84 97 

SRSS Stratum 1 90 99 109 144 76 90 105 129 

Stratum 2 90 114 143 145 81 97 111 120 

SMRSS Stratum 1 76 108 142 148 81 96 114 115 

Stratum 2 97 111 103 144 89 94 104 127 

SDURSS Stratum 1 123 129 146 150 81 83 112 136 

Stratum 2 104 109 125 148 83 97 102 139 

( 1) ( 2)

( 1) ( 2)

( 1) ( 2)

( 1) ( 2)

115

113.75, 113.5

105.25, 112.63

110, 108.63

120, 113.38

SRS

SSRS stratum SSRS stratum

SRSS stratum SRSS stratum

SMRSS stratum SMRSS stratum

SDURSS stratum SDURSS stratum

X

X X

X X

X X

X X



 

 

 

 

2

2

2

2

2

481.15

20.7731

29.2044

41.1914

37.23332

SRS

SSRS

SRSS

SMRSS

SDURSS

S

S

S

S

S











VI. Conclusion

In conclusion, the proposed estimator in SDURSS provide efficient their counterparts in SRS, 
SSRS, SRSS, and SMRSS for eleven parent asymmetric distributions in the case of a larger sample 
size and small size numbers of cycle. For the small sample size, the proposed estimator in SDURSS 
still provide less efficient than four methods, but it gives more efficient than SRS and SSRS in some 
cases. 
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Abstract 

 

Data depth procedures are statistical methods used to measure the centrality or depth of a point 

within a multivariate dataset. These procedures provide a way to quantify how deep or outlying a 

point is relative to the overall distribution of the data. This study explores various data depth 

procedures to find reliable location estimations in cases like with and without outliers. In this 

paper, various depth procedures, such as Mahalanobis depth, Halfspace depth, Euclidean depth, 

Simplicial depth, and Projection depth, are studied and compared. The efficiency of these depth 

functions is evaluated using real datasets and simulation studies with R software. 

 

Keywords: data depth, robust procedures, inference, outliers 

 

 

I. Introduction 
 

Robust statistics is a fundamental branch of statistical theory and methodology designed to 

address the challenges posed by data containing deviations from standard assumptions. These 

deviations may include outliers or non-normality in the data. Robust statistics prioritizes methods 

that are insensitive to small outliers, which are a common occurrence in traditional statistical 

techniques. It aims to yield precise and reliable results even when the assumptions of classical 

statistics are not fulfilled. Robust statistical methods have been developed for many common 

problems such as estimating location, scale and regression parameters. The data depth approach is 

one of the robust statistical methods that measures the depth of a data point in a multivariate 

dataset. It determines the depth of a point by its distance from the center of the data, with points 

closer to the center having a higher depth value. This approach is useful for identifying outliers 

and robustly estimating location and scatter. These methods can be applied to both univariate and 

multivariate datasets, providing robust estimates of location and scatter [2].  

     The rest of the paper is structured as follows. The second section provides a concise overview 

and definitions of different data depth procedures. In the third section, the findings from 

numerical study conducted in both real datasets and simulated environments are presented. 

Finally, the paper concludes with a discussion the last section. 
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II. Data Depth Procedures 

 

Data depth procedures are an innovative approach in robust statistics designed to measure the 

centrality of points within a data set, especially in multivariate contexts [3]. Depth assigns an 

integer to a candidate fit relative to a data set, enabling a center-outward ordering of sample points 

[6]. Unlike traditional order statistics, which rank data from smallest to largest, depth order 

statistics start from the center and move outward [8]. This center-outward approach is crucial for 

multivariate data sets, extending univariate concepts to multivariate analysis and allowing 

nonparametric methods to be used in multivariate data analysis [9]. This concept is particularly 

useful when dealing with complex data structures where classical methods may falter due to the 

presence of outliers or deviations from model assumptions.  

     The applications of data depth procedures are vast and varied, encompassing robust location 

estimation, multivariate outlier detection, classification, and data visualization. The data depth 

procedures used in this study is detailed below. 

 

Mahalanobis Depth (MD) 

 
Mahalanobis (1936) [7] introduced the Mahalanobis depth in robust statistics which measures the 

centrality of a point within a multivariate data set by using the Mahalanobis distance. Mahalanobis 

depth of a point 𝑥 relative to a data set 𝑋 is inversely related to the Mahalanobis distance from 𝑥 to 

the mean of 𝑋. Mahalanobis depth function can be written as 

 

 𝑀ℎ𝐷 (x) =[1 + (𝑥 − �̅�)𝑇𝑆−1(𝑥 − �̅�)]−1                                                     (1) 

 

where �̅� and S are the mean vector and dispersion matrix. 

This function lacks robustness because it relies on non-robust measures like the mean and 

the dispersion matrix, making it inadequate for handling outliers in a data set.  

 

Halfspace Depth (HD) 

 
In 1975, Tukey (1975) [10] introduced the concept of location depth, also known as halfspace depth 

or Tukey depth, as a tool for visually describing bivariate data sets. In p dimensions, the halfspace 

location depth of a point 𝜃 relative to a data set 𝑥𝑛 = (𝑥1, 𝑥2,…, 𝑥𝑛) ϵ 𝑅𝑝×𝑛 is denoted as 𝑙𝑑𝑒𝑝𝑡ℎ(𝜃;\

𝑋𝑛). It is defined as the smallest number of observation in any closed halfspace with boundary 

through 𝜃. In the univariate setting p, this definition becomes 

 

𝑙𝑑𝑒𝑝𝑡ℎ1(𝜃;\𝑋𝑛) = min{#(𝑥𝑖 ≤ 𝜃), #(𝑥𝑖 ≥ 𝜃)}                                                    (2)          

  

     In the multivariate case, the concept of the median can be generalized to the point with 

the highest depth, known as the Tukey median. Numerous depth functions exist, all aiming to 

quantify how deep or central a point 𝑥 is within the data cloud. A key advantage of halfspace 

depth is its affine invariance. The primary reason for employing the Tukey median as a 

multivariate location estimator is its robustness, which can be evaluated using the breakdown 

value 𝜖∗. Halfspace depth provides a powerful, geometrically intuitive way to measure the 

centrality of points in multivariate data. It is widely used in robust statistics, particularly for 

identifying outliers and assessing data spread. By calculating how well a point is "enclosed" by the 

data, it provides a robust measure of centrality, independent of the data's distribution. However, 

the method’s computational cost can be prohibitive in high-dimensional settings without efficient 

algorithms. 
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Euclidean Depth (L2D) 

 
The 𝐿2-depth was introduced by Zuo and Serfling (2000) [11]. The 𝐿2-depth 𝐷𝐿2 measures the 

outlyingness of a point based on its mean distance from a chosen center of the distribution, defined 

as 

 

𝐷𝐿2(𝑧/𝑋) = (1 + 𝐸(‖𝑧 − 𝑋‖)−1                                                        (3)                                                                                                                                                                      

 

     For an empirical distribution of points 𝑥𝑖 (𝑖 = 1,2, … , 𝑛), it is given by 

 

𝐷𝐿2(𝑧/𝑋1, … . 𝑋𝑛) = (1 +
1

𝑛
∑ (‖𝑧 − 𝑋𝑖‖)𝑛

𝑖=1

−1
                                              (4) 

 

     The 𝐿2-depth vanishes at infinity and reaches its maximum at the spatial median of 𝑋, 

minimizing 𝐸(‖𝑧 − 𝑋‖).  

     In centrally symmetric distributions, this maximum is at the center. The 𝐿2-depth demonstrates 

properties such as monotonicity with respect to the deepest point, convexity, compactness of 

central regions, and continuous dependence on 𝑧. It also converges in probability for uniformly 

integrable and weakly convergent sequences. However, the 𝐿2-depth is not a sensible ordering of 

dispersion as it contradicts the dilation order, increasing with the dilation of 𝑝. 

     The 𝐿2-depth is invariant against rigid Euclidean motions but not affine invariant. An affine 

invariant version is constructed using a positive definite matrix M and the M-norm given by 

 

‖𝑍‖𝑀 = √𝑧′𝑀−1𝑧, 𝑧 ∈  𝑅𝑑                                                             (5) 

 

     Let 𝑆𝑋 be a positive definite d×d matrix that measures the dispersion of X in an affine 

equivariant way, such that 𝑆𝑋𝐴+𝑏 = 𝐴𝑆𝑋𝐴′ holds for any matrix A of full rank and any b. Then an 

affine invariant 𝐿2-depth is given by (1 + 𝐸(‖𝑧 − 𝑋‖𝑆𝑋)−1. Besides invariance, it has the same 

properties as the 𝐿2-depth. A simple choice for 𝑆𝑋 is the covariance matrix ∑𝑋 of X.  

 

Simplicial Depth (SD) 

 
Liu (1990) [4] introduced the concept of simplicial depth, which measures the centrality of a point x 

in a p-dimensional data set, x ϵ 𝑆𝑛ℝ𝑝. Simplicial depth is defined as the number of closed 

simplices containing x and having p+1 vertices in 𝑆𝑛. In the bivariate case, it counts the number of 

triangles formed by sample points in 𝑆𝑛 contain x. Simplicial depth is robust against outliers: if a 

set of sample points is represented by the point of maximum depth, up to a constant fraction of the 

sample points can be arbitrarily corrupted without significantly altering the location of the 

representative point. It is also invariant under affine transformations. 

     However, simplicial depth lacks some desirable properties for robust measures of central 

tendency. For centrally symmetric distributions, there is not always a unique point of maximum 

depth at the center of the distribution. Additionally, the simplicial depth does not necessarily 

decrease monotonically from the point of maximum depth. Despite these limitations, simplicial 

depth remains a useful measure in robust statistics and computational geometry, particularly for 

its robustness to outliers and its affine invariance. Simplicial depth is a robust, non-parametric 

method for measuring the centrality of a point in a multivariate dataset. By focusing on simplices 

(the convex hulls of subsets of data points), simplicial depth provides a geometric measure of how 

deep or central a point is within the distribution. It is particularly useful for outlier detection and 

robust estimation in multivariate data, but its computational complexity can be a limitation, 

particularly in high-dimensional datasets. 
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Projection Depth (PD) 

 
The projection depth function initiated by Liu (1992) [5]. It is based on a measure of outlyingness  

and the idea behind the Donoho (1982) [1]. Further, this depth function was explored by Zuo and 

Serfling (2000) [11]. 

     For a univariate distribution function 𝐹 of 𝑥, the outlyingness 𝑂(𝐹, 𝑥) is defined as  

 

𝑂(𝐹, 𝑥) = sup {𝑄(𝑢, 𝑥, 𝐹)}                                                               (6) 

 

over all unit vectors 𝑢, where 𝑄(𝑢, 𝑥, 𝐹) =   
(𝑢𝑇𝑥− 𝜇(𝐹𝑢))

𝜎(𝐹𝑢)
, and  𝐹𝑢 is the distribution of  𝑢𝑇𝑥.  

     The projection depth 𝑃𝐷(𝑥, 𝐹) is then given by 

 

𝑃𝐷(𝑥, 𝐹) =  
1

1+𝑂(𝑥,𝐹)
                                                                    (7) 

 

     This approach reflects the projection pursuit methodology, involving the supremum over 

infinitely numerous direction vectors, making the computation of projection depth seemingly 

intractable. Initially, classical location and scale measures were used, but these were later replaced 

by robust measures like the median and Median Absolute Deviation (MAD). 

 

III. Numerical Study 

 
This section evaluates the effectiveness of various data depth procedures by considering both real 

and simulation studies. The analysis includes a comprehensive assessment of different depth 

procedures, such as Mahalanobis, Halfspace, L2, Simplicial, and Projection depths. These 

procedures are applied to both real datasets and simulated data to provide a robust evaluation of 

their performance. By calculating and comparing the depth values, the study aims to determine the 

efficiency and reliability of each method. This comparison helps identify which depth procedures 

are most effective in accurately determining centrality and handling outliers. 

     The experimental findings from two different real datasets, available in R packages, are 

presented in this section. These datasets contain one or more predictors. The depth values 

computed using various depth functions are presented in Tables 1 and 2. 

starsCYG dataset –  It contains features of 47 stars in the Hertzsprung-Russell diagram of the Star 

Cluster CYG OB1. It includes one predictor variable, the logarithm of the star's effective surface 

temperature (log.Te), and one response variable, the logarithm of its light intensity (log.light). 

Cook's distance is used to identify the 9 outliers in the dataset. 

Anscombe dataset – There are 51 observations in this dataset. The predictor variables are Income, 

Young, Urban and the response variable is Education. Cook's distance revealed 7 outliers in this 

dataset. 
Table 1: Computed depth values for starsCYG dataset 

 

 

Methods MD HD L2D SD PD 

With Outliers 0.941 

(25) 

 

0.383 

(28) 

0.465 

(25) 

0.322 

(25) 

0.670 

(25) 
Without 

Outliers 

0.920 

(42) 

0.342 

(42) 

0.433 

(42) 

0.345 

(33) 

0.714 

(42) 

 

 

                       (.) Observation number 
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(a). With Outliers (b). Without Outliers 
Figure 1: Bagplot for starsCYG dataset (with and without outliers) 

 
Table 2: Computed depth values Anscombe dataset 

 

 

Methods MD HD L2D SD PD 

With Outliers 0.869 

(14) 

 

0.333 

(25) 

0.352 

(25) 

0.145 

(25) 

0.565 

(25) 
Without 

Outliers 

0.941 

(42) 

0.341 

(25) 

0.346 

(25) 

0.169 

(25) 

0.583 

(25) 

 

 

                         

Tables 1 and 2 reveal that, in both the presence and absence of outliers, the Mahalanobis depth 

consistently exhibits the highest depth values. This indicates that the Mahalanobis depth method is 

particularly effective at measuring centrality, regardless of whether outliers are present in the 

dataset. The real study compares the performance of five data depth methods MD, HD, L2D, SD, 

and PD with and without outliers. When outliers are present, MD is the most efficient method with 

a score of 0.869, showing its robustness in handling contamination. In contrast, SD and PD exhibit 

a significant drop in efficiency, with scores of 0.145 and 0.565, respectively, indicating their 

susceptibility to outliers. When the outliers are removed, the efficiency of all methods increases, 

with MD still leading at 0.941. HD and L2D show similar performance, with scores of 0.341 and 

0.346, respectively. The efficiency of SD and PD improves somewhat after removing outliers, but 

they still remain the least efficient with scores of 0.169 and 0.583, respectively. The results highlight 

that MD is the most robust and efficient method, particularly when outliers are present, while HD 

and L2D offer a balanced performance.  

     The simulation study aims to assess and compare the efficiency of different data depth 

procedures in handling multivariate data. It investigates how each method performs under various 

contamination scenarios, such as location and scale contamination, which simulate real-world 

deviations from ideal data. The goal is to identify the most effective and reliable depth procedures, 

particularly in the presence of data contamination, which is common in practical applications. The 

data is simulated from normal distribution of sample size n=1000 with mean vector µ (0, 0) and 

unit covariance matrix ∑ = 𝐼2, and the simulated data is then contaminated in three different 

scenarios such as location contamination, scale contamination, and a combination of location and 

scale contamination. These contaminations are introduced at varying levels of 0%, 5%, 10%, 15%, 

20%, and 25%. 

     For location contamination, the simulated data is contaminated by the mean vector µ (5, 5). In 

the case of scale contamination, the data is contaminated by altering the covariance matrix to ∑ = 

2𝐼2. In location and scale contamination, the simulated data is contaminated by the mean vector µ 

(3, 3) and ∑ = 1.5𝐼2. These varying levels of contamination allows to evaluate the robustness and 

performance of different data depth procedures under different types and degrees of data 

contamination and are presented in Table 3. 
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Table 3: Computed depth values for Simulation study 
 

 

Levels MD HD L2D SD PD 

0% 0.869 

(14) 

 

0.333 

(25) 

0.352 

(25) 

0.145 

(25) 

0.565 

(25) 

 

 

 

 

 

Location Contamination 

 5% 0.960 

(45) 

0.377 

(45) 

0.397 

(45) 

0.139 

(45) 

0.664 

(45) 

 

 
10% 0.958 

(54) 

0.388 

(45) 

0.399 

(45) 

0.155 

(45) 

0.706 

(45) 

15% 0.929 

(54) 

0.388 

(45) 

0.389 

(45) 

0.159 

(43) 

0.662 

(45) 

 20% 0.936 

(54) 

0.377 

(45) 

0.390 

(54) 

0.157 

(45) 

0.667 

(45) 

25% 0.935 

(54) 

0.311 

(43) 

0.388 

(54) 

0.145 

(43) 

0.598 

(43) 

Scale Contamination 

 5% 0.992 

(52) 

0.432 

(52) 

0.385 

(52) 

0.161 

(52) 

0.838 

(52) 

10% 0.890 

(59) 

0.344 

(62) 

0.386 

(59) 

0.136 

(62) 

0.609 

(62) 

15% 0.987 

(52) 

0.433 

(52) 

0.392 

(52) 

0.166 

(52) 

0.788 

(52) 

20% 0.888 

(47) 

0.352 

(45) 

0.385 

(45) 

0.152 

(45) 

0.673 

(45) 

25% 0.972 

(47) 

0.432 

(47) 

0.391 

(47) 

0.168 

(47) 

0.745 

(47) 

Location and Scale Contamination 

5% 5% 0.916 

(45) 

0.344 

(45) 

0.381 

(45) 

0.145 

(45) 

0.583 

(45) 

10% 0.951 

(45) 

0.412 

(45) 

0.386 

(45) 

0.158 

(45) 

0.734 

(45) 

15% 0.950 

(45) 

0.382 

(45) 

0.387 

(45) 

0.156 

(45) 

0.676 

(45) 

20% 0.924 

(45) 

0.382 

(45) 

0.383 

(45) 

0.152 

(45) 

0.710 

(45) 

25% 0.922 

(45) 

0.381 

(45) 

0.382 

(45) 

0.158 

(45) 

0.707 

(45) 

                        

Based on the results presented in Table 3, it can be concluded that the Mahalanobis depth 

consistently identifies the deepest location point among the different data depth procedures 

evaluated. This indicates that the Mahalanobis depth is particularly effective at determining the 

central point of the dataset, demonstrating its robustness and reliability in comparison to other 

depth measures. Even in the presence of outliers, Mahalanobis depth shows the smallest decrease 

in efficiency, highlighting its ability to maintain accuracy when the data is contaminated. The 

method's robustness is further emphasized by its superior performance under both location and 

scale contamination scenarios. 
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IV. Discussion 

The study concludes that among the various data depth measures tested, Mahalanobis Depth 

consistently identifies the deepest points across different scenarios, both with and without outliers. 

This suggests that Mahalanobis Depth provides a stable measure of centrality, even when the data 

contains extreme values or deviates from standard assumptions. In contrast, other depth measures 

like Halfspace Depth and Projection Depth demonstrate sensitivity to outliers and complex 

distributions, sometimes shifting central points. L2 Depth and Simplicial Depth also showed varied 

performance, especially in non-elliptical data structures. Overall, Mahalanobis Depth's consistent 

centrality assessment highlights its utility in robust statistical applications where a reliable 

measure of depth is crucial. 
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Abstract

Over recent decades, significant advancements have been made in optimization over the efficient
set. This paper introduces a novel exact algorithm designed to optimize a linear fractional objective
function over the integer efficient set of a multi-objective linear programming problem (MOILP). Without
enumerating all efficient solutions, our method employs a selection strategy to iteratively improve the
primary objective while progressively refining the feasible region and excluding dominated points. By
exploring edge connections within the truncated feasible space, the proposed algorithm ensures convergence
to the global optimal value in a finite number of iterations. A numerical example demonstrates the
algorithm’s effectiveness and practical application. This approach addresses critical challenges in multi-
objective integer programming, particularly the nonconvexity of the efficient set and the absence of explicit
feasible set descriptions.

Keywords: multiple objective programming, integer programming, linear fractional program-
ming, efficient solutions.

1. Introduction

Multi-objective integer programming (MOIP) is an important research area as many practical
situations require discrete representations by integer variables and many decision makers have to
deal with several objectives. Some note-worthy practical environments where the MOIP problems
find their applications are supply chain design, logistics planning, scheduling and financial
planning.

In the past two decades, researchers and practitioners have shown increased interest in
the problem of optimizing a linear function on the efficient set of multiple objective linear
programming problem (MOLP). Several methods and algorithmic ideas have been developed-
in general, these approaches can be classified and grouped according to the methodological
concepts-which include, among others, adjacent vertex search technique ([16, 9, 10], nonadjacent
methods [7], dual approach [19], etc. An overview of these approaches can be found in Yamamoto
[21].

In addition to the continuous case, few algorithms have been suggested for solving the
problem involving discrete decision variables. For the first time in [15] made an attempt to
optimize on the integer efficient set, where only an upper bound value for the main objective
is proposed. Jorge [13] developed approach that defines a sequence of progressively more
constrained single-objective integer problems that successively eliminates undesirable points.

Fractional programming is an optimization problem in which ratio of two linear functions is
optimized subject to some constraints [5, 14]. Integer Linear Fractional Programming problem is
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an important class of problems arising in criteria Decision Making when some or all the model
variables represent discrete decisions.

In preparing this paper, a special effort has been made do make certain that it is self-contained
and that it is suitable both a as a text and as a reference. within we developed an algorithm that
optimized linear fractional function ever the efficient set of a MOILP without explicitly having to
enumerate all the efficient solutions. Given a Integer Linear Programming problem with Multiple
Objective (MOILP):

(PD)

{
”max” Zi = Cix, i ∈ {1, ..., p}
s.t. x ∈ D

(1)

Where Ci ∈ Rn, for each i ∈ {1, ..., p}, A ∈m×n, b ∈m and D is a polyhedral set of n defined
as D={x ∈n |Ax = b, x ≥ 0, integer}. To avoid the technicality we assume throughout the paper
that D is nonembounded.

The search of specific methods for solving (1) that provide the decision maker with his/her
preferred efficient solution without having to explicitly determine the set of all efficient solutions
of (1)denoted by E(PD), efficiency and non-dominance are defined as follows (see [17, 23, 24]) is
doubtless a very difficult task that can be tackled in many different ways. One of such approaches,
that has been studied successfully by Philip [16], in which an algorithm based on moving to
adjacent efficient vertices is outlined when Φ(x) is a linear function, and lots of papers followed
his work [22]. Our aim in this study is to provide one approach in the discrete case, consists of
optimizing Φ(x) a Linear Fractional function representing the preferences of the decision-maker
over the efficient set of (1). Formally, the problem under consideration can be defined as:

(PE)

 max Φ(x) =
Ux + α

Vx + β
s.t. x ∈ (PD)

(2)

Where α, β are scalars; p, q ∈ Rn.

The main difficulty of the problem arises from the nonconvexity of the efficient set (E(PD)),
which is the union of several faces of X. This problem was first considered by [16], in which an
algorithm based on moving to adjacent efficient vertices is outlined when ¶ is a linear function,
and lots of papers followed his work.

It is worth noting that solving (2) involves several difficulties since its feasible set, (E(PD)), is
not explicitly known, nor a convenient implicit description (say, e.g., integer linear) is available.
As a consequence, (2) is a global optimization problem, frequently with multiple local (not
necessarily global) optima [[22], [11]]. However, some particular instances of problem (1) can
be solved straightforwardly, due to their special characteristics. More precisely, when the multi
objective problem IP is completely efficient [2].

Generally, E(PD) ̸= D. Otherwise, if (D) is completely efficient, E(PD) can be substituted by
D and, in such cases, solving (PE) is equivalent to solving the following program:

(PE−relaxed)

 max Φ(x) =
Ux + α

Vx + β
s.t. x ∈ D

(3)

2. The main results

Definition 1. A point x0 ∈ D is said to be efficient of (1) if and only if there does not exist another
point x1 ∈ D such that Zi(x1) ≥ Zi(x0) for all i ∈ {1, ..., p} and Zi(x1) > Zi(x0) for at least one
i ∈ {1, ..., p}.
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2.1. Testing Efficiency

The following result (see [12]) is used in various steps of the algorithm to test the efficiency of a
given feasible solution of problem (1).

Theorem 1. Let x∗ be an arbitrary element of the region D. x∗ ∈ EFF if and only if the optimal
value of the objective ψ is null in the following mixed integer linear programming problem:

(Px∗)


max ψ(x) =

p

∑
i=1

Ψi

s.t. Cx− IΨ = Cx∗

x ∈ D, Ψi ∈ R+; ∀i ∈ {1, ..., p}.

(4)

C is a matrix (p, n) of which her ième line corresponds to ci, i = 1, 2, ..., p, I is the matrix identity
(p, p) and Ψ = (Ψi)i=1,...,p. The problem (Px∗) .

Is often used to test the efficiency of a given point. (Px∗) can be also used to generate an
efficient point even x∗ is not efficient ([9]).

2.2. Notation and Definitions

• xk = xk,j is one optimal integer solution obtained in Dkat step k.

• Bk is the basis associated with solution xk;

• ak,j ∈ Rmk×1 is the activity vector of xk,j with respect to the current truncated region Dk;

• Ik = {j | the vector ak,j is a column of the basis Bk} (indices of basic variables);

• Nk = {j | the vector ak,j is not a column of the basis Bk} (indices of non-basic variables);

• yk,j = (yk,ij) = (Bk)
−1ak,j, where yk,j ∈ Rmk×1;

• Uj = the jth component of vector U;

• Vj = the jth component of vector V;

• pk,j = ∑
i∈Ik

piyk,ij

• qk,j = ∑
i∈Ik

qiyk,ij

• Z1(xk) =
Zk,1

Zk,2
=

Uxk + α

Vxk + β

• γk,j = Zk,2(pj − pk,j)− Zk,1(qj − qk,j) , the updated value of the jth component of the reduce
gradient vector γ̄k

Definition 2. Assume that jk ∈ Nk An edge Ejk incident to a solution Xk is defined as the set

Ejk =

 xi ∈ R|Ik |+|Nk |

∣∣∣∣∣∣
xi = xk,i − θjk yk,ijk f or i ∈ Ik
xj,k = θj,k
xα = 0 f or all α ∈ Nk \ {jk}


Where 0 < θ ≤ min

i∈Ik
{

xk,i

yk,ijk
|yk,ijk > 0}, θjk is a positive integer and θjk × yk,ijk for i ∈ Ik are

integers for all i ∈ Ik if such integer values exist.
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Theorem 2. [14] Let X1 be an optimal solution of problem (3) All integer feasible solutions of
problem (3) alternate to X1 on an edge Ej1 of region D (or truncated region D1) emanating from
it, in the direction of vector a1,j1 , j1 ∈ J1 with J1 = {j ∈ N1 | γ1

1,j = 0} lie in the open half space

∑
j∈N1\{j1}

xj < 1

Theorem 3. [4] The point x1 of D is an optimal solution of problem (3) if and only if the reduce
gradient vector γ̄ = β̄p− ᾱq is such that γ̄j ≤ 0 for all j ∈k.

Theorem 4. [17] x∗ ∈ E(PD if, and only if, {(x∗ + C≥) ∩ D = x∗}.

3. Development of the algorithm and theoretical results

The proposed algorithm provides a global optimal solution of (PE) without specifying all efficient
solutions of (P(D)).

Initially, we solve the relaxed problem (3) associated to problem (PE). Obviously, only in a
reduced number of special cases would the solution of (3) provide the optimal solution of (PE).
So if it were not the case, a new efficient solution dominating the previous one is then obtained.
The efficient solution x̃l issued from the efficiency test is considered as a first efficient solution.

Assuming that all coefficients of matrix C are integers, at iteration k, the feasible set D is
reduced gradually by eliminating all dominated solutions by C(x̃)l (see Sylva and Crema, 2004,
2007). The resolution of the following problem enables us to perform this elimination:

(R fl) : max{Ux + α

Vx + β
|x ∈ D−∪l

s=1Ds} (5)

{xs; s = 1, ..., l− 1} are solutions of (PD) obtained at iterations 1, 2, ..., l− 1 respectively. Where
Ds = {x ∈n |Cx ≤ Cxs} and {Cxs}l

s=1 is a subset of nondominated criteria vectors for problem
(PD).

D−∪l
s=1Ds =



cix ≥ (cix = 1)ys
i + Mi(1− ys

i , i = 1, 2, ...p s = 1, 2, ..., l.)
s

∑
i=1

ys
i ≥ 1, s = 1, 2, ..., l

ys
i ∈ {0, 1}, i = 1, 2, ...p s = 1, 2, ..., l

x ∈ D


where Mi is a lower bound for any feasible value of the ith objective function. The associate

variables ys
i i = 1, 2, ...p of Cx̃s and additional constraints are added to impose an improvement

on at least one objective function. Note that when ys
i = 0, the constraint is not restrictive and

when ys
i = 1 a strict improvement is forced in the ith objective function evaluated at Cx̃s.

We start exploring all edges incident to x̃l corresponding to J1 until an efficient solution is
found to improve Φopt. We solve the problem (R fl). The optimal solution obtained, xl , produces
a minimum value of the criterion Φ(x) in the reduced domain. The process continue in this
manner until the current feasible space becomes empty or Φ(xl) > Φopt.

Proposition 1. [6] Let x̃1 x̃2,...,x̃l be efficient solutions to problem (PD) and Ds = {x ∈n |Cx ≤
Cxs}. Let x̃∗ be an efficient solution to the multi-objective integer problem Pk ≡ ” max ”{Cx, x ∈
D−∪l

s=1Ds}. Then x̃∗ is an efficient solution to the problem (PD).

3.1. Theoretical Results

Proposition 2. Let x̃1, x̃2, ...,x̃l be efficient solutions to problem P(D) and Ds = {x ∈n |Cx ≤ Cxs}.

Let ẍl be an alternative solution of xl of the problem (R fl) with
Uxl+1 + α

Vxl+1 + β
> max

j∈1,...,l
{Ux̃s + α

Vx̃s + β
}.
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If ẍl is an efficient solution to problem (P(D)) then is an optimal solution of (PE).

if problem (R fl) is unfeasible then {Cx̃s}l
s=1 is the entire set of non-dominated criterion

vectors for problem (PD).

Proof. Suppose on the contrary that ẍl is not an optimal solution of (PE). Then a feasible
solution exists x̂ ∈ E(PD) such that with the value of the function main to the x̂ point superior a
Uxl + α

Vxl + β
. As ẍl is an alternative solution for xl ( Θ0

jl ̸= 0)to (R fl) because x̂s

Uẍl + α

Vẍl + β
=

Uxl + α

Vxl + β
. Thus x̂ ∈ ∪l

s=1Ds therefore x̂ ∈ Ds for some s ∈ {1, ..., l} and, accordingly

to the definition of Ds, Cx̂ ≤ Cx̃s. As x̂ ∈ E(PD we have that
Ux̂ + α

Vx̂ + β
<

Ux̃s + α

Vx̃s + β
.

consequently
Uẍl + α

Vẍl + β
=

Uxl + α

Vxl + β
<

Ux̂ + α

Vx̂ + β
<

Ux̃s + α

Vx̃s + β
who is contradicting with the hy-

pothesis
Uẍl + α

Vẍl + β
> max

j∈1,...,l
{Ux̃s + α

Vx̃s + β
}.

If(R fl) is unfeasible then E(PD) ⊆ ∪l
s=1Ds and for any x ∈ E(PD) there exists an xs such that

Cx ≤ Cxs. In this case we must proceed as follows: let x̃ ∈ E(PD) for the reason there is an
∃s ∈ 1, ..., l with Cxs ≥ Cx̃ then Cxs = Cx̃ (and Cx is a dominated vector).

■

3.2. Algorithm

The algorithm used to obtain an integer optimal solution to our main problem (PE) is can be
summarized as follows:

Algorithm 1: part 1
input :
A(m×n): matrix of constraits,
b(m×n),
RHS vector,
C(p×n): matrix of criteria.
U(1×n), V(1×n): main criterion vector,
α, β: are scalars.
output :
Xopt:optimal solution of the problem (PE),
Φopt:optimal value of the main criterion Φ
initialization :
for i← 1 to p do

solve Mi= min{Cix, x ∈ D} set the lower bounds;
Φopt := −in f ,
l := 1,
E1 := , D̄ := D,
optimal := f alse,
alternative := f alse,
explore := true.
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Algorithm 2: part 2

while optimal:=false do
solve Pl

RF ≡ max{Ux+α
Vx+β , x ∈ D̄};

if Pl
RF is infeasible then
Xopt an optimal solution of (PE); optimal := true,Terminate;

else
let xl bean optimal solution of Pl

RF;
efficiency test: solve (p(xl)), Ψ is the optimal solution criteria;
if Ψ = 0 then

xl an efficient solution; Xopt an optimal solution of (PE) and Φopt = Φ(xl);
else

xl is not efficient solution, x̃l an optimal solution of (p(xl)) is efficient;
solve Q(x̃l) ≡ max{Ux+α

Vx+β , x ∈ D̄, Cx = Cx̃l};
let x̂l bean optimal solution of Q(x̃l)
if Φ(x̂l) > Φopt then

Xopt = xl , Φopt =
Uxl+α
Vxl+β

, let El+1 = El ∪ {x̂l};

l = l + 1 and D̄ := D ∪l−1
s=1 Ds; Ds = {x ∈ Zn/Cx ≤ Cx̂l , x̂l ∈ El−1}

solvePl ≡ {max Ux+α
Vx+β , x ∈ D̄}, let xl an optimal of Pl ;

if D̄ = or Φ(xl) < Φopt then
Xopt an optimal solution of (PE) and Φopt the optimal value of (PE)
optimal := true,Terminate;

else
optimal:=False ; solve (P(xl)
if Ψ = 0 then

xl an efficient solution Xopt = xl ; optimal:=True; El+1 = El ∪ {xl};
Terminate;

else
x̄l is an optimal solution of P(xl) is efficient El+1 = El ∪ {xl};
construct the set Γl = {j ∈ Nl/γ̄l

j = 0};
if Γl ̸= then

i:=1;
while Γl ̸= and explore:= true do

(search ẍl
1 integer efficient solution for xl) calculate Θ0

jlthe integer

part of mini∈Ik{
x1

l,i
x1

l,ijl

/y1
l,ijl

> 0};

if Θ0
jl = 0 then

Γl = Γl \ {Jl(i)};
else

Θ := Θ0
jl ;

while Θ > 0 and alternative:=False do
searching for a efficient integer solution on edge Ejl

corresponding to Θ0
jl and test for efficiency, solve P(D)

if Ψ = 0 then
alternative:=true; Φopt := Φxexpl ; optimal:=True;

El+1 = El ∪ {xexpl}; Terminate;
else

Θ := Θ− 1

i:=i+1;

l:=l+1;
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Proposition 3. The algorithm terminates in a finite number of iterations.

Proof. By hypothesis provided D is non-empty and D is bounded, {Cxs}l
s=1 is finite. With the

progression of to advance in the algorithm, the domain of feasibility becomes more and more is
strictly reduced by the theorem (sylva [18],[6]) or Φopt strictly increases.

The theorem (3) guarantees that we can obtain an optimal solution integer of (P fR) if it exists,
and the theorem (Testing efficiency 1 with [9]) one gets an optimal solution for the problem
(2) having in mind that at least one new efficient solution is generated at each iteration since
for an arbitrary l none of the previously generated efficient point is feasible, the proof is thus
complete. ■

4. Numerical illustration

To illustrate the use of this algorithm, we consider the following integer linear program with tow
objectives:

(P(D))



max Z1 = x1 − 2x2
max Z2 = −x1 + 4x2
s.t. −2x1 + x2 ≤ 0,

6x1 + x2 ≤ 21,
−2x1 + 4x2 ≤ 6,
x1, x2 ∈

(6)

Figure 1: Space of the decisions

In this example, it is easy to see that D contains 11 feasible points (see Figure 1). Using the char-
acterization of efficiency presented in Theorem (4), it can be shown that seven of them are efficient.
Particularly, the efficient set E(PD) is given by: FF = {(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3)}.
With the aim of illustrating how our algorithm works, we will solve the problem (2) given by

(P f(E))

 max Φ =
x1 + x2 − 1

5x1 + x2 − 1
s.t. x1, x2 ∈FF

(7)

step 0: Initialization We take Φin f = −∞, Φsup = +∞, l = 1.
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After solving {min Cix, x ∈ D} i = 1, 2, the lower bounds of the objective functions are
M1 = −3, M12 = −3

(P f(R))



max Φ =
x1 + x2 − 1

5x1 + x2 − 1
s.t. −2x1 + x2 ≤ 0,

6x1 + x2 ≤ 21,
−2x1 + 4x2 ≤ 6,
x1, x2 ∈

(8)

(8) is solved, yielding the optimal solution x1 = (0, 0), Let Z(x1) = (0, 0).

• Iteration 1.

• Step 1. In order to test the efficiency of x1 we solve the problem (9), that is:

(P(x1))


max Θ = Ψ1 + Ψ2
s.t. (x1, x2) ∈ D

x1 − 2x2 −Ψ1 = 0
−x1 + 4x2 −Ψ2 = 0
Ψi ≥ 0, i = 1, 2.

(9)

The optimal value of (9) is 2 , which is achieved at the point x̂1 = (2, 1). Thus, x̂1 ∈FF
and x1 ̸∈FF, since Cx̂1 ≥ Cx1 We set Φsup = Φ(x1) = 1

• Step 2. When (10) defined as:

(T f1)


max Φ =

x1 + x2 − 1
5x1 + x2 − 1

s.t. (x1, x2) ∈ D
x1 − 2x2 = 0
−x1 + 4x2 = 2

(10)

is solved, x̃1 = x̂11 = (2, 1) is obtained as the optimal solution. Let z̄1 = Cx̃1 = (0, 2)
Φ(x̃1) = 1/5 > Φin f = −∞, put Φin f = 1/5 et Xopt = x̃1

Φin f ̸= Φsup, go to step 3

• Step 3. The optimal solution of (11)

(RF1)



max Φ =
x1 + x2 − 1

5x1 + x2 − 1
s.t. x1, x2 ∈ D

x1 − 2x2 ≥ y1
1 − 3(1− y1

1) (1)
−x1 + 4x2 ≥ 3y1

2 − 3(1− y1
2) (2)

y1
1 + y1

1 ≥ 1, y1
1, y1

2 ∈ {0, 1}

(11)

is x2 = (1, 2), y = (0, 1), being Z(x2) = (−3, 7) and Ψ = (0, 2). In order to test the
efficiency of x1 we solve the problem (9), that is:

(P(x2))


max Θ = Ψ1 + Ψ2
s.t. (x1, x2) ∈ D

x1 − 2x2 −Ψ1 = −3
−x1 + 4x2 −Ψ2 = 7
Ψi ≥ 0, i = 1, 2.

(12)

The optimal value of (12) is 2 , which is achieved at the point x̂2 = (3, 3); Ψ = (0, 2).

Thus, x̂2 ∈FF and x2 ̸∈FF, We set Φsup = Φ(x2) =
1
3

go to step 4.
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Figure 2: The reduced regionD1

• Step 4. J2 = {j ∈ N2 | γ2
1,j = 0} = ∅, go to step 2.

• Iteration 2.

• Step 2. When (10) defined as:

(T f1)


max Φ =

x1 + x2 − 1
5x1 + x2 − 1

s.t. (x1, x2) ∈ D
x1 − 2x2 = −3
−x1 + 4x2 = 9

(13)

is solved, x̃2 = x̂2 = (3, 3) is obtained as the optimal solution. Let z̄1 = Cx̃1 = (0, 2).
Φ(x̃1) = 5/17 > Φin f = 1/5, put Φin f = 5/17 et Xopt = x̃2

Φin f ̸= Φsup, go to step 3

• Step 3.The optimal solution of (11)

(RF1)



max Φ =
x1 + x2 − 1

5x1 + x2 − 1
s.t. (x1, x2) ∈ D

x1 − 2x2 ≥ y1
1 − 3(1− y1

1) (1)
−x1 + 4x2 ≥ 3y1

2 − 3(1− y1
2) (2)

y1
1 + y1

1 ≥ 1, y1
1, y1

2 ∈ {0, 1}
x1 − 2x2 ≥ −2y2

1 − 3(1− y2
1) (3)

−x1 + 4x2 ≥ 10y2
2 − 3(1− y2

2) (4)
y2

1 + y2
2 ≥ 1, y2

1, y2
2 ∈ {0, 1}

(14)

The problem (14) )is note feasible. Terminate, Xopt = x2 = (3, 3) is an optimal solution of (PE)
with Φ(x2) = 5/17.

The set of all solutions efficient of this problem is: FF = {(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3)}.
However, our algorithm optimizes the linear fractional function Φ =

x1 + x2 − 1
5x1 + x2 − 1

without having

to determine all these solutions but only {(2, 1), (3, 3)}.
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Figure 3: The reduced region D2

5. Conclusion

The proposed algorithm optimizes a linear fractional function over the integer set of a multi-
objective linear program (PE) by using classical strategies of fractional programming and cutting
plane techniques without having to enumerate all the efficient solutions. The main advantage of
the proposed solution methodology is that no nonlinear optimization is required.

Although the research themes addressed is difficult, it is hoped that this article motivate the
researchers to develop better solution procedures.
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Abstract

The article describes how to utilize the Modified Incident Edge Path Algorithm (MIEPA) to identify
the cheapest transit option and the best route. The MIEPA algorithm, which is based on graph theory,
is simple to use and can potentially be employed to major smart logistics challenges such as pipeline
networks and Google Maps. It evaluates the most optimal approach to minimize transportation expenses
using MATLAB. The algorithm ensures that each node gets visited and determines the shortest path from
the origin to all other nodes. The running time complexity and theorem of the new method are presented,
and the algorithm is compared to the existing algorithm. The proposed MIEPA addresses negative weights
and prevents negative cycles. It has used two real-world problems to evaluate the suggested algorithm.

Keywords: Directed network, Incident Edge Path Algorithm, Optimum path, Pipeline networks,
Google Map Network, Minimum transportation cost.
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I. Introduction

Network optimization is a vital topic of operations research and smart logistics, with the
goal of identifying the most effective routes while decreasing transportation costs. Network
models are primarily concerned with addressing the Shortest Path Problem (SPP), which involves
establishing the optimal path between nodes in a variety of real-world settings. This challenge is
essential in various disciplines, including:

• Manufacturing: Determining the shortest path simplifies operations, resulting in faster and
more productive manufacturing.

• Management: Rational thinking is critical for maximizing benefits and minimizing expenses.
• Transportation: Designing effective routes is critical for moving big amounts of commodities

at a low cost.
In essence, the shortest path problem covers multiple challenges, aiming to maximize outcomes
in manufacturing, top management, and transportation. The basic definitions, terminologies and
notations we refer[4, 5, 6].Many shortest path algorithms in graph theory, including Dijkstra’s,
Prim’s, Kruskal’s, and other shortest path and minimum spanning tree algorithms, provide
effective solutions for finding optimal paths based on various real-world network problems [2, 10,
11, 12]. Dijkstra’s algorithm gives the N-Shortest paths for the network, and it is implemented
in Google Map Network problem[9]. A review paper helps the researchers to study well about
the algorithms and also for implementation in real-world problems[7]. These algorithms assist
decision-makers in identifying the most efficient routes with minimal transportation costs to
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reach their destinations.These methods address key operational challenges, such as pipeline
maintenance, which can lead to traffic congestion and disrupt the timely delivery of supplies to
various businesses. By adopting these strategies, industries can identify the fastest routes with
minimal travel time, reducing disruptions and ensuring swift access to affected areas [1, 13]. In
addition, optimizing algorithms for both space and time complexity can substantially enhance
business profitability. The temporal complexity of greedy algorithms has been thoroughly
examined by Yogesh Chanchal and Dr. Ashedra Kumar Saxena (2015), highlighting their role
in improving operational efficiency. Refining these algorithms enables industries to manage
resources more effectively, lower costs, and increase revenues [16]. Furthermore, Chu Fei-Xui
et al. applied the well-established Dijkstra method to calculate the N-shortest paths in pipeline
networks [3]. Shortest path methods in graph theory are vital not only for financial applications,
but also for network systems, engineering, and computer science. These methods are now widely
used in Computer Science and Engineering, highlighting their significance in improving network
performance, system design, and computing efficiency[8].
Recently, particularly during the epidemic, there has been a rise in demand for prompt and
dependable delivery services. To ensure timely and efficient delivery of food, medicine, and other
supplies, delivery agents or organizations must find the shortest routes while simultaneously
minimizing fuel expenses. Yassine Issaoui and colleagues addressed these needs in their work,
focusing on improving delivery routes to ensure timely deliveries at minimal costs[14]. Jijun Hu
and colleagues investigated the use of Dijkstra’s Algorithm to calculate the best path for Automatic
Guided Vehicles (AGVs) in warehouse distribution systems. Their job entails synchronizing
duties with vehicle movements to improve efficiency. They proposed an effective architecture
using Dijkstra’s Algorithm to address numerous warehouse-related difficulties, hence boosting
overall system performance[15]. In this paper, we introduce the Modified Incident Edge Path
approach (MIEPA), a unique approach for determining the shortest paths between nodes. The
proposed MIEPA is modified from the incident edge path algorithm proposed in[17]. We used
MIEPA to solve two real-world problems: (1) determining the best path in a pipeline network to
reach pump stations from a specified origin pump station and (2) calculating the shortest path in
Google Maps for efficient navigation. The MIEPA algorithm’s performance in these applications is
examined for reference [3].Novelty of the proposed MIEPA is it handles negative weighted edges
of the transportation network by avoiding cycles unlike existing algorithms. It is appropriate for
sparse networks because it streamlines the process of determining the minimal or most effective
route from the origin to all subsequent nodes without requiring backtracking. This paper is
structured as follows:
Introduction: This article introduces the Modified Incident Edge Path Algorithm (MIEPA), its
concepts, and a theoretical proof.
Application: The algorithm is evaluated in real-life applications, including pipeline networks and
navigation systems.
Evaluation: We assess the effectiveness of the MIEPA algorithm and discuss how it addresses its
limitations and shortcomings.

II. Preliminaries

A graph G(V, E) is directed and taken as a network representation, where V is the number of
nodes denoted |V| = n and E is the number of edges denoted |E| = m. In G, the node vi is an
end node of some edge ej, vi and ej is said to be incident with each other. The edges incident with
vi are said to be incident edges of G [5]. The distance between nodes vi and vj is d(vi, vj). The
weight of the node v is considered as the cost of each u, v-path. If v has more than one u, v-path,
then the minimum cost is assigned to the end node v.
A graph having no loops or parallel edges is a simple network [5]. A path is a simple network
whose nodes can be linearly ordered so that two nodes are adjacent if and only if they are one
after the other in the list [4]. A path (vi − vj) from the node vi to vj in a network is finite if it has
a finite number of nodes; otherwise, it is infinite. The weight of a path is taken as the sum of the
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distance between nodes in the respective path. If the path starts and ends with the same node,
then it is known as a cyclic, otherwise acyclic, of the network [10].
Result: Let G(V, E) be a simple and directed network; if G has only one shortest path from the
origin node v0 to the destination node vn, then it is the optimum path for the network, providing
minimum transportation cost. The proposed algorithm was examined by Kanchana et al. [17], this
article presents the modification of IEPA and applies it in the pipeline network and Google Map
Service network to find the shortest path of every node from the origin node. In the Modified
Incident Edge Path Algorithm (MIEPA), we make the following assumptions:

• Taking the graph as a directed network (graph).
• The distance, costs, and time needed are associated with edges of the network that travels
• Single source with negative or non-negative edge weights avoiding cycles.
• Optimality of path drawn from each node from the origin node.
• The proposed algorithm involves performing optimality without backtracking from the

beginning.

I. Modified Incident Edge Path Algorithm (MIEPA)

Formulation of Graphical problem: G(V, E) be the directed simple graph. Each edge has the
distance between the nodes.

• v0 be the origin node and vn be the end node of the graph.
• V− Set of all nodes
• E− Set of all edges/lines between nodes
• d(vi, vj)− distance between the nodes
• Ei− Set of incident edges where i = 1, 2, .., n andj = 1, 2, .., n − 1.

A network G(V, E), with node set V and edge set E, we set pj the weight of the node vi and Ej,
the set of all incident edges of G where 0 ≤ i ≤ n, 1 ≤ j ≤ n.
The following theorem provides the optimality of the proposed algorithm.

Theorem 1. Let G(V, E, d(vi, vj)) be any simple directed graph and the weight of the path
pj = min{pi + d(vi, vj)} is defined on G. If En = {} then, the weight pn of the path (v0 − vn) is
optimum, Where d(vi, vj)is the distance between nodes vi and vj for i = 0, 1, ..., n, j = 1, 2, , n.

Proof.
Let G(V, E, d(vi, vj)) is any simple directed graph with vertex set V = {v0, v1, ..., vi, vj, .., vn}

and Ej is the collection of all incident edges incident with vi of G.
given that, pj = min{pi + d(vi, vj)} as the weight of path from vi to vj. Let E1 is the set of incident
edges from v0 vertex, then the weight of path v0 − v1 is p1 = p0 + d(v0, v1) E2 is the set of incident
edges from v1, then the weight of path (v0 − v1 − v2) is p2 = p1 + d(v1, v2),
If a vertex v1 has two in-degree, then choose the minimum weight of the path with corresponding
path. Thus, for vj vertex, Ej is the set of incident edges, then the weight of the path (v0 −
v1...vi − vj) is pj = min{pi + d(vi, vj)}. Similarly for vertex vn, En is empty since there are
no edges incident with vn. Thus (v0 − v1...vi − vj...vn−1 − vn) is the obtained path from pn =
min{p(n−1) + d(v(n−1), vn)} which is optimum.

■
Remark 1: If any nodes in-degree is more than one then we can choose and fix the minimum
weight path as pj = min{pi + d(vi, vj)} of the nodes from vi to vj and also fix the path weight as
of the respective end nodes weight.
Remark 2: If any node has more than one weight, choose the minimum weight path and fix that
minimum path weight as the end node’s weight.

II. MIEPA - Steps

• Step 1: Find E1, the set of all edges incident with v0 in V. If E1 is empty, go to Step 6 or
proceed to Step 2.
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• Step 2: Calculate path weight from E1, p(v0, vj) = w0 + d(v0, vj). Fix the weight to end
node of respective and choose the minimum without forming a cycle.

• Step 3: Find E2, the set of all edges incident with vj in V. If E2 is empty, go to Step 6 or go
to Step 4.

• Step 4: Calculate path weight from E2, p(vj, vi) = wj + d(vj, vi). Fix the weight to the end
node of the respective and choose the minimum without forming a cycle.

• Step 5: Repeat Steps 1 to 4 until the destination node is reached after visiting all edges.
Optimum cost is the weight of the destination node.

• Step 6: Check for any negative weight cycles. Check for any weight adjustments; if a
negative cycle exists or the optimal path is obtained, stop the process.

III. Comparison of MIEPA with existing algorithms

The Table 1, provides proposed MIEPA’s weightage compared with other existing algorithms.

Table 1: Comparison of Proposed MIEPA and Other Existing Algorithms

Aspect Proposed MIEPA Dijkstra’s Algorithm Bellman-Ford Algo-
rithm

A* Algorithm

Graph Type Focuses on incident
edges in dynamic,
sparse graphs.

Functions with
weighted graphs with-
out negative edges.

Identifies negative cy-
cles and manages neg-
ative edge weights.

Works with heuristic-
based approaches on
graphs.

Efficiency More effective for sparse
graphs as it focuses on
local incident edges.

Efficient for dense
graphs using priority
queues (O(V log V)).

Global edge checks re-
sult in slower runtime
(O(VE)).

Very efficient when
appropriate heuristics
are available (O(E) to
O(E + V log V)).

Time Complex-
ity

O(V + E), dependent on
the number of incident
edges, ideal for sparse
graphs.

O(V2), or
O(E + V log V) with
priority queues.

O(VE), due to global
edge assessments.

O(E) to O(E +
V log V) depending
on heuristic use.

Negative
Weight Han-
dling

Can handle negative
weights by identifying
and avoiding negative
cycles.

Cannot handle nega-
tive weights; requires
non-negative edges.

Handles negative
weights but requires
additional processing.

Cannot directly han-
dle negative weights
without modifica-
tions.

Use Case Ideal for dynamic, adap-
tive, local exploration
(e.g., transportation net-
works and pipelines).

Suitable for non-
negative edge graphs
(e.g., shortest paths in
maps).

Useful for graphs
with negative weights
(e.g., finance, trans-
portation).

Best suited for heuris-
tic pathfinding in do-
mains like games and
robotics.

Edge Handling Concentrates on inci-
dent edges (examines
neighbors step-by-step).

Evaluates all edges
connecting each node.

Evaluates all edges,
even for negative
weight cycles.

Prioritizes edges us-
ing heuristic rankings.

Adaptability Highly adaptive for lo-
cal connectivity and dy-
namic systems requiring
cycle detection.

Not suitable for
dynamic graphs or
graphs with negative
weights.

Supports static graphs
with negative weights.

Performs well in do-
mains with applicable
heuristics (e.g., real-
time pathfinding).

III. Smart Logistic Network Problems

I. Pipeline Network Problem

The MIEPA algorithm is used to determine the most cost-effective path in a pipeline network,
helping industries like the South-West products pipeline industry optimize their operations.
By representing pump stations as nodes and pipelines as edges and calculating the minimum
cost using unit costs, the MIEPA algorithm provides an efficient method to find the optimal
transportation routes within the network.

Assume Figure 1 illustrates a network diagram with nodes and edges representing pump
stations and pipelines, respectively. The MIEPA algorithm will calculate the minimum cost of
reaching the destination node by iteratively finding the shortest path in terms of transportation
cost. The distance of edges in the pipeline network is shown in Table 2.

RT&A, No 1 (82) 
Volume 20, March 2025 

594



Kanchana and Kavitha
A MIEPA FOR SP IN PIPELINE AND URBAN NAVIGATION

Figure 1: Network of Pipeline

Table 2: Edge and Distance Between the Nodes

Edge Distance between vi
and vj

Edge Distance between vi
and vj

(v0, v1) 2.31 (v6, v7) 1.5
(v0, v2) 3.5 (v7, v8) 1.7
(v0, v3) 5.2 (v8, v9) 1.6
(v1, v3) 2.05 (v9, v10) 1.5
(v1, v4) 4.58 (v9, v11) 3.5
(v2, v3) 0.98 (v10, v11) 1.6
(v2, v4) 3.43 (v11, v12) 1.5
(v2, v5) 6.48 (v12, v13) 1.2
(v3, v4) 2.5 (v12, v14) 3.6
(v3, v5) 5.33 (v13, v14) 1.9
(v4, v5) 2.3 (v13, v15) 3.0
(v4, v6) 4.26 (v14, v15) 0.8
(v5, v6) 1.3

The proposed MIEPA algorithm is applied, and the calculation for getting the optimum path
is given in Table 3 for the pipeline network.

Table 3: Pipeline Network Problem Solved by MIEPA

Incident Edge Set Ej The Weight and the Shortest Path pj of (vj)

E1 = {v0v1, v0v2, v0v3} p1 = 2.31 of (v1), p2 = 3.5 of (v2), and p3 = 5.2 of (v3)
E2 = {v1v3, v1v4} p3 = min{5.2, 4.36} = 4.36 of (v3), p4 = 6.89 of (v4)
E3 = {v3v4, v3v5} p4 = min{6.89, 6.86} = 6.86 of (v4), p5 = 10.84 of (v5)
E4 = {v4v5, v4v6} p5 = min{9.16, 10.84} = 9.16 of (v5), p6 = 11.09 of (v6)
E5 = {v5v6} p6 = min{11.09, 10.46} = 10.46 of (v6)
E6 = {v6v7} p7 = 11.96 of (v7)
E7 = {v7v8} p8 = 13.66 of (v8)
E8 = {v8v9} p9 = 15.26 of (v9)
E9 = {v9v10, v9v11} p10 = 16.76 of (v10), p11 = 18.76 of (v11)
E10 = {v10v11} p11 = min{18.76, 18.36} = 18.36 of (v11)
E11 = {v11v12} p12 = 19.86 of (v12)
E12 = {v12v13, v12v14} p13 = 21.06 of (v13), p14 = 23.46 of (v14)
E13 = {v13v14, v13v15} p14 = min{22.96, 23.46} = 22.96 of (v14), p15 = 24.06 of (v15)
E14 = {v14v15} p15 = min{23.76, 24.06} = 23.76 of (v15)
E15 = {} Stop the process; destination reached.
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Figure 2: Network of Pipeline with optimal path by MATLAB

End node reached stop the process, since E15 = {} there is no edges incident with v15
weight of the end node of selected minimum weight path is p15 = 23.76. Hence, the minimum
transportation cost of the optimum path is 23.76 hundred million yuan.
The Table 4 is a representation of the minimum cost to reach every node v0 and also the optimum
path to reach the end node where all the edges have been visited. Therefore, the optimum path
is (v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 − v10 − v11 − v12 − v13 − v14 − v15) with (weight of
the path) minimum transportation cost p15 = 23.76 hundred million yuan.

Table 4: Shortest Path for Each Node from v0 in the Pipeline Network

End Node Shortest Path p(v0, vj) Minimum Cost wj
of p(v0, vj)

v1 v0 − v1 2.31
v2 v0 − v2 3.5
v3 v0 − v1 − v3 4.36
v4 v0 − v1 − v3 − v4 6.86
v5 v0 − v1 − v3 − v4 − v5 9.16
v6 v0 − v1 − v3 − v4 − v5 − v6 10.46
v7 v0 − v1 − v3 − v4 − v5 − v6 − v7 11.96
v8 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 13.66
v9 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 15.26
v10 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 − v10 16.76
v11 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 − v10 − v11 18.36
v12 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 − v10 − v11 − v12 19.86
v13 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 − v10 − v11 −

v12 − v13

21.06

v14 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 − v10 − v11 −
v12 − v13 − v14

22.96

v15 v0 − v1 − v3 − v4 − v5 − v6 − v7 − v8 − v9 − v10 − v11 −
v12 − v13 − v14 − v15

23.76

The proposed modified incident edges path algorithm solves the pipeline network problem
and is verified using MATLAB. For example, the following Figure 2 gives the required optimum
path for the network. The red line in Figure 2 denotes the optimum path to reach the final pump
station from the origin with minimum transportation cost.
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II. Google Map Network

The Google Map Network Problem is taken as a numerical example to find the optimum path
with minimum transportation cost using the proposed MIEPA algorithm. A map is considered for
finding the optimum route between Avadi and Ambattur is shown in Figure 3. The Google map
shows two types of timings, such as 20 minutes with 8.8km and 24 minutes with 9.4km to reach
the destination as the fastest route. But using the proposed MIEPA algorithm, the decision-maker
can find the shortest route with a minimum time duration compared with the online server,
which was solved and provided in below Table 5 and Figure 5.

Figure 3: Route taken from online server - Google Maps

The distance may vary because of the parameters like speeding limits and road extension work.
The distance taken for calculating is taken from the Google Server and solved by the proposed
MIEPA algorithm. Figure 4 shows the graphical representation of the google map; each intersec-
tion area is taken as nodes, the line joining nodes is taken as edges, and the time taken to reach
between nodes is considered as distances of edges. The network taken is directed to reach the desti-
nation using Google Maps and plotted using MATLAB, which is a directed network. The nodes are

Figure 4: Network of Google Map

labeled as {1, 2, 3, ..., 12, 13} representing the nodes {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13}
where v1 denotes Avadi, v13 denote’s Ambattur and distance between nodes is given in Figure 4.
The Table 5 provides the distances between nodes for the Google Map Network Problem.
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Table 5: Edge and Distance Between the Nodes of Google Map Network

Edge Distance Between vi
and vj

Edge Distance Between vi
and vj

(v1, v2) 2 (v7, v10) 4
(v1, v3) 3 (v7, v13) 5
(v2, v9) 3 (v8, v7) 3
(v2, v4) 1 (v8, v9) 2
(v3, v12) 5 (v11, v13) 5
(v4, v5) 4 (v9, v3) 2
(v5, v6) 8 (v10, v8) 2
(v6, v7) 4 (v12, v11) 6
(v6, v8) 3 (v11, v10) 2

Table 6 provides the calculation process by proposed MIEPA for Google Map Network Problem
for optimum route between Avadi to Ambattur.

Table 6: Google Map Network Problem Solved by MIEPA (Part I)

Incident Edge Set Ej The Weight and the Shortest Path pj of (vj)

E1 = {v1v3, v1v2} p3 = 3 of (v3) and p2 = 2 of (v2)
E2 = {v2v4, v2v9} p4 = 3 of (v4) and p9 = 5 of (v9)
E3 = {v4v5} p5 = 7 of (v5)
E4 = {v5v6} p6 = 15 of (v6)
E5 = {v6v7, v6v8} p7 = 19 of (v7) and p8 = 18 of (v8)
E6 = {v8v7, v8v9} p7 = min{19, 21} = 19 of (v7) and p9 = min{5, 20} =

5 of (v9)
E7 = {v9v3} p3 = min{3, 7} = 3 of (v3)
E8 = {v3v12} p12 = 8 of (v12)
E9 = {v12v11} p11 = 14 of (v11)
E10 = {v11v10, v11v13} p10 = 16 of (v10) and p13 = 19 of (v13)
E11 = {v10v8} p8 = min{16, 18} = 16 of (v8)
E12 = {v8v9} This forms a cycle. Neglect this path and choose the

path (v11, v13) leading to end node v13.
E13 = {} p13 = 19

End node reached, so stop the process since E13 = {} there is no edges incident with v13 and
weight of the end node is selected which is the minimum weight of path. Hence, the optimum
time to reach the destination is 19 minutes

Table 7: Shortest Path for Each Node from v1 in the Google Map Network

End Node Shortest Path p(v1, vj) Minimum Cost wj of
p(v1, vj)

v2 v1 − v2 2
v3 v1 − v3 3
v4 v1 − v2 − v4 3
v12 v1 − v3 − v12 8
v9 v1 − v2 − v9 5
v11 v1 − v3 − v12 − v11 14
v5 v1 − v2 − v4 − v5 7
v6 v1 − v2 − v4 − v5 − v6 15
v8 v1 − v2 − v4 − v5 − v6 − v8 18
v7 v1 − v2 − v4 − v5 − v6 − v7 19
v10 v1 − v3 − v12 − v11 − v10 16
v13 v1 − v3 − v12 − v11 − v13 19
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The Table 7 provides the optimum path with minimum time to reach the different destination
from the origin node v1 by visiting all the edges. Hence, the destination reached from origin and
optimum path is v1 − v3 − v12 − v11 − v13 with minimum time duration (Weight of the path) of
p13 = 19 minutes.

Figure 5: optimum path of Google Map by MATLAB

The Figure 5, provide the optimum path for a specified map taken from Google Maps found
using the proposed MIEPA algorithm in MATLAB Hence, the decision-maker can find the
optimum path by taking any node as the origin and any node as the destination. Therefore,
the proposed MIEPA algorithm provides the minimum transportation cost, optimum path, and
minimum time duration.

IV. Discussion and Conclusion

The classical network optimization problem of finding the optimal path is crucial in numerous
real-world applications, particularly in smart logistics. This article implements the Modified Inci-
dent Edge Path Algorithm (MIEPA) to address smart logistical challenges in two real-life scenarios.
The MIEPA algorithm efficiently determines the optimal path with minimum transportation cost
and time duration by utilizing incident edges to traverse the network.

The algorithm’s running time complexity is reduced to O(E + V), offering an efficient solu-
tion compared to existing algorithms. The paper presents a comparison of MIEPA with other
algorithms, highlighting its performance advantages. Additionally, the algorithm ensures that
the destination node is reached from the origin by visiting all edges in a given directed network.
The optimal path identified by MIEPA for both pipeline network and Google Map problems is
verified using MATLAB, achieving minimum transportation costs. The algorithm also provides
results consistent with those obtained from Dijkstra’s algorithm, as shown in [3] and [9]. MIEPA
demonstrates superior performance in determining the shortest and fastest routes compared
to Google Search for the Google Map Problem. Furthermore, the paper illustrates how MIEPA
can calculate multiple optimal paths between various origin and destination pairs, enhancing
decision-making for users. In conclusion, the MIEPA algorithm facilitates easy manual determina-
tion of the shortest route and provides a straightforward, efficient solution for reaching all nodes
from the origin node or between any specified nodes in sparse directed network problems. Its
main advantage is its clarity and efficiency in solving smaller network instances.
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Abstract

In this paper we introduce a novel expansion of Fréchet distribution from Modi family of probability
distributions. The important statistical properties like moments, stochastic ordering, and entropy are
studied in this paper. Two distinct characterizations of the proposed distribution are derived through
the hazard rate function and truncated moments. The statistical inference about the parameters of the
new distribution is studied using the method of maximum likelihood estimation. To study the flexibility
and practical utility of the distribution, two real-life data sets from the reliability sector and from the
biomedical field were analyzed. An extensive simulation study is also conducted to validate the accuracy
and consistency of the estimation techniques.

Keywords: Characterization, Entropy, Fréchet distribution, Hazard rate function, Maximum
Likelihood Estimation, Statistical modelling.

1. Introduction

The study of statistical distributions is crucial across various disciplines, like economics, engi-
neering, and particularly in reliability analysis. The reliability sector focuses on modeling and
understanding failure rates in systems, components, and products over time. These necessitating
distributions are robust and versatile to capture the inherent complexities of these processes. This
paper introduces a new distribution meticulously designed to meet these demands and to offer
enhanced adaptability for reliability analysis.

In modern industries, accurate and reliable models are essential for predicting critical sys-
tems, machinery, and equipment lifespan and failure patterns. Traditional distributions, such as
the Weibull distribution (see, [1] & [2]) and the exponential distribution (see [3]), have long been
utilized in reliability studies due to their simplicity and ease of use. However, these models often
fall short when modeling complex or non-standard failure rates. For instance, while the Weibull
distribution is well-suited for systems with increasing or decreasing failure rates, it struggles
with scenarios involving bathtub-shaped failure rates, which are common in electronic systems.
Similarly, the exponential distribution assumes a constant failure rate, making it inadequate
for mechanical systems that experience wear-out failures over time. Our proposed distribution
overcomes these limitations by providing a more flexible framework that can adapt to a broader
range of reliability scenarios, including those with non-monotonic hazard functions.

Moreover, this distribution has been applied to the biomedical field, specifically in analyz-
ing infant mortality rates, where the precise modeling of survival times and risk factors is crucial.
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Traditional statistical models can struggle with the intricacies of biomedical data, particularly
in capturing the variability and heterogeneity inherent in patient population. By offering a
more adaptable structure, our distribution enhances the accuracy and reliability of statistical
modeling in both reliability and biomedical contexts, making it a valuable tool for researchers
and practitioners alike.

René Fréchet developed the Fréchet distribution [4], recognized as the maximum value dis-
tribution, a concept further explored by Fisher and Tippet [5] and Gumbel [6]. This distribution
has become widely used and studied across various fields due to experimental research from
multiple disciplines. It is particularly significant in survival analysis and reliability studies, find-
ing applications in engineering, social, physical, environmental, and life sciences. The cumulative
distribution function (cdf) and probability density function (pdf) of Fréchet distribution are,
respectively,

Gσ,λ(x) = e−(
σ
x )

λ

, x > 0, (1)

and
gσ,λ(x) = λσλx−(λ+1)e−(

σ
x )

λ

, x > 0, (2)

where σ > 0 is the scale parameter and λ > 0 is the shape parameter.

For further reading, see Kotz and Nadarajah [7] and Mubarak [8]. The Fréchet distribution
has been extensively generalized in the literature. Recent developments are; Slash-Exponential-
Fréchet distribution by Gmez et al. [9], Cosine Fréchet Loss distribution by Abonongo et al.
[10], Marshall-Olkin exponentiated Fréchet distribution [11], the inverted Gompertz-Fréchet
distribution [12], Yun-Fréchet distribution [13], cubic transmuted Fréchet distribution [14], the
generalized odd log-logistic Fréchet distribution [15], the novel Kumaraswamy power Fréchet
distribution [16] and generalization of Fréchet distribution[17]. Harlow [18] demonstrated that
the Fréchet distribution is crucial for modeling the statistical behavior of material properties in
various engineering applications.

Modi et al. [19] proposed the Modi family of distributions with cdf T(x) and pdf t(x) as
follows:

T(x) =
(1 + αβ)S(x)

αβ + S(x)
, x > 0, α > 0, β > 0, (3)

t(x) =
(1 + αβ)(αβs(x))(

αβ + S(x)
)2 , x > 0, α > 0, β > 0, (4)

where S(x) is an arbitrary cdf of a continuous univariate distribution and s(x) is the corresponding
pdf. Recent contributions to this family of distributions include Modi Exponential Distribution
[19], Modi Weibull [20] and Modi Exponentiated Exponential Distribution [21]. In this paper we
introduce a new distribution developed from this family of distributions, utilizing the Fréchet dis-
tribution as the baseline distribution. Named the Modi-Fréchet Distribution, this four-parameter
distribution offers a superior fit compared to other competitive lifetime distributions.

The present paper is organized as follows: In Section 2 the model construction and basic
statistical properties such as moments, stochastic ordering, and entropy are studied. Section 3 is
devoted to characterizations of the distribution based on hazard function and truncated moments.
In Section 4 parameters of the new distribution are derived using the maximum likelihood
estimation method. A simulation study has been carried out in Section 5. The flexibility and
utility of the proposed model are studied in Section 6 and conclusions are given in Section 7.
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2. Modi Fréchet Distribution

In this section, we develop a special distribution from Modi family, based on the Fréchet distribu-
tion. The cdf and pdf of Modi Fréchet distribution (MFD) are;

F(x) =
(1 + αβ)e−( σ

x )
λ

αβ + e−( σ
x )

λ
, x > 0, α, β, σ, λ > 0. (5)

The corresponding pdf is given by;

f (x) =

(
1 + αβ

) (
λαβσλx−(λ+1)e−( σ

x )
λ
)

(
αβ + e−( σ

x )
λ
)2 , x > 0, α, β, σ, λ > 0. (6)

(a) (b)

(c) (d)

Figure 1: Plots of the pdf of the MFD for various parameter values.

Fig. 1. shows the pdf can be unimodal, approximately normal, increasing-decreasing, and
right-skewed.
The hazard function of MFD is;

h(x) =

(
1 + αβ

) (
λσλx−(λ+1)e−( σ

x )
λ
)

(
αβ + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) , x > 0, α, β, σ, λ > 0. (7)
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(a) (b)

(c) (d)

Figure 2: Plots of the hrf of the MFD for various parameter values.

Fig 2. shows decreasing, increasing-decreasing, constant, and unimodal behaviour of hazard
function.
We derived the quantile function of MFD. The quantile function obtained using the inversion
method is given as;

F−1(y) =
σ(

log
(
1 + αβ − y

)
− log

(
yαβ

))1/λ
, yϵ[0, 1] (8)

2.1. Moments

The mean, standard deviation, variance, skewness, and kurtosis for the MFD are computed using
the raw moments. With the help of R software, we computed them using the standard definitions.
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Table 1: Moment characteristics of the MFD for various parameter values.

Parameters α → 0.6 1 2 5
β = 9 Mean 3.0120 4.2253 4.6556 4.6569
σ = 4 Variance 0.1283 1.4521 2.1379 2.1402
λ = 5 Skewness 6.8163 3.9213 3.5360 3.5351

Kurtosis 210.25 57.6110 48.1140 48.0920
β = 5.5 Mean 2.2716 2.6963 2.8949 2.9019
σ = 2.6 Variance 0.0909 0.3086 0.4320 0.4365
λ = 6.5 Skewness 4.2027 2.9117 2.5991 2.5899

Kurtosis 49.9690 24.4780 20.4440 20.3350
β = 2.5 Mean 3.1501 3.4990 3.7779 3.8626
σ = 3.3 Variance 0.6722 0.1080 1.5023 1.6292
λ = 4.8 Skewness 4.7686 4.1751 3.8589 3.7811

Kurtosis 93.3690 72.3430 62.8610 60.7000
β = 1.2 Mean 0.8987 0.9206 0.9431 0.9596
σ = 0.9 Variance 0.0143 0.0170 0.0198 0.0218
λ = 9 Skewness 2.4785 2.3161 2.1727 2.0808

Kurtosis 16.4210 14.7680 13.4440 12.6580

The calculated values are presented in Table 1. It shows that the MFD is suitable for under-
dispersed data. The skewness and kurtosis values show positive skewness and leptokurtic
behaviour. As α increases both mean and variance are increasing while skewness and kurtosis
values decreasing.

2.2. Stochastic Ordering

Stochastic ordering is a powerful tool to demonstrate the comparison of random variables in terms
of statistical functions of distribution theory. Different types of orderings can also be defined
based on the hazard rate, reverse hazard rate, or by applying transformations to the random
variables, as discussed in [22]. Let X1 and X2 be two random variables with parameters α1, β, σ, λ
and α2, β, σ, λ, their respective density functions f1(x) and f2(x), the reliability functions be F̄1(x)
and F̄2(x), then we say X1 is smaller than X2 if

• F̄1(x) ≤ F̄2(x) for all x,=⇒ X1 ≤st X2 (Stochastic order).

• f1(x)
F̄1(x) ≥

f2(x)
F̄2(x) for all x,=⇒ X1 ≤hr X2 (Hazard rate order).

• f1(x)
F1(x) ≥

f2(x)
F2(x) for all x,=⇒ X1 ≤rh X2 (Reversed hazard rate order).

• f1(x)
f2(x) is a monotonic decreasing function for all x,=⇒ X1 ≤lr X2 (Likelihood ratio order).

Suppose the densities of X1 and X2 be

f1(x) =

(
1 + α

β
1

) (
λα

β
1 σλx−(λ+1)e−( σ

x )
λ
)

(
α

β
1 + e−( σ

x )
λ
)2 , x > 0, and

f2(x) =

(
1 + α

β
2

) (
λα

β
2 σλx−(λ+1)e−( σ

x )
λ
)

(
α

β
2 + e−( σ

x )
λ
)2 , x > 0.
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respectively. Then,
case (i): When α is different.

f1(x)
f2(x)

=
α

β
1

α
β
2

(
1 + α

β
1

) (
α

β
2 + e−( σ

x )
λ
)2

(
1 + α

β
2

) (
α

β
1 + e−( σ

x )
λ
)2 .

For α1 < α2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

case (ii): When β is different.

f1(x)
f2(x)

=
αβ1

αβ2

(
1 + αβ1

) (
αβ2 + e−( σ

x )
λ
)2

(
1 + αβ2

) (
αβ1 + e−( σ

x )
λ
)2 .

For β1 < β2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

case (iii): When σ is different.

f1(x)
f2(x)

=
σλ

1

σλ
2

e−(
σ1
x )λ

e−(
σ2
x )λ

(
αβ + e−(

σ2
x )λ

)2

(
αβ + e−(

σ1
x )λ

)2 .

For σ1 < σ2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

case (iv): When λ is different.

f1(x)
f2(x)

=
λ1

λ2

σλ
1

σλ
2

e−( σ
x )

λ1

e−( σ
x )

λ2

(
αβ + e−( σ

x )
λ2
)2

(
αβ + e−( σ

x )
λ1
)2 .

For λ1 < λ2,
(

f1(x)
f2(x)

)′
< 0 which satisfies X1 ≤lr X2.

2.3. Entropy

Every statistical distribution inherently possesses some degree of uncertainty, and entropy serve
as a quantifiable measure of this uncertainty. In modern statistical analysis, information measures
like entropy plays a crucial role in addressing and understanding such uncertainties, making
them vital tools for statisticians.

If X is a non-negative continuous random variable with pdf f (x), and cdf F(x) then the Renyi
Entropy is defined by,

Hθ(x) =
1

1 − θ
log

∫ ∞

0
[ f (x)]θ dx. (9)

The Shannon entropy of X is defined as

S(x) = −
∫ ∞

0
f (x)ln [ f (x)] dx. (10)

Using the pdf of MFD, we can write;

[ f (x)]θ =
(

1 + αβ
)θ (

λαβσλ
)θ

(
x−(λ+1)e−( σ

x )
λ
)θ

(
αβ + e−( σ

x )
λ
)2θ

. (11)
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Varentropy, the variance of Shannon information associated with a random variable X, was intro-
duced by Song [23] as a measure of distribution shape, offering an alternative to kurtosis. This
concept captures the variability of information content, also known as information varentropy,
as discussed by Bobkov and Madiman [24]. Varentropy is significant in fields like information
theory, computer science, and statistics, providing valuable insights into how information is
distributed around the entropy of X.

Consider X as a continuous random variable with a density function f (x). The Shannon
varentropy of X is then defined as follows:

V = V(X) := Var[h(X)] =
∫

S
f (x) [ln f (x)]2 dx −

[∫
S

f (x)ln f (x)dx
]2

(12)

The calculated entropy values presented in Table 2 provide a detailed comparison of Shannon
entropy, Rényi entropy, and varentropy across different parameter settings. As shown in the
table, the Shannon entropy values are consistently negative, indicating the uncertainty associated
with each parameter set. In contrast, Rényi entropy exhibits both positive and negative values,
reflecting the variation in the information content under different parameter configurations.
Varentropy values, which measure the dispersion of information content around the entropy, are
consistently positive, with the magnitude decreasing as the parameter shape parameters β and λ
increase. This comprehensive comparison highlights how each entropy measure captures distinct
aspects of the information content and its variability.

Table 2: Entropy measures for different parameters

Parameters Shannon Entropy Renyi Entropy Varentropy

β 0.3 0.9 2.5 0.3 0.9 2.5 0.3 0.9 2.5
λ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

α = 0.9,
σ = 0.2

-44.2040 -12.9194 -7.8138 37.8881 25.5873 20.5589 40.1693 8.5762 4.3618

α = 1.2,
σ = 0.8

-45.2709 -13.9355 -9.3877 -19.0633 -13.1722 -11.1970 40.6525 8.7924 4.5635

α = 3,
σ = 1.2

-48.6200 -16.6447 -11.7576 -1.9420 -1.4060 -1.2323 42.0571 9.2918 4.7959

3. Characterization Results

Accurately characterizing probability distributions is pivotal across diverse fields, as it facilitates
profound insights into complex phenomena. The characterization of continuous probability
distributions has been extensively investigated, with seminal contributions from researchers
including Glänzel [25, 26] and Hamedani [27], who have pioneered various techniques. In
this section, we have rigorously established the characterizations of the MFD by examining its
truncated moments and hazard function.

3.1. Characterization based on truncated moments

The characterization of the probability distributions through truncated moments was initially pio-
neered by Galambos and Kotz [28]. Building on this foundational work, numerous scholars have
made significant contributions to the field. Among the most notable are Kotz and Shanbag [29],
as well as Glänzel et al. [30] with further advancements by Glänzel [25, 31]. The characterization
of the MFD using truncated moments is an extension of these efforts, specifically developed in
accordance with Theorem 3.1 from [25] which is stated as follows,

Theorem 3.1. Let (Ω, Σ, P) be a given probability space, and let D = [α, β] be an interval for some a < b
(α = ∞, β = −∞ might as well be allowed). Let X : Ω → D be a continuous random variable with
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distribution function G(x) and let κ1 and κ2 be two real functions defined on D such that

E[κ1(X)|X ≥ x] = E[κ2(X)|X ≥ x]ζ(x), x ∈ D

is defined with some real function ζ. Assume that κ1, κ2 ∈ C1(D), ζ ∈ C2(D), and G(x) is a twice
continuously differentiable and strictly monotone function on the set D. Finally, assume that the equation
κ2ζ = κ1 has no real solution in the interior of D. Then G is uniquely determined by the functions κ1, κ2
and ζ. In particular,

G(x) =
∫ x

a
C

∣∣∣∣∣ ζ
′
(ν)

ζ(u)κ2(u)− κ1(u)

∣∣∣∣∣ e−τ(ν)

where the function τ is a solution of the differential equation τ′ = ζ ′κ2
ζκ2−κ1

and C is a constant chosen to
make

∫
D dG = 1.

The above theorem has the advantage that the cdf G is not required to have a closed form
and is given in terms of an integral whose integrand depends on the solution of a first-order
differential equation, which can serve as a bridge between probability and differential equation.

Proposition 3.1. Let X : Ω → (0, ∞) be a continuous random variable, and let

κ2(x) =
(

αβ + e−(
σ
x )

λ
)2

and κ1(x) = κ2(x)e−(
σ
x )

λ

for x > 0. The pdf of X is Eq.6 if and only if the

function ζ defined in Theorem 3.1 has the form

ζ(x) =
1
2

e−(
σ
x )

λ

, x > 0. (13)

Proof. Let X have pdf Eq.6, then

(1 − G(x))E[κ2(X)|X ≥ x] =
(

1 + αβ
)

αβe−(
σ
x )

λ

, x > 0,

(1 − G(x))E[κ2(X)|X ≥ x] =
(
1 + αβ

)
αβ

2
e−2( σ

x )
λ

, x > 0,

and then

ζ(x)κ2(x)− κ1(x) = − 1
2

e−(
σ
x )

λ
(

αβ + e−(
σ
x )

λ
)2

< 0, f or x > 0.

Conversely, if ζ is given as Eq.12, then

τ′(x) =
ζ ′(x)κ2(x)

ζ(x)κ2(x)− κ1(x)
= −λσλx−(λ+1), x > 0,

and hence,

τ(x) =
(σ

x

)λ

or

e−τ(x) = e−(
σ
x )

λ

.

Now, using Theorem 3.1, X has the pdf Eq.6. ■
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3.2. Characterization based on hazard function

The hrf h(x) of a twice differentiable distribution function F(x) and its corresponding pdf f (x)
satisfy the first-order differential equation:

f ′(x)
f (x)

=
h′(x)
h(x)

− h(x). (14)

For many univariate continuous distributions, this is the sole characterization expressible in terms
of the hazard function. Hamedani and Ahsanullah [32] provided characterizations of certain
widely recognized distributions grounded in the hazard function. The following characterization
introduces a non-trivial distintion for the MFD when β = 1, diverging from the aforementioned
trivial form.

Proposition 3.2. Let X : Ω → (0, ∞) be a continuous random variable. The pdf of X is Eq.6 if and only
if its hazard function h(x) satisfies the differential equation

xλ+1h′(x) + (λ + 1)xλh(x) =
d

dx

 (1 + α)λσλe−(
σ
x )

λ

(α + e−(
σ
x )

λ

)(1 − e−(
σ
x )

λ

)

 . (15)

Proof. When β = 1, the pdf f (x) and hrf h(x) of X are respectively

f (x) =
(1 + α)

(
λασλx−(λ+1)e−( σ

x )
λ
)

(
α + e−( σ

x )
λ
)2 , x > 0, α, σ, λ > 0. (16)

and

h(x) =
(1 + α)

(
λσλx−(λ+1)e−( σ

x )
λ
)

(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) , x > 0, α, σ, λ > 0. (17)

Then we have

f ′(x)
f (x)

= − (λ + 1)
x

+ λσλx−(λ+1) − 2λσλx−(λ+1)e−( σ
x )

λ(
α + e−( σ

x )
λ
) . (18)

Using Eq.14 we can write,

h′(x) + h(x)
(λ + 1)

x
=

(1 + α)λ2σ2λx−2(λ+1)e−( σ
x )

λ(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) +

(1 + α)2λ2σ2λx−2(λ+1)e−( σ
x )

λ(
α + e−( σ

x )
λ
)2 (

1 − e−( σ
x )

λ
)2

−
2(1 + α)λ2σ2λx−2(λ+1)

(
e−( σ

x )
λ
)2

(
α + e−( σ

x )
λ
)2 (

1 − e−( σ
x )

λ
) ,

which implies,

xλ+1h′(x) + (λ + 1)xλh(x) =
(1 + α)λ2σ2λx−(λ+1)e−( σ

x )
λ(

α + e−( σ
x )

λ
) (

1 − e−( σ
x )

λ
) +

(1 + α)λ2σ2λx−(λ+1)
(

e−( σ
x )

λ
)2

(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
)2

−
(1 + α)λ2σ2λx−(λ+1)

(
e−( σ

x )
λ
)2

(
α + e−( σ

x )
λ
)2 (

1 − e−( σ
x )

λ
) .
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Now, Eq.15 holds, then

d
dx

[
xλ+1h(x)

]
=

d
dx

 (1 + α) λσλe−( σ
x )

λ(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
)


from which we obtain

h(x) =
(1 + α)

(
λσλx−(λ+1)e−( σ

x )
λ
)

(
α + e−( σ

x )
λ
) (

1 − e−( σ
x )

λ
) ,

which is the hrf of MFD when β = 1. ■

4. Maximum Likelihood Estimation

This section provides the parameter estimates for the MFD derived through the maximum
likelihood method. This method is widely recognized as the predominant approach in statistical
inference. The log-likelihood for θ = (α, β, σ, λ)T based on a given sample is given by;

logL(α, β, λ, σ) =nlog(1 + αβ) + nlog(λ) + nβlog(α) + nλlog(σ)−

(λ + 1)
n

∑
i=1

log(xi)−
n

∑
i=1

(
σ

xi

)λ

− 2
n

∑
i=1

log
[

αβ + e−( σ
xi
)λ
]

. (19)

To obtain the maximum likelihood estimators (MLE) of the MFD, we maximize the log-likelihood
function. This is accomplished by taking the first derivative of the Eq.19 with respect to parame-
ters α, β, λ and σ.

∂ log L(α, β, λ, σ)

∂α
=

nβαβ−1

1 + αβ
+

nβ

α
− 2

n

∑
i=1

 βαβ−1

αβ + e−
(

σ
xi

)λ

,

∂ log L(α, β, λ, σ)

∂β
=

nαβ logα

1 + αβ
+ nlogα − 2

n

∑
i=1

 αβ logα

αβ + e−
(

σ
xi

)λ

,

∂ log L(α, β, λ, σ)

∂σ
=

n
λ
+ nlogσ −

n

∑
i=1

logxi −
n

∑
i=1

(
λ

σ

)(
σ

xi

)λ

−

2
(

λ

σ

) n

∑
i=1


(

σ
xi

)λ
e−

(
σ
xi

)λ

log
(

σ
xi

)
αβ + e−

(
σ
xi

)λ

.

and

∂ log L(α, β, λ, σ)

∂λ
=

nλ

σ
+

n

∑
i=1

(
λ

σ

)(
σ

xi

)λ

− 2
(

λ

σ

) n

∑
i=1


(

σ
xi

)λ
e−

(
σ
xi

)λ

αβ + e−
(

σ
xi

)λ

,

MLE θ̂ = (α̂, β̂, σ̂, λ̂) of θ = (α, β, σ, λ) can be obtained by solving simultaneously the following
normal equations.

∂logL
∂α

= 0;
∂logL

∂β
= 0;

∂logL
∂σ

= 0;
∂logL

∂λ
= 0.
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Table 3: Simulation results.

True value n Average Value MSE Bias
50 10.0852 1041.897 -4.0852

100 8.4113 188.1615 -2.4113
α = 6 200 7.1525 52.4647 -1.1525

300 6.8824 42.855 -0.8824
500 6.4090 6.5330 -0.4090
50 3.4438 18.3209 -0.4438

100 3.4103 10.7163 -0.4103
β = 3 200 3.5286 30.133 -0.5286

300 3.4228 10.4221 -0.4228
500 3.3492 5.8894 -0.3492
50 1.7126 4.7213 -0.7126

100 1.3902 1.7355 -0.3902
σ = 1 200 1.2486 0.6024 -0.2486

300 1.1863 0.3508 -0.1863
500 1.1088 0.1051 -0.1088
50 0.9450 0.0316 0.0550

100 0.9521 0.0186 0.0479
λ = 1 200 0.9621 0.0113 0.0379

300 0.9654 0.0082 0.0346
500 0.9777 0.0043 0.0223

5. Simulation Study

In this section, we assess the accuracy of parametric estimation through Monte Carlo simulation.
Using the quantile function of MFD given in Eq.8, we generate samples of observations for
sizes n = 50, 100, 200, 300 and 500 with N = 1000 replications. Two sets of parameter values are
considered; α = 6, β = 3, σ = 1, λ = 1 and α = 1.2, β = 2.5, σ = 0.2, λ = 0.5.

The numerical outcomes are evaluated using the R statistical programming language, lever-
aging the widely used optimization package ’optim’. The Average Value, Mean Square Error
(MSE), and Average Bias are computed and displayed in Tables 3 and 4. The results indicate that
as the sample size increases, the MSE decreases and the Average Value of each parameter con-
verges to the initial parameter values. These findings demonstrate the accuracy and consistency
of the estimation methods.

6. Applications

In this section, we fit the MFD model to a reliability data set to check the model’s flexibility.
The MFD was compared to that of Modi Exponentiated distribution (MED) by [19], Modi
Exponentiated Exponential distribution (MEED) by [21] and Modi Weibull distribution (MWD)
by [20]. The maximum likelihood method is employed to estimate the parameters for the
candidate models. We evaluated different goodness-of-fit measures to illustrate the flexibility of
the model. Specifically, −logL(negative log-likelihood function), W (Cramér-von Mises Statistic),
A (Anderson-Darling Statistic) KıS (Kolmogorov“Smirnov Statistic), AIC (Akaike Information
Criterion), CAIC (Akaike Information Criterion with correction), BIC (Bayesian Information
Criterion) and HQIC (Hannan“Quinn Information Criterion).
Where
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Table 4: Simulation results.

True value n Average Value MSE Bias
50 4.2749 84.5601 -3.0749

100 3.6350 69.6801 -2.4350
α = 1.2 200 2.9488 58.9493 -1.7480

300 2.8059 100.5479 -1.6059
500 2.2570 19.7147 -1.0570
50 5.9501 103.8486 -3.4501

100 4.8420 37.1668 -2.3420
β = 2.5 200 4.2936 36.3745 -1.7936

300 3.9396 19.2506 -1.4396
500 3.5822 10.1569 -1.0822
50 1.3159 45.1542 -1.1159

100 0.8870 12.4818 -0.6870
σ = 0.2 200 0.5636 6.9543 -0.3636

300 0.3382 0.4328 -0.1382
500 0.3496 1.0409 -0.1496
50 0.5014 0.0112 -0.0014

100 0.4897 0.0086 0.0103
λ = 0.5 200 0.4960 0.0056 0.0039

300 0.4972 0.0039 0.0028
500 0.4971 0.0034 0.0029

AIC =− 2logL + 2k,

CAIC =− 2logL +
2kn

(n − k − 1)
,

BIC =− 2logL + klog(n),

HQIC =− 2logL + 2klog(log(n))

where L is the likelihood function, k is the number of parameters of the model and n is the
sample size. By respecting the standards in the field, the best model corresponds to smaller
−logL, KıS, AIC, CAIC, BIC, HQIC, and greater p-value. Here, we used the “AdequacyModel”
package in R programming language to obtain the MLEs and goodness-of-fit tests of the given
data sets.

Data Set I: This data represents the total time on test plot analysis for mechanical compo-
nents of the RSG-GAS reactor [33]

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347 0.150 0.358 0.101 1.359 3.465 1.060 0.614 1.921 4.082
0.199 0.605 0.273 0.070 0.062 5.320.

Data Set II: data set is the information of the infant mortality rate per 1,000 live births for a few cho-
sen nations in 2021, as reported by https://data.worldbank.org/indicator/SP.DYN.IMRT.IN

56 10 22 3 69 6 7 11 4 4 19 13 7 27 12 3 4 11 84 27 25 6 35 14 11 12 6
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Table 5: Basic statistical description of the dataset.

Size (n) Min. Max. Mean Median SD Skewness Kurtosis
23 0.06 6.56 1.58 0.61 1.93 1.36 3.54
27 3 84 18.81 11 20.51 1.95 3.05

Table 5 displays basic descriptive statistics of the datasets. Here, the distribution of the dataset
shows a positive skewness and leptokurtic behaviour, which goes with the moment properties of
this distribution. Figure 3 shows the boxplots and Figure 4 shows the TTT plots of the data set
and it goes with the features of hrf of MFD.

Figure 3: The box plots of the first data set (left) and the second data set(right).

Figure 4: The TTT plots of the first data set (left) and the second data set(right).
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Table 6: The MLEs of the first data set.

Model MLEs -log L
MFD α̂ = 3.1367, β̂ = 5.9797, σ̂ = 0.8032, λ̂ = 0.3838 33.0133
MWD α̂ = 3.3513, β̂ = 0.9966, σ̂ = 0.7085, λ̂ = 0.9824 34.2910
MEED α̂ = 4.4807, β̂ = 3.2477, σ̂ = 0.4016, λ̂ = 0.5374 33.4931
MED α̂ = 5.8525, σ̂ = 9.6862, λ̂ = 0.8800 34.8765

Table 7: The goodness of fit statistics for the first data set.

Model W A AIC BIC CAIC HQIC K-S p value
MFD 0.0471 0.3874 74.0266 78.5686 76.2488 75.1689 0.0971 0.9670
MWD 0.0544 0.3702 76.5819 81.1239 78.8041 77.7242 0.1827 0.3799
MEED 0.0864 0.5451 75.7530 79.1595 77.0161 76.6097 0.1700 0.4687
MED 0.0795 0.5052 74.9862 79.5282 77.2085 76.1285 0.1374 0.7273

Table 6 shows the results of the MLEs and negative log-likelihood values. From Table 7 we can
conclude that MFD provides the lowest W, A, AIC, BIC, CAIC, HQIC, K-S values, and the largest
p-value. Therefore, MFD is chosen as the best fit for the data.

(a) (b)

Figure 5: Fitted pdf (a) and cdf (b) of distributions to the first data set.

Figure 5 illustrates the fitted pdfs overlaid on the histogram and the corresponding cdfs for the
dataset. The histogram indicates that the data distribution is unimodal and exhibits a pronounced
positive skewness. The comparison of theoretical and empirical cdfs reveals that the MFD
provides the closest fit to the empirical cdf, outperforming other distributions in terms of accuracy.
To verify that the log-likelihood function behaves properly and that a distinct optimum has been
attained, we plot the profiles of the log-likelihood function for the MF distribution under the first
dataset and displayed in Figure 6.
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Figure 6: Fitted profile of the log-likelihood function for the MLEs from the MFD based on the first data set.

The performance of MFD for the second data was also compared to that of MWD, MEED and
MED. The MLEs and goodness-of-fit statistics for the second data set are presented in Tables 8
and 9.

Table 8: The MLEs of the second data set.

Model MLEs -log L
MFD α̂ = 2.3680, β̂ = 9.4772, σ̂ = 1.2422, λ̂ = 8.0659 102.7194
MWD α̂ = 5.5851, β̂ = 11.4085, σ̂ = 1.1231, λ̂ = 12.9991 109.7501
MEED α̂ = 1.5881, β̂ = 0.7937, σ̂ = 0.0544, λ̂ = 1.5894 104.7283
MED α̂ = 9.4307, σ̂ = 16.8944, λ̂ = 0.0642 106.7475
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Table 9: The goodness of fit statistics for the second data set.

Model W A AIC BIC CAIC HQIC K-S p value
MFD 0.0459 0.3064 213.4387 218.6221 215.2569 214.9800 0.0992 0.9532
MWD 0.1477 0.9498 227.5002 232.6835 229.3183 229.0414 0.1752 0.3783
MEED 0.1274 0.8277 217.4565 222.6399 219.2747 218.9978 0.1706 0.4121
MED 0.1273 0.8277 219.4949 223.3825 220.5384 220.6509 0.1752 0.3790

(a) (b)

Figure 7: Fitted pdf (a) and cdf (b) of distributions to the second data set.

Figure 7 presents the fitted pdfs and corresponding cdfs for the second dataset. The histogram
reveals a unimodal distribution with notable positive skewness. The plot exhibits that the cdf of
MFD is very closer to the empirical cdf than others. To further validate the model, we examine the
behavior of the log-likelihood function for the MFD. The profiles of the log-likelihood function
are plotted for the second dataset, (see Fig.8) confirming the proper behavior of the function and
the attainment of a distinct optimum.
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Figure 8: Fitted profile of the log-likelihood function for the MLEs from the MFD based on the second data set.

7. Conclusion

In this article, we proposed a new distribution based on the Modi family, namely MFD. Several
statistical properties of the proposed distribution, such as moments, skewness, kurtosis, stochastic
ordering, and entropy are evaluated. Two characterizations of the distribution are obtained using
the hazard rate function and truncated moments. The simulation study showed the accuracy
and consistency of the maximum likelihood estimation method. Two real-world data sets one
from the reliability sector and the other from biomedical sector were used to demonstrate the
flexibility of the proposed model. The MFD provided the best fit for the data compared to other
sub-models in the family.
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Abstract 

This paper focuses on the Bayesian estimation of the parameter of the inverse Ailamujia distribution, 

employing advanced prior structures and diverse loss functions. Specifically, the extended Jeffreys’ prior 

and gamma prior are utilized to derive the Bayesian estimators. Estimation is performed under various 

loss functions, including squared error, entropy, precautionary, and Linex loss functions, ensuring a 

comprehensive analysis. To demonstrate the practical applicability and comparative performance of these 

estimators, an empirical investigation is conducted using a real dataset. The findings highlight the 

adaptability and effectiveness of the proposed Bayesian approach across different estimation scenarios. 

Key words: Bayesian analysis, priors, maximum likelihood estimator, different loss 

functions.   

1. Introduction

In statistical literature, the Ailamujia distribution, introduced by Lv et al. [5], represents a novel 

probability distribution with significant versatility and practical relevance. This distribution has gained 

attention due to its ability to model various types of real-world data effectively. Its unique structural 

properties make it particularly suitable for applications in engineering and related disciplines. By 

accommodating a wide range of data patterns, the Ailamujia distribution has proven to be a valuable 

tool for analyzing reliability, survival times, and other stochastic phenomena. Its mathematical 

flexibility and applicability have inspired ongoing research into its properties, extensions, and potential 

for broader utilization across diverse fields. They have expounded its various distributional properties 

which includes moments, moment generating function, mode, median, order statistics. They have 

RT&A, No 1 (82) 
Volume 20, March 2025 

620

mailto:ahmadaijaz4488@gmail.com
mailto:aafaq7741@gmail.com


A. Ahmad., M. A. Khanday, S. K. Powar, A. A. Rather, C. Subramanian

BAYESIAN ESTIMATION OF INVERSE AILAMUJIA …

derived and discussed various reliability functions. The probability density function and cumulative 

distribution function of Ailamujia distribution are respectively given as 

  𝑓(𝑦, 𝛼) = 4𝛼2 𝑦 𝑒−2𝛼𝑦 ; 𝑦 > 0 , 𝛼 > 0    

𝐹(𝑦, 𝛼) = 1 − (1 + 2𝛼𝑦)𝑒−2𝛼𝑦 , 𝛼 > 0, 𝑦 > 0 

In recent past decade authors have proposed several extensions of Ailamujia distribution. Pan et al [7] 

has worked on Ailamujia distribution for interval estimation and hypothesis testing based on small 

sample size. Long [6] has obtained its Bayesian estimation under type II censoring on the basis of 

conjugate prior, Jeffrey’s prior and no informative prior distribution. Yu et al [10] proposed a new 

method by applying Ailamujia distribution to solve the problem in the production and distribution of 

battle field injury in campaign macrocosm. Recently Ahmad et al [1] developed the inverse analogue 

of Ailamujia distribution and examine its usefulness through two real life time data sets. 

Suppose Y is a random variable follows inverse Ailamujia distribution. Then its probability density 

function (p.d.f), is given by 

𝑓(𝑦, 𝛼) = 4𝛼2 1

𝑦3 𝑒
−

2𝛼

𝑦  , 𝑦 > 0 , 𝛼 > 0 (1) 

Fig. 1: pdf plot of IAD under different values of parameters 

Figure 1, illustrates several possible shapes of the probability density function (pdf) for different 

parameter values, showcasing the flexibility and versatility of the proposed distribution. As the 

parameters vary, the shape of the pdf adapts to exhibit diverse behaviour’s such as unimodal, skewed, 

or near-uniform profiles, depending on the parameter configuration. This graphical representation 

provides insight into how the distribution can be tailored to model a wide range of real-world 

phenomena  

Figure 2, presents the cumulative distribution function (cdf) for the same parameter values as 

Figure 1, offering a complementary view of the proposed distribution. The cdf curves demonstrate the 

accumulation of probability across the range of the variable, reflecting the gradual transition from 0 to 

1 as the variable increases. This graphical representation emphasizes the smoothness and consistency 
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of the cdf, which is critical for probabilistic interpretation and applications such as reliability analysis 

and quantile estimation. 

The corresponding cumulative distribution function (c.d.f), is given by 

𝐹(𝑌) =
(2𝛼+𝑦)

𝑦
𝑒

−
2𝛼

𝑦  , 𝑦 > 0 , 𝛼 > 0 (2) 

Fig. 1: pdf plot of IAD under different values of parameters 

2. Maximum Likelihood Estimation

Let 𝑌1, 𝑌2 … 𝑌𝑛 be random samples from the inverse Ailamujia distribution. Then the likelihood function 

of inverse Ailamujia distribution is given as 

𝑙 = ∏𝑓(𝑦𝑖 , 𝛼)

𝑛

𝑖=1

 

= ∏ 4𝛼2
1

𝑦𝑖
3

𝑛

𝑖=1

𝑒
−

2𝛼
𝑦𝑖  = (4𝛼2)𝑛 ∏

1

𝑦𝑖
3

𝑛

𝑖=1

𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖=1  

Taking log we get log likelihood function as 

 log 𝑙 =  2𝑛 log 2𝛼 − 3∑log 𝑦𝑖

𝑛

𝑖=1

− 2𝛼 ∑
1

𝑦𝑖

𝑛

𝑖=1

Differentiating w.r.t, we get 

𝜕 log 𝑙

𝜕𝛼
= 2𝑛

1

2𝛼
− 2∑

1

𝑦𝑖

𝑛

𝑖=1

Now equating 
𝜕 log 𝑙

𝜕𝛼
= 0 , we get 

�̂� =
𝑛

2𝑆
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Where 𝑆 = ∑ 𝑦𝑖
−1𝑛

𝑖=1

3. Bayesian Estimation of Inverse Ailamujia Distribution

Bayesian estimation procedure is a remarkable way to estimate the parameters of the distribution 

model. This estimation provides a posterior distribution of an existing life time distribution by 

considering prior information. From Bayesian point of view there can’t be put the lid on selecting 

prior(s) by considering one’s prior(s) is more suitable than others. In case of meager interpretative 

information about the unknown parameter it is preferable to select non informative prior. However, if 

one has sufficient information about the parameter(s) it is better to select informative prior. The aim of 

present study is to obtain a Bayesian estimation of parameter 𝛼 of inverse Ailamujia distribution by 

using extended Jeffrey’s and gamma prior. In recent past years several research papers have been 

published in this direction. Afaq et al [2] estimation of parameters of two parameter exponentiated 

gamma distribution. Mudasir et al [9] studied the Bayesian estimation of weighted Erlang distribution. 

Raqab and Madi [8] studied Bayesian estimation for exponentiated Rayleigh distribution. Fatima Bi 

and Afaq Ahmad [4], B. Singh et al. [11], Ahmad et al. [12] and again Ahmad et al. [13] studied different 

estimations of different distribution. In this paper our goal is to find the Bayesian estimators of the 

parameters of inverse Ailamujia distribution using extended Jeffery’s prior and gamma prior under 

different loss functions.   

3.1: Bayesian Estimation of Inverse Ailamujia Distribution Under the Assumption of 

Extended Jeffery’s Prior 

We assume the prior distribution of 𝛼 to be extended Jeffrey’s prior i.e 𝑔(𝛼) ∝
1

𝛼2𝑐

Under the assumption of extended Jeffrey’s prior. The posterior distribution of 𝛼 can be obtained as 

𝜋(𝛼|𝑦) ∝ 𝑙(𝑦|𝛼)𝑔(𝛼) 

⇒ 𝜋(𝛼|𝑦) ∝  (4𝑛 ∏
1

𝑦𝑖
3

𝑛

𝑖

) 𝛼2𝑛 𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖

1

𝛼2𝑐

⇒ 𝜋(𝛼|𝑦) = 𝑘 𝛼2(𝑛−𝑐)𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖  

Where 𝑘 is independent of 𝛼 and 

𝑘−1 = ∫ 𝛼2(𝑛−𝑐)𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖

∞

0

 𝑑𝛼 

𝑘−1 =
Γ(2𝑛 − 2𝑐 + 1 )

(2∑
1
𝑦𝑖

∞
𝑖 )

2𝑛−𝑐+1

So that   𝑘 =
(2 ∑

1

𝑦𝑖

∞
𝑖 )

2(𝑛−𝑐)+1

Γ(2𝑛−2𝑐+1 )
=

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛−2𝑐+1 )

Where 𝑆 = ∑
1

𝑦𝑖

∞
𝑖
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Hence the posterior distribution of 𝛼 is given as 

𝜋(𝛼|𝑦) =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼 

Where 𝑆 = ∑
1

𝑦𝑖

∞
𝑖

3.1.1: Estimation Under Squared Error Loss Function (SELF) 

The squared error loss function is defined as 𝑙(�̂�, 𝛼) = 𝑐1(�̂� − 𝛼)2 for some constantant 𝑐1 the risk

function is given as 

𝑅(�̂�, 𝛼) = 𝐸[𝐼(�̂�, 𝛼)] 

= ∫ 𝑐1(�̂� − 𝛼)2
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼

∞

0

 

 = 𝑐1

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[𝛼 ̂  ∫ 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 + ∫ 𝛼2(𝑛−𝑐)+2 𝑒−2𝑆𝛼𝑑𝛼 − 2�̂�

∞

0

∞

0

∫ 𝛼2(𝑛−𝑐)+1 𝑒−2𝑆𝛼𝑑𝛼
∞

0

] 

After solving the integral, we obtain 

 = 𝑐1

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )

[

�̂�Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+

(2𝑛 − 2𝑐 + 2)(2𝑛 − 2𝑐 + 1)Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+3

−
(2𝑛 − 2𝑐 + 1)Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+2 ]

𝑅(�̂�, 𝛼) = 𝑐1 [�̂�2 +
(2𝑛 − 2𝑐 + 2)(2𝑛 − 2𝑐 + 1)

(2𝑆)2
−

�̂�(2𝑛 − 2𝑐 + 1)

(2𝑆)
] 

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑠 =
(2𝑛 − 2𝑐 + 1)

4𝑆

Where 𝑠 =  ∑
1

𝑦𝑖

∞
𝑖

3.1.2: Estimation Under Entropy Loss Function 

The entropy loss function is defined as 𝐿(𝛿) = 𝑏[𝛿 − log(𝛿) − 1]; 𝑏 > 0 , 𝛿 =
�̂�

𝛼
 the risk functions given 

as 

𝑅(�̂�, 𝛼) = ∫ 𝑏[𝛿 − log(𝛿) − 1]
∞

0

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )
 𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 

 𝑅(�̂�, 𝛼) = 𝑏
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )
∫ [

�̂�

𝛼
− log �̂� + log 𝛼 − 1]

∞

0

𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 
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= 𝑏
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[�̂� ∫ 𝛼2(𝑛−𝑐)−1𝑒−2𝑆𝛼𝑑𝛼 − log �̂� ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼

∞

0

+ ∫ (log 𝛼)
∞

0

∞

0

𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼

− ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼
∞

0

] 

After solving the integral, we obtain 

= 𝑏
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[�̂�

Γ(2𝑛 − 2𝑐)

(2𝑆)2(𝑛−𝑐)
− log �̂�

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+

Γ′(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
 −

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
] 

 = 𝑏 [
�̂�(𝑆)

(𝑛 − 𝑐)
− log �̂� +

Γ′(2𝑛 − 2𝑐 + 1 )

Γ(2𝑛 − 2𝑐 + 1)
− 1]

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑒 =
𝑛 − 𝑐

𝑆

Where 𝑠 =  ∑
1

𝑦𝑖

∞
𝑖

3.1.3: Estimation Under Precautionary Loss Function 

The precautionary loss function is defined as (�̂�, 𝛼) =
(�̂�−𝛼)2

�̂�
 , the risk function is given as 

𝑅(�̂�, 𝛼) = ∫
(�̂� − 𝛼)2

�̂�

(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 

∞

0

𝑅(�̂�, 𝛼) =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1 )
∫

(�̂� − 𝛼)2

�̂�

∞

0

𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼 

=
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[𝛼 ̂ ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼 +

1

�̂�

∞

0

∫ 𝛼2(𝑛−𝑐)+2𝑒−2𝑆𝛼𝑑𝛼 − 2∫ 𝛼2(𝑛−𝑐)+1𝑒−2𝑆𝛼𝑑𝛼
∞

0

∞

0

] 

After solving the integral, we obtain 

=
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1 )
[�̂�

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+

1

�̂�

Γ(2𝑛 − 2𝑐 + 3)

(2𝑆)2(𝑛−𝑐)+3
− 2

Γ(2𝑛 − 2𝑐 + 2)

(2𝑆)2(𝑛−𝑐)+2
] 

= [�̂� +
(2𝑛 − 2𝑐 + 2)(2𝑛 − 2𝑐 + 1)

�̂� (2𝑆)2
−

2(2𝑛 − 2𝑐 + 1)

(2𝑆)
] 

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑝 =
[(𝑛 − 𝑐 + 1)(2𝑛 − 2𝑐 + 1)]

1
2

(𝑆)

Where 𝑆 =  ∑
1

𝑦𝑖

∞
𝑖
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3.1.4: Estimation Under Linex Loss Function 

The linex loss function is defined as 𝐿(�̂�, 𝛼) = 𝑒𝑥𝑝{𝑏1(�̂� − 𝛼)} − 𝑏1(�̂� − 𝛼) − 1, the risk function is given 

as 

𝑙(�̂�, 𝛼) =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1)
∫ {𝑒(𝑏1(�̂�−𝛼))

∞

0

− 𝑏1(�̂� − 𝛼) − 1}𝛼2(𝑛−𝑐) 𝑒−2𝑆𝛼𝑑𝛼

 =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 𝑐 + 1)
[𝑒𝑏1�̂� ∫ 𝛼2(𝑛−𝑐)𝑒−𝛼(𝑏1+2𝑆)𝑑𝛼 − 𝑏1𝛼 ̂

∞

0

∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼
∞

0

+ 𝑏1 ∫ 𝛼2(𝑛−𝑐)+1𝑒−2𝑆𝛼𝑑𝛼 − ∫ 𝛼2(𝑛−𝑐)𝑒−2𝑆𝛼𝑑𝛼
∞

0

∞

0

] 

 =
(2𝑆)2(𝑛−𝑐)+1

Γ(2𝑛 − 2𝑐 + 1)
[𝑒𝑏1�̂�

Γ(2𝑛 − 2𝑐 + 1)

(𝑏1 + 2𝑆)2(𝑛−𝑐)+1
− 𝑏1�̂�

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
+ 𝑏1

Γ(2𝑛 − 2𝑐 + 2)

(2𝑆)2(𝑛−𝑐)+2
−

Γ(2𝑛 − 2𝑐 + 1)

(2𝑆)2(𝑛−𝑐)+1
] 

= [𝑒𝑏1�̂� (
2𝑆

𝑏1 + 2𝑆
)

2(𝑛−𝑐)+1

− 𝑏1�̂� + 𝑏1

(2𝑛 − 2𝑐 + 1)

(2𝑆)
− 1  ]

Now solving 
𝜕𝑙(�̂�,𝛼)

𝜕�̂�
= 0, we get 

𝛼�̂� =
1

𝑏1

log (
𝑏1 + 2𝑆

2𝑆
)

2(𝑛−𝑐)+1

4. Bayesian Estimation of Inverse Ailamujia Distribution Under the Assumption of

Gamma Distribution 

We assume the prior distribution of 𝛼 to be gamma distribution i.e 𝑔(𝛼) ∝
𝑎𝑏

Γ(𝑏)
𝑒−𝑎𝛼  𝛼𝑏−1 

Now under the assumption of gamma prior. The posterior distribution of 𝛼 can be obtained as 

𝜋(𝛼|𝑦) ∝ 𝑙(𝑦|𝛼)𝑔(𝛼) 

⇒ 𝜋(𝛼|𝑦) ∝  (4𝑛 ∏
1

𝑦𝑖
3

𝑛

𝑖

)𝛼2𝑛 𝑒
−2𝛼 ∑

1
𝑦𝑖

𝑛
𝑖  

𝑎𝑏

Γ(𝑏)
𝑒−𝑎𝛼  𝛼𝑏−1 

⇒ 𝜋(𝛼|𝑦) = 𝑘 𝛼2𝑛+𝑏−1𝑒
−𝛼(𝑎+2 ∑

1
𝑦𝑖

𝑛
𝑖 )

Where 𝑘 is independent of 𝛼 and 

𝑘−1 = ∫ 𝛼2𝑛+𝑏−1𝑒
−𝛼(𝑎+2∑

1
𝑦𝑖

𝑛
𝑖 )

𝑑𝛼
∞

0

 

=
Γ(2𝑛 + 𝑏)

(𝑎 + 2∑
1
𝑦𝑖

𝑛
𝑖 )

2𝑛+𝑏

So that 

RT&A, No 1 (82) 
Volume 20, March 2025 

626



A. Ahmad., M. A. Khanday, S. K. Powar, A. A. Rather, C. Subramanian

BAYESIAN ESTIMATION OF INVERSE AILAMUJIA …

𝑘 =
(𝑎 + 2∑

1
𝑦𝑖

𝑛
𝑖 )

2𝑛+𝑏

Γ(2𝑛 + 𝑏)
=

(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

Hence the posterior distribution of 𝛼 is given as 

𝜋(𝛼|𝑦) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
 𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆) 

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.1: Estimation Under Squared Error Loss Function 

The squared error loss function is defined as 𝑙(�̂�, 𝛼) = 𝑐1(�̂� − 𝛼)2 for some constantant 𝑐1 the risk

function is given as 

𝑅(�̂�, 𝛼) = 𝐸[𝐼(�̂�, 𝛼)] 

= ∫ 𝑐1(�̂� − 𝛼)2
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
 𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼

∞

0

 

 = 𝑐1

(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫ (�̂� − 𝛼)2

∞

0

𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 

After solving the integral, we obtain 

𝑅(�̂�, 𝛼) =  𝑐1 [�̂�2 +
(2𝑛 + 𝑏)(2𝑛 + 𝑏 + 1)

(𝑎 + 2𝑆)2
− 2�̂�

(2𝑛 + 𝑏)

(𝑎 + 2𝑆)
] 

Now solving 
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑠 =
2𝑛 + 𝑏

𝑎 + 2𝑆

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.2: Estimation Under Entropy Loss Function 

The entropy loss function is defined as 𝐿(𝛿) = 𝑏[𝛿 − log(𝛿) − 1]; 𝑏 > 0 , 𝛿 =
�̂�

𝛼
 the risk functions given 

as 

 𝑅(�̂�, 𝛼) = ∫ 𝑏[𝛿 − log(𝛿) − 1]
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
 𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)

∞

0

𝑑𝛼 

 = 𝑏
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫ [

�̂�

𝛼
− log �̂� + log 𝛼 − 1]

∞

0

𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 

After solving the integral, we obtain 
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𝑅(�̂�, 𝛼) = 𝑏 [�̂�
(𝑎 + 2𝑆)

(2𝑛 + 𝑏 − 1)
− log �̂� +

Γ′(2𝑛 + 𝑏)

Γ(2𝑛 + 𝑏)
− 1]

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑒 =
2𝑛 + 𝑏 − 1

𝑎 + 2𝑆

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.3: Estimation Under Precautionary Loss Function 

The precautionary loss function is defined as𝑙(�̂�, 𝛼) =
(�̂�−𝛼)2

�̂�
 , the risk function is given as 

 𝑅(�̂�, 𝛼) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫

(�̂� − 𝛼)2

�̂�
𝛼2𝑛+𝑏−1𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 

∞

0

After solving the integral, we get 

 = [�̂� +
(2𝑛 + 𝑏)(2𝑛 + 𝑏 − 1)

�̂�(𝑎 + 2𝑆)2
− 2

(2𝑛 + 𝑏)

(𝑎 + 2𝑆)
] 

Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑝 =
[(2𝑛 + 𝑏)(2𝑛 + 𝑏 − 1)]

1
2

(𝑎 + 2𝑆)

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

4.4: Estimation Under Linex Loss Function 

The linex loss function is defined as 𝐿(�̂�, 𝛼) = 𝑒𝑥𝑝{𝑏1(�̂� − 𝛼)} − 𝑏1(�̂� − 𝛼) − 1, the risk function is given 

as 

𝑅(�̂�, 𝛼) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
∫ {𝑒(𝑏1(�̂�−𝛼))

∞

0

− 𝑏1(�̂� − 𝛼) − 1}𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼

=
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
[𝑒𝑏1�̂� ∫ 𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+𝑏1+2𝑆)𝑑𝛼

∞

0

− 𝑏1�̂�  ∫ 𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 + 𝑏1 ∫ 𝛼2𝑛+𝑏 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼 − ∫ 𝛼2𝑛+𝑏−1 𝑒−𝛼(𝑎+2𝑆)𝑑𝛼
∞

0

∞

0

∞

0

] 

After solving the integrals, we obtain 

𝑅(�̂�, 𝛼) =
(𝑎 + 2𝑆)2𝑛+𝑏

Γ(2𝑛 + 𝑏)
[𝑒𝑏1�̂�

Γ(2𝑛 + 𝑏)

(𝑎 + 𝑏1 + 2𝑆)2𝑛+𝑏
− 𝑏1�̂�

Γ(2𝑛 + 𝑏)

(𝑎 + 2𝑆)2𝑛+𝑏
+ 𝑏1

Γ(2𝑛 + 𝑏 + 1)

(𝑎 + 2𝑆)2𝑛+𝑏+1
 −

Γ(2𝑛 + 𝑏)

(𝑎 + 2𝑆)2𝑛+𝑏
] 

= [𝑒𝑏1�̂� (
𝑎 + 2𝑆

𝑎 + 𝑏1 + 2𝑆
)

2𝑛+𝑏

− 𝑏1�̂� + 𝑏1

(2𝑛 + 𝑏)

(𝑎 + 2𝑆)
− 1]
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Now solving  
𝜕𝑅(�̂�,𝛼)

𝜕�̂�
= 0, we get 

�̂�𝑙 =
1

𝑏1

log (
𝑎 + 𝑏1 + 2𝑆

𝑎 + 2𝑆
)

2𝑛+𝑏

Where 𝑆 = ∑
1

𝑦𝑖

𝑛
𝑖

5. Application

In this section we provide an application through which the performance of the estimators and 

posterior risk of different loss function has been obtained. The data set are follows:  

Data set 1: The data set represents the survival times (in days) of 72 guinea pigs infected with virulent 

tubercle bacilli, observed and reported by Bekker et al. [3]. The data are follows 

0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 

1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 

1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 

 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77. 

By using different loss functions, the Bayes estimates and posterior risks of the posterior distribution 

through both priors are as follows where posterior risk are in parenthesis. 

Table 1: Bayes Estimation and Posterior Risks Using Jeffery’s Prior 

   �̂� = MLE,   �̂�𝑆 = Estimation under SELF,  �̂�𝐸 = Estimation under Entropy, 

 �̂�𝑃 = Estimation under Precautionary, �̂�𝐿 = Estimation under LINEX 

𝛼 C �̂� �̂�𝑆 �̂�𝐸 �̂�𝑃 �̂�𝐿 

𝑏1 = 0.01 𝑏1 = 0.05 

1.0 0.5 0.5583 0.5583 

(1.260) 

1.109 

(4.862) 

2.241 

(17.97) 

1.116 

(0.0111) 

1.116 

(0.0558) 

1.0 0.5583 0.5545 

(1.247) 

1.101 

(4.862) 

2.225 

(17.85) 

1.108 

( 0.0110) 

1.108 

(0.0554) 

1.5 0.5583 0.5506 

(1.234) 

1.093 

(4.862) 

2.210 

(17.73) 

1.1012 

(0.0110) 

1.1010 

(0.0550) 

2.0 0.5 0.5583 0.5583 

(1.260) 

1.1090 

(4.862) 

2.2413 

(17.97) 

1.1167 

(0.0111) 

1.1165 

(0.0558) 

1.0 0.5583 0.5545 

(1.247) 

1.1012 

(4.862) 

2.2258 

(17.85) 

1.1089 

(0.0110) 

1.1088 

(0.0554) 

1.5 0.5583 0.5506 

(1.234) 

1.093 

(4.862) 

2.2102 

(17.73) 

1.1012 

( 0.0110) 

1.1010 

(0.0550) 

3.0 0.5 0.5583 0.5583 

(1.260) 

1.1090 

(4.862) 

2.2413 

(17.97) 

1.1167 

(0.0111) 

1.1165 

(0.0558) 

1.0 0.5583 0.5545 

(1.247) 

1.1012 

(4.862) 

2.2258 

(17.85) 

1.1089 

(0.0110) 

1.1088 

(0.0554) 

1.5 0.5583 0.5506 

(1.234) 

1.0935 

(4.862) 

2.2102 

(17.73) 

1.1012 

(0.0110) 

1.1010 

(05506) 
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Table 2: Bayes Estimation and Posterior Risks Using Gamma Prior 

Among other loss functions, it is evident from Table 1 and Table 2. That   the Linex loss function shows 

smaller Bayes posterior risk under the both assumptions (extended Jeffery’s prior and gamma prior). 

According to decision rule of less Bayes posterior risk, we accomplish that Linex loss function is more 

useful than others. 

6. Conclusion

In this study, we derived the Bayes posterior distribution and parameter estimation for the inverse 

Ailamujia distribution using both informative and non-informative priors. We explored various loss 

functions to assess their impact on the estimation process, with a specific focus on the Linex loss 

function. The results, presented in Table 1 and Table 2, clearly demonstrate that the Linex loss function 

yields the smallest Bayes posterior risk under both the extended Jeffery’s prior and the gamma prior 

assumptions. This comparative analysis highlights the superior performance of the Linex loss function, 

indicating its effectiveness in minimizing the Bayes posterior risk. 

By applying the decision rule of minimizing the Bayes posterior risk, we conclude that the Linex loss 

function is the most useful among the considered alternatives. The performance of the estimators was 

evaluated through practical applications, and the results underscore the flexibility and robustness of 

the inverse Ailamujia distribution in Bayesian estimation. The findings also emphasize the utility of the 

Linex loss function in enhancing the precision of parameter estimation across various contexts. This 

work contributes to the growing body of literature on Bayesian methods, offering valuable insights into 

the application of different loss functions for parameter estimation. It provides a clear advantage of 

using the Linex loss function in terms of minimizing posterior risk, which can be applied to diverse 

statistical modelling scenarios. The study reinforces the importance of selecting appropriate loss 

functions for effective Bayesian estimation, ensuring better model performance and more reliable 

results. 

𝛼 a b �̂� �̂�𝑆 �̂�𝐸 �̂�𝑃 �̂�𝐿 

𝑏1 = 0.01 𝑏1 = 0.05 

1.0 0.5 0.5 0.5583 1.1163 

(0.0086) 

1.1240 

(4.8667) 

1.1124 

(1.1085) 

1.1162 

(0.0111) 

1.1161 

(0.0558) 

0.5 1.0 0.5583 1.1201 

(0.0086) 

1.1279 

(4.8666) 

1.1163 

(1.1124) 

1.1201 

(0.0112) 

1.1199 

(0.0560) 

1.0 0.5 0.5583 1.1120 

(0.0085) 

1.119 

(4.8705) 

1.1081 

(1.1043) 

1.1119 

(0.0111) 

1.1118 

(0.0556) 

2.0 0.5 0.5 0.5583 1.1163 

(0.0086) 

1.1240 

(4.8667) 

1.1124 

(1.1085) 

1.1162 

(0.0111) 

1.1161 

(0.0558) 

0.5 1.0 0.5583 1.1201 

(0.0086) 

1.1279 

(4.8666) 

1.1163 

(1.1124) 

1.1201 

(0.0112) 

1.1199 

( 0.0560) 

1.0 0.5 0.5583 1.1120 

(0.0085) 

1.1197 

(4.8705) 

1.1081 

(1.1043) 

1.1119 

(0.0111) 

1.1118 

(0.0556) 

3.0 0.5 0.5 0.5583 1.1163 

(0.0086) 

1.1240 

(4.8667) 

1.1124 

(1.1085) 

1.1162 

(0.0111) 

1.1161 

(0.0558) 

0.5 1.0 0.5583 1.1201 

(0.0086) 

1.1279 

(4.8666) 

1.1163 

(1.1124) 

1.1201 

(0.0112) 

1.1199 

(0.05600) 

1.0 0.5 0.5583 1.1120 

(0.0085) 

1.1197 

(4.8705) 

1.1081 

(1.1043) 

1.1119 

(0.0111) 

1.1118 

(0.0556) 
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Abstract 

Recognizing and extracting different emotions, and then validating those emotions have become important 

for enhancing human-computer interaction. Emotions play a crucial role in social interactions, facilitating 

rational decision-making and perception. Previously researched emotion recognition models have typically 

focused on a single input type like images, text, or audio, where each model can identify the emotion of a 

person through a single source like facial expressions, voice, social media posts, etc. However, these uni-model 

approaches are limited because they rely on just one type of data, which often misses the full range of emotional 

cues. To overcome these limitations, multi-model emotion recognition techniques are proposed which are 

useful for detecting emotions through a person’s facial expressions, speech, social media status, and then EEG 

data. Model fusion techniques have been applied to detect the most accurate emotion for a particular person 

through fusion of all the models. A recognition rate-based weighting approach is proposed for model fusion, 

wherein models are assigned weights proportional to their individual recognition rates. This approach 

enhances overall performance by combining the outputs of various models with higher emphasis on those 

with better accuracy. The decision fusion-based multi- model emotion recognition model is proposed which 

achieved a maximum of 87%. accuracy using a bi-model approach and 92% accuracy with a tri-model 

approach. The weighted decision fusion approach assigns more weight to the model which is more accurate 

and achieved 93% accuracy. The proposed recognition rate-based weighting approach for fusion has provided 

significant results, achieving approximately 93% accuracy with 0.900 and 0.904 Cohen kappa and Mathew 

score respectively using facial expression, speech, and social media text modalities on combined dataset. The 

proposed model achieved 63% accuracy on a real-world collected dataset without considering EEG data and 

improved to 73% if EEG is also considered. 

Keywords:  Multimodel Fusion, Emotion recognition, Deep Learning,EEG 

I. Introduction

The absence of emotional cues in individual models, coupled with their susceptibility to external 
influences, often results in reduced accuracy for emotion recognition. Human communication and 
emotional expression are inherently multimodal, involving the concurrent use of textual, auditory, and 
visual cues. The primary advantages of multi-model emotion recognition (MER) include a reduction in the 
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total error rate of classification and enhanced overall model accuracy. Additionally, MER is less vulnerable 
than the single model to external factors, so it is quite robust, and it also addresses missing modality 
problems. Among the different fusion techniques, decision- level fusion is applied here, where input from 
every modality is modeled separately and the final uni-model affect recognition is integrated. It permits 
the use of the best classifier for each model since different predictors have greater flexibility and can better 
represent each modality. In situations where one or more modalities are absent, it makes prediction easier 
and even permits training in the absence of parallel data. Multimodal emotion recognition techniques are 
attractive for a variety of reasons. First of all, voice, body, and face are all viewed holistically in real life, 
where human emotion recognition occurs in a multi-model environment. When attempting to teach a 
computer to reproduce elements of human emotional intelligence, it seems appropriate to teach them to 
utilize the same approach. Secondly, integrating multiple-affective signals enriches the data collection. The 
effect of uncertainty in the raw data will be lessened when other modalities are combined to infer mood. 
Finally, the ability to identify emotions becomes more flexible with richer data gathering, especially in 
cases where one or more source signals are absent. Put differently, the information from the remaining 
modality can serve as a supplement for the emotion categorization job when one modality contains limited 
emotional information. Multimodel fusion, the process of combining data from various modalities to 
produce a single effect classification result, is required in multi-model emotion identification techniques. 
In terms of multi-model fusion, the literature focuses on two different kinds of fusion techniques: decision 
level fusion and fusion-level fusion. We shall outline the main concepts and general principles of the two 
multi-model fusion techniques in the subsection that follows. These approaches are critical for combining 
cues from multiple modalities to generate more robust predictions. Numerous experts in the field have 
examined this subject in detail, leading to various classifications of fusion techniques. However, earlier 
surveys adhere to the subsequent classification. 

I. Early Fusion

Before passing the joint representation through a model, feature-level fusion, also known as early fusion, 
concatenates the features from various modalities. Finding the most effective approach to concatenate 
features that can improve emotion identification performance is the aim of feature level fusion. A 
straightforward concatenation of the modalities has been applied for feature-level fusion in a number of 
successful applications. The primary benefit is the ease with which correlation between modalities may be 
utilized. However, syncing features from distinct modalities can be challenging and computationally 
expensive because they sometimes have different forms. As a result, feature-level fusion’s benefits could 
occasionally be restricted. 

II. Late Fusion

Decision-level fusion, also known as late fusion, is a fusion strategy in which the outputs from each 
classifier are combined after independent classifiers for each modality are used and trained. The primary 
benefit of decision-level fusion is that decisions have a common format, making it easier to fuse them 
together. The ultimate prediction is derived from the combination of two uni-model classifiers. The 
synchronization problems encountered during early fusion are thereby avoided. Additionally, applying 
the best classifiers appropriate for each modality is made possible by decision-level fusion, giving the 
classification step greater flexibility. The following categories comprise the most common late fusion 
techniques for emotion recognition. The maximum of all posterior probabilities is chosen using the 
maximum rule. 

 Maximum rule: selects the maximum of all posterior probabilities.
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 Sum rule: sums probabilities from each classifier and then picks the class with the highest value.
 Product rule: multiplies probabilities between classifiers and then chooses the class with the largest

value.
 Weight criterion: results in a linear combination of the classifier’s output, where the constants are

confidence rates of the predictors.
 Rule-based: selects a dominant modality for each class.
 Model-based: employs a machine-learning algorithm to fuse the output of the classifiers.

      Consider a situation where four classes (A, B, C, and D) need to be classified using data from two 
modalities. Due to the late fusion strategy, each modality is trained using two distinct classifiers. Thus, it 
is anticipated that the maximum rule fusion system will receive two prediction vectors as input. The system 
will return the maximum value for each class, as shown in the figure, and choose the class with the greatest 
value as the winner. Keep in mind that the output could be normalized at the end to make the probability 
of the whole equal. 

III. Hybrid Fusion

By merging the outputs of the early fusion process with the individual uni-model predictors, this strategy 
aims to combine the best aspects of both fusion techniques. This method only makes sense, though, when 
more than two modalities are being used. In a scenario where there are three modalities—audio, video, 
and MRI (Magnetic Resonance Imaging) —for example, the features from the audio and video could be 
concatenated and used to train a classifier (early fusion), and the MRI features could be used to train 
another predictor, which would then be used to fuse the output from both classifiers (late fusion). 

IV. Cohen’s Kappa and Matthews Correlation Coefficient (MCC)

A common statistic for evaluating the degree of agreement between two raters is Cohen’s kappa. It can 
also be applied to evaluate a classification model’s performance. Similar to accuracy, Cohen’s kappa 
assesses the agreement between the target and anticipated class, but it additionally accounts for the 
random probability of receiving the predictions. Cohen Kappa has been adopted by the machine learning 
community as a means of comparing classifier performance. 
It is calculated with the following formula: 

𝐾𝑝 =   (𝑃0 − 𝑃𝑒)/ (1 − 𝑃𝑒)     (1) 

The measure of agreement between the model predictions and the actual class values as if they happened 
by chance is called Pe, and P0 is the model’s overall accuracy. By eliminating the potential for agreement 
between the classifier and a random guess, Cohen’s kappa calculates the proportion of predictions the 
classifier makes that are not consistent with a random guess. A high score is only obtained if the prediction 
performed well in each of the four confusion matrix categories (TP, FN, TN, and FP), proportionately to 
the size of both positive and negative elements in the dataset. Matthews Correlation Coefficient (MCC) is 
a statistical rate that ranges from -1 to 1. With a few modifications to the equation, the performance metric—
which was initially designed for binary classification—has been extended to the multi-class scenario. 

 𝑀𝐶𝐶  =
𝑇𝑃 ×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃) 
(2)
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II. Related Work

Recognition and extracting various emotions and then validating those emotions have become important 
for improving the overall human computer interaction. Emotions play an important role in social 
interactions and facility rational decision making and perception. To achieve specific objectives of the 
research work, the researcher has referred various research articles and papers regarding emotion 
recognition system. It was found that there are broadly four approaches used for recognizing human 
emotions. The first is by using facial expressions, the second is using speech samples of different people, 
and the third approach is using social media text and last on is using EEG signals. This highlights the 
critical role of multimodal fusion in improving emotion recognition accuracy. Extensive research has been 
con- ducted in this domain. Chao et al. [1] aimed to predict continuous values of emotional dimensions, 
such as arousal and valence, using audio, visual, and physiological data. They employed an LSTM-RNN 
(long short-term memory recurrent neural network) on the RECOLA dataset. Samira E. Kahou [2] used 
DBNs (Deep Belief Networks) and CNNs (Convolutional Neural Networks) with K-Means and Relational 
Auto-Encoders to detect emotions in videos, where individual audio and video models were trained, 
followed by a decision fusion method for emotion classification. An ensemble approach was adopted by 
[3], where the output features of a CNN were combined with those of a ResNet and then fed into an LSTM 
network. Sahay et al. [4] proposed a Relational Tensor Network architecture that modeled inter-modal 
interactions within a segment, as well as interactions between segments in a video. Hazarika, Poria, et al. 
[5] developed a framework that utilized a multimodal approach, incorporating visual, audio, and textual
features having a GRU to model past utterances of each speaker. These utterances were then integrated by
utilizing attention-based hops to capture inter-speaker dependencies. Hassan [6] introduced an
unsupervised deep belief network (DBN) for extracting deep-level features from fused sensor signals such
as Electro-Dermal Activity (EDA), Photoplethysmogram (PPG), and Zygomaticus Electromyography
(zEMG). Five fundamental emotions were classified using the feature-fusion vector created by combining
the statistical characteristics of EDA, PPG, zEMG, and DBN features. These emotions were classified as
Happy, Relaxed, Disgust, Sad, and Neutral. The use of a pre-trained ‘BERT-like’ architecture for self-
supervised learning to rep- resent both language and text modalities in the recognition of multimodal
language emotions was investigated by Siriwardhana et al. [7]. They demonstrated that a simple fusion
mechanism (Shallow-Fusion) could simplify the overall architecture while enhancing the effectiveness of
complex fusion methods. Priyasad et al. [8] presented a deep-learning approach for encoding emotion
characteristics. They used band-pass filtering methods, neural networks, and a SincNet layer to extract
acoustic properties from unprocessed audio. The band-pass filter output was then fed into a DCNN. A
bidirectional recurrent neural network generated a set of representations at the N-gram level first, and then
another recurrent neural network using cross-attention generated a set of representations before merging
them into a final score. Mittal [9] used cues from several  co-occurring modalities—such as audio, text, and
face—to improve each modality’s robustness against sensor noise. Their MER model unveiled a brand-
new, data-driven multiplicative fusion technique that discovered which cues are more trust- worthy and
which ones should be suppressed on a sample-by-sample basis. Lastly, Njoku [10] examined how well
deep learning-based models performed for multimodal emotion recognition and data fusion.

III. Proposed Approach
I. Decision Fusion Approach

Figure 1 shows the proposed approach of multimodel emotion recognition. With n being the number 
of emotion categories (n = 3), let W be a linear transformation square matrix of order n. Different weight 
scenarios result from different values for W. W is an identity matrix of order n, meaning that there is 
no weight. Several approaches are available for classifying objects when the decision fusion method is 
applied. Figure 2 displays the confusion matrix for the multi-model test dataset's facial expression, 
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voice, social media text, and EEG uni-models. Then, a total of six bi-model emotion detection models 
have been tested utilizing a straightforward decision fusion approach. The accuracy report for each bi-
model emotion recognition is displayed in Table 2. It is evident that, in the absence of EEG, the bi-
model approach attains 86% to 88% accuracy and good values for Cohen kappa and Matthews scores. 
Four tri-modal emotion recognition models have been evaluated, once more combining the decisions 
of three models using decision fusion. Medical equipment and a controlled laboratory setting can be 
used to gather EEG readings. If the user wishes to assess their emotional condition without visiting a 
doctor, they can do so by utilizing social media text, speech, and facial expressions. The model can 
attain 92% accuracy without taking EEG into account. The emotion expression ordering of the trained 
uni-, bi-, tri-, and multi-model emotion models is displayed in Table 3. 

Table 1:  Multi-model test Dataset Description 

Image 

Dataset 
Speech 

dataset 
Social media text 

dataset 
EEG dataset 

FER2013[25] Ravdess[26] sankha1998 [27] Jordanbird[28] 

Total Data 20019 575 2039 2132 

X_train 16040 460 1366 1705 

X_test 3979 115 673 427 

Figure 1: Proposed Multi model Fusion Architecture 
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Table 2:  Accuracy report of various bi-model emotion recognition 

Bi-model Emotion Recognition (Without EEG) 

Happy Sad Angry Avg Accuracy 
Cohen-Kappa 

Score 
Matthew

s Score 

I+A 0.90 0.86 0.81 0.86 0.783 0.783 

I+S 0.78 1.00 0.84 0.87 0.783 0.791 

A+S 0.86 0.96 0.83 0.88 0.817 0.820 

Bi-model Emotion Recognition (With EEG) 

Happy Sad Angry 
Avg 

accuracy 

Cohen-Kappa 
Score 

Matthews 

Score 

E+I 1.00 1.00 1.00 1.00 0.100 0.100 

E+A 1.00 0.97 1.00 0.99 0.983 0.984 

E+S 1.00 0.97 0.97 0.98 0.967 0.967 

Table 3: Emotion expression ordering of each Emotion model 

Emotion expression ordering 

Image( I ) Angry > Happy > Sad 

Audio ( A ) Sad > Angry > Happy 

Social media text ( S ) Sad > Angry > Happy 

EEG ( E ) Happy = Angry > Sad 

I + A Happy > Sad > Angry 

I + S Sad > Angry > Happy 

I + E Happy = Sad = Angry 

A + S Sad > Happy > Angry 

A + E Happy = Angry > Sad 

E + S Happy > Angry = Sad 

I + A + S Sad > Angry = Happy 

I + A + E Happy = Sad > Angry 

A  + S + E Happy > Sad > Angry 

I + E + S Sad > Angry = Happy 

I + A + S + E Happy = Sad > Angry 
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Figure 2: Confusion matrix of facial expression, speech, social media text, and EEG model 

II.Weighted averaging Approach

The other approach is to assign different weights to different uni-modals, called Weighted-decision 
fusion. In decision fusion, equal weights are assigned to each model but if we know that a model is 
performing better, we can assign higher weightage to that model. In the weighted averaging approach, 
the accuracy is not assigned as a weight but the prediction of the models which perform better will be 
multiplied by 2 and the prediction of other models will be multiplied by 1. Since in this particular case, 
facial expression and speech emotion recognition models are not the best model, they will be assigned 
lower weights whereas the social media text model is performing better so higher weights will be 
assigned to that model. Now, basically, these weights will be multiplied by individual predictions and 
then their mean will be taken. So social media text predictions will multiply by a factor of 2 and others 
will be multiplied by a factor of 1. Then calculating a weighted average from these models; the model's 
performance determined the weights. 

III. Rank averaging Approach

In this method, the model with the lowest performance is assigned rank 1. Accordingly, the model 
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with rank 1 performs the worst, the model with rank 2 is the next best, and the model with rank 3 is 
the best. Following the ranking of each of these models, weights are derived from their ranks. 
Essentially, each rank will be split by the overall value when these ranks have been added up. In this 
case, the least performance model is the facial expression model, we will divide it by the sum 
of 1+2+3 = 6. So the weight for social media text models comes down to 1/6 = 0.16. So, all the predicted 
values of the speech emotion model and social media text model will get multiplied by 0.33 (1/3) and 
0.5 (1/2) respectively. And then all these values will be summed up and the final outcome will be taken. 

        Then Recognition rate as weight Approach is used where Wi (1 ≤ i < n) is the weight of the ith category 
in W, a diagonal matrix of order n, and not all Wi are equal to each other. 

𝑊 =  

𝑊1

𝑊2

𝑊𝑛

 (3) 

        First, for every emotion model, recognition results are derived from four distinct uni-model 
classifiers. The recognition rates of each classifier (Ri1, . . . , Rim) are used as a weight matrix Wi. The 
following is how the linear data fusion concept yields the classifier result 

𝐶 =   ∑ 𝐶𝑖𝑊𝑖

𝑛

𝑖=1

  (4) 

       The following recognition outcome was achieved using a max-win method [15]: 

max
𝑗=1

𝑚 {∑ 𝐶𝑖𝑗  𝑅𝑖𝑗

𝑛

𝑖=1

} =  ∑ 𝐶𝑖𝑘 𝑅𝑖𝑘  (5) 

𝑛

𝑖=1

         Where k is the most likely category emotion label. As shown in Table 5, the recognition rate as a 
weighted approach achieves 93% accuracy and 0.900 and 0.904 values of Cohen kappa and Matthews 
score respectively. Table 4 shows the accuracy and other measures for all weighted techniques. Figure 
3 shows the confusion matrix of the fusion of models. Figure 4 shows the chart of class-wise accuracy 
v/s different emotion models. 

 Figure 3: confusion matrix of multi-model weighted decision fusion (I+A+S) 

RT&A, No 1 (82) 
Volume 20, March 2025 

639



Dr. Komal Anadkat, Ayush Solanki, Dhruva Patel, Vraj Thakkar 
EMOTION RECOGNITION WITH MULTIMODEL APPROACH 

Table 4: Class-wise precision, recall, f1-score and support of weighted decision fusion 

Precision Recall F1- score Support 

Angry 0.88 1.00 0.94 30 

Happy 1.00 0.83 0.91 30 

Sad 0.94 0.97 0.95 30 

Accuracy 0.93 90 

Macro avg 0.94 0.93 0.93 90 

Weighted avg 0.94 0.93 0.93 90 

Table 5: Performance of different weighted approaches 

Technique 
name 

Accuracy Weights(I,A,S) 
Cohen-Kappa 

Score 
Matthews 

Score 

Weighted 
Averaging 

92% (1,1,2) 0.889 0.900 

Rank 
Averaging 

90% (0.16,0.33,0.5) 0.887 0.852 

Recognition rate 
as Weights 

93% (0.70,0.71,0.78) 0.900 0.904 

 Figure 4: Chart of accuracy v/s different emotion modalities 
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IV. Testing Model with real world collected dataset

As shown in Table 5, from all the fusion approaches, the recognition rate as weights approach gives more 
accuracy. To test the robustness of the proposed approach, the model is again tested with the real-world 
collected dataset. The real-world dataset is collected from seven different actors and a total of 168 samples 
were collected. In this dataset, a total 42 samples are collected from each category. For the facial expression 
model, two happy, two sad, and two angry samples from each actor are collected. So for the final testing 
of models, the same number of samples should be selected from each category and from each model. Here, 
10 samples are randomly selected from each emotion category from each emotion model, and a total of 30 
samples from each emotion model. Table 6 shows the class-wise accuracy of all the uni-model, bi-model, 
and multi-model combinations. Figure 5 shows the confusion matrix result of the model on a real-world 
dataset. Figure 6 shows the chart of class-wise accuracy v/s different emotion models when tested on real-
world collected datasets. The primary obstacle encountered while utilizing real-world data that has been 
gathered is the shift in the input or independent variable's data distribution. Although the model's output 
and correlations may still be technically accurate, the model's predictions have become less accurate due 
to changes in input data or demography. The major causes of data drift here are Data Quality and Integrity 
Issues, Demographic Shifts, or Changes in Human Behavior. The Real-time data has been collected using 
a simple mobile device so the resolution of images, the format of images, the quality of audio samples, and 
the noise cancellation quality of headphones are not adequate. The Ravdess dataset has been collected in a 
closed environment, with high-quality devices and the actors used neutral North American accents and 
they are professional actors. The actors of the Real-time collected dataset are not professional and the 
accents are totally different. The FER2013 dataset contains only the “pixels” column in .csv format and the 
images are 48*48 pixels. The real time images are totally in different formats. 
The multi-modal emotion recognition model aims to integrate emotions detected from various 
individual models, resulting in the accurate identification of human emotions. The uni-modal emotion 
recognition approach faces challenges such as missing modalities and lower accuracy. To address 
these issues, the data from different modalities needs to be fused and transformed into a consolidated 
format. This consolidation enables the integration of decisions from various modalities. 

Table 6 :Class-wise accuracy of all modalities data when tested model using real world data 

Emotion model Happy Sad Angry Average accuracy 

Image( I ) 0.30 0.40 0.50 0.40 

Audio ( A ) 0.20 0.50 0.40 0.37 

Social media text ( S ) 0.60 0.50 0.40 0.50 

A+S 0.60 0.50 0.60 0.57 

I+A 0.50 0.50 0.60 0.53 

I+S 0.60 0.40 0.70 0.57 

I+A+S 0.60 0.50 0.70 0.60 

W(I+A+S) 0.60 0.50 0.80 0.63 

EEG(E) 0.70 0.60 0.70 0.67 

I+A+S+E 0.70 0.70 0.80 0.73 
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Figure 5: Confusion matrix of Proposed Decision fusion model on collected data (I+A+S) 

Table 7: Class-wise precision, recall, f1-score, and support of real-world data of decision fusion 
(I+A+S) 

Precision Recall F1- score Support 

Angry 0.57 0.70 0.67 10 

Happy 0.55 0.60 0.57 10 

Sad 0.80 0.50 0.53 10 

Accuracy 0.60 30 

Macro avg 0.64 0.60 0.59 30 

Weighted avg 0.64 0.60 0.59 30 

Figure 6: Chart of accuracy v/s different emotion modalities for real-world data 
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Table 8: Comparison of different existing and proposed multi-model emotion recognition approaches 

Ref No Year Modality Fusion Dataset Accuracy
(in %) 

Image Speech Text EEG 

[1] 2015 √ √ √ Feature 
level 

Recola 66.70 

[2] 2015 √ √ Decision 
Level 

Fertfd 47.67 

[3] 2017 √ √ Decision 
Level 

Recola 76.00 

[4] 2018 √ √ √ Decision 
Level 

Cmu-osei 49.10 

[5] 2018 √ √ √ Feature 
Level 

IEM Oca 76.60 

[6] 2019 √ Feature 
Level 

Deap 89.53 

[7] 2020 √ √ √ Hybrid Iem Oca 73.98 

[8] 2020 √ √ Feature 
Level 

Iem Oca 80.51 

[9] 2020 √ √ √ Feature 
Level 

Iem Oca 82.70 

[10] 2022 √ √ √ HL, FL, 
DL 

Ravdes 78.75 

Proposed 
Architecture 

√ √ √ √ Weighted 
Decision 
level 

Combined 
Customized 
Dataset 

93.00 

√ √ √ √ Real world 
Collected 
Dataset 

67.00 

V. Conclusion and Future Work

In conclusion, integrating information across multiple modalities and time holds the potential for 
enhancing emotion recognition and outcome prediction. The proposed recognition rate based weighting 
approach for fusion uses the recognition rates of each model as weights. has provided significant results, 
achieving approximately 93% accuracy with a combined collected dataset with facial expression, speech, 
and social media text modalities. To test the proposed models, a real-world dataset is collected from seven 
subjects, encompassing facial expressions, speech, social media text, and EEG signals for three emotions. 
The collected data is pre processed and formatted for validation. The weighted decision fusion model 
attained 63% accuracy on the collected real-world dataset with facial expression, speech, and social media 
text modalities. Challenges with the real-time dataset include lower image resolution, varied image 
formats, audio quality, and headphone noise cancellation due to the use of a simple mobile device for data 
collection. 
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Abstract 

This article examines overvoltages at the inputs of high-voltage (HV) and low-voltage (LV) 

transformers rated at 110/6 kV and 110/10 kV, focusing on scenarios involving grounded and isolated 

neutrals during short circuits near the transformers. The study finds that with an isolated neutral, 

overvoltages resulting from a phase-to-ground short circuit reach the highest levels, as anticipated. 

However, the disconnection of all types of asymmetrical short circuits—whether with an isolated or 

grounded neutral—yields even greater, potentially excessive overvoltages. This occurs because the 

windings of undamaged transformer phases remain partially energized during disconnection, leading 

to significant currents being interrupted. The magnetic energy from these currents converts to 

electrical energy, resulting in substantial voltage increases, characterized as pulsed overvoltages lasting 

several microseconds. Implementing switches with shunt resistance can reduce these overvoltages 

considerably, though the remaining levels may still exceed acceptable thresholds. To mitigate the risk 

of such excessive overvoltages, installing surge arresters at the inputs of high-voltage transformers is 

recommended, ensuring that transformer input overvoltages remain within permissible limits. 

Keywords: Overvoltages, short-circuit interruptions, surge arresters, asymmetrical 

short circuits,  switches with shunt resistance. 

I. Introduction

Overvoltages during line or load disconnections in electrical networks occur due to the conversion 

of magnetic energy from interrupted currents in inductances into electrical energy, leading to an 

increase in voltage. The greater the interrupted current, the more magnetic energy is converted, 

resulting in a higher voltage increase. Therefore, the disconnection of short-circuit currents (SC) can 

lead to significant overvoltages, as very high currents are being interrupted. 

In single-phase circuits, there is no increase in voltage during short-circuit interruptions, as 

switches operate when the current passes through zero. At this moment, there is no magnetic energy 

available for conversion into electrical energy. In three-phase circuits, however, the currents across 

all three phases do not reach zero simultaneously during a short circuit. Consequently, when the 

switch operates, only one phase may have a zero current, while the other phases remain at non-zero 

values. The interruption of these currents can lead to substantial overvoltages [1, 13]. 

It is important to note that this phenomenon has not been extensively addressed in the existing 

literature, which primarily focuses on single-phase circuits [4,5]. 

In the event of short circuits occurring in close proximity to a transformer [6,9], this component 

is typically isolated through relay protection and is thus regarded as safely disconnected from the 

network. However, the behavior of the transformer—particularly given its significant inductance—
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remains a critical area of inquiry, especially when it continues to carry operating phase currents in 

the windings of undamaged phases after disconnection. The interruption of these currents can lead 

to substantial overvoltages [12, 13]. 

II. Assessment of overvoltages when disconnecting short-circuit currents in

transformers 

The overvoltage when switching off short-circuit currents can be roughly estimated as follows. 

When current flows through the windings of transformers, corresponding magnetic energy is 

generated 

 𝑊𝑀 = ∫ 𝑖𝑑
𝑀

0
 

𝑀
                                                                             (1) 

where,  
𝑀

  – winding flux linkage. The rupture of a circuit containing inductance at a current value 

i different from zero must be accompanied by the conversion of this energy into other forms, in 

particular into the energy of an electric field, which explains, as stated above, the occurrence of 

overvoltages on inductive network elements when they are turned off - Fig. 1. 

Figure1. Equivalent circuit for calculating overvoltages when the transformer is turned off 

In the diagram in Fig. 1, 𝐿𝜇  и 𝐿𝑠𝑠  are the inductance of the transformer and the substation bus 

system, respectively, 𝐶𝑐 and 𝐶𝑠𝑠 are the capacitance of the disconnected transformer and the busbar 

wires, respectively, Rμ is the active resistance of the transformer winding. 

The amplitude 𝑈𝑚𝑎𝑥  of voltage fluctuations on the capacitor is determined based on the equality 

of the energy of the magnetic field of the winding  

𝑊𝑀 =
1

2
𝐿𝜇𝑖𝑎

2,                                                                     (2)

and the energy of the electric field of the capacitor 

𝑊𝑐 =
1

2
С𝑐𝑈𝑚𝑎𝑥

2  .                                                                    (3)

The equality of these two expressions can determine 𝑈𝑚𝑎𝑥. 

𝑈𝑚𝑎𝑥 = 𝑖𝑎√
𝐿𝜇

С𝑐
= 𝑖𝑎𝑍𝑐ℎ,  (4) 

where, Zch is the characteristic resistance of the 𝐿𝜇 − С𝑐 circuit, which has a value of several tens of 

kilo-ohms. 

This expression shows that when the inductance is turned off, the voltage across it can be tens of 

thousands of times greater than the short-circuit currents that are cut off by the switches when they 

are turned off. 

The task posed is quite complex, since it contains two transient processes - the occurrence of a 

short circuit and its shutdown, and all this in a complex, nonlinear, three-phase circuit in which 

asymmetrical changes occur. 

This was confirmed in the results of this article, which, due to the complexity of the network 

diagram, the presence of nonlinearity and the occurrence of two successive transient processes, was 

carried out by mathematical modeling using computer technology. The algorithmic language used 

was OrCAD 17.2. 
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III. Computational results

For instance, consider short circuits occurring within the differential protection zone of 

transformers. This article specifically examines the overvoltages that manifest in transformers 

during disconnection amid asymmetrical short circuits occurring nearby. The analysis is situated 

within a radial network operating at a nominal voltage of 110 kV. This voltage level was selected 

because 110 kV networks can function with both isolated and grounded neutrals, facilitating a 

thorough investigation of overvoltage phenomena across varying short circuit conditions [2, 3, 4]. 

It is understood that in grounded neutral systems, elevated currents from single-phase short 

circuits can induce a transition to an isolated or partially isolated neutral mode, aimed at mitigating 

single-phase short circuit currents. The electrical circuit under consideration is depicted in Fig. 2, 

comprising three substations—SS1, SS2, and SS3—and two lines, W1 and W2. Substations SS2 and 

SS3 are outfitted with transformers rated at 110/6 kV and 110/10 kV, each supplying loads S2 and S3, 

respectively. To safeguard against overvoltages, the bus systems at each substation are equipped 

with suitably rated surge arresters (SARs). 

Figure 2. Schematic diagram of the electrical network under investigation. 

Various short circuit scenarios—namely single-phase, two-phase, and two-phase-to-ground—

were systematically executed at the junction between transformer T2 and its associated switches 

within the high-voltage busbar system of substation SS-2. Both grounded and isolated neutral 

configurations of the network were evaluated. The results obtained from these experiments are 

summarized in Tables 1 to 3 and illustrated in Figures 2 to 9. 

The results obtained are shown in Tables 1 - 3, as well as in Fig. 3 – 10. 

As indicated in Table 1, under normal operating conditions, the maximum voltage values at the 

terminals of loads 1 and 2 were recorded at 4.9 kV and 7.6 kV, respectively. 

The voltage calculations within the busbar systems of substations SS1 and SS2—covering the 

inputs of both HV and LV windings of the transformers as well as the terminals of the first load—

are presented in Tables 1 and 2. These calculations were conducted under the assumption of a 

grounded neutral configuration for the transformers and reflect the conditions arising from the 

aforementioned short circuit scenarios, as depicted in Figures 3 to 7. 

In the event of a single-phase short circuit (on phase A) at the aforementioned location, with the 

network configured for a grounded neutral, the voltage in the affected phase drops to zero, while 

the healthy phases experience a reduction from 91 kV to 77 kV. This short circuit also influences the 

voltage at substation SS3, where the high-voltage section sees an increase. The increase in voltage 

for the damaged phase is minimal, whereas the healthy phases can rise by approximately 15% (see 

Fig. 3). Similar voltage variations are also observed on the secondary sides of the transformers at 

substations SS2 and SS3. 

RT&A, No 1 (82) 
Volume 20, March 2025 

647



Nahid Mufidzade     Gulgaz Ismayilova

OVERVOLTAGE AT THE TRANSFORMER…. 

Table 1 

The voltage calculation results 

The maximum current values in the high-voltage windings, the neutrals of transformers T1 and 

T2, as well as in line 1, the switch, and the short-circuit current are presented in Table 2. The 

corresponding current curves are illustrated in Figure 3. Based on the data from Table 2 and the 

visual representation in Figure 4, the short-circuit characteristics of these currents are detailed in 

Figure 5. 

The currents observed include those in the windings and the neutral of transformers T1 and T2, 

as well as in the switches and the short-circuit current itself. 

Neutral  

mode 

Net-

work 

mode 

𝑈𝑆1𝐴 𝑈𝑆1𝐵 𝑈𝑆1𝐶  𝑈𝑇1𝐴 𝑈𝑇1𝐵  𝑈𝑇1𝐶  𝑈𝑇1𝑎 𝑈𝑇1𝑏 𝑈𝑇1𝑐  

kV kV kV kV kV kV kV kV kV 

1 91,23 91,79 91,19 91,23 91,79 91,19 4,95 4,97 4,95 

2 0 76,83 76,74 0 76,83 76,74 0,61 4,28 4,44 

3 182 195 192 0 6903 6616 65,0 323 316 

4 226 128 200 0 195 199 6,26 10,38 10,40 

5 0 0 29,59 0 0 29,59 0,513 0,513 1,055 

6 222 226 238 0,078 0,066 29631 473 473 946 

7 226 229 240 0,082 0,063 240 3,77 3,76 7,52 

8 46,6 46,6 92,3 46,6 46,6 92,3 2,514 2,514 5,01 

9 187 190 102 3804 3804 7585 181 181 363 

10 162 191 191 187 187 192 5,94 5,94 11,82 

𝑈𝑆2𝐴 𝑈𝑆2𝐵 𝑈𝑆2𝐶  𝑈𝑇2𝑎 𝑈𝑇2𝑏 𝑈𝑇2𝑐  𝑈𝑁1𝑎 𝑈𝑁1𝑏 𝑈𝑁1𝑐 

kV kV kV kV kV kV kV kV kV 

1 85,12 85,37 85,24 7,719 7,742 7,737 4,89 4,91 4,89 

2 86,87 97,43 101 7,95 8,87 9,15 4,35 4,29 4,07 

3 169 120 112 15,41 10,97 10,23 0 14,09 14,16 

4 204 119 181 18,82 10,79 16,50 0,327 10,4 10,6 

5 87,89 36,61 60,72 8,04 3,38 5,56 4,12 1,89 2,32 

6 175 202 225 15,91 18,48 20,66 1,49 1,47 2,97 

7 183 203 225 16,56 18,56 20,71 1,55 1,53 3,08 

8 97,94 93,2 86,31 8,92 8,536 7,83 4,43 

2,49 

4,71 

2,49 

4,95 

9 142 147 104 12,87 13,34 9,48 8,12 8,11 16,22 

10 140 148 103 12,69 13,49 9,34 5,54 5,52 11,06 

n
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a) 

b) 

 Figure 3.  Overvoltages in the busbar systems of high-voltage substations SS2 (a) and SS3 (b) during a 

single-phase short circuit in a network with a grounded neutral. 

As illustrated in Table 2 and Figure 4, the short-circuit current flowing to ground is primarily 

routed through the neutrals of transformers T1 and T2, with only a small portion being transmitted 

through line capacitances. The predominant share of the short-circuit current (𝐼𝑁𝑇2
) enters

transformer T2 via its neutral and flows consistently through its three high-voltage windings (𝐼𝑇2𝐴, 

𝐼𝑇2В, 𝐼𝑇2С). 

Table 2.  

The current calculation results 
Type of 

short 

circuit 

IT1A IT1B IT1C IT2A IT2B IT2C IcbA IcbB IcbC INT1 INT2 Ics 

  A A A A A A A A A A A A 

1psc 5280 2420 2370 2300 2330 2220 5410 2330 2220 790 6843 7648 

The currents in phases B and C of transformer T2 pass through the switch, while the currents in 

phases B and C of transformer T1, along with a minor portion of the short-circuit current that reaches 

the neutral of T1 from the short-circuit point (𝐼𝑁𝑇1
), return to the short-circuit location via phase A.

The short-circuit pathways for these currents are depicted in Figure 5. 
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Figure 4. Currents in the windings and the neutral of transformers T1 and T2, as well as in the switches 

and the short-circuit current. 

In figures 4 and 5, the currents in phases B and C of the switch exhibit the same direction and 

magnitude, while the current in phase A flows in the opposite direction. These currents do not cross 

zero simultaneously. If the switch operates precisely when the current in phase A is at zero, the 

currents in phases B and C are calculated to be approximately 200 A. The interruption of such 

currents is significant and can result in substantial overvoltages.  

Figure 5. Diagram illustrating the short-circuit current 

Figure 6 displays the overvoltage curves in the busbar systems of substation SS2 and at the HV 

inputs of transformer T2 following the disconnection of a single-phase short circuit in the examined 

network [5, 13]. According to the data presented in Table 1 and illustrated in Figure 6, the voltages 

in the HV busbar systems of substation SS2 double upon disconnection of the single-phase short 

circuit. This significant increase is attributed to the presence of a surge arrester at this location 

(Figure 5a). 

In the HV busbar systems of substation SS3, a similar doubling of voltage occurs only in phase 

A, while the increases in the other phases are minimal, particularly in phase C. At the inputs of the 

undamaged phases B and C of the high-voltage winding of transformer T2—which has been isolated 

from the HV busbar system of substation SS2 by the tripping of the circuit breaker—there is a sudden 

voltage increase characterized by a surge with very high amplitude and extremely short duration. 

    T i m e
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I ( U 4 9 : P 1 1 ) I ( U 4 9 : P 2 1 ) I ( U 4 9 : P 3 1 ) I ( R 1 2 0 ) I ( R 1 6 9 ) I ( U 5 3 : 1 )

- 1 0 K A

- 5 K A

0 A

5 K A

1 0 K A

RT&A, No 1 (82) 
Volume 20, March 2025 

650



Nahid Mufidzade     Gulgaz Ismayilova

OVERVOLTAGE AT THE TRANSFORMER…. 

This phenomenon results from the interruption of substantial inductive currents flowing through 

windings B and C of the transformer (Figures. 6b and 6c). The very large value of the ratio of the 

characteristic resistance and the active resistance of the transformer winding - 𝑍𝑐ℎ/𝑅𝑤, also 

contributes to the creation of this form of this voltage. 

Meanwhile, in phase A, the voltage remains at zero due to the ongoing short circuit in that 

phase.   

Excessively high overvoltage values on the high-voltage side of transformer T2 are transmitted 

to its low-voltage windings. Attempts to mitigate these overvoltages through the use of double-

contact switches yielded limited success; while such switches reduced the overvoltages significantly, 

the resulting levels remained unacceptably high. 

However, the installation of an overvoltage limiter directly on the HV inputs of transformer T2 

proved effective in bringing these overvoltages within permissible limits. With the overvoltage 

limiter in place, the overvoltage at the HV inputs is maintained below 200 kV, while at the low-

voltage inputs, it remains around 11 kV, both of which are within acceptable thresholds. 

In the case of two-phase short circuits to ground (in phases A and B), the voltage in the damaged 

phases of the HV busbar system at substation SS2 drops to zero, while the healthy phase experiences 

a reduction to one-third of its original voltage ( Table 1). A similar short circuit affecting two phases 

on the high-voltage side of transformer T2 results in a significant decrease in its secondary voltages, 

with voltages in phases A and B diminishing by nearly tenfold, and in phase C by approximately 

fivefold. This discrepancy in phase voltages on the secondary side of the transformer is attributed to 

the substantial reduction in currents flowing through the HV windings of the damaged phases. 

The disconnection of two-phase short circuits to ground results in a voltage increase in the HV 

busbar systems of substation SS2 by nearly 2.5 times—an increase even greater than that observed 

during the disconnection of single-phase short circuits. This phenomenon occurs because higher 

currents are interrupted in the two-phase scenario. At the HV inputs of transformer T2, the voltage 

in the short-circuited phases remains at zero, while the voltage in the healthy phase escalates to an 

extraordinarily high value, significantly exceeding the increase associated with single-phase short 

circuits. Consequently, the voltages on the secondary side of the transformer also reach excessively 

high levels for this winding. 

  Figure 7a illustrates the current curves in the HV windings and the neutral of transformer T2, 

as well as the neutral of transformer T1 and the short-circuit currents. Meanwhile, Figure 7b presents 

the currents in the switches during two-phase short circuits to ground. As shown in Figure 7b, the 

currents in the switch phases are considerably more phase-shifted relative to each other compared 

to single-phase short circuits. Therefore, when one of these currents crosses zero, the others retain 

substantial values, leading to more pronounced overvoltages upon interruption. 

The installation of an overvoltage protection device at the high-voltage inputs of transformer 

T2 effectively reduces the overvoltages on its high-voltage and low-voltage sides to 240 kV and 8 kV, 

respectively. These values are significantly below the permissible overvoltage thresholds for voltage 

classes of 110 kV and 6 kV. 

In the event of a two-phase short circuit (specifically between phases A and B), the voltages in 

phases A and B equalize, each becoming half the value of the voltage in phase C, which remains at 

its normal operating level 11. This same ratio is observed in the secondary phase voltages of 

transformer T2, aligning with theoretical expectations for this type of short circuit. 

The disconnection of a two-phase short circuit results in a voltage increase in the HV busbar 

systems of substation SS2 by four times compared to the values during the short circuit, and by two 

times relative to the voltages in normal network operation (Table 1). Unlike the previously analyzed 

cases, this time excessively high overvoltages occur in all three phases of transformer T2. 
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b) 

c) 

Figure 6. Overvoltages in the HV busbar systems of substation SS2 (a), at the HV inputs of transformer 

T2 (b), and the same presented in an open form (c) during the disconnection of a single-phase short circuit. 

In this scenario, the installation of a surge protective device (SPD) at the HV inputs of 

transformer T2 provides effective protection. The overvoltages on the high-voltage and low-voltage 

sides of the transformer are reduced to 190 kV and 12 kV, respectively, both of which fall within 

permissible limits. 

An analysis of three-phase short circuits reveals that neither the occurrence nor the 

disconnection of this type of short circuit generates overvoltages in the network. In a three-phase 

short circuit, the voltages in all affected phases drop to zero, and the currents in all three HV 

windings of the transformer also fall to zero. As a result, there is no cutoff current to generate 
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overvoltages. 

a) 

b) 

Figure 7. Current curves in the HV windings and the neutral of transformer T2, in the neutral of 

transformer T1, and at the short-circuit point (a), and in the switches (b) during a two-phase short circuit to 

ground. 

12 The results of voltage calculations for the busbar systems of substations SS2 and SS3, as

well as the HV and LV inputs of both transformers and the terminals of the first load, with the 

transformers' neutrals isolated from ground, are presented in Table 3 and illustrated in Figures 7-9. 

From Table 3, it is evident that with the network's neutrals isolated from ground, a single-phase 

ground fault (short circuit of phase A) leads to the voltage of the damaged phase dropping to zero. 

In contrast, the voltages in the healthy phases increase significantly—from 92 kV to 166 kV in phase 

B and 188 kV in phase C, nearly doubling the values observed in the grounded neutral case. An 

increase in voltage is also noted on the secondary side of transformer T2, where the voltage in the 

damaged phase rises by up to 20%, while the remaining phases experience only a slight increase. 

For transformer T3, the voltage increase is even more pronounced, doubling in phase A and 

increasing by almost 25% in phases B and C. 

In this scenario, the current flowing to ground is primarily channeled through the capacitances 

of both lines. When one phase is shorted to ground, the capacitive currents increase significantly, 

reaching up to 220 A. However, these currents quickly diminish, stabilizing at approximately 20 A 

in the steady state following the short circuit. An increase in capacitive currents is also observed 
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upon disconnection of the emergency short circuit of one phase to ground (Figure 8). 

Figure 8. Currents in the first line capacities during a single-phase short circuit in a network with an 

isolated neutral 

Tripping a single-phase ground fault in networks with an isolated neutral, similar to those with 

a grounded neutral, results in extremely high overvoltages on both the HV and LV sides of 

transformer T2. This phenomenon is primarily due to the interruption of currents in the undamaged 

phases, as previously noted. 

In networks with an isolated neutral, a single-phase ground fault does not significantly alter 

the phase currents. At the moment the circuit breaker trips—when the current of the faulted phase 

crosses zero—the currents in the other phases retain sufficiently large values (approximately ±Im 

sin(120°)). The interruption of these currents contributes to the generation of remarkably high 

overvoltages. 

The voltages in the busbar systems of both substations also experience notable changes. At 

substation SS2, the voltage of phase A rises from zero to 163 kV, phase B increases from 166 kV to 

195 kV, while phase C decreases from 188 kV to 171 kV. Compared to the nominal voltage values, 

the increases in phases A and B are 1.8 and 2.15 times, respectively, while phase C experiences an 

increase of 1.85 times. In substation SS3, phase A's voltage increases by 1.6 times, and the voltages 

in phases B and C rise by 2.25 times. 

Protection against excessively high overvoltages is achieved by installing an overvoltage 

protection device at the high-voltage inputs of transformer T2, as previously described 13. 

In the case of a two-phase short circuit to ground (specifically in phases A and B), the currents 

in the damaged phases become oppositional due to the isolated neutral, while the steady-state values 

of the capacitive currents remain low (approximately 20 A). The minimum values of the currents in 

phases A and B coincide with nearly maximum values in phase C. The interruption of this current 

in phase C results in significantly elevated voltage levels in the network, particularly affecting 

transformer T2 (Figure 9a). 

In this type of short circuit, the currents in the damaged phases do not reach the corresponding 

windings of transformer T2. For instance, the current from the damaged phase A is redirected into 

the other damaged phase B and returns to the network through phase B. Thus, the same current 

flows through both phases A and B, similar to a two-phase short circuit. 

Only the current from phase C reaches the winding of phase C in the transformer, with half of 

this current flowing through winding B and the other half through winding C (Figure 8b). As 

illustrated in Figure 8b, the currents in the windings of phases A and B are identical, each being half 

of the current in winding C of transformer T2. The halves of the phase C current passing through the 

windings of phases A and B, combined with the currents from the damaged phases, return to the 

network through phase B. 
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a) 

b) 

Figure 9. Illustrates the currents during a two-phase short circuit to earth in the network under 

consideration. 

The current curves presented in Figures 8a and 8b help identify the short-circuit paths for these 

currents, which are depicted in Figure 10. 

Figure 10. Illustrates the circuit diagram of the current short circuit in the high-voltage windings of 

transformer T2 and in the switch during a two-phase short circuit to ground in the network under 

consideration 
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 A two-phase short circuit to ground leads to a complete reduction of the voltages in the faulty 

phases to zero while causing an increase in the voltage of the healthy phase across all network 

elements. For instance, the voltage in phase C of the high-voltage winding of transformer T2 

increases by 1.6 times. On the secondary side of this transformer, the voltage in phase C is double 

that of phases A and B, as the currents in the high-voltage windings for phases A and B are identical 

and equal to half the current of phase C (refer to Figure 8b). 

When a two-phase short circuit to ground is tripped, it results in even higher overvoltages 

within the network. While tripping a single-phase short circuit caused the voltages in the busbar 

systems of substations SS2 and SS3 to rise to 195 kV and 190 kV, respectively, a two-phase short 

circuit leads to voltages of 233 kV and 204 kV. On both the primary and secondary sides of 

transformer T2, these voltages reach disproportionately high levels. The installation of surge 

arresters at the high-voltage inputs of transformer T2 effectively limits these excessive overvoltages 

to 200 kV and 8 kV, respectively. 

In the case of a two-phase short circuit (in phases A and B), the voltages of the damaged phases 

become equal at almost all points of interest. Unlike a two-phase short circuit to ground, this type of 

short circuit results in a reduction of voltage in substation SS2. While the reduction in the healthy 

phase is minimal, in the damaged phases it can reach up to two times lower than normal. On the 

secondary winding of transformer T2, the voltages in phases A and B are also half that of phase C, 

reflecting a current distribution similar to that observed during a two-phase short circuit to ground 

( Figure 9). In substation SS3, there is a slight increase in the voltages of phases A and B. 

The disconnection of a two-phase short circuit also differs from that of a two-phase short circuit 

to ground. Compared to a two-phase short circuit to ground, the voltage increase during the 

disconnection of a two-phase short circuit is less pronounced (Table 3). For instance, in the high-

voltage busbar systems of substation SS2, the voltage in the damaged phases rises to 233 kV when 

disconnecting a two-phase short circuit to ground, while it reaches only 192 kV during a two-phase 

short circuit. The voltages in transformer T2 also increase significantly, similar to other short circuit 

scenarios, necessitating the installation of an overvoltage limiter at the high-voltage inputs of 

transformer T2 to ensure that these voltages remain within permissible limits. 

IV. Conclusions

1. The study examines overvoltages at the high-voltage (HV) and low-voltage (LV) inputs of

transformers with grounded and isolated neutrals during short circuits occurring nearby. It was 

found that with an isolated neutral, a single-phase ground fault can increase the voltage on the 

undamaged phases of the primary and secondary windings of the transformer by up to 2.2 times 

and 1.2 times, respectively. In the case of a two-phase ground fault, the increases are 1.6 times and 

1.1 times. 

2. The disconnection of all forms of short circuits, whether in transformers with grounded or

isolated neutrals, results in excessively high overvoltages on the primary and secondary sides of the 

affected transformer. This phenomenon is exacerbated by the interruption of substantial currents in 

the undamaged phases at the moment the circuit breaker operates, as the three phase currents do 

not reach zero simultaneously. These overvoltages manifest as pulsed voltage surges with durations 

of several microseconds. 

3. To mitigate these excessively high overvoltages, surge arresters should be installed at the

high-voltage inputs of transformers. While the implementation of two-contact switches can reduce 

these overvoltages by a factor of 2 to 3, the resulting values still remain excessively high. 
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Abstract 

This article introduces an approach to optimize the design of Repetitive Group Sampling (RGS) 

plan in the context of quality control for modern manufacturing processes. The primary objective of 

this study is to enhance decision-making efficiency by applying Bayesian principles to develop 

optimal sampling plans. In modern manufacturing environment, the industries are using the 

advanced technologies and machineries to maintain the quality of their products. The existence of 

defects would consequently be highly rare in such production. In such situation, Zero Inflated 

Poisson (ZIP) distribution is a more appropriate probability distribution rather than the usual 

Poisson distribution. Further, manufacturing industries often use a variety of manpower and 

materials to produce their products in various production streams. This may lead to have more 

quality variation in between lots and hence, the lot quality will vary over lots. The lots that arise 

from such a production process will be unstable, and quality variations among the units are often 

heterogeneous in nature. In such situation, the Bayesian sampling plans under Zero Inflated 

Poisson distribution would be more effective and alternative for traditional sampling plans. This 

paper studies the designing and selection of Bayesian Repetitive Group Sampling (BRGS) Plan 

under the conditions of Gamma-Zero Inflated Poisson distribution (G-ZIP). To investigate the 

effectiveness of this plan, a comparison between the proposed BRGS plan and various existing 

sample plans is made. Further, we provided the procedure and tables with the suitable numerical 

illustration to compute the optimal sampling plan. 

Keywords: Bayesian perspective, group sampling, quality control, decision-
making, process monitoring. 

1. INTRODUCTION

Acceptance sampling plans are useful tools for applications involving quality assurance and 
provide the producer and the consumer a general rule for lot sentencing to satisfy their 
requirements for product quality. A well-designed acceptance sampling plan not only reduces 
inspection costs and time, but also protects both the producer and the consumer. Therefore, a 
sampling plan with a smaller sample size required for inspection is more desirable and useful, 
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particularly when inspection is costly and destructive. There are several sampling schemes that 
have been used for various situations in the industry. One of the sampling schemes called the 
repetitive sampling plan has been introduced by Sherman. This sampling procedure is especially 
effective for situations where product inspection is destructive and costly. It enables the acceptance 
or rejection of a lot based on repeated testing of a small number of identical samples. The operating 
procedure of the attributes RGS plan can be seen in Sherman [1]. Further, the RGS plans are 
usually more efficient than the single sampling plan. The RGS plan can achieve the desired level of 
protection with a smaller sample size compared to a single sampling plan. Soundararajan and 
Ramasamy [2] developed procedures and tables to select the optimal parameters for the RGS plan. 
Balamurali et al., [3] developed the RGS plan and demonstrated that it significantly reduces the 
average sample size compared to single and double sampling plans. Recently, Kannan et.al., [4] 
proposed economic designed RGS plan to satisfy both producer’s and consumer’s risks with 
minimum cost under Birnbaum–Saunders distribution. However, recent attempts to develop 
procedures for Repetitive Group Sampling (RGS) plans specifically for attribute quality 
characteristics have been limited. Hence, this paper attempts to extend the concept of repetitive 
group sampling based on attribute quality characteristics. 

In recent years, due to technological advancements there is a competitive environment in 
manufacturing industries has produce products in perfect quality. However, in production 
processes, there may be natural variability that causes some batches to have zero defects while 
others have a Poisson-distributed number of defects. ZIP distributions allow for the modeling of 
this variability effectively. Incorporating the ZIP distribution into acceptance sampling plans can 
lead to more efficient and cost-effective sampling plans. By accurately modeling the likelihood of 
zero defects, we can design acceptance sampling plans that reduce the number of samples required 
for inspection when the process is consistently producing zero-defective items. ZIP distribution is 
appropriate to design sampling plans that are more conservative when it comes to rejecting 
batches, reducing the risk of rejecting batches with only a small number of defects or no defects at 
all. Further, the application of ZIP model to defects in the manufacturing process has been 
discussed by Lambert [5]. In dental epidemiology research, Bohning et al., [6] made a few 
significant comparisons between the ZIP distribution and the Poisson distribution to measure 
people’s dental health. Some of the applications of ZIP distribution can be found in Xie et al., [7], 
Rodrigues [8], Naya et al., [9], Sim and Lim [10], Yang et al., [11], Mussida et al., [12]. Further, 
Loganathan and Shalini [13] developed a single sampling plan based on attributes under the ZIP 
distribution. Additionally, Rao [14] designed a single sampling plan for resubmitted lots 
considering the ZIP distribution. 

In Bayesian methodology, the acceptance sampling plans includes prior information regarding the 
process variations for taking decisions about the submitted lots can be used under the sampling 
plans as an alternative to the traditional sampling plans. The optimal design of repetitive group 
sampling plans under a Bayesian perspective represents a significant advancement in quality 
control for modern manufacturing. It enables enhanced decision-making efficiency, leading to 
improved process performance, reduced costs, and increased customer satisfaction. The proposed 
methodology has practical implications for manufacturers seeking to optimize their quality control 
processes and navigate the challenges of the dynamic manufacturing landscape. Bayesian methods 
offer a flexible framework for modeling and estimation, allowing for more accurate and reliable 
decision-making. Several studies have successfully applied Bayesian techniques in various quality 
control applications, including process monitoring, parameter estimation, and defect prediction. 
Hald [15] provided a detailed discussion on the procedures and implications of a Bayesian Single 
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Sampling Plan, considering both Gamma-Poisson (GP) and Beta-Binomial distributions. 

Additionally, Calvin [16], Case et al., [17], and Guthrie and Johns [18] explored the selection of 
prior distributions for the lot fraction of non-conforming items in Bayesian sampling plans. 
Vijayaraghavan et al., [19] discussed a Bayesian Single Sampling Plan using the Gamma-Poisson 
distribution and proposed a method to evaluate the efficiency of this sampling plan in comparison 
to the conventional Poisson Single Sampling Plan. Rajagopal et al., [20] developed a Bayesian 
Single Sampling Plan based on the Polya distribution, utilizing the Guenther approach, and 
examined the discriminating power of these plans through their corresponding operating 
characteristic curves. 

The purpose of this article is to develop a Bayesian Repetitive Group Sampling (BRGS) plan by 
attribute, based on the G-ZIP distribution, using the Guenther approach. In next section, provides 
an operating procedure of Repetitive Group Sampling plan. In third section, a brief description of 
the Bayesian G-ZIP distribution along with its performance measure is given. The fourth section 
provides the operating procedure and tables for selecting the proposed plan and to determine the 
optimum plan parameters for the specified quality levels through the Guenther iterative producer. 
In the fifth section, numerical illustrations are provided to assess the effectiveness of proposed 
plan compared to alternative sampling plans. The results are summarized in the concluding 
section. 

2. REPETITIVE GROUP SAMPLING PLAN

Sherman [1] introduced the Repetitive Group Sampling (RGS) plan, which provides a 
straightforward procedure for attribute-based quality characteristics. This plan is more efficient 
than single sampling and resembles sequential sampling methods. It is particularly suited for 
situations involving destructive or costly inspections, using repeated samples to determine lot 
acceptance or rejection. The RGS plan achieves the desired protection with a smaller sample size 
compared to single sampling. According to Sherman [1] the operating procedure of RGS plan 
involves the following steps. First, a random sample of size n is taken from the lot. Next, the 
number of non-conforming items, d in the sample is observed. If 𝑑 ≤ 𝑐1, the lot is accepted. If 𝑑 >

𝑐2, the lot is rejected. If  𝑐1 < 𝑑 ≤ 𝑐2, the sampling and inspection process is repeated until a 
decision is made. This plan is completely specified by three parameters, namely sample size n and 
the acceptance numbers 𝑐1 and 𝑐2. It is observed that the RGS plan reduces to a single sampling 
plan when  𝑐1 = 𝑐2 with 𝑐1 always being less than 𝑐2. 
The probability of lot acceptance is determined by using the Operating Characteristic (OC) 
function, which is derived to be: 

𝑃𝐴(𝑝) =
𝑃𝑎(𝑝)

𝑃𝑎(𝑝)+𝑃𝑟(𝑝)
(1) 

Where, 𝑃𝑎(𝑝) is the probability of acceptance of a submitted lot with fraction defective p based on a 
given sample, whereas 𝑃𝑟(𝑝) is the corresponding probability of lot rejection. 

3. THE OC FUNCTION OF BAYESIAN RGS PLAN UNDER G-ZIP DISTRIBUTION

In acceptance sampling plan the number of nonconforming occurrences during a sampling 
inspection is considered as count data, their Poisson frequency distribution model could be 
identified using a probability distribution with parameter, representing the average number of 
defects per unit. However, the Zero-Inflated Poisson count models provide an alternative method 
to explain the excess zeros that is a greater number of non-conforming units by modeling the data 
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as a mixture of two separate distributions.  
As given by Lambert [5] the probability function of a Zero Inflated Poisson distribution is given by, 

𝑃(𝑋 = 𝑥; 𝜔, 𝜆) = {
𝜔 + (1 − 𝜔)𝑒−𝜆 ,  𝑤ℎ𝑒𝑛 𝑥 = 0 

(1 − 𝜔)
𝑒−𝜆𝜆𝑥

𝑥!
,    𝑤ℎ𝑒𝑛 𝑥 = 1,2,3 …

(2) 

Where, ω and λ are the parameters of ZIP distribution with  0 < 𝜔 < 1, 𝜆 > 0. When 𝜔 = 0, this 
model reduces to the Poisson model. Further, when the manufacturing process is well monitored, 
defects become a rare event, resulting in many sampled products having zero defects. In such 
cases, the ZIP distribution is the appropriate probability distribution for modeling the number of 
defects in the sampled products. When the number of nonconformities items in the sample is 
followed by the model of Zero Inflated Poisson distribution with parameter (𝑛𝑝, 𝜔), when the 
proportion of nonconformities p varies at random from lot by lot and is distributed according to a 
gamma distribution, which is a natural conjugate prior to p, the density function of the p is given 
by, 

𝑓(𝑝/𝑡, 𝑠) =
𝑒−𝑡𝑝𝑡𝑠𝑝𝑠−1

Γ𝑠
, 0 ≤ 𝑝 < ∞, 𝑡, 𝑠 > 0 

Where, t is scale parameter and s is the shape parameter. If 𝐸(𝑝) = �̅� is gives the scale parameter is 
obtained by 𝑡 = 𝑠/�̅�. Here, the prior knowledge s is estimated from past history of the production 
process. Further, the Uniform distribution is assumed to be the conjugate prior to ω with 
parameters a and b. The probability density function of the ω is defined as, 

𝑓(𝜔/𝑎, 𝑏) =
1

𝑏 − 𝑎
 , 𝑎 ≤ 𝜔 ≤ 𝑏 

In particular, the limitation of parameter ω can be taking 𝑎 = 0 and 𝑏 = 1, that is the uniform prior 
on (0,1). Then the equation for the standard uniform distribution is, 

𝑓(𝜔) = 1    for    0 ≤ 𝜔 ≤ 1 

Thus, the predictive distribution of the number of defectives x is reduced to the G-ZIP distribution. 
In cases where the production process is unstable, the non-conforming items x and the average 
number of defects p are independently distributed. According to Hald [15] the average probability 
of acceptance �̅� is approximately obtained by, 

𝑃𝑎(�̅�) = ∫ 𝑃𝑎(𝑝) 𝑓(𝑝)𝑑𝑝
∞

0
 (3) 

Thus, the average probability of acceptance �̅� under the conditions of Gamma prior distribution 
and ZIP sampling distribution can be obtained by, 

𝑝(𝑥; 𝜔, 𝑛�̅�, 𝑠) = {
𝜔 + (1 − 𝜔)(1 − 𝜌)𝑠,  𝑤ℎ𝑒𝑛 𝑥 = 0 

(1 − 𝜔) (
𝑥 + 𝑠 − 1

𝑠 − 1
) 𝜌𝑥(1 − 𝜌)𝑠,    𝑤ℎ𝑒𝑛 𝑥 = 1,2,3 …

 (4) 

Let us take for convenience 𝜌 = (
𝑛�̅�

𝑛�̅�+𝑠
). It is to be observed that the sampling distribution of x is the 

Zero Inflated Negative binomial model with parameter s and ( 𝑛�̅�

𝑛�̅�+𝑠
) When production is not stable, 

both x and �̅� are independently distributed, and hence the sampling distribution of x, according to 
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Hald [15] under the conditions that �̅� < 0.1, �̅�/𝑠 < 0.2 the OC function is given by, 

𝑃𝑎(�̅�) = ∑ 𝑝(𝑥; 𝜔, 𝑛�̅�, 𝑠)𝑐
𝑥=0 (5) 

where �̅� is the average lot quality or average fraction non-conforming. Here, the value of s can be 
estimated from the prior information about the production process. When 𝑐 = 0, the lot acceptance 
probability becomes as,  

𝑃𝑎(�̅�) = 𝜔 + (1 − 𝜔)(1 − 𝜌)𝑠 (6) 

Based on this, the OC function of Bayesian RGS plan under the conditions of Gamma-Zero Inflated 
Poisson distribution is given by, 

𝑃𝐴(�̅�) =
𝜔 + (1 − 𝜔)(1 − 𝜌)𝑠 + ∑ 𝑝(𝑥; 𝜔, 𝑛�̅�, 𝑠)𝑐1

𝑥=1

1 − ∑ 𝑝(𝑥; 𝜔, 𝑛�̅�, 𝑠)𝑐2
𝑥=1 + ∑ 𝑝(𝑥; 𝜔, 𝑛�̅�, 𝑠)𝑐1

𝑥=1

4. DETERMINATION OF PLAN PARAMETER

The optimal sampling plans are determined for a fixed parameters ω, s and a wide range of 𝑝1 and 
𝑝2 with specified producer's and consumer's risks which are presented in Table 5.1- 5.8. The plan 
parameters are obtained from these tables with producer's risk to a maximum of 5% and 
consumer's risk to a maximum of 10%. Under these conditions, can be determine the plan 
parameters and minimize the Average Sample Number (ASN) at the level of Limiting Quality 
Level (LQL). The ASN of the RGS plan is given by, 

𝐴𝑆𝑁 =
𝑛

𝑃𝑎(𝑝)+𝑃𝑟(𝑝)
(7) 

Where 𝑃𝑎(𝑝) and 𝑃𝑟(𝑝) are the probability of acceptance and probability of rejection of a lot, under 
G-ZIP model. It should be noted that, the values of the parameter s, in the prior distribution range
over the interval (0, ∞). It is observed from the empirical study that the values of 𝑃𝑎(𝑝) of BRGS
plan by attributes under the conditions of G-ZIP distribution do not differ much from those of ZIP
plans at each value of p for larger values of s. It indicates that the OC function under the conditions
of G-ZIP converges to non-Bayesian ZIP sampling plans. Hence, two different values such as 5 and
10 are taken for s. The set of tables corresponds to these values of s with the fixed parameter 𝜔 =

0.001,0.01,0.05,0.09 are considered. The BRGS plan can be used for the situation where the shape
parameter is known and unknown. Normally, producers keep the record of the estimated shape
parameter value for their product or it can be estimated from the available data. While searching
for the optimum sampling plan using the iterative procedure [22], the values of n and c were
restricted to the maximum of 7500 and 75 respectively for the iteration purpose. In some cases,
very large values were obtained for n, which are not feasible to apply in practice. To those data
sets, the optimum sampling plans are not presented which are denoted by the symbol ***.

5. NUMERICAL ILLUSTRATION

In this section, the procedure of selecting the plan parameters for the proposed plan is described 
with numerical illustrations. The significance of the Bayesian RGS plan under the conditions of G-
ZIP distribution is highlighted. 
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Table.5.1 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.001.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
72; 0,2 

(104.85) 
54; 0,1 
(64.21) 

47;0,1 
(55.833) 

41;0,1 
(48.745) 

36; 0,1 
(42.937) 

33;0,1 
(39.171) 

0.01 
79; 0,3 

(141.668) 
66;0,3 

(118.110) 
51;0,2 

(74.609) 
45; 0,2 

(65.533) 
40; 0,1 

(58.252) 
36; 0,2 

(52.426) 

0.015 
94; 0,5 

(249.636) 
72; 0,4 

(157.949) 
56;0,3 

(101.052) 
49;0,3 

(88.422) 
44;0,3 

(78.740) 
36;0,2 

(52.427) 

0.02 
117;0,8 

(516.976) 
85;0,6 

(268.894) 
68;0,5 

(177.547) 
54;0,4 

(118.462) 
44;0,3 

(78.740) 
40;0,3 

(70.996) 

0.025 
152;0,13 

(1387.722) 
103;0,9 

(538.750) 
78;0,7 

(294.534) 
59;0,5 

(155.794) 
48;0,4 

(105.299) 
44;0,4 

(94.623 

0.03 
262;0,29 

(9932.649) 
 127;0,13 

(1150.453) 
89;0,9 

(457.218) 
68;0,7 

(258.482) 
57;0,6 

(178.655) 
47;0,5 

(124.818) 

0.035 *** 
190;0,24 

(5104.563) 
109;0,13 
(983.553) 

82;0,10 
(494.337) 

65;0.8 
(287.209) 

51;0,6 
(161.337) 

0.04 *** *** 
153;0,22 

(3515.175) 
95;0,13 

(867.326) 
73;0,10 

(438.453) 
58;0,8 

(260.776) 

0.045 *** *** *** 
130;0,21 

(2708.636) 
89;0,14 

(915.086) 
66;0,10 

(398.724) 

0.05 *** *** *** *** 
112;0,20 
(2116.08) 

80;0,14 
(809.744) 

Table.5.2 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.01.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
75;0,2 

(106.448) 
57;0,1 

(66.937) 
49;0,1 

(57.500) 
43;0,1 

(50.423) 
38;0,1 

(44.625) 
34;0,1 

(39.986) 

0.01 
83;0,3 

(142.062) 
70;0,3 

(118.685) 
54;0,2 

(76.324) 
47;0,2 

(66.617) 
42;0,2 

(59.363) 
38;0,2 

(53.562) 

0.015 
100;0,5 

(241.745) 
76;0,4 

(155.790) 
60;0,3 

(101.730) 
52;0,3 

(88.833) 
46;0,3 

(78.885) 
38;0,2 

(53.562) 

0.02 
135;0,9 

(564.108) 
98;0,7 

(317.435) 
72;0,5 

(172.095) 
57;0,4 

(116.843) 
51;0,4 

(103.854) 
42;0,3 

(71.211) 

0.025 *** 
128;0,11 
(653.018) 

84;0,7; 
(272.087) 

68;0,6 
(191.242) 

56;0,5 
(133.852) 

46;0,4 
(93.438) 

0.03 *** *** 
117;0,12 
(642.718) 

79;0,8 
(291.620) 

70;0,7 
(201.816) 

50;0,5 
(120.738) 

0.035 *** *** *** 
108;0,13 
(646.546) 

75;0,9 
(313.394) 

59;0,7 
(189.999) 

0.04 *** *** *** *** 
96;0,13 

(574.708) 
72;0,10 

(335.409) 

0.045 *** *** *** *** *** 
91;0,14 

(588.234) 
0.05 *** *** *** *** *** *** 
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Table.5.3 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.05.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
99;0,2 

(122.031) 
83;0,2 

(102.068) 
71;0,2 

(87.379) 
56;0,1 
(61.64) 

49;0,1 
(54.100) 

45;0,1 
(49.497) 

0.01 
140;0,5 

(224.654) 
104;0,4 

(155.587) 
80;0,3 

(108.986) 
70;0,3 

(95.363) 
55;0,2 

(69.794) 
49;0,2 

(60.641) 

0.015 
409;0,19 
(811.944) 

145;0,7 
(254.984) 

100;0,5 
(140.467) 

75;0,4 
(115.645) 

70;0,4 
(103.974) 

56;0,3 
(76.290) 

0.02 *** 
1015;0,58 
(2027.701) 

204;0,13 
(400.903) 

108;0,7 
(191.332) 

78;0,5 
(124.846) 

70;0,5 
(112.327) 

0.025 *** *** *** 
358;0,28 
(758.619) 

126;0,10 
(241.031) 

87;0,7 
(152.957) 

0.03 *** *** *** *** 
676;0,58 

(1352.596) 
215;0,20 
(426.644) 

0.035 *** *** *** *** *** *** 

Table.5.4 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 5 and 𝜔 = 0.09.

AQL 

(𝒑𝟏) 
LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
239;0,4 

(260.462) 
170;0,3 

(183.289) 
153;0,3 

(163.427) 
11;0,2 

(117.033) 
100;0,2 

(105.238) 
89;0,2 

(93.804) 

0.01 *** 
886;0,25 
(985.032) 

360;0,11 
(400.36) 

191;0,6 
(211.871) 

152;0,5 
(167.066) 

119;0,4 
(129.815) 

0.015 *** *** *** 
1549;0,61 
(1726.471) 

591;0,25 
(656.937) 

291;0,13 
(323.966) 

0.02 *** *** *** *** *** *** 
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Table.5.5 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.001.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
57;0,1 

(69.554) 
48;0,1 

(58.376) 
41;0,1 

(49.919) 
36;0,1 

(43.783) 
32;0,1 

(38.919) 
29;0,1 

(35.193) 

0.01 
71;0,3 

(140.775) 
53;0,3 

(82.117) 
46;0,2 

(70.677) 
40;0,2 

(61.715) 
36;0,2 

(55.081) 
29;0,1 

(35.193) 

0.015 
78;0,4 

(199.729) 
59;0,3 

(117.322) 
51;0,4 

(100.536) 
40;0,2 

(61.715) 
36;0,2 

(55.084) 
32;0,2 

(49.372) 

0.02 
93;0,6 

(385.083) 
71;0,5 

(233.454 
56;0,4 

(142.347) 
44;0,3 

(88.007) 
40;0,3 

(78.176) 
36;0,3 

(70.358) 

0.025 
114;0,9 

(945.404) 
77;0,6 

(323.137) 
61;0,5 

(199.759) 
49;0,4 

(124.580) 
44;0,4 

(110.305) 
36;0,3 

(70.358) 

0.03 
165;0,16 

(4826.770) 
96;0,9 

(771.389) 
71;0,7 

(379.076) 
58;0,6 

(241.223) 
48;0,5 

(154.045) 
39;0,4 

(99.861) 

0.035 
171;0,21 

(8081.907) 
126;0,14 

(2620.430) 
82;0,9 

(665.819) 
63;0,7 

(325.282) 
52;0,6 

(212.464) 
43;0,5 

(139.114) 

0.04 *** *** 
102;0,13 

(1846.700) 
72;0,9 

(578.504) 
56;0,7 

(289.139) 
46.0,6 

(194.784) 

0.045 *** *** 
320;0,46 

(31309.960) 
90;0,13 

(1573.900) 
64;0,9 

(514.226) 
50;0,7 

(263.145) 

0.05 *** *** *** 
118;0,13 

(4987.170) 
76;0,12 

(1108.500) 
57;0,9 

(472.702) 

Table.5.6 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.01.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
62;0,2 

(99.826) 
50;0,1 

(59.932) 
43;0,1 

(51.489) 
38;0,1 

(45.365) 
34;0,1 

(40.509) 
30;0,1 

(35.959) 

0.01 
74;0,4 

(139.493) 
56;0,2 

(83.276) 
48;0,2 

(71.380) 
42;0,2 

(62.457) 
37;0,2 

(55.344) 
30;0,1 

(35.959) 

0.015 
82;0,4 

(193.514) 
62;0,3 

(116.243) 
53;0,3 

(99.637) 
47;0,3 

(87.182) 
37;0,2 

(55.344) 
34;0,2 

(50.175) 

0.02 
108;0,7 

(458.610) 
75;0,5 

(220.322) 
59;0,4 

(137.877) 
47;0,3 

(87.182) 
41;0,3 

(77.496) 
37;0,3 

(69.746) 

0.025 
182;0,14 

(1575.390) 
90;0,7 

(382.166) 
71;0,6 

(250.271) 
57;0,5 

(163.766) 
46;0,4 

(107.148) 
37;0,3 

(69.749) 

0.03 *** 
152;0,14 

(1304.828) 
84;0,8 

(415.720) 
62;0,6 

(219.427) 
50;0,5 

(146.881) 
41;0,4 

(96.756) 

0.035 *** *** 
130;0,14 

(1125.282) 
66;0,7 

(295.112) 
55;0,6 

(195.438) 
45;0,5 

(132.193) 

0.04 *** *** *** 
171;0,21 

(1653.542) 
71;0,9 

(399.379) 
54;0,7 

(229.300) 

0.045 *** *** *** 
498;0,59 

(4960.443) 
101;0,14 
(877.904) 

64;0,9 
(358.414) 

0.05 *** *** *** *** 
365;0,49 

(3679.178) 
91;0,14 

(787.621) 
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Table.5.7 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.05.

AQL 
(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
85;0,2 

(108.512) 
71;0,2 

(90.530) 
54;0,1 

(60.372) 
47;0,1 

(52.613) 
42;0,1 

(46.956) 
38;0,1 

(42.431) 

0.01 
96;0,3 

(136.436) 
81;0,3 

(116.526) 
61;0,2 

(77.687) 
53;0,2 

(67.741) 
48;0,2 

(60.773) 
43;0,2 

(54.569) 

0.015 
159;0,7 

(300.280) 
105;0,5 

(179.863) 
79;0,4 

(125.816) 
60;0,3 

(87.147) 
54;0,3 

(77.684) 
49;0,3 

(70.051) 

0.02 *** 
230;0,13 
(456.923) 

101;0,6 
(184.261) 

78;0,5 
(135.143) 

61;0,4 
(97.857) 

55;0,4 
(88.070) 

0.025 *** 
752;0,44 

(1504.971) 
267;0,18 
(540.667) 

135;0,10 
(266.137) 

79;0,6 
(143.038) 

63;0,5 
(107.918) 

0.03 *** *** 
862;0,59 

(1788.419) 
298;0,23 
(597.590) 

153;0,13 
(305.145) 

89;0,8 
(170.951) 

0.035 *** *** *** 
957;0,75 

(1911.998) 
333;0,29 
(664.908) 

178;0,17 
(355.931) 

0.04 *** *** *** *** *** *** 

Table.5.8 Optimal BRGS plan under G-ZIP distribution for given 𝑝1, 𝑝2, 𝛼 = 0.05, 𝛽 = 0.10, 𝑠 = 10 and 𝜔 = 0.09.

AQL 

(𝒑𝟏) 

LQL (𝒑𝟐) 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 
167;0,3 

(180.948) 
119;0,2 

(126.195) 
100;0,2 

(106.460) 
89;0,2 

(94.431) 
80;0,2 

(84.701) 
61;0,1 

(62.851) 

0.01 
409;0,11 
(456.721) 

241;0,7 
(266.445) 

160;0,5 
(176.768) 

120;0,4 
(132.239) 

93;0,3 
(100.703) 

83;0,3 
(90.078) 

0.015 *** 
740;0,26 
(822.420) 

358;0,14 
(400.650) 

218;0,9 
(242.516) 

139;0,6 
(155.153) 

110;0,5 
(122.328) 

0.02 *** *** 
1442;0,62 
(1604.849) 

568;0,27 
(635.174) 

315;0,16 
(351.616) 

221;0,12 
(246.443) 

0.025 *** *** *** *** 
921;0,50 

(1020.115) 
423;0,25 
(473.118) 

0.03 *** *** *** *** *** *** 
   *** Sampling plan does not exist 

5.1. ILLUSTRATION 1 

Suppose that the quality engineer in medical research center wants to run an experiment to make a 
decision on a product, whether to accept or reject based on BRGS plan under G-ZIP model. If the 
engineer desired to determine a sampling plan for given sets of strengths AQL and LQL say, 𝑝1 =

1%, 𝑝2 = 8% with producer’s risk (α) 5% and consumers risk (β) 10% and the estimated values of 
𝜔 = 0.05 and 𝑠 = 5. Under these requirements, from the Table 5.3 one can find value of optimum 
parameters as 𝑛 = 70, 𝑐1 = 0 and 𝑐2 = 3 with 𝐴𝑆𝑁 = 95.363. 
Execution of the plan: 

The BRGS plan can be executed under the G-ZIP conditions is operated as follows: 
• Step 1: Drawn a random sample of 70 units from the lot and observe the number of non-

conforming items (d), in the sample.
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• Step 2:  If there are no nonconforming items is found, then accept the lot. If more than 3

nonconforming items are observed, then reject the lot.
• Step 3: If the number of nonconforming items is lies between 0 or 3, then repeat these steps

until a decision is made on the same lot.

5.2. ILLUSTRATION 2 

Suppose that the quality engineer’s interest is to focus on sampling inspection towards submitted 
lot for a given strength of parameters 𝑝1 = 0.01, 𝛼 = 0.05, 𝑝2 = 0.07, 𝛽 = 0.10 and 𝜔 = 0.05. From 
the Table 5.9, one can find the ASN value of Single Sampling Plan (SSP) under the conditions of G-
ZIP distribution is determined for different values of 𝑠 = 5 and 10 respectively. Thus, the optimum 
of ASN values are (𝑠 = 5, 𝐴𝑆𝑁 = 318) and (𝑠 = 10, 𝐴𝑆𝑁 = 166). But, the Bayesian RGS plan under 
the G-ZIP distribution for the values of prior information 𝑠 = 5 and 10 respectively, can be 
determined optimum of ASN values (𝑠 = 5, 𝐴𝑆𝑁 = 108.99) and (𝑠 = 10, 𝐴𝑆𝑁 = 77.69). Therefore, 
this illustration clearly shows that the BRGS plan is more efficient then the BSSP under the G-ZIP 
distribution. Further, we made a comparative study on the result of RGS plan with the SSP under 
the conditions of G-ZIP distribution in terms of ASN values. Obviously, a sampling plan having 
smaller ASN would be more preferable. Table.5.9 shows the values of ASNs for the RGS plan 
under G-ZIP distribution with sample size of the SSP under the conditions of G-ZIP distribution 
for some selected combinations of AQL and LQL values. Here, it is considered only two values of 
the shape parameter with the different values of 𝜔 = 0.001,0.01,0.05,0.09 are given in table. 

Table 5.9 ASN values of the RGS Plan and SSP under the conditions of G-ZIP distribution for specified 𝑝1, 𝑝2, 

𝛼 = 0.05 and 𝛽 = 0.10. 

s = 5 s = 10 

ω 𝒑𝟏 𝒑𝟐 SSP RGS SSP RGS 

0.001 

0.005 0.05 191 104.85 126 69.55 
0.005 0.06 124 64.21 105 58.38 
0.01 0.06 264 118.11 162 82.12 
0.01 0.07 166 74.61 115 70.68 

0.015 0.07 491 101.05 186 100.54 
0.015 0.08 276 88.42 142 61.72 
0.02 0.08 1432 118.46 204 88.01 
0.02 0.09 452 78.74 145 78.18 

0.025 0.09 *** 105.30 236 110.31 
0.025 0.1 *** 94.62 277 70.36 

0.01 

0.005 0.05 198 106.45 108 99.83 
0.005 0.06 129 66.94 93 59.93 
0.01 0.06 308 118.69 166 83.28 
0.01 0.07 203 76.32 118 71.38 

0.015 0.07 567 101.73 191 99.64 
0.015 0.08 311 88.83 146 87.18 
0.02 0.08 *** 116.84 231 87.18 
0.02 0.09 535 103.85 167 77.5 

0.025 0.09 *** 133.85 260 107.15 
0.025 0.1 *** 93.44 185 69.75 
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Table 5.10 ASN values of the RGS Plan and SSP under the conditions of G-ZIP distribution for specified 𝑝1, 𝑝2, 

𝛼 = 0.05 and 𝛽 = 0.10. 
s = 5 s = 10 

ω 𝒑𝟏 𝒑𝟐 SSP RGS SSP RGS 

0.05 

0.005 0.05 242 122.03 154 108.51 
0.005 0.06 202 102.07 129 90.53 
0.01 0.06 579 155.59 226 116.53 
0.01 0.07 318 108.99 166 77.69 

0.015 0.07 *** 140.47 273 125.82 
0.015 0.08 716 115.45 193 87.15 
0.02 0.08 *** 191.33 355 135.14 
0.02 0.09 *** 124.85 233 97.86 

0.025 0.09 *** 241.03 459 143.04 
0.025 0.1 *** 152.96 285 107.92 

0.09 

0.005 0.05 842 260.46 332 180.95 
0.005 0.06 515 183.29 234 126.2 
0.01 0.06 *** 985.03 475 266.45 
0.01 0.07 *** 400.36 337 176.77 

0.015 0.07 *** *** *** 400.65 
0.015 0.08 *** 1726.47 *** 242.52 
0.02 0.08 *** *** *** 635.17 
0.02 0.09 *** *** *** 351.62 

0.025 0.09 *** *** *** 1020.12 
0.025 0.1 *** *** *** 473.12 

From Table 5.9 and 5.10, it can be clearly observed that the ASN value of the proposed plan is 
significantly lower than that of the existing Bayesian Single Sampling Plan for all combinations of 
AQL and LQL values. Furthermore, it is noteworthy that the RGS plan under the G-ZIP 
distribution is more economical than the Single Sampling Plan in terms of ASN. This suggests that 
the plan provides the desired protection with minimal inspection, thus greatly reducing the 
inspection costs. 

6. COMPARATIVE ANALYSIS ON SAMPLING PLANS

In garment manufacturing industries, where apparel brands source garments are produced in bulk 
quantity, sampling inspection is an essential step before placing the bulk order. The sampling 
process covers garment fit checking, fabric and trims quality checking, approval value-added 
processes, and approval of complete finished garment. The primary objective of the sampling plan 
is to safeguard from the risk of making a wrong decision on the part of the manufacturer and the 
consumers. For instance, the quality control personal wants to run an experiment to make a 
decision on the quality of the shirts to decide whether the whole lot should be delivered to 
customers or not based on sampling inspection. Suppose that the garments company desire to 
determine the sampling plan for a lot consisting of 9000 pieces of shirts with the acceptance quality 
level is 1% and limiting quality level is 7%. Further, the experimenter is fixed the consumer’s and 
producer’s risk level as 5% and 10% with the estimated value of 𝑠 = 5.  In order to obtain the 
comparative study, the values of 𝑝𝑎(𝑝) of the RGS plan under the conditions of GP, ZIP and G-ZIP 
are given in Table.6.1 for the various values of p. 
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For instance, the strength of the plan is specified as 𝑝1 = 0.015, 𝛼 = 0.05, 𝑝2 = 0.09, 𝛽 = 0.10 and 
𝑠 = 10, it is determined that the RGS plan under the conditions of GP distribution is (40, 2), ZIP 
distribution are (33,2), (41,2) and   for the various fixed parameter 𝜔 = 0.01,0.05,0.09 respectively. 
Corresponding to this strength, the RGS plan under the conditions of G-ZIP distribution are 
determined for different values of ω. The values of ω and the corresponding RGS Plans are (𝜔 =

0.01, 𝑛 = 37, 𝑐 = 2), (𝜔 = 0.05, 𝑛 = 54, 𝑐 = 3) and (𝜔 = 0.09, 𝑛 = 139, 𝑐 = 6).  The value of 𝑃𝑎(𝑝) of 
these given sampling plans are calculated and are given in Table 4.10. All the RGS plan under the 
conditions of G-ZIP distribution have been determined for the same strength. It should be noted 
that the G-ZIP RGS plan enables to take the decision about the current lot considering the past 
history of the production process. But, the ZIP RGS plan takes decision based on the current 
sample information only. 
From the Table 6.1, it can be observed that all the given sampling plans have higher 𝑃𝑎(𝑝) for lower 
values of p and have sudden drop in 𝑃𝑎(𝑝) for higher values of p. It indicates that all the given 
sampling plans, in general, it protects the producer's interest against good quality lots and 
safeguard the consumer against poor quality lots. In addition, the RGS plan under the conditions 
of G-ZIP distribution dominate the non-Bayesian ZIP RGS plan and Bayesian GP SSP invariably at 
all values of p below 𝑝1 = 0.040. It shows that the G-ZIP RGS plan provides a better protection to 
the producer from the risk of rejecting the lots of good quality compared to the non-Bayesian ZIP 
RGS plan and Bayesian GP RGS plan. For instance, in the case of GP RGS plan, corresponding to 
𝑝 = 0.01, the probability of acceptance value is (0.986) and ZIP SSP corresponding to 𝑝 = 0.01, the 
probability of acceptance values is 0.991, 0.997 and 0.997 for the various parameter   𝜔 =

0.01,0.05,0.09 respectively. But, under the G-ZIP case, for the same values of ω, the probability of 
acceptance values corresponding to 𝑝 = 0.01 are 0.997, 0.992 and 0.997. It is seen that G-ZIP RGS 
plan accept lots having lower fraction nonconforming with higher probability. 

Table 6.1 Values of OC functions of GP RGS, ZIP RGS and G-ZIP RGS sampling plans for the given 

strength 𝑝1 = 0.015, 𝛼 = 0.05, 𝑝2 = 0.09, 𝛽 = 0.10 and 𝑠 = 10. 

model GP RGS ZIP RGS G-ZIP RGS

parameters 
ω - 0.01 0.05 0.09 0.01 0.05 0.09 
n 40 33 41 88 37 54 139 
c 2 2 2 4 2 3 6 

Lot fraction 
nonconforming 

(p)  

0.007 0.995 0.997 0.999 1.000 0.999 0.998 1.000 
0.010 0.986 0.991 0.997 0.997 0.997 0.992 0.997 
0.012 0.976 0.984 0.993 0.992 0.994 0.984 0.989 
0.015 0.954 0.969 0.983 0.973 0.985 0.963 0.952 
0.020 0.896 0.926 0.946 0.879 0.956 0.898 0.781 
0.030 0.713 0.770 0.768 0.508 0.819 0.663 0.376 
0.035 0.606 0.667 0.640 0.362 0.714 0.533 0.271 
0.040 0.504 0.561 0.511 0.268 0.599 0.420 0.209 
0.045 0.412 0.460 0.399 0.208 0.488 0.331 0.171 
0.050 0.334 0.372 0.310 0.171 0.389 0.263 0.147 
0.055 0.269 0.297 0.242 0.146 0.308 0.212 0.132 
0.060 0.217 0.237 0.193 0.130 0.243 0.175 0.121 
0.650 0.176 0.189 0.158 0.118 0.192 0.148 0.113 
0.075 0.117 0.121 0.113 0.105 0.124 0.112 0.103 
0.080 0.096 0.098 0.099 0.100 0.101 0.100 0.100 

RT&A, No 1 (82) 
Volume 20, March 2025 

669



P. Sivakumar, V. Kaviyarasu and V. Devika
BAYESIAN REPETITIVE GROUP SAMPLING PLAN

Table 6.2 Values of producer, consumer and total sum of risk for the specified strength with 𝑠 = 10 of the optimum 

sampling plan. 
Model ω α (%) β (%) α+β (%) 

GP RGS - 1.41 21.75 23.15 

ZIP RGS 
0.01 0.91 23.68 24.58 
0.05 0.34 19.34 19.67 
0.09 0.26 12.99 13.25 

G-ZIP RGS
0.01 0.3 24.28 24.58 
0.05 0.79 17.53 18.32 
0.09 0.27 12.06 12.32 

The probability of acceptance corresponding to 𝑝 = 0.06 for GP RGS plan is 0.217 and ZIP RGS 
plans are (0.237, 0.193, 0.130) for the parameter 𝜔 = 0.01, 0.05, 0.09 respectively. But, under the G-
ZIP case, for the same values of ω, the probability of acceptance corresponding to 𝑝 = 0.06 are 

(0.243, 0.175, 0.121). It shows that G-ZIP RGS plan with moderately higher value of ω accepts the 
lots having higher fraction nonconforming with lower probability, which also protects consumer 
against accepting poor quality lots. 

Figure.1 are presents the OC curves of G-ZIP RGS plan along with the OC curves of GP and ZIP 
RGS plans based on Table 6.1. From these Figures, it can be observed that all the three plans of OC 
curves are in desirable shape with a swell at lower values of p and a sudden drop at higher values 
of p. However, particularly, the G-ZIP RGS plan has the probability of acceptance is large for good 
quality lots and is small for bad quality lots, which indicate that these RGS plan ensure protection 
to both producer and consumer. Further, when the value of 𝜔 becomes large, the proposed plan 
was performed better than the classical RGS plan under the ZIP distribution and the GP RGS plan. 
From these results, the garments company can be obtained that the proposed BRGS plan will give 
the optimum sampling plan for the desired quality levels as well as safeguard both the producers 
and consumers instead of tradition sampling plan. 

Figure 1: Comparative analysis of operating characteristic curves 
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7. Conclusion

In this article, we have developed a Repetitive Group Sampling plan based on the Gamma-Zero 
Inflated Poisson (G-ZIP) distribution from a Bayesian perspective. This proposed sampling plan is 
particularly useful when production processes are well monitored and result in a significant 
number of defect-free products. Further, the plan incorporates historical production data, allowing 
for the consideration of inherent or natural variability in the process. The article also provides a 
comprehensive procedure for designing and selecting plan parameters using the two-point 
approach on the Operating Characteristic (OC) curve. Additionally, the tables are constructed for 
some specified strengths  ( 𝑝1, 𝑝2, 𝛼 , 𝛽) for the limited number of values  𝜔 and 𝑠. From the 
illustrations, the proposed sampling plan has the better performance measures than over some 
existing sampling plans. The proposed sampling plan can be applied in various industries 
Including Electronic device manufacturing industries, medicine research centers and food 
industries etc. It is strongly suggested that the proposed plan be utilized in the industries for lot 
sentencing and products determination. The study opens up avenues for further research in the 
area of Bayesian group sampling. Future investigations could explore the integration of advanced 
statistical techniques, such as Markov chain Monte Carlo methods, to enhance the precision and 
efficiency of the proposed methodology. Additionally, the application of the methodology to 
specific manufacturing industries and the development of decision support tools could be 
explored to facilitate practical implementation.  
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Abstract

A traditional mathematical technique for analyzing line-waiting delays and overcrowding is queuing
theory. It addresses the number of patrons in line as well as numerous other queue-related issues.
Developing an Erlang service model in a fuzzy environment is our study’s goal. This study aims to
investigate the anticipated number of patients in the line as well as the queuing system’s waiting time.
To achieve this, we applied the L-R strategy under triangular fuzzy numbers and the alpha-cuts method.
To measure various linguistic aspects in queuing systems, the fuzzy approach has been used. The findings
showed that waiting times are determined using recommended techniques and that the fuzzy Erlang
model is stable. Finally, we provide numerical examples to show the capabilities of the suggested method.

Keywords: Fuzzy queuing theory, α-cut method, L-R fuzzy approach,
triangular fuzzy number, Erlang service model.

1. Introduction

A probabilistic method for handling queuing systems is queuing theory. Calls and Erlang
initially presented queuing theory by focusing on the congestion issue in telephone exchanges
and introducing the foundation for both Poisson and exponential distributions. When people
wait for their turn to get services, they are essentially in a queue. Waiting is one of the processes
of most troubling situations, and queuing theory addresses it. Banks, hospitals, telecoms, medical
services, and other establishments frequently face queue issues. Long lines have a financial and
resource cost to people. It is challenging to accommodate everyone’s high needs because of the
traffic. It addresses the quantity of patrons in line as well as numerous other queue-related issues.

Queueing theory is useful for creating effective queuing systems that, while lowering client
wait times, also increase the number of customers that can be served. Two types of queues are
distinguished: fuzzy queues and crisp queues. Using a probabilistic technique, Crisp Queue
handles performance measures, and in this case, Poisson distribution is used to determine the
"service time" and "inter-arrival time." In actual situations, both the service and arrival rates
are informally assessed. Since the majority of information pertaining to statistics is collected
in a subjective manner, the fuzzy approach describes service and arrival rates in a probabilistic
manner [1, 2].
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Zadeh asserts that fuzzy queues are more realistic than crisp queues. When numerous servers
are involved, these queueing models work best when crisp queues are converted to fuzzy queues
[3]. To create the mathematical models for customer service, queuing theory is employed. Given a
probabilistic explanation of service time, the fuzzy queueing method is a more practical solution
than traditional queueing theory methods. Since the fuzzy technique’s boundary is specified with
a limited membership degree, it differs greatly from the crisp set approach [4].

Several researchers have used Zadeh’s extension concept for fuzzy queueing models [3, 5, 6,
7, 8], such as, Nagi and Lee [9] examined the α-cut method under fuzzy conditions. The fuzzy
approach to diagnostic queuing theory was introduced by Umaira Zareen and Saqlain Raza [10].
The Erlang service model was used by Narayanamoorthy et al. [11] to predict the anticipated
number of customers and their waiting time in the system. The single server queues under the
LR approach are examined by Vijaya et al. [12] utilizing trapezoidal fuzzy numbers. Lee [13]
studied the concepts of simulation and the Alpha-cut approach. Much research has been done on
fuzzy queues by Prade [14], Ritha and Menon [15], Yager [16], Mukeba Kanyinda [17], and others
[18, 19, 20]. Finding system performance measurements using the α− cuts approach is the focus
of the majority of these works. In this work, fuzzy queueing models are analyzed under the L-R
fuzzy approach using triangular fuzzy numbers. The L-R method is a novel approach that we
use to determine how many customers in a fuzzy queue along with their waiting time.

Compared to classical queueing theory, the fuzzy queueing models are more realistic than
obtaining the queue models because the service and inter-arrival times have to follow certain
distributions. However, linguistic quantifiers such as speedy, gradual, or medium are often used
to characterize the arrival and service patterns instead of probability distributions. In this study,
the alpha-cut and L-R approaches, which are helpful in determining the function’s higher and
lower bounds, handle the service rate and arrival rate as triangular fuzzy numbers. There has
been a lot of interest in the M/EC/1 vacation systems with a single unit arrival for queuing
models with single and many servers under different considerations. Researchers used the earlier
findings to solve a queuing decision problem and a machine serving problem revision of queueing
theory [5, 6, 21, 22, 23].

2. Preliminaries

We give some basic concepts and arithmetic operations of L-R fuzzy numbers in this section.

Definition 2.1. [18] A δ̃ is said L-R fuzzy number if there exists a real numbers such as, δ, s >
0, t > 0 and two positive, continuous and decreasing functions L and R such that

L(0) = R(0) = 1

L(1) = 0, L(u) > 0, lim
u→∞

L(u) = 0

R(1) = 0, R(u) > 0, lim
u→∞

R(u) = 0

λδ̃(u) =


L( δ−u

s ) i f u ∈ [δ − s, δ]

R( u−δ
t ) i f u ∈ [δ, δ + t]
0 otherwise (1)

The δ̃ =< δ, s, t >LR. δ is called the most possible value. By the definition,supp(Ã) = {u ∈
E|σÃ(u) > 0}, then

supp(δ̃) =]δ − s, δ] ∪ [δ, δ + t[=]δ − s, δ + t[.

2.1. Arithmetic operations of LR fuzzy numbers

The two L-R fuzzy numbers M =< δ, i, j > and N =< η, k, p > [24]

M̃ + Ñ =< δ + η, i + k, j + p > (2)
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M̃ − Ñ =< δ − η, i + p, j + k > (3)

M̃.Ñ ≈< δη, δk + ηi − ik, δp + η j + jp > (4)

M̃
Ñ

=
< δ, i, j >
< η, k, p >

≈<
δ

η
,

δp
η(η + p)

+
i
η
− ip

η(η + p)
,

δk
η(η − k)

+
j
η
+

jk
η(η − k)

> (5)

Definition 2.2. [11] A F̃ is said triangular fuzzy number (TFN) then there exists a real numbers
g < h < r such that:

ηF̃(u) =


L( u−g

h−g ) i f g ≤ u ≤ h
R( r−u

r−h ) i f h ≤ u ≤ r
0 otherwise

(6)

By definitions, a TFN F̃ = (g/h/r) is LR fuzzy number. In this concepts, it can be written

F̃ = (g/h/r) =< h, h − g, r − g >

for L(x) = R(x) = max(0, 1 − u).

3. Mathematical Model

In a queuing system, a customer with arrival rate V and service rate Q is received by a single-
server capacity. The C exponential phase makes up the fuzzy Erlang service rate Q̃ and the fuzzy
Poisson rate Ṽ. After establishing the system capacity and calling source to infinite, customers
are serviced using the the basis of FCFS [25, 26].

Here, the Ṽ is arrival rate and service rate Q̃ are known and can be denoted by convex fuzzy
sets. An fuzzy set F̃ is convex if and only if µF̃(ϕx1 + (1 − ϕ)x2) ≥ min{µF̃(x1), µF̃(x2)} where
µF̃ is φ ∈ [0, 1], x1, x2 ∈ X.

Let µṼ(s), µQ̃(t) are arrival rate and service rate of membership functions respectively. We
have

Ṽ = {s, µṼ(s)/s ∈ S(Ṽ)}
Q̃ = {t, µQ̃(y)/t ∈ S(Q̃)}

Where S(λ̃) and S(µ̃) are the supports [11]. Based on the extension principle proposed by
Zadeh, the performance measure’s membership function is described as

µẼ(Ṽ,Q̃)(x) = sup
s∈S,t∈T

min{µṼ(s), µQ̃(t)/x = E(s, t)}

Under the steady-state condition ρ = V
Q < 1, the number of customers in the queue,

Lq =
[
(C+1)

2C . Ṽ2

Q̃(Q̃−Ṽ)

]
The expected number of customers in the queue L̃q is

µL̃q(x) = sup
s∈S,t∈T,x<X

min
{

µṼ(s), µQ̃(t)/x =

[
(C + 1)

2C
.

Ṽ2

Q̃(Q̃ − Ṽ)

]}
(7)

We can determine how long it will take for the expected number of customers in line,

Wq =

[
(C + 1)

2C
.

Ṽ
Q̃(Q̃ − Ṽ)

]
The waiting time of W̃q is in the queue

µW̃q(x) = sup
s∈S,t∈T,y<Y

min
{

µṼ(s), µQ̃(t)/x =

[
(C + 1)

2C
.

Ṽ
Q̃(Q̃ − Ṽ)

]}
(8)
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4. The Method for Solving the Problem

An approach to constructing the µP̃(Ṽ,Q̃) is basis of deriving α-cuts of µP̃(Ṽ,Q̃). Denote α-cuts of Ṽ
and Q̃ as [25, 26]:

Ṽα = [sL
α , sU

α ] = [min
s∈S

{s/µṼ(s) ≥ α}, max
s∈S

{s/µṼ(s) ≥ α}] (9)

Q̃α = [tL
α , tU

α ] = [min
t∈T

{t/µQ̃(t) ≥ α}, max
t∈T

{t/µQ̃(y) ≥ α}] (10)

Consequently, the FM/FEC/1 queue can be reduced to crisp M/EC/1 queues with various levels
of α sets {Ṽα < α ≤ 1}[].

By the convexity, the intervals are functions of α is

sL
α = min µ−1

Ṽ (α) and sU
α = max µ−1

Ṽ (α)

tL
α = min µ−1

Q̃
(α) and tU

α = max µ−1
Q̃

(α)

We need either µṼ(s) = α and µQ̃(t) ≥ α (or) µṼ(s) ≥ α and µQ̃(t) = α such that x =[
(C+1)

2C . Ṽ2

Q̃(Q̃−Ṽ)

]
to satisfy µL̃q(x) = α. To find theµL̃q(x) we have to obtain the lower value

of xL
α and the upper value of xU

α of µL̃q(x). Since µṼ(s) = α is denoted by s = sL
α (or) s = sU

α this
formulated as the constraint of s = ϕ1sL

α + (1 − ϕ1)sU
α , where ϕ1 = 0 (or) 1. Similarly µQ̃(t) = α

is formulated as the constraint t = ϕ2tL
α + (1 − ϕ2)tU

α , where ϕ2 = 0 (or) 1 [].

Let ˜(Lq)
L
α = { ˜(Lq)

L1
α , ˜(Lq)

L2
α } and ˜(Lq)

U
α = { ˜(Lq)

U1
α , ˜(Lq)

U2
α } respectively. where

˜(Lq)
L1
α = min

s,t∈R
s < t

[
(C + 1)

2C
.

Ṽ2

Q̃(Q̃ − Ṽ)

]
(11)

such that s = a1sL
α + (1 − a1)sU

α , tL
α ≤ t ≤ tU

α and a1 = 0 (or) 1.

˜(Lq)
L2
α = min

s,t∈R
s < t

[
(C + 1)

2C
.

Ṽ2

Q̃(Q̃ − Ṽ)

]
(12)

such that t = a2tL
α + (1 − a2)tU

α , sL
α ≤ sU

α and a2 = 0 (or) 1.

Similarly, we can obtain the upper values of Lq and where sL
α < tL

α . Then, α-cuts of L̃q can
be obtain by solving above equations.

If both ˜(Lq)
L
α and ˜(Lq)

U
α are invertible, then a left shape function LO(x) = ((L̃q)L

α)
−1 a

right shape function can be obtained. From LO(x) and RO(x), the membership function µL̃q is
constructed as

µL̃q(x) =


Lo(x), (Lq)L

α = 0 ≤ x ≤ (Lq)L
α = 1

1, (Lq)L
α = 1 ≤ x ≤ (Lq)U

α = 1
Ro(x), (Lq)U

α = 1 ≤ x ≤ (Lq)U
α = 0 (13)

5. Numerical Example

In a hospital clinic, a doctor examines each patient who is brought in for a routine checkup. While
the time spent on each part of the checkup is roughly exponentially distributed, the doctor spends
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an average of fifty minutes on each phase. Given that every patient undergoes a four-phase
examination and that the typical patient arrives at the doctor’s clinic at a rate of 20 per hour.
Calculate

∙ How many patients are anticipated to be in line?

∙ How long does it typically take a patient to wait in line?

∙ Determine the maximum values for the anticipated patient volume and line wait time.

Solution
The classical queueing theory cannot be used to investigate this issue because the rates are given
in fuzzy information. FM/FEC/1 is a simple queue with fuzzy rates. Assume that te rates
are fuzzy triangular numbers provided by Ṽ = [10, 20, 30] and Q̃ = [40, 50, 60]. The approach
described in the paragraph allows us to analyze queue characteristics specified in equations since
these parameters are L-R fuzzy integers.

α-cuts method:

The confidence interval at α are [10α + 10, 30 − 10α] and [10α + 40, 60 − 10α]

˜(Lq)
L
α =

[
5α2 + 10α + 5

16α2 − 136α + 240

]
˜(Lq)

L
α is invertible

α =
(136x − 10)±

√
3136x2 + 2400x

(32x − 10)

α ≥ 0, (136x − 10)±
√

3136x2 + 2400x ≥ 0

x = 0.0208(or)0.3125

α ≤ 1,
(136x − 10)±

√
3136x2 + 2400x

(32x − 10)
≤ 1

x = 0.3125 (or) 0

˜(Lq)
L
α =

(136x − 10)±
√

3136x2 + 2400x
(32x − 10)

0 ≤ x ≤ 0.0208

Now,

˜(Lq)
U
α =

[
5α2 − 30α + 45

16α2 + 72α + 32

]
˜(Lq)

U
α is invertible

α =
−(72x + 30)±

√
3136x2 + 7840x

(32x − 10)

α ≥ 0,−(72x + 30)±
√

3136x2 + 7840x ≥ 0

x = 0.3125(or)1.4062

α ≤ 1,
−(72x + 30)±

√
3136x2 + 7840x

(32x − 10)
≤ 1

x = 2.5(or)0.3125

˜(Lq)
U
α =

−(72x + 30)±
√

3136x2 + 7840x
(32x − 10)

1.4062 ≤ x ≤ 2.5
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From the inverse function of ˜(Lq)
L
α and ˜(Lq)

U
α of L̃q is described as:

µL̃q(x) =


(136x−10)±

√
3136x2+7840x

(32x−10) , 0 ≤ x ≤ 0.0208
1, 0.3125 ≤ x ≤ 0.3125

−(72x+30)±66
√

3136x2+7840x
(32x−10) , 1.4062 ≤ x ≤ 2.5

Then,

˜(Wq)
L
α =

(α + 1)
32α2 − 272α + 480

˜(Wq)
L
α is invertible

α =
(272x + 1)±

√
12544x2 + 672x + 1
64x

α ≥ 0, (272x + 1)±
√

12544x2 + 672x + 1 ≥ 0

x = 0.00208(or)0

α ≤ 1,
(272x + 1)±

√
12544x2 + 672x + 1
64x

≤ 1

x = 0.0022(or)0

˜(Wq)
L
α =

(272x + 1)±
√

12544x2 + 672x + 1
64x

0.00208 ≤ x ≤ 0.0022

Now,

˜(Wq)
U
α =

(3 − α)

32α2 + 144α + 64

˜(Wq)
U
α is invertible

α =
−(144x + 1)±

√
12544x2 + 672x + 1

64x
α ≥ 0,−(144x + 1)±

√
12544x2 + 672x + 1 ≥ 0

x = 0(or)0.0468

α ≤ 1,
−(144x + 1)±

√
12544x2 + 672x + 1

64x
≤ 1

x = 0.0937(or)0

˜(Wq)
U
α =

−(144x + 1)±
√

12544x2 + 672x + 1
64x

0.0468 ≤ x ≤ 0.0937

From the inverse function of ˜(Wq)
L
α and ˜(Wq)

U
α the waiting time of W̃q is defined as follows:

µW̃q(x) =


(272x+1)±

√
12544x2+672x+1
64x , 0.00208 ≤ x ≤ 0.0022
1, 0 ≤ x ≤ 0

−(144x+1)±
√

12544x2+672x+1
64x , 0.0468 ≤ x ≤ 0.0938
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We computed L̃q and W̃q for the provided values using fuzzy numbers. Substituting the
values of α in the formula above yields tabular results, with a graphical depiction provided below.
Finally, the results formulation are obtained by α-cut method: the Lq in the queue is approximately

Table 1: The results obtained by α-cut approach

α xL
α xU

α yL
α yU

α
˜(Lq)

L
α

˜(Lq)
U
α

˜(Wq)
L
α

˜(Wq)
U
α

0.0 10.0 30.0 40.0 60.0 0.0208 1.4062 0.0020 0.0468
0.1 11.1 29.9 41.1 59.9 0.0267 1.0683 0.0024 0.0368
0.2 12.2 28.8 42.2 58.8 0.0337 0.8333 0.0028 0.0297
0.3 13.3 27.7 43.3 57.7 0.0421 0.6622 0.0032 0.0245
0.4 14.4 26.6 44.4 56.6 0.0520 0.5334 0.0037 0.0205
0.5 15.5 25.5 45.5 55.5 0.0639 0.4340 0.0042 0.0173
0.6 16.6 24.4 46.6 54.4 0.0779 0.3557 0.0048 0.0148
0.7 17.7 23.3 47.7 53.3 0.0946 0.2931 0.0055 0.0127
0.8 18.8 22.2 48.8 52.2 0.1145 0.2423 0.0063 0.0110
0.9 19.9 21.1 49.9 51.1 0.1382 0.2008 0.0072 0.0095
1.0 20.0 20.0 50.0 50.0 0.1666 0.1666 0.0083 0.0083

between 0.0208 and 1.4062. The Wq is lies between 0.0020 and 0.0468.
The L-R approach:
We determine L-R representations of fuzzy numbers Ṽ and Q̃, which are Ṽ =< 20, 10, 20 >LR
and Q̃ =< 50, 10, 20 >LR

L̃q =

[
(C + 1)Ṽ
2(Q̃ − Ṽ)

− (C + 1)Ṽ
2Q̃

]
1
C

=
1
4

[
5 < 20, 10, 20 >

2[< 50, 10, 20 > − < 20, 10, 20 >]
− 5 < 20, 10, 20 >

2 < 50, 10, 20 >

]
˜(Lq)LR = < 0.0625, 0.5913, 1.0982 >LR

W̃q =

[
C + 1

2C
× Ṽ

Q̃(Q̃ − Ṽ)

]

=

[
5
8
× < 20, 10, 20 >

< 50, 10, 20 > [< 50, 10, 20 > − < 20, 10, 20 >]

]
˜(Wq)LR = < 0.0083, 0.0068, 0.0083 >LR

The support of L̃q varies between 0.0208 and 0.1666, indicating that the anticipated quantity
of patients is uncertain. Its values can never be lower than 0.0208 or more than 0.1666. The
mean value of L̃q is precisely 1, which is the maximum value that can be found in that situation.
Likewise, a patient’s waiting time in the queue is between 0.0020 (about one minute) and 0.0468
(approximately three minutes). It shows that there will never be a wait time in the line longer
than 3 or shorter than 1. The queue’s maximum waiting time is 0.0083 (around one minute).
These results of Lq and Wq are shown in the figures 1 and 2.
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Figure 1: The results of Lq

Figure 2: The results of Wq

6. Conclusion

The α-cut approach and the L-R method are used in this work to compute the predicted number
of clients and mean waiting time of patients of the FM/FEC/1 sequence. With the α-cut approach,
the maximum number of patients is precisely 0.0625, while the predicted number of patients
falls between 0.0208 and 1.4062. Similarly, the maximum value is precisely 0.0083, and the mean
waiting time for patients falls between 0.0020 and 0.0468. The two spreads help deduce the upper
and lower boundaries of the fuzzy measure. The approximation of the greatest explanatory
outcomes, brevity, convenience, and flexibility are the three primary advantages of this innovative
approach. Future research in this field will undoubtedly benefit from the L-R method to address
several outstanding problems, such as evaluating fuzzy queueing systems’ performance metrics
with the Erlang service model.
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Abstract 

This article explores various methods and devices used for protecting overhead lines and substations 

from surges, particularly those induced by lightning strikes. Traditional surge protection methods 

such as lightning rods, arresters, and grounding systems are discussed, highlighting their 

limitations and challenges, especially in long-distribution networks. The study examines the 

development and implementation of novel surge protection devices, including nonlinear surge 

arresters, frequency-dependent devices (FDD), and multi-chamber arresters. Special attention is 

given to FDD, which utilizes ferromagnetic materials to create frequency-dependent resistance, 

effectively suppressing high-frequency overvoltages. Experimental results demonstrate the efficacy 

of FDD in reducing the amplitude of lightning-induced overvoltage pulses and enhancing the 

lightning resistance of overhead lines and substations. However, challenges such as insufficient 

information on device effectiveness, limited ohmic resistance at high frequencies, and size 

constraints hinder widespread adoption. The article concludes by emphasizing the need for further 

research to optimize FDD designs, increase active resistance, and assess operational effectiveness to 

facilitate broader deployment across different voltage classes. 

Keywords: overhead lines, substations, overvoltages, surge protection, surge 
arrester, skin effect, frequency-dependent device. 

I. Introduction

Protecting substations and overhead lines from surges is critical to ensuring reliable 
electrical service and preventing equipment damage. First, let's look at the classic means (methods) 
of surge protection. To protect overhead lines and substations from damage due to lightning 
strikes, special lightning protection devices are used. These devices include lightning protection 
cables, lightning rods, tubular arresters, valve arresters, nonlinear surge arresters, grounding 
devices, etc. 

The resistance values of the grounding of the supports play a significant role. Strictly speaking, 
grounding overhead line supports is not directly a measure for protection against lightning surges. 
However, despite this, it has a significant impact on lightning surge protection. It has a significant 
impact on the probability of reverse flashovers from the lightning protection support/cable to the 
phase wire. When reverse flashover occurs, high-frequency overvoltage pulses occur that cannot 
be suppressed by protective devices. Accordingly, they have a significant impact on substation 
equipment, such as transformers, and may have an impact on other equipment. 

The lightning protection cable is suspended on lines with a voltage of 110 kV and above, built 
on metal and reinforced concrete supports. On 110 - 220 kV lines with wooden supports and 35 kV 

RT&A, No 1 (82) 
Volume 20, March 2025 

683

mailto:naciba.piriyeva@asoiu.edu.az
mailto:nicat.memmedov.sa@asoiu.edu.az
mailto:sona.rzayeva@asoiu.edu.az


Najiba Piriyeva, Nijat Mammadov, Sona Rzayeva 
DEVELOPMENT OF NEW METHODS FOR PROTECTING 
SUBSTATION AND OVERHEAD LINES FROM OVERVOLTAGES 

lines, the cable is usually suspended only at the approaches to substations. Despite the widespread 
use of cables as a means of protection, there are often cases of lightning strikes into phase wires 
bypassing the lightning protection cable, which reduces its reliability as a means of protection; in 
addition, without good grounding, there is a high probability of reverse flashover to the phase 
wire, which is also dangerous factor. At the same time, cable lightning rods also do not provide the 
declared reliability of protection against lightning damage [1-4]. 

  To protect 110-500 kV overhead lines from lightning, the most common method of 
protection is the use of linear protective devices. The most common protective devices are pendant 
nonlinear surge arresters and linear arresters. It is worth noting that at present, there is no 
developed and approved universal method for using linear protective devices for overhead lines of 
various voltage classes. Therefore, operating organizations that own overhead lines experience 
certain difficulties in developing technical measures to protect problematic overhead lines. 

Surge arresters are installed mainly in networks of 110 kV and above, but they can and can be 
used in networks of 35 kV. Surge arresters allow you to deeply limit the amplitudes of incoming 
pulses and provide protection against overvoltages. However, SS have a number of significant 
disadvantages. Figure 1 shows a scheme of the operating principle of the surge arrester. 

Figure 1: Scheme of operation of the surge arrester 

  First of all, the effective operation of surge arresters is ensured only when installed 
simultaneously in all phases of the protected circuit on each support of the protected section of the 
route. This is a very expensive undertaking and is only applicable for relatively short or critical 
overhead lines. The absence of spark gaps causes the currents of the operating voltage of the 
network to flow through the surge arrester with a frequency of 50 Hz. If these currents are large, 
the varistor may overheat and the arrester may fail. A significant disadvantage of surge arresters is 
the dependence of the design on the voltage class and network characteristics. The greatest 
difficulties arise when developing surge arresters for long-distribution networks. This leads to the 
fact that for trouble-free operation of the surge arrester, an accurate selection of its parameters is 
necessary. The main factors necessary when choosing an arrester are: 
− maximum permissible voltage taking into account the duration of its impact;
− calculated pulse current;
− calculated switching current;
- energy intensity (throughput class).
          In some cases, the last two parameters are replaced by the ability to absorb electrical energy, 
expressed in kJ per 1kV Um [5-8]. 
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II. Materials and methods

In addition to common means of overvoltage protection, the development and 
implementation of new devices operating on various principles are actively underway: the 
combined use of an air gap and linear arresters, the use of surge arrester with a set of resistors and 
capacitors. However, often the devices retain the disadvantages of their prototypes, mainly: the 
need for a large number of devices, dependence on grounding, difficulty in installation and 
operation. 

There is a solution that consists in the use of nonlinear surge arresters built into insulator 
housings. These solutions can significantly reduce labor costs for transportation, installation and 
installation, since instead of two devices, one will be used. However, this leads to a more complex 
design of the device itself, a decrease in its reliability, and an increase in size and weight. The 
typical problem of devices with varistors also remains relevant: the difficulty of monitoring its 
serviceability. 

Also new is the concept of protective devices, the parameters of which vary depending on 
the frequency response of the incoming overvoltage. Thus, a combination of high-frequency 
magnetic material located on the main conductor with a parallel-connected resistance is proposed. 
According to the presented calculations and experiments, this combination is capable of 
suppressing and protecting against high-frequency overvoltages; this device is intended to 
suppress overvoltages with high dU/dt values, that is, with a high transconductance. However, the 
device requires tuning for a certain frequency range in which effective suppression will be 
achieved. 

One of the latest developments is systems consisting of multi-chamber arresters. They show 
high efficiency, which is confirmed by a number of works, in particular, they effectively reduce the 
number of outages of overhead lines. However, despite the high declared efficiency, these devices 
also have a number of significant drawbacks: to ensure reliable protection against lightning surges, 
it is necessary to install arresters on each support on each insulator, precise adjustment of the spark 
gap is necessary (if the device is used with it), as well as the need for reliable grounding to ensure 
efficient operation [9-14]. 

Application of skin effect in protection against high-frequency overvoltages. The most promising 
from the point of view of ease of operation and application seems to be the use of protective 
devices based on the use of composite materials. There are other individual developments of 
protective devices based on the skin effect principle. These devices can effectively suppress high-
frequency overvoltages, while being quite compact and their operation is not affected by the 
values of soil resistance or grounding of supports. The principle of their operation is to increase the 
resistance of the device as the frequency of the incoming signal increases. Figure 2 shows 
schematic diagrams for connecting protective devices: a nonlinear surge arrester and a frequency-
dependent device. 

a)
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b) 

Figure 2: Connection diagrams for protective devices: a) nonlinear surge arrester; b) frequency 

dependent device 

To use the skin effect, special devices have been developed, such as frequency-dependent 
devices (FDD). They are conductors covered with layers of ferromagnetic material with high 
magnetic permeability and high resistance. One of such materials is ferromagnetic tape 5BDSR. 
This material has high resistivity in the range of lightning (200-300 kHz) and switching frequencies 
(1-2 MHz). The use of this material has shown itself to be effective in early studies. On its basis, a 
frequency-dependent device (FDD) was created for a 110 kV overhead line. The developed 
frequency-dependent device is a phase aluminum wire wound into a coil with a ferromagnetic 
material deposited on it, which has high magnetic permeability and high resistivity. In this regard, 
the resistance of the wire becomes frequency-dependent, and when high-frequency signals pass 
through the wire, its resistance increases sharply [15-18].  

In normal operation, at a frequency of 50 Hz, the frequency-dependent wire has a resistance 
equal to the resistance of the uncoated phase wire, since the current flows through an aluminum 
conductor having a low resistivity. When a high-frequency signal passes, the resistance of the wire, 
and accordingly the device, increases sharply by tens of thousands of times, due to the action of 
the skin effect and the pushing of current from the aluminum conductor into a high-resistance 
layer of ferromagnetic material. 

Figure 3 shows the skin effect and, as a consequence, the uneven distribution of current in a 
round conductor. 

Figure 3: Skin effect and resulting nonuniform current distribution in round conductor 

RT&A, No 1 (82) 
Volume 20, March 2025 

686



Najiba Piriyeva, Nijat Mammadov, Sona Rzayeva 
DEVELOPMENT OF NEW METHODS FOR PROTECTING 
SUBSTATION AND OVERHEAD LINES FROM OVERVOLTAGES 

With a wire length of 120 meters used in the FDD, a resistance of 120 Ohms is provided at 
lightning frequencies (for comparison, the resistance of a wire without ferromagnetic tape for the 
same length is about 20 mOhm), which allows you to significantly reduce the amplitude of high-
frequency overvoltage pulses. In turn, the shape of the device in the form of a spiral creates a high 
reactance, which significantly reduces the steepness of the oncoming pulse, thereby reducing the 
danger of interturn short circuits in the protected equipment, primarily in power transformers. As 
a result, the operation of this device can significantly increase the lightning resistance of overhead 
lines and substations. Despite the high efficiency of the device, a number of points should be noted 
that do not allow these devices to be put into widespread use quickly: insufficient information on 
the effectiveness of the device’s suppression of high-frequency overvoltages, insufficiently high 
ohmic resistance at high frequencies, large dimensions, and the lack of devices for other classes 
voltages (for example, 35 kV). 

In this regard, it is necessary to assess the effectiveness of trial operation of the FDD, 
consider the possibilities of increasing the active resistance of the FDD, and evaluate the 
possibilities of optimizing the designs of the FDD [19-22]. 

Advantages of skin effect devices: 
- High efficiency of suppression of high-frequency overvoltages. Due to a sharp increase in

resistance at high frequencies, the pulse energy is dissipated in the device, minimizing its impact 
on the protected equipment. 

- Compact design. Skin effect devices can be quite compact compared to traditional
protective equipment. 

- Independence from ground resistance. Such devices are effective even under conditions of
high soil resistance, which makes them ideal for use in complex geological conditions. 

- Wide frequency range of operation. Due to the use of ferromagnetic materials with high
permeability, the devices can be configured to operate in a wide frequency range, including 
lightning and switching pulses. 

Limitations and areas for improvement. Despite their high efficiency, skin effect devices 
have a number of limitations, such as insufficient information on long-term reliability, relatively 
large dimensions and difficulty in setting up for certain voltage classes.  

Important areas of research are: 
1) Increasing active resistance at high frequencies;
2) Optimization of designs to reduce weight and dimensions;
3) Development of devices for lines with lower voltage classes, such as 35 kV;
4) Increased resistance to climatic and mechanical factors.
Thus, the use of the skin effect in protective devices provides enormous opportunities for

increasing the resistance of power transmission lines and substations to lightning and switching 
overvoltages. Improvement of this technology may become one of the key areas of development of 
power grid protection systems in the future [23-25]. 

III. Conclusions

    Traditional approaches such as lightning protection devices, surge arresters, and 
grounding systems are effective but come with limitations, especially in long-distribution 
networks. The development of new devices, including nonlinear surge arresters, frequency-
dependent devices (FDD), and multi-chamber arresters, presents promising solutions to address 
these limitations. The introduction of FDD, utilizing ferromagnetic materials to create frequency-
dependent resistance, demonstrates significant potential in reducing the amplitude of high-
frequency overvoltage pulses and enhancing the lightning resistance of overhead lines and 
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substations. Moving forward, it is crucial to conduct thorough assessments of the effectiveness of 
trial operations of FDD, explore methods to increase the active resistance, and optimize their 
designs.  

    Thus, the development and application of new methods and means of protection, taking 
into account both the amplitude and steepness of the pulses, becomes a necessity to provide more 
reliable and effective protection of substations and overhead lines from high-frequency 
overvoltages. Further research and innovation in this area could lead to the development of more 
effective and reliable protection measures, ultimately leading to increased stability and reliability 
of power supply.  
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Abstract

This research article attempts to establish and explore a case of two parameter Nwikpe distribution and
termed it as Area Biased C2N distribution. As the characteristics of Hydrogen per Oxide(H2O2) is quite
different from that of Water (H2O) even though both are the different combinations of the same elements
Oxygen & Hydrogen, the characteristics of initial distribution is also entirely different from that of the area
biased modified distribution. The implemented new distribution has distinct structural characteristics,
and its parameters are estimating using maximum likelihood estimation. Utilizing biomedical data, the
new distribution’s application has been examining to ascertain its superiority and utility. One lifetime
data set shows the mean reduction in blood glucose (mg/dL) after three days of the first usage of the
Metformin medicine from a random sample of 130 patients from a hospital at Chennai, TamilNadu with
type 2 diabetes mellitus by testing the FBS-Fasting Blood Glucose. The another set of lifetime data shows
the mean reduction in blood glucose (mg/dL) after each dosage of the FIASP insulin-medicine in alternate
days of a pancreatic cancer patient, noted for 63 days randomly. Both data set is going to fit to the new
distribution and analyze them, to determine the supremacy and usefulness.

Keywords: area biased distribution, length biased distribution, weighted distributions, reliability,
estimate.

1. Introduction

When samples from both the parent distribution and newly derived distributions can be obtained,
the concept of weighted distributions (WD) suggests a method to fit models to the unknown
weight function. The WD plays a remarkable role in better understanding of the standard
distributions and can extend distributions by adding flexibility, while dealing with the modeling of
statistical data when classical distributions cannot imply observations with the same probabilities.
The statistical explanation of WD & size biased distribution was made by Buckland and Cox [1]
within the renewal theory framework. If only the length in units considers for the weight function,
the WD becomes a length-biased distribution. Other environmental, econometric, and biomedical
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sampling problems, as well as a number of forestry applications, have brought up the length-
biased and area-biased distributions. Numerous scholars created significant area-biased weighted
probability models that have a significant impact on how data sets from diverse practical domains
are processed. Bashir and Mahmood [2] presented multivariate area-biased Lindley distribution.
The estimation of parameters of area biased Ailamujia distribution detailed by Rao and Pandey
[3]. Kayid et al. [4] explained the length-biased Rayleigh distribution. Oluwafemi and Olalekan
[5] investigated the exponentiated Weibull distribution biased by length and area. The weighted
quasi-Xgamma distribution was analyzed by Hassan et al. [6] with applications in survival times.
Elangovan et al. citeelanetal investigated the Samade distribution with length bias. Fazal [8]
provided specifics on the Poisson exponential distribution with area bias. Chouia and colleagues
[9] examined the size-biased Zeghdoudi distribution and its practical applications. Nwikpe and
Essi [10] have proposed the two parameter Nwikpe distribution (TPND), a continuous lifetime
distribution. Some of its statistical characteristics are discussed.

A Generalized Area-Biased Power Ishita Distribution with a biomedical data is studied and the
Survival time in days of lung cancer patients after their second cycle of chemotherapy is analyzed
and fitted with an area biased weighted distribution by Roshni et al. [11]. The relationship between
Pancreatic cancer and Diabetes, is analyzed and detailed by Teresa et al. [12]. A meta-analysis
of cohort studies based on Diabetes mellitus and risk of pancreatic cancer is studied by Qiwen
Ben [13]. To describe, diabetes mellitus correlates with increased risk of pancreatic cancer, a
population-based cohort study in Taiwan is conducted by Liao et al. [14].
Many biomedical data show non-symmetric nature. The data based on Blood sugar in some
situations exhibit positive skewness. The normal fasting blood glucose/sugar (FBS) ranges
between 70 mg/dL – 100 mg/dL (or 3.9 mmol/L – 5.6 mmol/L). If it is ranges 100 mg/dL – 125
mg/dL (or 5.6 mmol/L – 6.9 mmol/L) glycemia monitoring and lifestyle changes are required.

A diagnosis of diabetic is made if the FBS is 126mg/dL(7mmol/L) or higher on 2 separate
tests. When a person has low FBS concentration (hypoglycemia) which is less than 70 mg/dL
(3.9 mmol/L), they may experience palpitations, blurred vision dizziness, sweating and other
symptoms which require to be closely watched. Hyperglycemia -the increased FBS concentration -
is a sign of a raised risk of diabetes. FBS may be within normal range if a person does not diabetic
or if they are taking effective treatment with medication that lowers blood sugar in diabetics.
Mean FBS is used as a stand-in for diabetes treatment and for encouraging healthy eating &
lifestyle choices at the national level.

Metformin (Fortamet, Glumetza, others) is usually prescribed first for type 2 diabetes. Liver
Produces less glucose and sensitivity to insulin increases, making the body use insulin effectively.
One can use any medication that content Metformin, such as the 500mg Glyciphage SR tablet.
It controls the blood sugar levels. It is for the treatment of type 2 diabetes mellitus, a disorder
in which diet and exercise alone are insufficient to control blood sugar level, causing them to
rise above normal. It belongs to a class of medicines called biguanides. It works by reducing
the glucose production in the liver, raising the body’s sensitivity to insulin and delaying the
absorption of sugar from the intestines.

Pancreas produces Insulin, that enables our body to utilize glucose for energy. High blood
sugar- Hyperglycemias - results from insufficient insulin production or usage, results diabetes.
Insulin is to control blood sugar in people with condition in which the body does not make
insulin (type 1 diabetes) and therefore cannot control the amount of sugar in the blood or in
people with condition in which the blood sugar is too high (type 2 diabetes) because for whom
body does not produce or use. If the fasting plasma glucose is greater than 250 mg/dL or the
HbA1c is greater than 10% then Insulin therapy usually needed. The Hyperinsulinemia rapid rise
linked with type 2 diabetes and obesity, predicts a rise in pancreatic cancer frequency. Insulin
effects at different stages of pancreatic cancer progression are unclear.

FIASP is a fast-acting insulin. It is a type of insulin that’s spontaneously released into our
bloodstream. It is a solution in a vial, PenFill cartridge or FlexTouch pen. It is the same as the
insulin NovoRapid, with the addition of two ingredients, to increase the speed at which FIASP is
absorbed into the blood are niacinamide (Vitamin B3) and the amino acid L-arginine. Insulin in
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FIASP helps glucose enter cells from the blood and acts in the same method as the body’s own
insulin. This reduces the symptoms and complications of diabetes, and controls the level of blood
glucose.

2. Methods

I. Area Biased C2N Distribution (ABC2ND)

The probability density function ’(PDF) of TPND is,

f (x; θ, α) =
θ3

(θ5 + 2α + 6)
(θx3 + αx2 + θ3)e−θx; 0 < x < ∞, 0 < α, θ < ∞, (1)

and the Cumulative density function ’(CDF) of TPND is,

F(x; θ, α) =

(
1−

(
1 +

θ3x3 + (α + 3)(θ2x2 + 2θx)
(θ5 + 2α + 6)

)
e−θx

)
; 0 < x < ∞, 0 < α, θ < ∞. (2)

Let ’X’ be a negative random variable and has pdf f (x) and w(x) be a non-negative weight
function, then the pdf of a weighted random variable Xw is,

fw(x) =
w(x) f (x)
E(w(x))

, x > 0 where E(w(x)) =
∫

w(x) f (x)dx < ∞.

For various choices of weight function w(x), if w(x) = xc, the proposed distribution is mentioned
as weighted distribution. Here, c = 2, the weight function is taken as w(x) = x2 to formulate the
area biased version of TPND, and the pdf of the new distribution is obtained from,

fa(x) =
x2 f (x)
E(x2)

where E(x2) =
120 + 24α + 2θ5

θ2(θ5 + 2α + 6)
, as,

fa(x) =
x2θ5

(120 + 24α + 2θ5)
(θx3 + αx2 + θ3)e−θx, 0 < x, θ, α < ∞

and the CDF of ABC2ND can be determined as,

Fa(x) =
∫ x

0
fa(x)dx =

1
(120 + 24α + 2θ5)

(
θ6
∫ x

0
x5e−θxdx + αθ5

∫ x

0
x4e−θxdx + θ8

∫ x

0
x2e−θxdx

)
.

Let θx = t, then θdx = dt, implies dx = dt/θ. x =
t
θ

when x → x, and t → θx and as x → θ,
t→ 0 and by using usual Gamma Integral notations, the CDF of ABC2ND is,

Fa(x) =
1

(120 + 24α + 2θ5)

(
γ(6, θx) + αγ(5, θx) + θ5γ(3, θx)

)
(3)
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Figure 1: PDF of ABC2ND

Figure 2: CDF of ABC2ND

The Nature of PDF and CDF of ABC2ND is clear from the Figure 1 and Figure 2. ABC2ND is
non-symmetric. It is positively skewed. Hence it may show good fit for many real data set than
any conventional distribution.

II. Reliability and Hazard functions

Reliability function: The reliability function of ABC2ND is,

R(x) = 1− Fα(x) = 1− 1
(120 + 24α + 2θ5)

(
γ(6, θx) + αγ(5, θx) + θ5γ(3, θx)

)
.

Hazard function: The hazard function,

h(x) =
fa(x)

(1− Fa(x)
=

x2θ5 (θx3 + αx2 + θ3) e−θx

(120 + 24α + 2θ5)− (γ(6, θx) + αγ(5, θx) + θ5γ(3, θx))
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Figure 3: Reliability function

Figure 4: Hazard function

The Nature of Reliability Function and Hazard Function of ABC2ND is clear from the Figure 3
and Figure 4.

3. Results

I. Moments

Let X be a random variable following ABC2ND with parameters θ and α, then the rth order
moment E(Xr) is,

E(Xr) = µ′r =

∞∫
0

xr fa(x)dx =

∞∫
0

xr x2θ5

(120 + 24α + 2θ5)
(θx3 + αx2 + θ3)e−θxdx

=
θ5

(120 + 24α + 2θ5)

θ

∞∫
0

x(r+6)−1e−θxdx + α

∞∫
0

x(r+5)−1e−θxdx + θ3
∞∫

0

x(r+3)−1e−θxdx

. (4)
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By Simplifying the equation (4), we obtain

E(Xr) = µ′r =
Γ(r + 6) + αΓ(r + 5) + θ8Γ(r + 3)

θr(120 + 24α + 2θ5)
. (5)

Letting r = 1, 2, 3 and 4 in equation (5), we get the first four moments of ABC2ND as,

µ′1 =
720 + 120α + 6θ8

θ(120 + 24α + 2θ5)
, µ′2 =

5040 + 720α + 24θ8

θ2(120 + 24α + 2θ5)

µ′3 =
40320 + 5040α + 120θ8

θ3(120 + 24α + 2θ5)
, µ′4 =

362880 + 40320α + 720θ8

θ4(120 + 24α + 2θ5)
.

II. MGF and CF of ABC2ND Let a random variable X follows ABC2ND with parameters θ and
α, then the MGF is,

MX(t) = E(etx) =
∫ ∞

0
etx fa(x)dx.

Using Taylor’s series, we obtain

MX(t) = E(etx) =
∫ ∞

0

(
1 + tx +

(tx)2

2!
+ · · ·

)
fa(x)dx =

∫ ∞

0

∞

∑
j=0

tj

j!
xj fa(x)dx

=
∞

∑
j=0

tj

j!
µ′j Mx(t) = E(etx) =

∞

∑
j=0

tj

j!

(
Γ(j + 6) + αΓ(j + 5) + θ8Γ(j + 3)

θ j(120 + 24α + 2θ5)

)

Mx(t) = E(etx) =
1

(120 + 24α + 2θ5)

∞

∑
j=0

tj

j!θ j (Γ(j + 6) + αΓ(j + 5) + θ8Γ(j + 3)).

Similarly, the CF of ABC2ND is,

φx(t) =
1

(120 + 24α + 2θ5)

∞

∑
j=0

itj

j!θ j (Γ(j + 6) + αΓ(j + 5) + θ8Γ(j + 3)).

III. Maximum Likelihood Estimation (MLE) and Fisher’s Information Matrix (FIM) of ABC2ND
The MLE of the parameters of ABC2ND are estimated. Let X1, X2, . . . Xn be n random sample
from the ABC2ND, then the likelihood function

L(x) =
n

∏
i=1

fa(x)L(x) =
θ5n

(120 + 24α + 2θ5)n

n

∏
i=1

(
x2

i (θx3
i + αx2

i + θ3)e−θxi
)

. (6)

Taking log and differentiating with respect to θ and α, we get two Normal equations.

∂ log L
∂θ

=
5n
θ
− n

(
10θ4

(120 + 24α + 2θ5)

)
+

n

∑
i=1

(
(x3

i + 3θ2)

(θx3
i + αx2

i + θ3)

)
−

n

∑
i=1

xi = 0

∂ log L
∂α

= −n
(

24
(120 + 24α + 2θ5)

)
+

n

∑
i=1

(
x2

i
(θx3

i + αx2
i + θ3)

)
= 0.

Getting an algebraic solution is complicated here, hence apply some numerical methods like
Newton-Raphson approach to estimate the parameters of the distribution through R software. In
order to determine the confidence interval (CI), apply the asymptotic normality results. We know

RT&A, No 1 (82) 
Volume 20, March 2025 

695



Praseeja C B, Prasanth C B, C Subramanian, Unnikrishnan T
A MODIFIED WEIGHTED DISTRIBUTION · · ·

γ̂ = (θ̂, α̂) represents the MLE of the γ = (θ, α). We write,
√

n(γ̂− γ) → N2(0, I−1(γ)), where
I−1(γ) is FIM.
i.e.,

I(γ) = − 1
n

E
(

∂2 log L
∂θ2

)
E
(

∂2 log L
∂θ∂α

)
E
(

∂2 log L
∂α∂θ

)
E
(

∂2 log L
∂α2

)


E
(

∂2 log L
∂θ2

)
= −5n

θ2 − n
(
(120 + 24α + 2θ5)(40θ3)− (10θ4)2

(120 + 24α + 2θ5)2

)

+
n

∑
i=1

(
(θx3

i + αx2
i + θ3)(6θ)− (x3

i + 3θ2)2

(θx3
i + αx2

i + θ3)2

)

E
(

∂2 log L
∂α2

)
= n

(
576

(120 + 24α + 2θ5)2

)
−

n

∑
i=1

(
E(x2

i )
2

(θx3
i + αx2

i + θ3)2

)

E
(

∂2 log L
∂θ∂α

)
= n

(
(10θ4)(24)

(120 + 24α + 2θ5)2

)
−

n

∑
i=1

(
(x3

i + 3θ2)(x2
i )

(θx3
i + αx2

i + θ3)2

)
.

By I−1(γ) we estimate γ and utilized to attain an asymptotic CI for θ & α.

4. Discussion

I. Simulation Analysis
The simulated data from the pdf of ABC2ND is analyzed. The descriptive statistics for the same
is noted here at Table 1.

Table 1: The descriptive statistics of simulated data: ABC2ND, α = 3.9, θ = 1.95

Mean 17.1 Range 40.5
Standard Error 0.497 Minimum 1.4

Median 8.45 Maximum 41.9
Mode 3.2 Sum 85500

Standard Deviation 12.46 Count 5000
Kurtosis -0.73 Largest& Smallest 1.4 & 41.9

Pearson’s Skewness* 1.12 Confidence Level (95.0%) 0.9769

Karl Pearson’s Skewness = (Mean-Mode)/SD. The value of this coefficient will be zero for a
symmetrical distribution. If mean >mode, the coefficient of skewness is positive else negative.
For considerably skewed destitution this coefficient is lies between −1 and 1. If it is greater than
1 its highly positive skewed. Generally, if the distribution of data is skewed to the left, then mean
<median <mode. If the distribution of data is skewed to the right, then mode <median <mean.
Here from Figure 1 & Table 1, both cases imply the distribution is highly positive skewed.

II. Application
Hereby applying and analyzing a real data set for fitting ABC2ND in order to determine whether
the ABC2ND shows a better fit than TPN, Nwikpe, Komal and Lindley distributions.

Data 1: The real data set at (Table 2), shows the mean reduction in blood glucose (mg/dL) after
three days of the first usage of the Metformin medicine from a random sample of 130 patients
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Table 2: The mean reduction in blood glucose (mg/dL) by Metformin.

5.5 6.1 8.7 13.9 7.8 9.5 7.1 6.1 8.2 4.7 5.1 14.3 7.1
5.2 14.4 7.5 12.7 7.8 6.2 7.1 6.1 8 6.1 5.3 6.1 7.9
6.1 7.3 14.8 9.1 14.3 8.3 9.6 7.1 7.8 5.6 6.1 7.7 14.8
4.9 8.5 6.3 11.5 7.7 8.9 7.1 6.1 8 6.1 12.3 7.8 9.1
5 14.2 6.7 11.9 7.8 9 7.1 6.1 8 6.1 13.1 7.8 9.3
6.1 7.9 4.8 10.3 7.6 8.6 9.9 11.2 8 5.9 9.9 7.6 8.5
6.1 8.1 4.9 10.7 7.6 8.7 10 11.3 8 6 7.1 6.1 8
4.8 8.3 5.9 11.1 7.6 8.8 7.1 11.4 8 6.1 7.1 6.1 8
5.4 6.1 8.3 13.5 7.8 9.4 7.1 6.1 8.1 4.6 9.8 7.1 7.9
6.1 7.5 14.8 9.5 14.7 8.4 9.7 7.1 7.8 5.7 5.8 6.1 4.5

from a hospital at Chennai, TamilNadu with type 2 diabetes mellitus by testing the FBS-Fasting
Blood Glucose (Method: Hexokinase).

Here from Table 3. We get, the Mean >Median >Mode & Skewness = 0.8904 shows the data
is positively skewed. Hence the data is non-symmetric. Thereby we are trying to analyze the
goodness of fit of ABC2ND.

Table 3: The descriptive statistics of the data at Table 2. (n = 130)

Mean 8.1354 Minimum 4.5
Standard Error 0.2225 Maximum 14.8
Median 7.8 Sum 1057.6
Mode 6.1 Skewness 0.8904
SD 2.2910 Smallest & Largest 4.5 & 14.8
Kurtosis 0.7749 Confidence Level (95.0%) 0.4401

Data 2: The mean reduction in blood glucose (mg/dL) is noted Table 4, after each dosage of the
FIASP insulin - medicine in alternate days of a pancreatic cancer patient is noted for 63 days
randomly.

Table 4: The mean reduction in blood glucose (mg/dL) FIASP insulin.

3.2 3.3 3.6 7.8 3.2 7.5 8.2 11.8 7.1
7.7 16.2 14.4 16.5 3.8 3.2 8.5 15 3.2
14.5 16.3 7.1 16.6 3.2 3.1 8.6 15.1 3.2
7.1 3.2 7.2 16.7 14.8 3.5 8.7 15.2 3.2
4.3 3.3 7.3 3.2 3.4 3.2 7.4 15.3 14.7
16.8 3.2 3.7 16.3 7.1 7.6 8.3 3.2 4.4
16.9 16.1 3.9 16.4 3.2 3.2 8.4 14.9 14.6

Table 5: The descriptive statistics of the data at Table 4. (n = 63)

Mean 8.6 Minimum 3.1
Standard Error 0.663456 Maximum 16.9
Median 7.4 Sum 541.8
Mode 3.2 Smallest & Largest 3.1 & 16.9
S D 5.26 Skewness 1.038
Kurtosis -1.46265 Confidence Level (95.0%) 1.3262

Here the Mean >Median >Mode & Skewness = 1.038 shows a high positive skewness. Hence
the data is non-symmetric. Thereby we are trying to check the goodness of fit of ABC2ND.To the
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estimation of unknown parameters, and to determine the model comparison criterions, software
R is applied.

Table 6: MLE, S.E, −2 log L, AIC, BIC and AICC of fitted distributions (data from Table 2)

Dbn MLE S.E −2 log L AIC BIC AICC K-S P

ABC2N α̂ = 3.7725 α̂ = 1.5712 174.31 178.3 182.5 178.7 0.029 0.7981
θ̂= 1.83 θ̂ = 0.0001

TPN α̂ = 6.14 α̂ = 1.667 202.91 206.9 211.2 211.1 0.032 0.7777
θ̂ = 9.70 θ̂ = 7.10

Nwikpe θ̂ = 1.29 θ̂ = 0.087 201.33 203.3 205.4 203.3 0.039 0.6780

Lindley θ̂ = 0.57 θ̂ = 0.039 249.72 251.7 253.8 251.7 0.173 0.0459

Komal θ̂ = 0.51 θ̂ = 0.037 254.87 256.9 259.0 256.9 0.197 0.0450

Table 7: MLE, S.E, −2 log L, AIC, BIC, AICC (Data from Table 4)

Dbn MLE S.E −2 log L AIC BIC AICC K-S p
ABC2N α̂ = 3.5778 α̂ = 1.357 167.31 171.3 175.5 171.5 0.03 0.8101

θ̂ = 1.63 θ̂ = 0.0001

TPN α̂ = 6.47 α̂ = 1.67 195.91 199.9 204.1 200.1 0.03 0.7810
θ̂ = 9.80 θ̂ = 7.13

Nwikpe θ̂ = 1.79 θ̂ = 0.09 194.33 196.3 198.4 196.3 0.04 0.7670

Komal θ̂ = 0.51 θ̂ = 0.04 247.87 249.8 252.0 249.9 0.15 0.0590

Lindley θ̂ = 0.54 θ̂ = 0.04 242.72 244.7 246.8 244.7 0.12 0.0660

To compare the performance of ABC2ND over TPN, Nwikpe, Komal and Lindley distributions,
we consider criterions – AIC (Akaike Information Criterion, BIC (Bayesian Information Criterion),
AICC (Akaike Information Criterion Corrected) and −2 log L.The distribution is better if with
the lesser criterion values of −2 log L, AIC, BIC and AICC. Here, AIC = 2k ı2 log L, BIC = k log n,
and AICC=AIC+ 2k(k+1)

n−k−1 . Here, n = the sample size, k = the number of parameters and ı2 log L =
the maximized value of log-likelihood function. (Here K-S is Kolmogorov-Smirnov, p is p-value
at level of significance α = 5%). The ABC2ND has smaller BIC, AICC, AIC, and −2 log L values
than the TPN, Nwikpe, Komal, and Lindley distributions, according to the results shown above
in Tables 4 and 5. Implies that the ABC2ND shows a better fit over the other distributions for
such skewed biomedical data.

5. Conclusion

Hereby explored and studied a new distribution named as Area Biased C2N Distribution. The
developed new distribution is introduced by applying the area biased method to its initial
distribution. Some of its statistical characteristics like moments, shape and behaviour of PDF
and CDF, reliability function, hazard rate, MGF and CF are described. The parameters of the
distribution are estimated. Two different applications of the new distribution have been presented
to demonstrate its significance at biomedical data. The Data set 1 is the mean reduction in blood
glucose (mg/dL) after three days of the first usage of the Metformin medicine from a random
sample of 130 patients from a hospital at Chennai, TamilNadu with type 2 diabetes mellitus
by testing the FBS-Fasting Blood Glucose. And the data set 2 is the mean reduction in blood
glucose (mg/dL) is noted after each dosage of the FIASP insulin - medicine in alternate days of a
pancreatic cancer. It is concluded for both cases that the result developed for ABC2ND provides a
quite satisfactory fit over TPN, Nwikpe, Komal and Lindley distributions.
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Abstract

The ambiguous environment has been addressed with a variety of fuzzy sets and their extensions. The
Quadrasophic Fuzzy Set is one of the generalization of Fuzzy set to handle imprecise information
efficiently. It is defined with two new parameters. In this artifact, we defined the operations, theorems,
and relations of the Quadrasophic Fuzzy Set with pertinent examples. We also established a comparison
study with other existing models. Additionally, the integration of Quadrasophic Fuzzy data with the
TOPSIS approach to solve the Multi Criteria Decision Making problem is proposed and illustrated
by examining the relationship between employee stress levels and their self-esteem, which can trigger
obsessive-compulsive disorder, using real-life data. The results are analyzed with SPSS software.

Keywords: Quadrasophic Fuzzy set, Quadrasophic Fuzzy Relation, Max-Min Composition,
Decision making

1. Introduction

Fuzzy set and its extensions are helpful to handle the uncertain situations. One of the fuzzy
set extensions is an Intuitionistic fuzzy set ( IFS) .The framework of the conception Intuitionistic
fuzzy set makes us to analyze the uncertain environment. IFS presents the sum of membership
degree and the non-membership degree is less than one [5] ,[21]. The IFS has its wide range
applications in many real life situations inbuilt with uncertainty. Also, the idea of IFS has been
applied in different areas such as medication, business, decision making [9] [19].

For a case, if the sum of degrees of membership grade and non membership grade is
not less than one,then the IFS cannot be applicable. To overcome the shortcoming exists in IFS,
the concept of Pythagorean fuzzy set is established by R. Yager [21]. In Pythagorean fuzzy set,
the sum of squares of membership degree and non membership degree lies between zero and
one. Even though PFS is the extension of fuzzy set it has similar feature of IFS. Many researchers
widened the theoretical concept of PFS [22] .PFS’s special form to handle imprecise data provoked
several authors to extend numerous operators in PFS and applied in various fields [1].

Bipolar fuzzy set represents the set with satisfaction level of property which ranges in [ 0,
1] and satisfaction level of implicit counter property ranges in [ -1, 0] [23] [24].Bipolar can handle
the situations characterized by positive and negative membership without hesitant. Several author
extended the Bipolar idea [7] and applied in many fields to handle the bipolarity situation [14],
[17],[15], [16] .The idea of neutrality was initially presented in Picture Fuzzy set. Picture fuzzy
set represents positive, negative and neutral grade ranges in [ 0, 1] [8]. Picture fuzzy set has its
vibrant applications in many fields including Artificial intelligence, medication, business, neutral
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networks and data coding. Neutrosophic fuzzy set presents the three aspects such as truthiness,
falsity and the indeterminancy whose sum lies between one and three [6], [20] .There exist many
extensions of fuzzy set and many blended fuzzy theoretical idea like bipolar picture fuzzy set [18]
, neutrosophic- bipolar fuzzy set [13] to tackle the imprecision information. Along with polarity,
indecisiveness and the influence of environment cannot be found with the existing extensions
of fuzzy sets. The membership and non-membership divisions will not aid us in determining a
definitive answer to the underlying issue. New parameters are needed to determine the absolute
solution. The influential rate that altered the membership and non-membership ranges can result
in new parameters. Further dimensions are produced by analyzing the influential rates that alter
the membership and non-membership ranges. The modern analysis of membership grades results
in two new memberships. Hence, Quadrasophic Fuzzy Set is defined with four membership
functions [3], [4].

In this artifact, Section 2 provides some basic concepts of fuzzy sets. Section 3 presents
the properties and definitions of QFS whereas in section 4 gives the operations, relations and
advantages of Quadrasophic Fuzzy Model. To promote the validation results of QFS section
5 presents the comparative study with illustration in medical diagonsis.Using the Max-Min
composition of QFS, Section 6 demonstrates how QFS may be applied to ascertain the relationship
between self-esteem and stress levels that cause OCD. Section 7 emphasizes the significance of
Quadrasophic Fuzzy Set (QFS) in analyzing the environmental impact through statistical analysis
using SPSS. Finally, section 8 gives the conclusion of QFS with its scope for future research.

2. Preliminaries

Fuzzy sets [11]: A non-empty fuzzy set F in the universe U is defined as F = {(x, µ (x)) : x ∈ X}
where µ (x) ∈ [ 0, 1] is the degree of membership value of F.

Intuitionistic Fuzzy sets [11]: An intuitionistic fuzzy set I in the non-empty set X is defined
as I = {( x, µ( x) , ν( x) ; x ∈ X) } where the function µ( x) , ν( x) : X → [ 0, 1] represents the mem-
bership degree and the non- membership degree value with the condition 0 ≤ µ( x) + ν( x) ≤ 1.
The value π( x) = 1− µ( x) − ν( x) is named as the degree of indeterminacy ∀x ∈ X.

Pythagorean Fuzzy set [21]: A Pythagorean fuzzy set P, is defined as P = {( x, µ( x) , ν( x) ; x ∈
X} where the function µ (x) , ν (x):X → [ 0, 1] represents the membership degree and the
non- membership degree value with the condition 0 ≤ µ2

P( x) + ν2
P( x) ≤ 1. The value

πP (x) =
√

1− ( µ2
P( x) − ν2

P( x) ) is named as the degree of indeterminacy for ∀x ∈ X.

Quadrasophic fuzzy set [3]: The Quadrasophic fuzzy set q on the set U is defined as

q = {( x, ηq( x) , ληq( x) , λµq( x) , µq( x) ) |x ∈ U}

where the degree of positive membership grade is µq( x) : U → [ 0, 1] , the degree of neg-
ative membership is ηq( x) : U → [−1, 0] the degree of restricted positive membership is
λµq( x) : U → [ 0, 0.5] the degree of restricted negative membership is ληq( x) : U → [−0.5, 0]
And the condition follows: −1 ≤ µq( x) + ηq( x) ≤ 1, −0.5 ≤ λq ≤ 0.5 and 0 ≤ µ2

q + η2
q + λ2

q ≤ 3
for all x ∈ U, such that λq = Length of ( λµq , ληq) .

Max-Min-Max composition [9]: Let A( x → y) and B( y → z) be any to IF relations. Then
the Max-min- Max composition of as A ◦ B from x to z, whose membership functions and
non membership functions are represented as follows: νB◦A( x, z) = ∧y[ νA( x, y) , νB( y, z) ] ,
µB◦A( x, z) = ∨y[ µA( x, y) , µB( y, z) ] for all x ∈ X, y ∈ Y, ( x, y) ∈ X × Y where ∧ = min,
∨ = max.
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Score Function [12]: Let P = ( x, µP( x) , νP( x) ; x ∈ X) be the PFS in the non-empty set X.
Then, the score- valued function of PFS is defined as score ( P) = ( µP( x) ) 2 − ( νP( x) ) 2, where
score(P) ∈ [−1, 1] .

3. Quadrasophic Fuzzy Sets

A Quadrasophic fuzzy set (QFS) is a fuzzy set intended to address environmental impact
rates. It aims to attain the "restricted level" in both positive and negative polarity, where the rate
at which a condition or implicit counter condition is partially satisfied is known as the "reluctant
value."

The complex structure of the set will not be disclosed by the degree of satisfaction prop-
erty and its implicit counter-property. Furthermore, it must be evident which subgroups exhibit
varying degrees of reluctance on both the positive and negative sides. The partial counter implicit
property has a level of tentative fixation of [-0.5, 0], whereas the partial satisfaction property
has a level of [0, 0.5]. The subset explains how the level of ambiguity or influence impacts the
satisfaction rate in the property and explicit counter-property.

The refusal of the positive and negative membership grades is referred to as "restrictive
positive membership" and "restrictive negative membership," respectively. Restricted positive and
restricted negative membership are two additional memberships that we examine in addition to
positive and negative membership to obtain more accurate findings [3]. The margin for restricted
membership is located at the crossover point. Restricted membership allows us to provide more
precise results by determining the impact range.

Quadrasophic Fuzzy Set: [3] The Quadrasophic fuzzy set (QFS) defined on X is represented
as

Q = {( x, η( x) , λη( x) , λµ( x) , µ( x) ) |x ∈ X}

In Q, µ( x) : X → [ 0, 1] represents the degree of positive membership of x , η( x) : X → [−1, 0]
represents the degree of negative membership of x, λµ( x) : X → [ 0, 0.5] represents the degree of
restricted positive membership of x ,λη( x) : X → [−0.5, 0] represents the degree of restricted
negative membership of x. The inequality −1 ≤ µ( x) + η( x) ≤ 1, −0.5 ≤ λ ≤ 0.5 and
0 ≤ µ2 + η2 + λ2 ≤ 3 holds for every x ∈ X, where λ = Length of ( λµ, λη) .
The term QFS( x) refers to the set of all Quadrasophic Fuzzy Set on X.

Remark 1. If µ( x) 6= 0, η( x) = λµ( x) = λη( x) = 0 then Q is a fuzzy set of the form
< x, µ( x) >.

3.1. Properties of Quadrasophic Fuzzy Sets

Properties:

1. If µ( x) 6= 0, η( x) 6= 0, λµ( x) = λη( x) = 0 then Q reduces to a bipolar fuzzy set.

2. If µ( x) 6= 0, η( x) = 0, λµ( x) = λη( x) = 0 then Q is a high positive membership.

3. If µ( x) = 0, η( x) 6= 0, λµ( x) = λη( x) = 0 then Q is a high negative membership.

4. If µ( x) 6= 0, λµ( x) 6= 0, η( x) = λη( x) = 0 then Q is a restricted positive membership.

5. If µ( x) = 0, λµ( x) = 0, η( x) 6=, λη( x) 6= 0 then Q is a restricted negative membership.

6. If µ( x) 6= 0, η( x) 6= 0, λµ( x) 6= 0, λη( x) 6= 0 then it is Quadrasophic fuzzy set.

Remark 2. The empty Quadrasophic fuzzy set is defined as Q0 = ( 0, 0, 0, 0) and complete
Quadrasophic fuzzy set is defined as Q1 = (−1,−0.5, 0.5, 1) for each x ∈ X.
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Subset [3]: Let Q1, Q2 ∈ Q defined on the non - empty set X then Q1 is the subset
of Q2 denoted by Q1 ⊆ Q2, if for each x ∈ X; ηQ1( x) ≥ ηQ2( x) , ληQ1( x) ≥ ληQ2( x) ,
λµQ1( x) ≤ λµQ2( x) , µQ1( x) ≤ µQ2( x) .

Complement of Quadrasophic Fuzzy Set[3]: The complement of the set Q1 ∈ Q in X is
represented as QC

1 and is defined as QC
1 = ( ηC, λC

η , λC
µ , µC), where ηC = −1− η, λC

η = −0.5− λη

, λC
µ = 0.5− λµ and µC = 1− µ.

Intersection and Union of QFS [3]: The intersection of Q1 and Q2 in Quadrasophic Fuzzy
Set is defined as:

Q1∩Q2 = ( ηQ1( x) ∨ ηQ2( x) , ληQ1
(x) ∨ληQ2

(x) , λµQ1
(x) ∧λµQ2

(x) , µQ1( x) ∧µQ2( x) ) , ∀x ∈ X.

The union of Q1 and Q2 in Quadrasophic fuzzy set is defined as:

Q1∪Q2 = ( ηQ1( x) ∧ ηQ2( x) , ληQ1
(x) ∧ληQ2

(x) , λµQ1
(x) ∨λµQ2

(x) , µQ1( x) ∨µQ2( x) ) , ∀x ∈ X.

Equal Set[3]: Let Q1, Q2 ∈ Q defined on the non empty set X then Q1 is equal to Q2 denoted
by Q1 = Q2 if for each x ∈ X;

ηQ1( x) = ηQ2( x) , ληQ1
(x) = ληQ2

(x) , λµQ1
(x) = λµQ2

(x) , µQ1( x) = µQ2( x) .

4. Certain operations on Quadrasophic Fuzzy Sets

Theorem 1. Let Q1, Q2, Q3 ∈ Q then it satisfy the following properties.
i) Q1 ⊆ Q2, Q2 ⊆ Q3 then Q1 ⊆ Q3.
ii) The operations intersection and union are commutative.
iii) The operations intersection and union are distributive.
iv) The operations intersection and union are associative.
v) The operations intersection and union satisfies the De-Morgan’s rule.

Proof. i) By using the Subset definition , Q1 ⊆ Q2 if ηQ1( x) ≥ ηQ2( x) , ληQ1
(x) ≥ ληQ2

(x) ,
λµQ1

(x) ≤ λµQ2
(x) , µQ1( x) ≤ µQ2( x). If Q2 ⊆ Q3 then ηQ2( x) ≥ ηQ3( x) , ληQ2

(x) ≥ ληQ3
(x) ,

λµQ2
(x) ≤ λµQ3

(x) , µQ2( x) ≤ µQ3( x).
Then, obviously Q1 ⊆ Q3.

ii) By the definition of Intersection,

Q1 ∩Q2 = {max( ηQ1( x) , ηQ2( x) ) , max( ληQ1
(x) , ληQ2

(x) ) ,

min( λµQ1
(x) , λµQ2

(x) ) , min( µQ1( x) , µQ2( x) ) }

Q2 ∩Q1 = {max( ηQ2( x) , ηQ1( x) ) , max( ληQ2
(x) , ληQ1

(x) ) ,

min( λµQ2
(x) , λµQ1

(x) ) , min( µQ2( x) , µQ1( x) ) }

Therefore, Q1 ∩Q2 = Q2 ∩Q1.
In similar way, we show Q1 ∪Q2 = Q2 ∪Q1.
iii)

Q2 ∩Q3 = {max( ηQ2( x) , ηQ3( x) ) , max( ληQ2
( x) , ληQ3

( x) ) ,

min( λµQ2
( x) , λµQ3

( x) ) , min( µQ2( x) , µQ3( x) ) }
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Q1 ∪ ( Q2 ∩Q3) = ( [min{ηQ1( x) , max( ηQ2( x) , ηQ3( x) ) }] ,

[min{ληQ1
( x) , max( ληQ2

( x) , ληQ3
( x) ) }] ,

[max{λµQ1
( x) , min( λµQ2

( x) , λµQ3
( x) ) }] ,

[max{µQ1( x) , min( µQ2( x) , µQ3( x) ) }] ) .

Q1 ∪Q2 = {min( ηQ1( x) , ηQ2( x) ) , min( ληQ1
(x) , ληQ2

(x) ) ,

max( λµQ1
(x) , λµQ2

(x) ) , max( µQ1( x) , µQ2( x) ) }

Q1 ∪Q3 = {min( ηQ1( x) , ηQ3( x) ) , min( ληQ1
(x) , ληQ3

(x) ) ,

max( λµQ1
(x) , λµQ3

(x) ) , max( µQ1( x) , µQ3( x) ) }

( Q1 ∪Q2) ∩ ( Q1 ∪Q3) = ( [max{min( ηQ1( x) , ηQ2( x) ) , min( ηQ1( x) , ηQ3( x) ) }] ,

[max{min( ληQ1
(x) , ληQ2

(x) ) , min( ληQ1
(x) , ληQ3

(x) ) }] ,

[min{max( λµQ1
(x) , λµQ2

(x) ) , max( λµQ1
(x) , λµQ3

(x) ) }] ,

[min{max( µQ1( x) , µQ2( x) ) , max( µQ1( x) , µQ3( x) ) }] ) .

Hence, Q1 ∪ ( Q¬2 ∩Q3) = ( Q1 ∪Q2) ∩ ( Q1 ∪Q3) .
In similar way we can prove, Q1 ∩ ( Q¬2 ∪Q3) = ( Q1 ∩Q2) ∪ ( Q1 ∩Q3) .
iv)

Q1 ∪Q2 = {min( ηQ1( x) , ηQ2( x) ) , min( ληQ1
(x) , ληQ2

(x) ) ,

max( λµQ1
(x) , λµQ2

(x) ) , max( µQ1( x) , µQ2( x) ) }

Q1 ∪ ( Q2 ∪Q3) = ( [min{min( ηQ1( x) , ηQ2( x) ) , ηQ3( x) }] ,

[min{min( ληQ1
( x) , ληQ2

( x) ) , ληQ3
( x) }] ,

[max{max( λµQ1
( x) , λµQ2

( x) ) , λµQ3
( x) }] ,

[max{max( µQ1( x) , µQ2( x) ) , µQ3( x) }] ) .

Q2 ∪Q3 = {min( ηQ2( x) , ηQ3( x) ) , min( ληQ2
( x) , ληQ3

( x) ) ,

max( λµQ2
( x) , λµQ3

( x) ) , max( µQ2( x) , µQ3( x) ) }

Q1 ∪ ( Q2 ∪Q3) = ( [min{ηQ1( x) , min( ηQ2( x) , ηQ3( x) ) }] ,

[min{ληQ1
( x) , min( ληQ2

( x) , ληQ3
( x) ) }] ,

[max{λµQ1
( x) , max( λµQ2

( x) , λµQ3
( x) ) }] ,

[max{µQ1( x) , max( µQ2( x) , µQ3( x) ) }] ) .

Hence, ( Q1 ∪Q2) ∪Q3 = Q1 ∪ ( Q2 ∪Q3) .
In this way, we can prove ( Q1 ∩Q2) ∩Q3 = Q1 ∩ ( Q2 ∩Q3) .

iv) By using definition, we can prove
Q1 ∪Q2 = Q1 ∩Q1 and Q1 ∩Q2 = Q1 ∪Q2. �
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Theorem 2. Let Q1, Q2, Q3 ∈ Q then the result would be as follows:

1. Law of Idempotent: Q1 ∪Q1 = Q1 ∩Q1 = Q1.

2. Law of Absorption: Q1 ∪ ( Q1 ∩Q2) = Q1, Q1 ∩ ( Q1 ∪Q2) = Q1.

3. ( QC
1 )

C
= Q1.

4. Q1 ∩Q2 ⊂ Q1 and Q1 ∩Q2 ⊂ Q2.

5. Q1 ⊂ Q1 ∪Q2 and Q2 ⊂ Q1 ∪Q2.

6. I f Q1 ⊂ Q2 and Q2 ⊂ Q3 then Q1 ⊂ Q3.

7. I f Q1 ⊂ Q2 then Q1 ∩Q3 ⊂ Q2 ∩Q3 and Q1 ∪Q3 ⊂ Q2 ∪Q3.

Proof. By using Theorem 1 and definitions of Quadrasophic Fuzzy Set, the results are obvious.
�

Generalization of Intersection and Union: Let X be a non- empty set and let ( Qs) s∈Q ⊂ Q.
i) The intersection of ( Qs) s∈Q denoted by (∩s∈QQs) in a Quadrasophic fuzzy set is defined as,

(∩s∈QQs) ( x) = {maxs∈Q ηs( x) , maxs∈Q ληs( x) ,

mins∈Q λµs( x) , mins∈Q µs( x) }, ∀x ∈ X.

ii) The union of ( Qs) s∈Q denoted by (∩s∈QQs) in a Quadrasophic fuzzy set is defined as,

(∪s∈QQs)( x) = {mins∈Q ηs( x) , mins∈Q ληs( x) ,

maxs∈Qλµs( x) , maxs∈Q µs( x) }, ∀x ∈ X.

Generalization of Laws: Let ( Qs) s∈Q ⊂ Q be defined in the non empty set X,
i) Generalization of Distributive laws:

Q ∩ (∪s∈QQs) ( x) = ∪s∈Q( Q ∩Qs)

ii) Generalization of De-Morgan’s law:

(∪s∈QQs)
C( x) = (∩s∈QQC

s )

(∩s∈QQs)
C( x) = (∪s∈QQC

s ) .

Measures of Distance: 1.The normalized Hamming distance between any QFS set Q1, Q2 ∈
Q( x) is defined as,

dQh( Q1, Q2) =
1

2n

n

∑
i=1

[
∣∣∣ηQ1( xi) )

2 − ( ηQ2( xi) )
2
∣∣∣+ ∣∣∣( ληQ1

(xi) )
2 − ( ληQ2

(xi) )
2
∣∣∣

+
∣∣∣( λµQ1

(xi) )
2 − ( λµQ2

(xi) ) )
2
∣∣∣+ ∣∣∣( µQ1( xi) )

2 − µQ2( xi) )
2
∣∣∣] .

2. The normalized Euclidean distance between any QFS set Q1, Q2 ∈ Q( x) is defined as,

dQh( Q1, Q2) =

√
1

2n

n

∑
i=1

[ ηQ1( xi) ) 2 − ( ηQ2( xi) ) 2] 2 + [ ]( ληQ1
(xi) ) 2 − ( ληQ2

(xi) ) 2] 2

+[ ( λµQ1
(xi) ) 2 − ( λµQ2

(xi) ) ) 2] 2 + [ ( µQ1( xi) ) 2 − µQ2( xi) ) 2] 2

Quadrasophic Fuzzy Relation: A subset of the Quadrasophic fuzzy set X×Y is the Quadra-
sophic fuzzy relation R represented by R = {( x, y, ) , ηR( x, y) , ληR( x, y) , λµR( x, y) , µR( x, y) |x ∈
X, y ∈ Y} where,
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ηR( x) : X → [−1, 0]
ληR( x) : X → [−0.5, 0]
λµR( x) : X → [ 0, 0.5]

µR( x) : X → [ 0, 1]

satisfy the conditions for all ( x, y) ∈ ( X×Y) , −1 ≤ µR( x) + ηR( x) ≤ 1, −0.5 ≤ λR ≤ 0.5 and
0 ≤ µ2

R + η2
R + λ2

R ≤ 3 where λR = Length of ( λµR, ληR) . Let QFR( X×Y) denotes the set of all
Quadrasophic fuzzy relation on X.

Max-Min-Max Function: If Q1, Q2 ∈ QFS( X) are two QFR and Q1( x → y) , Q2( y → z) .
Then, max-min-max composition as Q1 ◦Q2 from x to z, whose membership functions are repre-
sented as follows:
ηQ2◦Q1( x, z) = ∧y max[ ηQ1( x, y) , ηQ2( y, z) ]
ληQ2◦Q1

( x, z) = ∧y max[ ληQ1
( x, y) , ληQ2

( y, z) ]
λµQ2◦Q1

( x, z) = ∨y min[ λµQ1( x, y) , λµQ2
( y, z) ]

ηQ2◦Q1( x, z) = ∨y min[ µQ1( x, y) , µQ2( y, z) ]
∀x ∈ X, y ∈ Y , ( x, y) ∈ X×Y where ∧ = min , ∨ = max.

Score value function: Let Q = ( x, η( x) , λη( x) , λµ( x) , µ( x) ) be the QFS inX. Then,

the score- valued function sv( Q) of Q is defined as sv( Q) =
µ( x) +λµ( x) +η( x) +λη( x)

3 , where
sv( Q) ∈ [−1, 1] .

4.1. Advantages of the Quadrasophic Fuzzy model

The following Table 1 shows the assessment and advancement of the proposed model with respect
to the existing models of fuzzy set.

Table 1: Extensions of Fuzzy theoretical set with QFS assessment level

Grade\Theoretical Set Satisfaction Neutral Dissatisfaction Bipolarity Restricted
Bipolarity

Fuzzy set Yes - - - -
Bipolar Fuzzy set Yes - - Yes -
Picture Fuzzy set Yes Yes Yes - -
Quadrasophic Fuzzy set Yes - Yes Yes Yes

Table 2: Patient and symptom relational values in terms of QFS

Q1 δ1 δ2 δ3 δ4 δ5

a1 (-0.1,-0.1, 0.4,0.8) (-0.1,-0.1, 0.3,0.6) (-0.8,-0.4,0.1,0.2) (-0.1,-0.1,0.3,0.6) (-0.6,-0.3,0.1,0.1)
a2 (-0.8,-0.4,0,0) (-0.4,-0.2,0.2,0.4) (-0.1,-0.1,0.3,0.6) (-0.7,-0.4,0.1,0.1) (-0.8,-0.4,0.1,0.1)
a3 (-0.1,-0.1,0.4,0.8) (-0.1,-0.1,0.4,0.8) (-0.6,-0.3,0,0) (-0.7,-0.4,0.1,0.2) (-0.5,-0.3,0,0)
a4 (-0.1,-0.1,0.3,0.6) (-0.4,-0.2,0.3,0.5) (-0.4,-0.2,0.2,0.3) (-0.4,-0.2,0.2,0.3) (-0.4,-0.2,0.2,0.3)

5. Test and comparison analysis

This segment provides an application of the Quadrasophic fuzzy set in medical diagnosis.
Several authors have done their research work in medical diagnosis with various extensions
of the fuzzy set. The medication deals with the environment of ambiguity. In addition, the
Quadrasophic Fuzzy Set includes the impact of the environment as one of its membership values,
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Table 3: Symptoms and diseases relational values in terms of QFS

Q2 t1 t2 t3 t4 t5

δ1 (0, 0, 0.2,0.4) (0,0,0.4,0.7) (-0.3,-0.2, 0.2,0.3) (-0.7,-0.4 ,0.1,0.1) (-0.8,-0.4 ,0.1,0.1)
δ2 (-0.7,-0.4, 0.1,0.1) (-0.9,-0.5, 0,0) (-0.7,-0.4,0.1,0.2) (0,0,0.4,0.8) (-0.8,-0.4, 0.1,0.2)
δ3 (-0.3,-0.2, 0.2,0.4) (0,0,0.4,0.7) (-0.6,-0.3,0.1,0.2) (-0.7,-0.4,0.1,0.2) (-0.8,-0.4,0.1,0.2)
δ4 (-0.7,-0.4,0.1,0.1) (-0.8,-0.4, 0.1,0.1) (-0.9,-0.5, 0.1,0.1) (-0.7, -0.4, 0.1, 0.2) (-0.1,-0.1, 0.4,0.8)

Table 4: Relational values of patient and diseases in terms of QFS

Q3 t1 t2 t3 t4 t5

a1 (-0.7,- 0.4, 0.2,0.4) ( -0.8,-0.4, 0.4,0.7) (-0.7,-0.4, 0.3,0.6) (-0.6,-0.3 ,0.1,0.2) (-0.8,-0.4 ,0.1,0.2)
a2 (-0.7,-0.4, 0.2,0.3) (-0.8,-0.4,0.2,0.2) (-0.8,-0.4, 0.2,0.4) (-0.7,-0.4, 0.3,0.6) (-0.8,-0.4, 0.1,0.1)
a3 (-0.6,-0.3, 0.2,0.4) (-0.6,-0.3, 0.4,0.7) (-0.6,-0.3,0.3,0.6) (-0.7,-0.4, 0.1,0.2) (-0.7,-0.4, 0.1,0.2)
a4 (-0.4,-0.2, 0.2,0.4) (-0.4,-0.2, 0.4,0.7) (-0.4,-0.2, 0.3,0.5) (-0.4,-0.2, 0.2,0.3) (-0.4,-0.2,0.2,0.3)

which will aid in determining the best result.

Now, consider the database in medical analysis [9], [10] and will solve using the Quadra-
sophic Fuzzy set. Suppose four patients ai = {Sanjeev− a1, Sam− a2, Sarjesh− a3, Sarath− a4} af-
fected with the disease, whose symptoms are δi = {Temperature− δi, Headache− δ2, StomachPain−
δ3, Cough− δ4, ChestPain− δ5}. Consequently, the collection of ailments that the medical advisor
specified is ti = {Viral f ever− t1, Malaria− t2, Typhoid− t3, StomachProblem− t4, Heartproblems−
t5}. The relation Q1( ai → δi) between patients and symptoms and the relation Q2( δi → ti)
between symptoms and illness is represented in Table 2 and 3. The Quadrasophic fuzzy relation

Table 5: Ranking value of patient and diseases

Q3 t1 t2 t3 t4 t5

a1 0.0667 0.2667 0.1667 -0.1 0
a2 0.033 0.033 0.1 0.1667 0.033
a3 0 0.1667 0.1 -0.033 -0.033
a4 -0.1 0.0667 -0.033 -0.133 -0.133

of compositional value Q1 ◦ Q2 is represented in Table 4. The Quadrasophic fuzzy relation of
compositional value is represented in Table 4.

< =
(−1− ηQ( ai, t) ) + (−0.5− ληQ( ai, t) ) + µQ( ai, t) + λµQ( ai, t)

3

is the formulation to find the rank value, which is presented in Table 5.
It is clear that Sajeev, Sarjesh and Sarath are suffering from Malaria and Sam is suffering from

Stomach problem.

5.1. Similarity Test

To corroborate, the Quadasophic Fuzzy Set method gives accurate results than the existing
methods. We conduct the similarity test, and the results of various extensions of the existing
fuzzy set model are presented in the following Table 6.

The results obtained in QFS are identical with the existing results and also relatively
accurate compared to the values obtained by the other existing methods. In addition, taking the
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Figure 1: Division of OCD Category

reluctant rate into account in QFS yields a negative ranking, which indicates a person’s deficiency
rate. Based on this observation, the proposed method’s verification yields better and more precise
results than the existing method.

Table 6: Comparative Analysis results

Fuzzy set Environment Results

Medical Diagnosis under IFS [9] Malaria : a1, a3, a4 Stomach problem: a2
a1, a3, a4 = 0.68 and a2 = 0.57

Medical Diagnosis under Bipolar valued Malaria: a1, a3, a4 Stomach problem: a2
fuzzy sets [10] a1 = 1.25, a3 = 1.15, a4 = 1.05,

and a2 = 1.15
QFS method [3] Malaria: a1, a3, a4 Stomach problem: a2

a1 = 0.2667, a3 = 0.1667, a4 = 0.0667,
and a2 = 0.1667

6. Assessing stress level and self-esteem connection with real-life data

using QF-TOPSIS method

Obsessive Compulsive Disorder (OCD) is a condition characterized by repetitive actions
due to unnecessary thoughts and fears. OCD is a disorder characterized by repetitive cleaning,
arranging, and washing actions, often unknowingly. It affects 4 out of 100 people in India and
can be caused by genetics, brain abnormalities, or the environment. The exact cause is uncertain,
but the environment can increase or decrease OCD levels, leading to emotional impairments
and increased stress, exacerbating the condition.The environment plays a significant role in this
disorder, and stress is a significant factor.

To examine the stress factor triggers OCD disorder, a survey is carried out among Tamil
Nadu students and working persons to determine stress levels, self-esteem and the influence of
surroundings on mental health. The survey contains questions, related to OCD subcategories
like cleaning, arranging, washing, and checking. The data is categorized into four groups based
on the different categories, with the percentages of each category at normal and abnormal rates
depicted in Figures 1 and 2 respectively. The Quadrasophic Fuzzy Set simplifies the investigation
of OCD. The data is categorized as follows:
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Figure 2: Representation of category report for the OCD survey

η− represents the level of abnormal behavior
λη−stress level from the environment
λµ− self esteem level
µ− represents the level of normal behavior.

The TOPSIS [1] [2] approach is integrated with Quadrasophic Fuzzy data to identify the
most OCD-affected category of people based on specific criteria in multi-criteria decision-making.
The set of alternatives Qi = {Q1, Q2, Q3, Q4} represents individuals with different self-esteem
levels, with Q1 representing high-self-esteem individuals surrounded by high-self-esteem people,
Q2 representing high-self-esteem people surrounded by low-self-esteem people , Q3 representing
low-self-esteem individuals surrounded by high-self-esteem people, and Q4 representing low-
self-esteem individuals surrounded by low-self-esteem people.

The collection of criteria Ci = {C1, C2, C3, C4} where C1 represents the level of cleanliness,
C2 represents the level of perfection, C3 indicates the level of creativeness, and C4 indicates the
level of indecisiveness. The weight vector of Qj is PK ∈ [ 0, 1] and ∑n

j=1 Pj = 1. In this instance,
the weight vector is ( 0.3, 0.3, 0.2, 0.2) .

Algorithm QF-TOPSIS Method:

Step 1: Evaluate the Quadrasophic Decision Matrix Qij for the specified condition relating to
the given alternatives.
Step 2: Normalize Qij, and use score value definition to calculate score function.
Step 3: Using the values from Step 2, calculate the QFPIS (X→+

i ) and QFNIS (X→+
i ) using [2] .

QFPIS : X→+ = {Qj, max( sv( Qj( xiw) ) ) /j = 1, 2, . . . , n}

where, X→+ = {Q1( η→+
1 ( x) , λ→+

η1 ( x) , λ→+
µ1 ( x) , µ→+

1 ( x) ) , . . . ,

Qn( η→+
1 ( x) , λ→+

ηn ( x) , λ→+
µn ( x) , µ→+

n ( x) ) }

QFNIS : X→− = {Qj, min( sv( Qj( xiw) ) ) /j = 1, 2, ?, 4}

where, X→− = {Q1( η→−1 ( x) , λ→−η1 ( x) , λ→−µ1 ( x) , µ→−1 ( x) ) , . . . ,

Qn( η→−1 ( x) , λ→−ηn ( x) , λ→−µn ( x) , µ→−n ( x) ) }

Step 4: Determine the distance between categories (Qi) and QFPIS (X→+
i ), QFNIS (X→−i ) using
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definition 4 .

d( Qi, X→+
i ) =

√
1

2n

n

∑
i=1

[ ( ηQi ( xi) ) 2 − ( ηXi ( x→+
i ) ) 2] 2 + [ ( ληQi

(xi) ) 2 − ( ληXi
(x→+

i ) ) 2] 2

+[ ( λµQi
(xi) ) 2 − ( λµXi

(x→+
i ) ) 2] 2 + [ ( µQi ( xi) 2 − ( µXi ( x→+

i ) ) 2] 2

d( Qi, X→−i ) =

√
1

2n

n

∑
i=1

[ ( ηQi ( xi) ) 2 − ( ηXi ( x→−i ) ) 2] 2 + [ ( ληQi
(xi) ) 2 − ( ληXi

(x→−i ) ) 2] 2

+ [ ( λµQi
(xi) ) 2 − ( λµXi

(x→−i ) ) 2] 2 + [ ( µQi ( xi) 2 − ( µXi ( x→−i ) ) 2] 2

Step 5: Apply the following formula, to obtain the coefficient of closeness cc(Q) [2].

cc(Q) = d( Qi, X→−i ) /[[ d( Qi, X→−i ) + d( Qi, X→+
i ) ]

Step 6: Using the values from Step 5, rank the category, with the smallest rank indicating the
beneficial category. This allows us to identify the people who are most affected by OCD causes.

6.1. Illustration of the QF-TOPSIS method

Step 1: The Qij matrix is shown in Table 7.

Table 7: Quadrasophic Decision Matrix

DM Cleanliness Per f ection Creativeness Indecisiveness
Q1 (-0.201,-0.319, (-0.327,-0.319, (-0.389,-0.319, (-0.598,-0.319,

0.405,0.638) 0.405, 0.538) 0.405, 0.244) 0.405,0.161)
Q2 (-0.188,-0.3, (-0.297,-0.3, (-0.385, -0.3, (-0.671, ,-0.3,

0.393,0.65) 0.393,0.562) 0.393, 0.246) 0.393, 0.13)
Q3 (-0.087,-0.284, (-0.26,-0.284, (-0.46, ,-0.284, (-0.673, ,-0.284,

0.332,0.73) 0.332,0.591) 0.332, 0.214) 0.332, 0.13)
Q4 (-0.05,-0.285, (-0.05, -0.285, (-0.67,-0.285, (-0.55,-0.285,

0.24,0.76) 0.24, 0.76) 0.24,0.133) 0.24,0.18)

Step 2: Table 8 gives the scoring function for the normalized Qij.
Step 3: Table 8 highlights the highest and lowest values used to determine the QFPIS (X→+

i ),

Table 8: Score function of QFS

sv(Q) Cleanliness Per f ection Creativeness Indecisiveness
Q1 0.1743 0.02966 -0.0477 -0.00567
Q2 0.0103 0.0173 -0.0587 0.0033
Q3 -0.0223 -0.011 -0.07 -0.027
Q4 -0.055 -0.055 -0.0573 -0.0817

and QFNIS (X→+
i ).

Step 4: The Table 9 displays the distance measure values of d(Qi, X→+
i ) and d(Qi, X→−i ).

Step 5: Table 10 indicates the cc(Q) value.
Step 6: Use the cc(Q) values to rank the category. Thus, Q4 < Q3 < Q2 < Q1.

In addition to heredity and brain abnormalities, the environment and psychological stress
play a crucial role in the development of OCD problems. Such brain and genetic defects cannot
be fixed. However, maintaining a healthy environment can help live in harmony. Quadrasophic
Fuzzy Sets are implemented in MCDM-TOPSIS techniques to find the most appropriate solution.
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Figure 3: Correlations
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Table 9: Distance measures between QFPIS, QFNIS and, Qj

Distance between Qj Distance between Qj
and QFPIS and QFNIS
0.0067 0.0398
0.0075 0.0392
0.0188 0.0291
0.104 0.0173

Table 10: Value of cc(Q)

The values of cc(Q)
Q1 0.855913
Q2 0.8394
Q3 0.6075
Q4 0.1426

The data indicates that the Q4 group experiences increased stress, which in turn triggers OCD.
The Q4 category is greatly impacted by the environment. Additionally, the survey recommends
that living in a conducive environment is crucial for OCD-free lives.

7. Analysis of Quadrasophic Fuzzy Data using SPSS software

A SPSS software is used for processing the collected data for statistical evaluation. Figure 3
displays Spearman’s rho correlation coefficients among several variables, such as individual’s
self-esteem, environmental self-esteem, other behavioral and emotional metrics. A significant
positive correlation (r = 0.350, p < 0.01&r = 0.350, p < 0.01&r = 0.350, p < 0.01) was found
between environmental factors and high self-esteem. Q1 category and environmental factors are
positively correlated, but environmental factor is negatively associated with certain behaviors.

Figure 4 indicates that the Environment is a significant predictor, accounting for 31.2% of
Q4, with an R-value of 0.558 (indicating a moderate correlation). However, 68.8% of the variance
remains unexplained, suggesting that other factors may also influence Q4 individuals.

The ANOVA results shown in Figure 5 indicate that the environmental factor significantly
influences the variation in the dependent variable, Q4 category, with a significant F-value of
44.389 and a p-value of 0.000.

In Figure 6, beta (standardized coefficient) of -0.558 indicates a moderately strong negative
impact of the environment on the Q4 category. The t-value is -6.662, and the p-value is 0.000,
suggesting a strong correlation between changes in the environment and changes in Q4.

Outcome of the study: The study reveals that environmental factors significantly impact

Figure 4: Model Summary
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Figure 5: ANOVA result

Figure 6: Coefficients Value

the Q4 category, with a negative impact on it and a significant positive association with the Q1
category. The environment factor accounts for 31.2% of the Q4 category, indicating the existence
of other variables and similar results between SPSS and QFS. Social Environment self-esteem
and the environmental effect have been associated with self-esteem. The research highlights the
link between environmental stressors and emotional deficiencies, leading to OCD. It emphasizes
the importance of QFS in incorporating environmental factors to achieve the most appropriate
outcome.

8. Conclusion

This artifact defines the operations and properties of the Quadrasophic Fuzzy Set (QFS),
including the distance measure, QFR (Quadrasophic Fuzzy Relation), score function, and compo-
sition functions. The Quadrasophic Fuzzy Relation is applied in a comparative analysis to validate
this novel fuzzy set extension. The QFS max-min composition is effectively utilized in solving
decision-making (DM) problems. Additionally, the integration of QFS data with the TOPSIS
approach is demonstrated for solving multi-criteria decision-making (MCDM) problems. The
QF-TOPSIS method is employed to address an OCD analysis problem, with its novel membership
functions highlighting the influence of environmental factors on stress and OCD. SPSS analysis
confirms that QFS is highly effective in investigating additional factors, including environmental
impact, to achieve accurate outcomes.

References

[1] Akram, M., Dudek, W. A., & Ilyas, F. (2019). Group decision-making based on
pythagorean fuzzy TOPSIS method. International Journal of Intelligent Systems, 34(7), 1455–1475.
https://doi.org/10.1002/int.22103

[2] Alghamdi, M. A., Alshehri, N. O., & Akram, M. (2018). Multi-criteria decision-making
methods in bipolar fuzzy environment. International Journal of Fuzzy Systems, 20, 2057-2064.

[3] Aruna, G., and J. Jesintha Rosline.(2023). PROPERTIES OF QUADRASOPHIC FUZZY SET
AND ITS APPLICATIONS. Reliability: Theory & Applications 18, no. 4 (76) : 208-220.

[4] Aruna, G., & Rosline, J. J. (2024). QUADRASOPHIC FUZZY MATRIX AND ITS APPLICA-
TION. Reliability: Theory & Applications, 19(4 (80)), 120-131.

[5] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
https://doi.org/10.1016/S0165-0114(86)80034-3

RT&A, No 1 (82) 
Volume 20, March 2025 

713



G. Aruna, J. Jesintha Rosline, A. Anthoni Amali
EXPLORING QUADRASOPHIC FUZZY SET: APPLICATIONS IN
ASSESSING STRESS LEVELS AND SELF-ESTEEM CONNECTIONS

[6] Broumi, S., Bakali, A., Talea, M., Smarandache, F., Ulucay, V., Sahin, M., Dey, A., Dhar, M.,
Tan, R.-P., Bahnasse, A., & Pramanik, S. (2018). Neutrosophic Sets: An Overview. New Trends
in Neutrosophic Theory and Applications, II(April), 32. http://fs.gallup.unm.edu/nss.

[7] Chen, J., Li, S., Ma, S., & Wang, X. (2014). M-Polar fuzzy sets: An extension of bipolar fuzzy
sets. Scientific World Journal, 2014. https://doi.org/10.1155/2014/416530

[8] Cuong, B. C. (2014). Picture fuzzy sets. Journal of Computer Science and Cybernetics, 30(4),
409-409.

[9] De, S. K., Biswas, R., & Roy, A. R. (2001). An application of intuitionistic fuzzy sets in
medical diagnosis. Fuzzy Sets and Systems, 117(2), 209–213. https://doi.org/10.1016/S0165-
0114(98)00235-8

[10] Dutta, P., & Doley, D. (2020). Medical diagnosis under uncertain environment through
bipolar-valued fuzzy sets. In Computer Vision and Machine Intelligence in Medical Image Analysis:
International Symposium, ISCMM 2019 (pp. 127-135). Springer Singapore.

[11] Ejegwa, P. A., Akowe, S. O., Otene, P. M., & Ikyule, J. M. (2014). An Overview on Intuitionistic
Fuzzy Sets Fuzzy Mathematics View project Multigroup theory View project. International
Journal of Scientific & Technology Research, 3(March 2014). www.ijstr.org,3(3), 142-145.

[12] Garg, H. (2017). A new improved score function of an interval-valued pythagorean fuzzy
set based topsis method. International Journal for Uncertainty Quantification, 7(5), 463–474.
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020197

[13] Hashim, R. M., Gulistan, M., Rehman, I., Hassan, N., & Nasruddin, A. M. (2020). Neutro-
sophic bipolar fuzzy set and its application in medicines preparations. Neutrosophic Sets and
Systems, 31, 86–100.

[14] Jana, C., & Pal, M. (2018). Application of bipolar intuitionistic fuzzy soft sets in de-
cision making problem. International Journal of Fuzzy System Applications, 7(3), 32–55.
https://doi.org/10.4018/IJFSA.2018070103

[15] Jana, C., Pal, M., & Wang, J. Q. (2019). Bipolar fuzzy Dombi aggregation operators and its
application in multiple-attribute decision-making process. Journal of Ambient Intelligence and
Humanized Computing, 10, 3533-3549.

[16] Lee, J. G., & Hur, K. (2019). Bipolar fuzzy relations. Mathematics, 7(11), 1044.
[17] Mandal, W. A. (2021). Bipolar Pythagorean Fuzzy Sets and Their Application in Multi-

attribute Decision Making Problems. In Annals of Data Science (Issue 0123456789). Springer
Berlin Heidelberg. https://doi.org/10.1007/s40745-020-00315-8

[18] Riaz, M., Garg, H., Athar Farid, H. M., & Chinram, R. (2021). Multi-criteria decision making
based on bipolar picture fuzzy operators and new distance measures. Computer Modeling in
Engineering & Sciences, 127(2), 771-800.

[19] Tugrul, F., Gezercan, M., & Citil, M. (2017). Application of intuitionistic fuzzy set in high
school determination via normalized euclidean distance method. Notes on Intuitionistic Fuzzy
Sets, 23(1), 42-47.

[20] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic
sets. Infinite study.

[21] Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and
NAFIPS annual meeting (IFSA/NAFIPS) , 57-61. IEEE.

[22] Yang, Z., & Chang, J. (2020). Interval-Valued Pythagorean Normal Fuzzy Information
Aggregation Operators for Multi-Attribute Decision Making. IEEE Access, 8(1), 51295–51314.
https://doi.org/10.1109/ACCESS.2020.2978976

[23] Zhang, W. R. (1998, May). (Yin)(Yang) bipolar fuzzy sets. In 1998 IEEE international confer-
ence on fuzzy systems proceedings. IEEE world congress on computational intelligence (Cat.
No. 98CH36228) (Vol. 1, pp. 835-840). IEEE.

[24] Zhang, W. R., & Zhang, L. (2004). YinYang bipolar logic and bipolar fuzzy logic. Information
Sciences, 165(3-4), 265-287.

RT&A, No 1 (82) 
Volume 20, March 2025 

714



Ibrahim Sadok & Mourad Zribi
BAYESIAN GLM: A NON-INFORMATIVE APPROACH FOR
PARAMETER ESTIMATION IN EDRM

BAYESIAN GLM: A NON-INFORMATIVE APPROACH
FOR PARAMETER ESTIMATION IN EXPONENTIAL

DISPERSION REGRESSION MODELS

1∗Ibrahim Sadok & 2Mourad Zribi

•
1∗Department of Mathematics and Computer Science, Faculty of Exact Sciences,

University of Bechar, Algeria
2Laboratoire d’Informatique Signal et Image de la Côte d’Opale

ULCO, 50 Rue Ferdinand Buisson BP 719, 62228 Calais Cedex, France
ibrahim.sadok@univ-bechar.dz

Abstract

This paper proposes a novel Bayesian approach to parameter estimation in exponential dispersion
regression models (EDRM). By employing a non-informative prior distribution, we offer a flexible and
robust framework that avoids the need for subjective prior specification. To efficiently sample from the
posterior distribution, we develop an importance-sampling algorithm tailored to the EDRM. Through
a real-world data analysis, we demonstrate the efficacy of our proposed method in providing accurate
and reliable parameter estimates. This research contributes to the advancement of Bayesian statistical
modeling techniques and offers valuable insights for practitioners in various fields.

Keywords: Generalized linear models, Bayesian method, Multivariate exponential dispersion,
Non-informative prior distribution, Real-world data analysis

1. Introduction

Statistical modelling plays a crucial role in decision-making as it enables the representation
of relationships between variables, whether they are linear or non-linear. To establish the
connections between observed responses, yi, and corresponding covariates, xi, regression models
are initially developed. The Ordinary Least Squares (OLS) approach is frequently utilized to
estimate unknown parameters, βi, under the assumption that the response variable adheres
to a normal distribution. However, in reality, the normality assumption for residuals may be
violated, which leads to the consideration of other exponential family distributions (refer to
[25, 26]). In such cases, the use of alternative approaches becomes necessary as OLS estimates
may be inaccurate. The Generalized Linear Model (GLM), introduced by J. A. Nelder and R.W.
Weddernburn [20], accommodates non-normal distributions of response variables that adhere to
exponential family distributions including Poisson, binomial, negative binomial, inverse Gaussian,
and gamma distributions. For additional information and practical examples, refer to [13, 14, 19].

The GLM has been extensively studied by researchers for several exponential family distribu-
tions. In the health sciences, these models have diverse applications, such as predicting the effect
of animal age on dried eye lens weight [23], estimating the prevalence of renal failure based on
various parameters (see [32]), modelling lifetime data (see [21]), and addressing transportation
challenges (see [34]). As hydrological variables like rainfall and rain-off are inherently positive,
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the gamma distribution has proven to be effective in hydrology, as it can model only positive
values (as discussed in [18]).

In analytical applications, GLM is utilized to model the relationships between a large number
of responses and a single set of predictor factors, as described in ([22]). The GLM typically involves
several unknown parameters that are unique to the population. To estimate these parameters,
two statistical procedures are commonly used, as noted by W. M. Bolstad and J. M. Curran [3].
The first approach is the conventional technique that relies on all the information obtained from
the random sample. A common alternative approach to estimating unknown parameters in GLM
is the Bayesian method, which incorporates prior information along with the data from a random
sample. The posterior distribution is then derived by combining the likelihood function with
the prior distribution, as outlined in standard Bayesian methodologies (see [6], [27, 28]). The
choice of prior distribution can significantly influence the posterior estimates, particularly when
informative priors are employed. However, it is crucial to note that the use of informative priors
is subjective and can have a significant impact on the posterior distribution (see [9]). In situations
where limited or no prior knowledge about the parameters is available, non-informative priors
can be used. These priors are designed to have minimal influence on the posterior distribution,
allowing the data to primarily drive the inference. Non-informative priors, also known as vague
or weakly informative priors, are used when we aim to reflect ignorance or neutrality about the
parameters prior to observing the data (see [1]).

J. O. Berger and D. Sun [2] conducted research on the types of non-informative prior distribu-
tions that could be utilized to enhance the accuracy of normal multivariate models. C. P. Robert
et, al. [24] provided a comprehensive and contemporary review of Jeffrey’s prior distribution.

A study by A. A. I. A. Iswari et, al. [14] involved a simple linear regression analysis and the
computation of credible intervals for the regression parameters based on simulated data where
the prior distribution was not known to the researchers. Additionally, an important contribution
to the field is the multivariate multiple linear regression framework, which is a combination of
modelling techniques utilizing a Jeffrey’s prior distribution [30].

In this paper, we introduce a method for characterizing the GLM using exponential dispersion
models, which we refer to as the Exponential Dispersion Regression Models (EDRM). The EDRM
represents a rich subclass of the well-known exponential family. Furthermore, we examine the
estimation of parameters in the EDRM through maximum likelihood estimation (MLE) and
non-informative Bayesian estimation.

This paper is structured as follows: Section 2 details the exponential dispersion regression
models. In Section 3, we describe the maximum likelihood estimation and non informative
Jeffrey’s prior for EDRM. Section 4 is dedicated to providing numerical illustrations, emphasizing
the practical application and demonstration of the concepts discussed in earlier sections. Finally,
in the last section, we present the conclusion and discussion.

2. Exponential Dispersion Regression Models (EDRM)

In this section, we first describe briefly the exponential dispersion models (EDM). Then, we
discuss the EDRMs in details.

2.1. Exponential dispersion models

In the upcoming section, we will delve into the essential features of Exponential Dispersion
Models (EDMs) - a noteworthy subset of the renowned exponential family of functions (see [15]).
EDMs encompass distinguished distributions such as the inverse Gaussian, gamma, and the
normal distribution, to name a few.

EDMs expand upon the concepts of Natural Exponential Families, which offer an extensive
range of possibilities, as elucidated in [13]. The probability density function for EDMs is defined
as:

f (y; µ, λ) = eλ[θy−Kν(θ)]c(y, λ), y ∈ R (1)
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where λ (dispersion parameter) and θ (canonical parameter), with domain (λ, θ) ∈ Λ × Θ ⊆
R+ × R. In (1), Kν (θ) = log

∫
R

eθxν(dx) (cumulant function) is a known function of a generating
probability measure ν and c(y, λ) is a normalizing constant that ensures (1) is a probability
function.

For EDMs we have some well-known relations, if Y ∼ f (.; µ, λ), then µ = E(Y) = K′
ν(θ)

is the expectation of (1) due to the relationship/map between θ and µ. The variance of (1)

is Var (Y) =
1
λ

V(µ) and V(µ) being the variance function which uniquely corresponds to an

exponential dispersion model. Define ψν(µ) = (K′
ν(θ))

−1 and V(µ) = K′′
ν (ψν(µ)). It can also be

shown that when the functions Kν(.) and c(., .) as well as ψν are fixed, the subfamily arising by
taking different θ consists of elements that are all Esscher-transforms of each other. A family with
Kν, c and θ fixed and varying ψν can be generated by the operation of taking sample means. For
further information, we refer the reader to [7]).

In Table 1, we present necessary details of absolutely continuous PDFs of the EDM family
specifying the normalizing constant (c(y, λ)), the cumulant function (Kν), canonical parameter (θ),
dispersion parameter (λ), mean (K′

ν), inverse function of the mean (ψν) and variance function (V)
of each distribution (see [33, 16]).

Table 1: Examples of some absolutely continuous PDF of EDMs.

Gaussian Gamma Inverse Gaussian Laplace

c(y, λ)
√

λ√
2π

e−
λy2

2
λλyλ−1

Γ(λ)

√
λ√

2π
y−

3
2 e−

λ
2y λeλy

Γ(λ)2

∫ +∞
λy e−2ttλ−1(t − λy)λ−1dt

Kν
θ2

2 − log(−θ) −
√
−2θ − log(1 − θ2)

K
′
ν θ − 1

θ (−2θ)−1/2 2θ
1−θ2

ψν µ − 1
µ − 1

2µ2

∣∣∣√1+µ2−1
∣∣∣

µ

V 1 µ2 µ3

∣∣∣√1+µ2−1
∣∣∣

µ2
√

1+µ2

2.2. Description of EDRM

J. A. Nelder and R. W. Wedderburn [20] introduced Generalized Linear Models (GLMs) as a
unified framework for handling a variety of commonly used statistical models, including multiple
linear regression and log-linear models, for both normally and non-normally distributed data.
GLMs are highly versatile, making them suitable for a wide range of models in actuarial statistics,
while being structured in a way that allows a single algorithm to be used for maximum likelihood
estimation across all of these models (see [19]). GLMs are more helpful in actuarial statistics
than ordinary multiple regression, since apart from normal distributions, GLMs explicitly allow
Poisson, binomial, gamma and some other useful error distributions. Also, GLMs allow linearity
on other scales than the identity scale (logarithmic, logit, probit, reciprocal and others).

The GLMs are described by a link and variance functions further with the selection of a
response variable and a collection of explanatory variables. The link function transforms the
mean µ = (µ1, ..., µN)

⊤ of the response variable Y = (y1, ..., yN)
⊤ into a scale where the model is

linear. In fact, each response variable yi is assumed to follow its own regression model, so that

yi = β0 +
q

∑
j=1

β jxi,j + εi i = 1, ..., N, (2)

where xi = (xi1, xi2, ..., xiq)
⊤ be a vector of predictors or covariates, and β = (β1, β2, ..., βq) is a

vector of unknown parameters of adjacent regression coefficients, and εi is a random variables
with mean zero and variance σ2.
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In a GLM, we assume that the response variable follows a distribution from the EDMS,
satisfying:

ψ(µi) = β0 + β1xi1 + ... + βqxiq, i = 1, ..., N (3)

where ψ denotes the link function. For simplicity, equation (3) may be also written as ψ(µi) =
x⊤i β = ηi. In what follows, we analyse a data set, (yi; xi) i = 1, ..., N with each yi follows the
density function f (.; µ, λ) described in equation (1) with mean and variance as follows

E (log yi) = µi = K′
ν(x⊤i β) = ψ−1

ν (x⊤i β)

Var (log yi) =
1
λ

K′′
ν (x⊤i β) =

1
λ

V(µi)

The multivariate extension relies on the deviance residual, denoted as r(y, µ) = ±
√

d(y, µ),
where ± = sgn(y − µ) and the function d is assumed to be a unit deviance with the property
d(µ, µ) = 0 for µ ∈ Ω (an interval), and d(y, µ) > 0 for y = µ. It is assumed throughout that d(, µ)
is continuous and strictly monotone on each side of µ, implying that r(, µ) is strictly increasing
for each µ ∈ Ω.

Let us consider the vector of deviance residuals as r(y, µ) = [r(y1, µ1), ..., r(yN , µN)]
⊤, where

yi and µi denote the elements of the N-vectors y and µ, respectively. Given a symmetric positive-
definite N × N matrix Σ, the scaled deviance is defined as the following quadratic form in the
vector of deviance residuals:

D(y, µ, Σ) = r⊤(y, µ)Σ−1r(y, µ) = tr
[
Σ−1r(Y, µ)r⊤(Y, µ)

]
.

Following the approach of Jorgensen (1999) and Jorgensen and Lauritzen (2000), a multivariate
dispersion model is defined as:

f (y; µ, Σ) = a(y, Σ) exp
[
−1

2
D(y, µ, Σ)

]
for y ∈ RN (4)

where a(y, Σ) is a suitable function ensuring that (4) is a probability density function on RN .

3. Parameter estimation of EDRM

3.1. Maximum likelihood estimation

Two types of estimation procedures are known. One is the point estimation and another is
interval estimation or confidence interval [29]. Here we mainly focus on point estimation of the
parameters associated with a distribution function. This refers to point estimation, where the goal
is to approximate an unknown parameter using sample data. Let us consider a random sample
Y = (y1, y2, ..., yN) follows f (., µ, λ), where µ and λ are known. In most cases, there are two
different approaches for obtaining a point estimator for unknown parameter. Namely classical
method and decision theoretic approach. In this section, we focus the estimation of parameter
β by the method of maximum likelihood. To estimate this parameter, we fix an underlying
exponential dispersion model and common dispersion parameter λ > 0, but allow each sample
yi its own natural parameter θi = K′−1(µi). Our goal is to estimate the means µi = E(yi) for
i = 1, ..., N by the maximum likelihood method. Thus we can first estimate the coefficients β,
and then use these estimates to argue that µi = ψ−1

ν (x⊤i β) and the hypothesis of the components
independence of response variable yi, the likelihood function is given by

L(β, λ) =
N

∏
i=1

c(yi, λ)eλ[yi(x⊤i β)i−Kν((x⊤i β)i)]. (5)

The log-likelihood function is written as

L(β, λ) =
N

∑
i=1

{
λ
[
yi(x⊤i β)i − Kν((x⊤i β)i)

]
+ log c(yi, λ)

}
=

N

∑
i=1

li(β, λ) (6)
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where li(β, λ) =
{

λ
[
yi(x⊤i β)i − Kν((x⊤i β)i)

]
+ log c(yi, λ)

}
. It should be to note that β 7→ L(β, λ)

is a strictly concave function. Therefore, to obtain the maximum likelihood estimator (MLE) of β,
we derive the log-likelihood with respect to different components of the vector β = (β0, ..., βq)
and we need to solve the likelihood equations

∂L
∂β j

(β, λ) =
N

∑
i=1

∂li
∂β j

(β, λ) = 0, j = 1, ..., q.

Since
dηi
dµi

= ψ′(µi),
dθi
dµi

= 1/V(µi) and by the chain rule for differentiation with respect to β j,

we have

∂li
∂β j

=
dli
dηi

∂ηi
∂β j

=
dli
dθi

dθi
dµi

dµi
dηi

∂ηi
∂β j

=
dli
dθi

(
dµi
dθi

)−1 ( dηi
dµi

)−1 ∂ηi
∂β j

= λ
(
yi − K′(θi)

) (
K′′(θi)

)−1 (
ψ′(µi)

)−1 xij

=
λ (yi − µi) xij

V(µi)ψ′(µi)
.

Thus the likelihood equations we have to solve for the MLE of β are

N

∑
i=1

λ (yi − µi) xij

V(µi)ψ′(µi)
= 0 j = 1, ..., q. (7)

where µ is the mean vector with N components.
Note that the derivative of the log-likelihood with respect to β does not depend on the

dispersion parameter λ.

Remark 1. When the response variable yi is normally distributed with mean µi and dispersion
parameter λ, we have ψ(µi) = µi = x⊤i β. Hence, ψ′(µi) = dψ(µi)

dµi
= 1; also V(µi) = 1 and

λ = 1/σ2. Therefore, the equation (7) becomes

1
σ2

N

∑
i=1

(
yi − x⊤i β

)
xij = 0.

By ignoring the factor 1/σ2, the equation reduce to the Normal equation of least squares

X⊤ (Y − Xβ) = 0 or quivalently β̂ =
(

X⊤X
)−1

X⊤Y. (8)

3.2. Non-informative Bayesian estimation

In this section, we treat the prior of the dispersion parameter λ as known constant. In practice, it
is unknown for most cases and it is necessary for us to specify reasonable values. Now, let us
focus on specifying the value of λ. In the exponential family, for some distributions, λ is constant,
for example, Poisson, Exponential, Bernoulli, Binomial, and Negative Binomial distributions; for
other distributions, like Poisson and binomial with over-dispersion, or Normal, gamma, inverse
Gaussian, λ is unknown and one may proceed as before with λ replaced by an estimate λ̂.

Jeffrey’s prior based on the observed Fisher information matrix. Because it is locally uniform,
it is a non-informative prior. It is a useful prior because it does not change much over the region
in which the likelihood is significant and does not have large values outside that range the
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local uniformity property. The Jeffrey’s prior is justified on the grounds of its invariance under
parametrization according to S. K. Sinha [31].

In this step, we assess Jeffrey’s prior regression for the GLM class and the associated prior
and posterior distribution characteristics. Our key subject is the case where λ is unknown. The
Jeffrey’s prior can be an enticing one for the normal linear regression model as it corresponds
to tractable posterior distributions. See G. E. Box and G. C. Tiao [4] for more details about the
usage of the Jeffrey’s prior in this model. In addition, D. M. Eaves [8] assumed Jeffrey’s prior to a
non-linear phenomenon and obtained tractable posteriors through linearisation of the non-linear
model. However, Jeffrey’s prior can indicate that it leads to proper posteriors in many GLMs. The
two theorems 1 and 2 are given by [13] below that help to evaluate and establish the propriety
of the posterior distribution under Jeffrey’s prior by giving (i) sufficient and (ii) necessary and
sufficient conditions for the propriety of the posterior and prior distributions, respectively. The
two theorems 1 and 2 discuss also the existence of joint moments.

Theorem 1. Suppose the likelihood and Jeffrey’s prior for β are as above. Additionally, assume
that X is of full rank and the likelihood of β is bounded above. Then, a sufficient condition for
the existence of the posterior moment generating function of β for any GLM is that the integral

∫
S

eψνθ−1(r)+ϕ−1w(yr−Kν(r))
(

d2Kν(r)
dr2

) 1
2

dr (9)

is finite, where λ(ϕ) = ϕ
w and for ψν in some open neighbourhood about 0. Here S denotes the

parameter space for the canonical parameter θ.

Theorem 2. A necessary and sufficient condition for existence of moment generating function of
Jeffrey’s prior for any GLM is that the integral

∫
S

eψνθ−1(r)
(

d2Kν(r)
dr2

) 1
2

dr (10)

is finite for ψν in some open neighbourhood about 0.

It should be to note that tractable posteriors for GLM’s with Jeffrey’s prior are valid for certain
examples only in very particular cases, and closed type outcomes in general are not available. Let
us assume now y1, ..., yN are independent observations from a GLM. Jeffrey’s joint prior for (λ, β)

is given by π(λ, β) = |I(λ, β)|
1
2 , where I(λ, β) is the Fisher information matrix of (λ, β). From

equation (1), it is obvious that I(λ, β) is diagonal block in λ and β, with the form(
−∑N

i=1
2K′

ν(θi)θi−Kν(θi)
λ3 + E(c̈(yi, λ)) 0

0 X⊤V(β)∆2(β)X
λ

)
,

where c̈(yi, λ) = ∂2c(yi ,λ)
∂λ2 , V(β) and ∆(β) are N × N diagonal matrices defined as V(β) =

Diag
(
K′′

ν

(
ψ(x⊤1 β)

)
, ..., K′′

ν

(
ψ(x⊤N β)

))
and ∆(β) = Diag

(
ψ′(x⊤1 β), ..., ψ′(x⊤N β)

)
. Therefore, Jef-

frey’s prior for (λ, β) is driven as follows

π(λ, β) ∝

(
−

N

∑
i=1

2K′
ν(θi)θi − Kν(θi)

λ3 + E(c̈(yi, λ))

) 1
2

λ− q
2

∣∣∣X⊤V(β)∆2(β)X
∣∣∣ 1

2 . (11)

We can see from equation (11) that in fact, λ and β under Jeffrey’s prior are not independent.

In the normal linear model of regression: π(λ, β) ∝ λ− (q+2)
2 and in this case, λ and β are

independent. On the contrary, for the gamma model λ and β are not. In fact, Jeffreys joint prior
for λ and β may be quite difficult to analyse for many GLMs, as well as the gamma model, which
may not be feasible for number calculation. Conversely, we can find the following joint prior to
(λ, β): suppose that λ and β are independent, choose a (possibly informative) Jeffrey’s prior to λ

RT&A, No 1 (82) 
Volume 20, March 2025 

720



Ibrahim Sadok & Mourad Zribi
BAYESIAN GLM: A NON-INFORMATIVE APPROACH FOR
PARAMETER ESTIMATION IN EDRM

and X⊤V(β)∆2(β)X
λ as Jeffrey’s prior to β. This is one method for choosing an analytically feasible

joint prior (λ, β), which simultaneously enhances Jeffrey’s prior.
Maximum a-posteriori probability (MAP) estimate, like the maximum likelihood method, is a

method that can be used to estimate a number of unknown parameters, such as the parameters
of a probability density, related to a sample given. This method is closely linked to the maximum
likelihood but differs from it however by the possibility of taking into account a non-informative
a prior on the parameters to be estimated.

In MAP estimation, the model parameters are obtained by solving

θ̂MAP = argmax
θ

L(θ) + log π(θ) (12)

where θ = (λ, β). Our goal is to solve the maximization in (12) when Jeffrey’s prior is considered.
According to Jeffrey’s prior, the probability of the prior is proportional to the square root of the
determinant of the Fisher information matrix I:

π(θ) ∝
√

det I(λ, β) (13)

Substituting (11) into (12) and removing terms which are independent of θ, we obtain

θ̂ = argmax
θ

L(θ) + 1
2

log

(
−

N

∑
i=1

2K′
ν(θi)θi − Kν(θi)

λ3 + E(c̈(yi, λ))

)
− q

2
log(λ) (14)

+
1
2

log
∣∣∣X⊤V(β)∆2(β)X

∣∣∣ (15)

Proposition 1. The coefficients regression estimates under Jeffrey’s prior can be presented as

β̂(l+1) = β̂(l) + λ(l)X⊤(Y − µ) +
X⊤ψ′′(X⊤β(l))X⊤X

X⊤ψ′(X⊤β(l))X

λ̂(l+1) = λ̂(l) +
N

∑
i=1

1
c(yi, λ(l))

∂c(yi, λ(l))

∂λ
+

N

∑
i=1

yi(x⊤i β(l))i − Kν(x⊤i β(l))− q + 2
2λ

where λ represents the dispersion parameter.

Proof.
In order to estimate the coefficients regression, we adopt the Gradient ascent approach (see

[5]). Then, the coefficients regression and the dispersion parameter can be calculated respectively,
as

β̂(l+1) =β̂(l) +
∂ log L(β(l), λ(l))

∂β

λ̂(l+1) =λ̂(l) +
∂ log L(β(l), λ(l))

∂λ

According to (14), the derivative of log l(θ) is

d log l(θ)
dθ

=
dL(θ)

dθ
+

d log π(θ)

dθ

where the derivative of log l(θ) with respect to β and λ
is obtained as follows

dL(θ)
dβ

= λX⊤(Y − µ) (16)

dL(θ)
dλ

=
N

∑
i=1

1
c(yi, λ)

∂c(yi, λ)

∂λ
+

N

∑
i=1

yi(x⊤i β)i − Kν(x⊤i β) (17)
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The derivative of log π(θ) with respect to β and λ is given by

∂ log π(θ)

∂β
=

∂

∂β
log

X⊤V(β)∆2(β)X
λ

=
X⊤ψ′′(X⊤β)X⊤X

X⊤ψ′(X⊤β)X
∂ log π(θ)

∂λ
=

∂

∂λ
log λ− (q+2)

2 = − q + 2
2λ

From equations (16), (17) and the derivative of log π(θ), the specific update for estimating
β̂(l+1) and λ̂(l+1) in linear regression can be expressed as

β̂(l+1) = β̂(l) + λ(l)X⊤(Y − µ) +
X⊤ψ′′(X⊤β(l))X⊤X

X⊤ψ′(X⊤β(l))X

λ̂(l+1) = λ̂(l) +
N

∑
i=1

1
c(yi, λ(l))

∂c(yi, λ(l))

∂λ
+

N

∑
i=1

yi(x⊤i β(l))− Kν(x⊤i β(l))− q + 2
2λ(l)

■

Remark 2. In order to estimate the coefficients regression and dispersion parameter, we proposed
an iterative algorithm based on the Gibbs-sampling one. The Gibbs sampling algorithm was
introduced by S. Geman and D. Geman [10]. We start by setting the coefficients regression and
dispersion parameter to its initial values β(0) and λ(0), respectively. This process continues until

”convergence” (i.e;
∣∣∣β(l+1) − β(l)

∣∣∣ < ϵβ and
∣∣∣λ(l+1) − λ(l)

∣∣∣ < ϵλ) for ϵβ and ϵλ are small enough.

3.3. Application

The Bayesian approach is employed to estimate a multivariate multiple regression model using a
non-informative Jeffrey’s prior. The dataset consists of 100 synthetically generated observations,
created from a multivariate normal distribution using Matlab software.

Table 2: Parameter estimation

Parameter Mean Credible Interval

MLE
β̂0 1.1319 (0.5497 1.7141)
β̂1 -0.9689 (−1.1301 − 0.8077)
β̂2 0.69819 (0.4964 0.9000)
λ̂ 2.8041 (−1.0375 6.6457)

AIC = 212.8195 BIC= 220.2481

Jeffrey’s
prior

β̂0 1.0462 (0.4899 1.6025)
β̂1 -0.9507 (−1.1102 − 0.7912)
β̂2 0.7129 (0.5167 0.9091)
λ̂ 2.7965 (−1.0451 6.6381)

AIC =212.8161 BIC= 220.0107

The parameter estimates are presented in Table 2, along with their 95% credible intervals.

It is important to note that this analysis is based on a single simulated dataset. While both
the Bayesian approach with Jeffrey’s prior and the classical method yield similar results in
this case, drawing strong conclusions from a single dataset is limited. A more rigorous com-
parison would require a complete Monte Carlo simulation study, where multiple datasets are
generated and analysed to account for the variability introduced by the random generation of data.
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Conducting such a simulation study, with several iterations, would provide a more compre-
hensive evaluation of the performance of both methods. Additionally, we observe that Jeffrey’s
prior has some advantages in terms of model fit, with slightly lower AIC and BIC values, and
may offer more stable estimates when there is limited prior knowledge or small sample sizes.
However, further validation through a more extensive simulation study is necessary to confirm
these findings.

4. Numerical Illustration

Universal processes of rainfall involve data collection, data preprocessing and data selection,building
a model using regression, and at the last validity check. The areal rainfall estimated by the rain
gauges presents a great uncertainty where the network of rain gauges is sparse. From this ap-
proach, we can predict the rainfall of any future year using climatic factors. In our study, we have
chosen an application concerning daily climatic data for the studied regions of northwestern Alge-
ria. These data were extracted from the National Office of Meteorology (https://www.meteo.dz)
and TuTiempo (https://en.tutiempo.net/climate), 2021.

For all existing rainfall stations (more than 10 climatic stations), the annual rainfall averages
are available for a period varying from 35 to 40 complete years, from 1981 to 2021. Most of the
stations are located in the plains and on the coasts, the number of stations decreases towards the
south and in mountainous regions (more than 600m). The main available factors that depend on
precipitation are temperature values, wind speed, station elevation, and station coordinates such
as latitude and longitude (see Table 3).

Table 3: Data of the topographic parameters at the study rainfall stations.

Rainfall
stations

Rainfall Temperature Wind speed Elevation Latitude Longitude
(mm) (°C) (m/s) (m) (°) (°)

Ain Sefra 0.5546 16.5686 5.4929 1200.55 32,76 -0.6
El-Bayadh 0.6944 15.4328 6.1949 1220.02 33,66 1
Mascara 1.4003 17.2871 5.2274 591.71 35.21 0.15
Mostaganem 1.2537 18.5080 5.2992 254.48 35,88 0.11
Oran 1.1661 18.6619 5.7160 127.31 35.63 -0.6
Relizene 1.3584 18.2210 5.2587 367.72 35.73 0.55
Saida 1.2480 15.9214 5.4670 928.27 34.86 0.15
Sidi Bel Abbes 1.3186 17.6557 5.3304 458.05 35.19 -0.64
Tiaret 1.4860 15.6170 5.6113 904.3 35.35 1.43
Tlemcen 1.2399 18.0853 5.3669 355.91 35.01 -1.46

In the present investigation, we have applied a multiple regression model, which has been
elaborately described in Section 2.2, to the data set at hand. The purpose of this exercise is to
unearth a predictable equation that can establish a link between rainfall and various climatic
factors. In order to accomplish this goal, we have meticulously constructed a regression equation
comprising five independent variables as follows:

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + β5xi,5 + εi, i = 1, ..., 10

where yi is the response (predicted rainfall station), β0, β1, β2, β3, β4, β5 are the regression
coefficients, x1 (Temperature), x2 (Wind speed), x3 (Elevation), x4 (Latitude), x5 (Longitude) are
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the highly correlated climate indices (predictors); and ε is the residual term of the model.

Let us now proceed to the multiple regression analysis with the full climatic factors consid-
ered above and compare it with different types of model estimation using maximum likelihood
and Jeffrey’s prior estimations. Table 4 shows the regression comparison with the five inde-
pendent variables. The main features of interest are the parameters estimates as well as their
corresponding standard errors (SE Coeff) and the criteria of fitness (t-Stat and p-Value). the
standard error of the regression coefficient is calculated as SE Coeff = s.e.R

sx
√

N−1
, where s.e.R is

the standard deviation of the regression, sx is the standard deviation of x, and N is the sample size.

Moreover, the estimates are significantly similar and its associated standard error are close to
zero, which justifies the very smaller over variation. Since the associated p-value is < 0.001, we
reject the hypothesis in favour of the alternative hypothesis that at least one of the coefficients is
not zero.

Table 4: Multiple regression analysis with MLE and Jeffrey’s prior approaches.

Predictor Coeff β̂ SE Coeff β̂ t-Stat p-Value

MLE

Intercept 5.14787 × 10−15 0.03227271 1.59511 × 10−13 0.99999999
Temperature -2.82471635 0.42179987 -6.69681646 0.00258658
Wind speed -0.81015953 0.10066482 -8.04808997 0.00129405
Elevation -4.06167602 0.77057323 -5.27097985 0.00620801
Latitude -1.22618013 0.44892198 -2.73138802 0.05236798
Longitude 0.58214495 0.15687036 3.71099388 0.02063610

RMSE= 0.102 R2 =0.995 R2(adj) = 0.99 AIC=-14.42894643

Jeffrey’s
prior

Intercept 5.59885 × 10−15 0.03227271 1.73485 × 10−13 0.99999999
Temperature -2.82465611 0.42179987 -6.69667364 0.00258679
Wind speed -0.81014627 0.10066482 -8.0479583 0.00129413
Elevation -4.06156466 0.77057324 -5.27083533 0.00620862
Latitude -1.22611567 0.44892198 -2.73124443 0.05237573
Longitude 0.58212371 0.15687036 3.71085846 0.02063855

RMSE= 0.10205529 R2 =0.99536930 R2(adj) = 0.98958092 AIC=-14.42894637

Upon examination of Table 4, we observe that the estimated values of βi are strikingly alike
and the associated standard deviations are nearly zero, which validates the incredibly low vari-
ance of the model. With a p-value greater than 0.001, we reject the null hypothesis and favour the
alternative hypothesis that at least one of the coefficients is not zero.

Additionally, Table 4 displays the Root Mean Squared Errors (RMSE) for the variance of the
residuals, calculated by both MLE and Jeffrey’s prior estimation methods. This metric evaluates
absolute fit of the model to the data, indicating the proximity of the observed data points to
predicted values of the model. Interpreted as the standard deviation of the unexplained variance,
the RMSE is expressed in the same units as the response variable. Lower RMSE values for both
MLE and Jeffrey’s prior estimation methods indicate better fit, supporting the equivalence of
the two approaches. The RMSE serves as a reliable measure of the model’s predictive accuracy,
making it the most critical criterion for fit if the primary goal is prediction.

Table 4 indicates that other fitness criteria, such as R2, R2(adj), and AIC, are reasonably similar
for both MLE and Jeffrey’s prior regression models. Figure 1 presents the estimates for each of
the βi coefficients of the regressions with five independent variables using both MLE and Jeffrey’s
prior regression models. It is evident that all the parameters converge rapidly to the MLE method
as the number of iterations increases.
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Figure 1: Relationship between regression coefficient estimation and iteration number vs MLE method

5. Conclusion and Discussion

In this paper, we apply the Bayesian estimation of EDRM parameters using Jeffrey’s prior. We
demonstrated that the maximum likelihood method can be used to accurately estimate this
parameter. Additionally, we devised an iterative algorithm based on Jeffrey’s prior to estimate the
regression coefficients. The significance of rainfall on agriculture and global economies cannot
be overstated, and accurate predictions of rainfall are essential for successful farming practices.
While this model is currently the only one capable of predicting rain, it is not entirely precise
due to the fluctuation of climatic variables. Although our study includes certain elements, other
factors may also impact rainfall amounts. Nevertheless, our proposed technique shows promise,
particularly when utilizing Jeffrey’s prior. The results we obtained were comparable to those of
the MLE method, validating the effectiveness of our approach.
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Abstract 

DC motors, due to their wide applicability in various industrial sectors, necessitate precise control 

of their overload capacity to ensure safe and efficient operation. This study presents a 

comprehensive methodology for assessing the maximum permissible overload capacity of a DC 

motor. The core of this methodology lies in the derivation and application of the electromechanical 

characteristic equation of an electric drive with current cutoff. This equation serves as the 

foundation for constructing the electromechanical characteristics of the drive, providing a detailed 

representation of the motor's performance under varying operational conditions. A novel circuit is 

proposed, featuring an automatic adjustment mechanism for the cut-off current setting based on the 

speed of the electric drive. This adaptive circuit design ensures that the motor operates within its 

maximum permissible overload capacity, thereby optimizing performance and preventing potential 

damage due to excessive loads. By leveraging this advanced control methodology, the reliability and 

efficiency of DC motors in industrial applications can be significantly enhanced. This approach not 

only maximizes the motor's operational capabilities but also contributes to the overall safety and 

longevity of the electric drive systems. 

Keywords: DC electric motor, drive, overload capacity, electromechanical 
characteristics, current cut-off, current limiting unit 

I. Introduction

Direct current (DC) motors are widely used in various industrial and domestic applications 
due to their high reliability, ease of control and wide range of performance characteristics. An 
important aspect of the operation of electric motors is their overload capacity, that is, the ability to 
withstand a temporary increase in load torque beyond established limits without damage. 
Effective use of electric motors requires precise control and optimization of their overload capacity. 
This is especially important when operating under variable loads or in unpredictable 
environments. Failure to properly define overload limits can result in equipment damage, 
productivity and operational safety [1]. The purpose of the study is to improve the efficiency and 
reliability of electric motors by determining optimal overload values. The results obtained can be 
used in the design and operation of industrial equipment, as well as in the development of control 
and monitoring systems for the operation of electric motors. 

If the operation of the mechanism is characterized by frequent starts and the speed of the 
drive is required, and its installed power is limited, then there is a need to fully use the maximum 
permissible overload capacity of the drive motor. Typically, such drives use DC motors. It is 
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known that the permissible maximum torque and, therefore, the ultimate overload capacity of a 
DC motor varies depending on its speed. In short-term operating mode, the motor overload is 
limited mainly by the deterioration of the switching condition, leading to unacceptable sparking of 
the commutator-brush contacts of the machine.  

The higher the rotation speed, the lower the armature current must be so that the switching 
conditions remain equally satisfactory [2, 5]. In reference materials, the value of the maximum 
permissible torque of DC motors is given for several speeds, usually for speeds ω≤0.2ωn, ω=ωn  and 
ω=2ωn. So, for example, for a crane-metallurgical motor DP-82, 220V, PE=25% parallel excitation 
with a stabilizing winding, the curve for changing short-term permissible currents within the 
range of 0-2ωn will have the form shown in Fig. 1 (broken line abc). Note that the diagram is 
constructed for the case where speed control up to 2ωn is carried out by changing the voltage 
applied to the motor armature and that the change in the permissible current between given points 
ab and c is taken along a straight line. Let's consider the possibilities of ensuring that existing 
circuits of automated electric drives make full use of the maximum overload capacity of the electric 
motor, that is, automatically limiting the drive load current along the line of permissible overloads 
indicated in Fig. 1. 

Figure 1: Scheme for automatically limiting the drive load current along the permissible overload line 

II. Methods

Typically, in automation circuits, in order to limit motor overload, a current cut-off unit is 
used (Fig. 2.). The independent excitation electric motor receives power from a controlled energy 
converter containing a control signal adder with windings CW1 and CW2. The circuit of the 
current cut-off unit includes a shunt with resistance rs, connected to the motor armature circuit, a 
source of reference (reference) voltage RV, winding CW2 and diode D.  

Figure 2: Automation circuit for limiting motor overload using a current cut-off unit 
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The equation for the electromechanical characteristics of an electric drive with current cut-
off can be presented in the following form: 

𝜔 =
𝑘𝑔(𝑈Σ)

𝑘𝜙
∙ 𝑈𝑠 −

𝑟с+𝑟𝑚

𝑘𝜙
∙ 𝐼 −

𝑘𝑐(𝑈Σ)∙𝑟𝑠

𝑘𝜙
∙ (𝐼 − 𝐼𝑐) ∙ 𝑙(∆𝐼)                               (1)

Where kg(UΣ) and rс are the gain of the total input voltage and the output resistance of the 
converter, respectively; I and rm are the current and resistance of the motor armature circuit, 
respectively; Us – setting voltage; Ic – cut-off current, Ic=const; Ur – reference voltage; k – 
electromagnetic constant; ϕ – motor excitation flux ϕ=const. 

When deriving formula (1), it was accepted that: a) 𝑙(∆𝐼) is a unit function equal to 0 or +1, 
respectively, for armature currents lower and higher cutoff currents; b) control windings CW1 and 
CW2 of the signal adder are identical [3]. The electromechanical characteristics of the drive, 
constructed according to equation (1) when speed is controlled by armature voltage, for various 
values of Us are shown in Fig. 3, a. When I≤Ic, no current flows through winding CW2 and the 
electric drive operates in the operating range of the characteristic. When I>Ic, current begins to flow 
through winding CW2, UΣ decreases and the motor torque is limited. 

Figure 3: The electromechanical characteristics of the drive, constructed according to equation (1) when speed is 

controlled by armature voltage, for various values of Us 

Let us assume that for this electric drive, by selecting the parameters of the current cut-off 
unit, the coincidence of section e1f1 of the electromechanical characteristic curve at Us1 (Fig. 3, a) 
with section bc of the curve of permissible maximum currents (Fig. 1) is achieved. In this case, 
using a conventional current cut-off unit, it is possible to automatically limit the armature current 
along the line of permissible motor currents if the value of the setting signal corresponds to the 
value of Us1. At lower values of the setting signal, the armature current limitation will pass through 
lines e2f2 or e3f3 depending on the value of the setting signal Us2 or Us3, i.e. in this case, the armature 
current will be limited at currents less than permissible values [7-9]. Consequently, when using a 
conventional current cut-off unit, with driving signals less than the nominal value (if Us1 is taken as 
the nominal value of the driving signal), full use of the permissible overload capacity of the electric 
motor is not ensured. The underutilization of the maximum overload capacity becomes even 
greater if the electric drive provides for regulation of the motor rotation speed above the rated 
speed. In this case, the diagram of the maximum permissible currents for a given motor will have 
two limitation sections (ab and bc, Fig. 1) with two different slopes of each of them. Since the 
electromechanical characteristic of an electric drive using a conventional current cut-off unit has 
only one current limiting section, this unit would have to be adjusted along the dotted line ac (Fig. 
1) to the cut-off current Ic=Im2ωn and to the stopping current Is=Im0.2ωn. In this case, at all values of the
setting signal, there will be an underutilization of overload torques.

     The degree of underutilization of the maximum overload capacity of the engine for various 
values of the master signal can be conditionally estimated by a coefficient equal to the ratio of the 
areas limited by the coordinate axes (I and ω) and the corresponding mechanical characteristics. 
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So, for example, for electric motors that allow speed control up to 2ωn: 
𝑘1 =

𝑆𝑜𝑐1𝑎1𝑖

𝑆𝑜𝑐ℎ𝑗
  for 𝜔𝑠 = 0.8 ∙ 𝜔𝑛 

Based on the calculated values of k1 for DP-82 engines, the graph shown in Fig. 4 was 
constructed. As can be seen from the k1 curve, the underutilization of the maximum overload 
capacity of the motor at reference speeds below 0.6ωn reaches more than 50%. From the above, we 
can conclude that adjustable DC electric drives with existing current limiting units do not ensure 
full use of the maximum overload capacity of the motor [11-13]. In this regard, a new current cut-
off circuit is proposed for adjustable DC electric drives, which makes it possible to fully realize the 
maximum overload capacity of the electric motor over the entire speed control range (at all values 
of the set signal). 

Figure 4: Graph based on calculated values of k1 

The main reason for the shortcomings of the existing current cut-off unit is the independence 
of the cut-off current value from the setting signal Us. Indeed, at the beginning of the cutoff circuit, 
the voltage drop across the shunt U1 is equalized with the reference voltage and the cutoff current: 

𝐼𝑐 =
𝑈𝑟

𝑟𝑠

= 𝑐𝑜𝑛𝑠𝑡 

It follows that the overload limiting unit in the new circuit must be designed in such a way 
that the comparison voltage does not remain a constant value, but changes as a function of the 
change in the maximum permissible armature current from the motor speed. For this purpose, an 
additional signal from the speed sensor SS is added to the circuit of the existing video current 
cutoff (Fig. 2, the Uω signal is introduced into section 1-2). The speed sensor signal Uω, subtracted 
from the reference voltage, forms a comparison voltage (Ua), the value of which, being a function 
of speed, increases as the engine speed decreases. Due to this, the cut-off current becomes a 
function of the motor speed. In this case, at the moment the cutoff begins, there is a voltage 
balance: 

𝑈𝐼 = 𝑈𝑎 = 𝑈𝑟 − 𝑈𝜔 = 𝐼𝑐𝑟𝑠 

Where does the cutoff current come from: 

𝐼𝑐 =
𝑈𝑟−𝑈𝜔

𝑟𝑠

=
𝑈𝑟

𝑟𝑠

−
𝑘𝜔

𝑟𝑠

∙ 𝜔

While UI≤Ua=Ur-Uω, the engine operates in the working section of the speed characteristic. 
When U1>Ua, current begins to flow through the control winding CW2, as a result of which the 
motor torque is limited. Moreover, as the set speed decreases, the cutoff current increases to the 
permissible overload for a given motor speed. This can be seen from Fig. 3b, which shows graphs 
of the electromechanical characteristics of the drive, constructed according to the equation: 

𝜔 =
𝑘𝑐(𝑈Σ) ∙ 𝑈𝑠 − (𝑟𝑐 + 𝑟𝑚) ∙ 𝐼 − 𝑘𝑐(𝑈Σ) ∙ (𝐼𝑟𝑠 − 𝑈𝑟𝑙(∆𝐼)

𝑘𝜙 + 𝑘𝑐(𝑈Σ)𝑘𝜔𝑙(∆𝐼)
 (2) 

    The expression for the stopping current can be obtained from equation (2) by substituting 
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the values of ω=0 and I=Is. In this case we get: 
𝐼𝑠 = (𝑈𝑟 + 𝑈𝑠) ∙ 𝛼  (3) 

Where: 

𝛼 =
𝑘𝑐(𝑈Σ)

𝑟𝑐 + 𝑟𝑚 + 𝑘𝑐(𝑈Σ)𝑟𝑠

≈ 𝑐𝑜𝑛𝑠𝑡 

     As can be seen from (3), in the proposed current cut-off circuit, the value of the stopping 
current varies slightly depending on the value of the setting signal; the stopping current decreases 
as the driving signal decreases. To reduce the influence of this dependence, the ratio Usmax/Ur 

should be taken to be small. To fully utilize the maximum permissible overload capacity of the 
electric motor when regulating the speed down from the nominal value of the parameters Ur, kω, rs 
should be selected in such a way that the steeply falling part of the electromechanical 
characteristics (line m1n, Fig. 3, b) coincides with the line of the maximum permissible motor 
currents ( bc, Fig. 1). Then, regardless of the reference speed, the overload current limitation will 
always be along the line of the maximum permissible motor currents and, therefore, the use of the 
maximum overload capacity for all speeds will be complete [15]. As mentioned above, for an 
electric drive that requires speed control up to 2ωn, the current limiting curve should have the 
shape of a broken line abc (Fig. 1). In this case, to change the slope of the current limiting curve, 
you can use a relay with a high return coefficient connected to the signal voltage of the speed 
sensor SS. By triggering this relay, upon reaching the rated rotation speed, the parameters of the 
current cut-off circuit (Ur, kω, rs) are changed and the required change in the slope of the current-
limiting section of the electromechanical characteristic is ensured. In this case, the 
electromechanical characteristics of the drive for set speeds, for example, 0.8ωn and 1.5ωn, will be 
obtained in the form of broken lines, jhc and pqbc, respectively (Fig. 1). Consequently, the 
maximum overload capacity of the drive motor will also be fully realized for any value of the 
reference rotation speed. 

III. Results
1. The existing current limiting unit does not ensure full use of the maximum overload capacity

of a DC motor, especially for master signals less than the nominal one. At reference speeds below 
0.6ωn, the underutilization of the maximum overload capacity of the motor reaches more than 50%. 

2. In order to automatically limit overload along the line of permissible values of motor
currents, you can use the proposed current cut-off unit. 
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Abstract 

The article focuses on investigating the impact of grounding device parameters on the stability of 

power systems under external disturbances, such as short circuits and lightning strikes. The study 

examines transient processes in power systems, including the analysis of rotor angle variations in 

generators and voltage recovery. Numerical modeling based on the equations of synchronous 

generators and electromagnetic transient processes is employed. A comparative analysis of various 

grounding device configurations is conducted, taking into account their resistance and the system's 

recovery time. The research results identify the optimal parameters of grounding devices that 

minimize the recovery time of power systems and enhance their overall stability. The findings can 

be utilized in the design and operation of power systems with improved reliability. 

Keywords: Power system stability, grounding devices, intelligent grounding 
systems, electrical network protection, transition processes, short circuit analysis. 

I. Introduction

Power system stability is one of the most critical factors in ensuring the reliability of 
energy supply. Modern power systems face numerous external disturbances, such as lightning 
strikes, short circuits, and abrupt load changes, which can disrupt their operational stability. The 
ability to effectively manage these processes is essential for minimizing equipment failure risks 
and improving the overall reliability of power systems. 

Grounding devices play a significant role in maintaining power system stability. They not 
only provide pathways for short-circuit and lightning discharge currents but also help reduce 
voltage stress on equipment, stabilize system parameters, and shorten recovery times after fault 
events. Despite the high effectiveness of modern grounding devices, insufficient attention to their 
design and operation can lead to severe consequences for power systems [1]. 

The objective of this study is to examine the impact of grounding devices on the stability of 
power systems under external disturbances. The research focuses on transient processes in power 
systems, analyzing grounding device parameters such as grounding resistance and their 
influence on key system characteristics, including the maximum rotor angle deviation of 
generators and voltage recovery time after a disturbance. 

Particular attention is given to the comparative analysis of different grounding device 
parameters and their effects on system performance under varying fault durations. Numerical 
methods are employed to model transient processes, incorporating synchronous generator 
equations and electromagnetic transient phenomena [2]. This approach identifies the most 
effective configurations of grounding devices for various operating conditions of power systems. 

This article aims to develop practical recommendations for optimizing grounding device 
parameters, which will enhance power system stability and reduce the risk of failures under 
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external disturbances 

II. Formulation of the problem

Power system stability is crucial for ensuring reliable electricity supply, especially under 
external disturbances such as lightning strikes, short circuits, and abrupt load changes. These 
disturbances can lead to equipment failures, increase the number of outages, and reduce the 
overall efficiency of the power system. 

Grounding devices play a central role in mitigating the negative impacts of such 
disturbances by providing a low-resistance path for lightning currents, stabilizing short-circuit 
parameters and preventing severe equipment damage. However, selecting optimal grounding 
device characteristics remains a complex challenge [3-5]. Parameters such as grounding 
resistance, electrode geometry, and soil resistivity must be carefully considered to minimize 
outages and ensure rapid system recovery after disturbances. 

Moreover, quantitative assessment of grounding device effectiveness requires modeling 
transient processes within the power system. This includes analyzing dynamic characteristics 
such as the maximum rotor angle deviation of the generator (δmax) and voltage recovery time 
(Trest). These parameters depend on the power system configuration and the characteristics of 
grounding devices. 

The problem can therefore be outlined as follows: 
1. Identify the optimal characteristics of grounding devices to improve power system stability.
2. Develop methodologies for calculating transient processes and key stability criteria (δmax, Trest).
3. Analyze the influence of various grounding device parameters on power system stability

under disturbances.
Solving this problem requires performing simulations, developing algorithms for 

calculating transient processes, and analyzing the results [6]. This will enable the formulation of 
recommendations for designing effective grounding devices. 

III. Problem solution

Power system stability is defined as the ability to maintain operational functionality under 
external disturbances such as lightning strikes, short circuits, or abrupt load changes [6-8]. 
Grounding devices play a critical role in ensuring this stability by reducing the risk of equipment 
damage and maintaining system parameter stability (Table 1). 

Table 1: Impact of Grounding Devices on Power System Stability 

Type of Disturbance 
Impact Without 

Effective Grounding 
Role of Grounding 

Devices 
Effect on Stability 

Lightning 
Insulation damage, 
flashovers in power 

lines 

Provides a low-
resistance path for 
lightning currents 

Reduction in outages 
by 35–50%  

Short Circuit 
Equipment 

overheating, circuit 
breaker damage 

Stabilizes fault 
currents, prevents 

mechanical damage 

Decrease in recovery 
time by 20–30%  

Abrupt Load Changes 
Voltage fluctuations, 
industrial equipment 

failures 

Stabilizes voltage at 
connection points of 

major consumers 

Reduction in voltage 
oscillations by 15–20% 
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Figure 1 illustrates the reduction in the number of outages for medium-voltage power lines with 
varying levels of grounding resistance (Table 2). 

Table 2: Outage Data for Power Lines with Different Grounding Resistance Levels 

Grounding Resistance (Ω) 
Number of Outages (Without 

Grounding) 
Number of Outages (With 

Grounding) 
10 50 20 
5 35 12 
1 25 7 

0.1 10 3 

Grounding devices with lower resistance demonstrate a significant decrease in outage 
frequency, contributing to improved power system reliability and operational stability. 

Figure 1: Effect of grounding resistance on number of outages 

The graph clearly demonstrates that as the grounding resistance decreases, the number of 
outages in the power system significantly reduces, particularly when the resistance is less than 1 
Ohm [9]. This highlights the effectiveness of grounding devices in ensuring the stability of power 
systems under external disturbances. 

To analyze the impact of grounding devices on power system stability, the following 
formula is used: 

𝑅𝑧 =
𝜌

𝐿
∙ 𝑓

Where: Rz  — grounding resistance, Ohms; ρ— soil resistivity, Ohm·m; L — length of the 
grounding electrode, m; f — correction factor depending on the geometry of the grounding 
electrode. 

The evaluation focuses on critical parameters, including: 
1. Maximum generator rotor angle (δmax);
2. Voltage recovery time after a disturbance (Trest).
These parameters are influenced by the network configuration and grounding device

characteristics. 
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For the calculations, a system configuration was selected comprising a generator with a 
nominal apparent power of Sn=100 MVA, operating at a frequency of 50 Hz and voltage Vn=220 kV. 
The generator's inertia constant H=6 s was considered to simulate its dynamic rotor behavior. 

The transmission line was characterized by a resistance of Rline=0.05pu and an inductance of 
Xline=0.5pu. Different grounding resistances (R={0.5,1.0,2.0} Ohm) were used to assess the impact of 
grounding. 

The stability analysis focuses on simulating transient processes to evaluate the maximum 
rotor angle deviation (δmax) and voltage recovery time (Trest). The synchronous generator equations 
and electromagnetic transient processes were applied, enabling the determination of critical 
system parameters under external disturbances, such as short circuits [10]. 

This approach allows for a comprehensive understanding of how grounding device characteristics 

affect the stability and resilience of power systems. 

For the calculations, the following equations were applied: 
Generator Rotor Dynamics Equation 

𝑑2𝛿

𝑑𝑡2
=

𝜔𝑠

2𝐻
∙ (𝑃𝑚 − 𝑃𝑒)

where: δ—rotor load angle; H—inertia constant (seconds); Pm — mechanical power; 𝑃𝑒 =
𝐸∙𝑉

𝑋
𝑠𝑖𝑛𝛿 

— electrical power. 
Stability Criterion: The angle δ is considered stable if: 

𝛿 ≤ 𝛿𝑐𝑟 , where 𝛿𝑐𝑟 = 900

Voltage Recovery: The load voltage is calculated as: 

𝑉𝑙𝑜𝑎𝑑 = 𝑉𝑠 ∙
𝑋𝑙𝑖𝑛𝑒

𝑅𝑙𝑖𝑛𝑒 + 𝑅𝑔𝑟𝑜𝑢𝑛𝑑

where Rground is the resistance of the grounding device. 
Calculation Algorithm: 
System Parameter Initialization: Generator: Pm=1.0 pu, E=1.1 pu; Transmission Line: 

Xline=0.5 pu, Rline=0.05 pu.; Grounding Device: R= {0.5,1.0,2.0}. 
Fault Simulation: At t=0, a fault is simulated, and generator voltage drops. Calculations are 

performed with a time step Δt=0.01 s. 
Numerical Integration of Rotor Dynamics: The fourth-order Runge-Kutta method is used 

to solve the rotor angle equation: 

𝛿(𝑡 + ∆𝑡) = 𝛿(𝑡) +
𝑑𝛿

𝑑𝑡
∙ ∆𝑡

Maximum Rotor Angle (δmax): The calculation is repeated for various fault durations (0.1–
1.0 s); δ increases until power balance is achieved (Pm=Pe). 

Voltage Recovery: After clearing the fault at tclear, the voltage recovers according to the 
equation: 

𝑉(𝑡) = 𝑉𝑝𝑟𝑒−𝑓𝑢𝑙𝑡 ∙ 𝑒
−

𝑅𝑔𝑟𝑎𝑛𝑑

𝑋𝑙𝑖𝑛𝑒
∙𝑡

Recovery time (Trest) is recorded as the moment when voltage reaches 95% of its nominal 
value. 

Example Calculations for R=0.5 Ω (table 3): 

Table 3: Example Calculations for R=0.5 Ω 
Fault Duration (s) Pm=Pe  (pu) δmax  (°) Trest (s) 

0.3 1.0 84.51 1.075 
0.6 1.0 86.99 1.150 
1.0 1.0 88.65 1.250 
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Results (table 4, table 5). The results were verified using Python, utilizing the NumPy library 
for numerical solutions and Matplotlib for visualization (figure 2, figure 3). 

Table 4: Maximum Rotor Angle (δmax) 
Fault Duration (s) R=0.5 Ω R=1.0  Ω R=2.0 Ω 

0.1 81.81 80.95 80.49 
0.2 83.30 81.81 80.95 
0.3 84.51 82.59 81.39 
0.4 85.51 83.30 81.81 
0.5 86.32 83.93 82.21 
0.6 86.99 84.51 82.59 
0.7 87.53 85.03 82.95 
0.8 87.98 85.51 83.30 
0.9 88.35 85.93 83.62 
1.0 88.65 86.32 83.93 

Table 5: Voltage Recovery Time (Trest) 

Fault Duration (s) R=0.5 Ω R=1.0 Ω R=2.0 Ω 

0.1 1.025 1.05 1.10 
0.2 1.050 1.10 1.20 
0.3 1.075 1.15 1.30 
0.4 1.100 1.20 1.40 
0.5 1.125 1.25 1.50 
0.6 1.150 1.30 1.60 
0.7 1.175 1.35 1.70 
0.8 1.200 1.40 1.80 
0.9 1.225 1.45 1.90 
1.0 1.250 1.50 2.00 

Figure 2: Maximum rotor angle vs fault duration 
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Figure 3: Restoration time vs fault duration 

Figure 2 illustrates the variation of the generator rotor's maximum angle (𝛿max) with respect 
to fault duration. It highlights how an increase in the grounding resistance reduces the amplitude 
of the rotor angle for a given fault duration. 

Figure 3 depicts the recovery time of voltage (Trest) as a function of fault duration. It 
demonstrates the influence of grounding resistance on the system's ability to recover following 
disturbances. 

These insights provide a better understanding of the impact of various grounding device 
parameters on power system stability, which is crucial for the design and operation of energy 
systems [11-13]. 

Modern intelligent grounding devices (IGDs) represent an integration of advanced 
electronics, sensor systems, and data analysis algorithms (figure 4). These devices are capable of 
actively monitoring power system parameters in real time, including leakage currents, grounding 
resistance, frequency deviations, and other metrics that are critical for maintaining network 
stability. 

Figure 4: Modern intelligent grounding devices (IGDs) 

The operation of Intelligent Grounding Devices (IGD) relies on built-in sensors and control 
systems that analyze current network parameters and forecast potential failures. For instance, 
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IGDs are equipped with sensors that detect changes in soil resistance caused by environmental 
conditions such as rain or frost [14]. Based on the collected data, the device automatically adjusts 
grounding system parameters to minimize the likelihood of system failures. 

One of the key innovations in IGD technology is the integration with Internet of Things (IoT) 
systems. This enables data from grounding devices to be transmitted to cloud storage for 
subsequent analysis and prediction. The application of machine learning in data analysis opens up 
opportunities for more accurate identification of potential risks, such as equipment overheating or 
disruptions caused by lightning strikes. 

Another significant advancement in IGD technology is the use of self-regulating materials in 
their construction [15]. These materials can alter their properties in response to external conditions, 
such as automatically increasing conductivity during high current loads. This capability is 
particularly critical for high-voltage systems, where system stability directly depends on 
grounding characteristics. 

Furthermore, IGDs can be integrated with active power system management solutions. In 
the event of a short circuit or other critical incidents, IGDs interact with relay protection and 
automatic recovery systems, ensuring faster system responses and minimizing downtime [16-17]. 

The adoption of such technologies not only enhances the reliability of power systems but 
also improves their economic efficiency by reducing operational costs and extending equipment 
lifespan. 

Examples of modern IGD implementation demonstrate their effectiveness under real 
operating conditions and confirm significant improvements in power system stability. Below, 
several specific examples from various energy projects are discussed to illustrate their practical 
benefits. 

High-Voltage Transmission Lines in Europe 

As part of the modernization of Germany's energy infrastructure under the "Energiewende" 
project, advanced intelligent grounding devices (IGDs) were implemented in high-voltage 
transmission lines (HVDC systems). The primary objective of these devices was to reduce the risk 
of outages caused by lightning strikes and transient processes. These devices monitored ground 
resistance in real-time, transmitted data to a central control system, and automatically adjusted 
grounding parameters based on weather conditions. As a result, the number of line outages 
decreased by 25%, significantly improving the overall reliability of the power system. 

Substations in the United States 

At a substation in California, located in a seismically active zone, an advanced system of 
IGDs was installed. These devices included sensors to measure ground resistance and vibrational 
parameters, enabling effective risk management associated with earthquakes. After integrating the 
grounding system with the substation's automation system, network recovery times after 
disturbances improved, with voltage restoration occurring on average 30% faster than with 
traditional methods. 

Wind Farms in Northern Europe 

At a wind farm in Denmark, where frequent thunderstorms pose a risk of lightning strikes, 
IGDs with active monitoring capabilities were installed. These devices protected generators from 
overvoltages, monitored changes in grounding circuit resistance, and transmitted data to a cloud-
based analysis system. This not only improved the resilience of the power system but also reduced 
maintenance costs, as wear-and-tear forecasting optimized the maintenance schedule. 

Solar Power Plants in India 

At one of the largest solar power plants in Rajasthan, IGDs with automatic ground condition 
monitoring systems were introduced. These devices played a critical role in the region's high-
temperature and dry climate, where soil conductivity is significantly reduced. The intelligent 
devices adapted grounding parameters, preventing overloads and network disconnections. As a 
result, energy losses decreased by 18%, significantly enhancing the plant's efficiency. 
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These examples demonstrate that modern IGDs significantly enhance the resilience of power 
systems under diverse operating conditions. They provide the following advantages: 

• Reduced System Downtime: Accelerated restoration of network parameters minimizes
outages.

• Lower Operational Costs: Predictive maintenance decreases maintenance expenses.
• Increased Equipment Lifespan: Protection against external impacts extends the service life of

critical components.
The integration of IGDs into power systems not only enhances their reliability but also

contributes to economic efficiency, making these technologies a vital component of modern energy 
infrastructure. 

IV. Conclusions

1. The analysis demonstrated that the parameters of grounding devices significantly impact
transient processes in the power system, including voltage recovery and the system's dynamic
stability after short circuits or lightning strikes.

2. Optimization of grounding device resistance helps reduce overvoltages and voltage recovery
times, thereby improving the operational reliability of the power system.

3. Numerical modeling revealed that selecting a grounding device configuration tailored to the
specific conditions of the power system minimizes angular oscillations of generator rotors and
reduces the risk of loss of synchronism.

4. Grounding devices with low resistance were found to be the most effective for enhancing the
stability of the power system, as they ensure rapid dissipation of fault currents and restoration
of normal operating conditions.

5. The research findings can be valuable for designing new power systems, upgrading existing
ones, and developing regulatory standards for grounding devices aimed at improving system
stability and reliability.

In conclusion, the proposed approaches to analyzing and optimizing the parameters of 
grounding devices open new possibilities for enhancing the stability of power systems under real 
operational conditions. 
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Abstract 

Many countries face problems in electricity generation. Boilers play an important role in a power 
plant. Sudden failures of a power plant boiler components cause loss of production and high 
maintenance cost. Due to unplanned and irregular maintenance, which can ultimately increase the 
production cost of electricity. This is a common challenge faced by power plant operators 
worldwide. The present study aims to examine and analyze the failure times of a boiler at a thermal 
power plant and identify its critical failure expectancy and system reliability. The data was collected 
over a long period and was analyzed using statistical methods. In this study, the hypothesis has 
been proposed to choose the best analysis. Furthermore, reliability, availability, and maintainability 
analysis were carried out under discrete analysis. The analysis included identifying the probability 
distribution of the failure times, identifying critical failure expectancy, and determining system 
reliability. 

Keywords: Boiler, mean time between failure (MTBF), mean time to repair 
(MTTR), reliability, availability, maintainability, log-normal distribution, Weibull 
distribution, hazard function, survival function. 

1. Introduction

Uninterrupted power supply functioning be influenced by its equipment and components. The 
functioning of boiler tubes, super heaters, heat exchangers, turbines, etc., is important to maintain 
the power supply in fossil fuel-based power plants. A single component failure also leads to the 
shutdown of the entire power generation system. Boilers are designed to operate at high 
temperatures, pressure and they play a critical role in the efficient, reliable operation of a thermal 
power plant. Analysis of failures of a boiler in a power plant is important to continuous power 
generation. The boiler is a key component of a thermal power plant and is used to convert water 
into steam, which is then used to generate electricity. The steam is produced by heating water in 
the boiler through the combustion of fuel, such as coal or natural gas. The steam sent through a 
turbine, which powers a generator to produce electricity. The steam is then cooled and condensed 
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back into water, which is then returned to the boiler to be heated again. Boiler components are 
mainly made of steel, cast irons stainless steel, and high-temperature alloys. The combustion, 
ignition, and fuel-feeding systems are also equally important in the reliability and availability 
study of the boiler also few authors focused on the failure analysis of these systems. The 
availability of the steam boiler is a key factor, as it affects the performance and productivity of the 
process industry. The availability of the steam boiler and its components depends on its reliability 
and maintainability and can be enhanced by avoiding the number of failures and decreasing the 
time required scheduled and unscheduled maintenance activities. System availability can be 
enhanced by identifying critical mechanical subsystems concerning failure frequency, reliability 
and maintainability. 

For the system reliability analysis, it is necessary to classify the system into various levels such 
as assembly and sub assembly components. Reliability analysis can be done with the collection of 
failure data from a variety of sources. After collecting the failure data, criticality analysis is needed 
for the identification of critical parts, the next stage is to estimate the parameters of the distribution 
and finally, the reliability characteristics are found. 

Failure of boiler tubes has often been reported in many such power plants [1]– [3]. Duarte et 
al. [4] studied failure analysis of water-tube boiler as case study and identified that the occurrence 
of failure of the water-tube boiler as stress corrosion cracking. Moghanlou and Pourgol- 
Mohammad [5] investigated on failures of boiler tubes in power plants by Failure Modes and 
Effect Analysis (FMEA) and stochastic technique. S. Chaudhari and R. Singh [6] focused on high 
temperature boiler tube failures specifically on preheater tube, carbon steel and superheater tubes. 
Barry and Hudson [7] suggested a probabilistic feedback scheme for the maintenance of fuel 
feeding system. By reviewing the literature on failures of boiler and its components, it is found that 
the data which was recorded is necessary to find boiler’s reliability and to enhance maintenance 
strategies for boiler system. 

In this article, failure of boilers of the electricity power plant has been analyzed. Discrete and 
continuous analysis has been done by considering suitable distributions. Plotted probability and 
cumulative probability distribution functions and hazard rate curve 

2. Methodology
2.1. Discrete Analysis 

For performing discrete analysis, the failure data is studied on yearly basis, and outage frequency, 
forced outage hour, service hour, and period hour are calculated for each year. Further, the mean 
time between failure (MTBF), mean time to repair (MTTR), repair rate, failure rate, reliability, and 
availability are calculated and noted in different columns. 

2.1.1 Reliability 

If the failure rate remains constant for each year thus reliability is calculated using an exponential 
distribution. 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

The reliability is given by 
𝑅(𝑡) = 𝑒ିఒ௧  ,𝑡 > 0, 𝜆 > 0 

where 𝑡 is time 
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2.1.2 Availability 

The availability is calculated using uptime and down time. 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑈𝑝 𝑡𝑖𝑚𝑒 

𝑈𝑝 𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛 𝑡𝑖𝑚𝑒

2.1.3 Maintainability 

For calculating the maintainability, the mean time between failure (MTBF) and mean time to repair 
(MTTR) is calculated for each year. 

𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑀𝑇𝑇𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑟𝑐𝑒𝑑 𝑂𝑢𝑡𝑎𝑔𝑒 𝐻𝑜𝑢𝑟𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

2.2 Continuous Analysis 

2.2.1 Goodness of Fit 

Goodness of fit is a statistical measure used to evaluate how well a given model fits a set of data. It 
measures the degree of agreement between the observed data and the expected values predicted 
by hypothesis. The goodness of fit can be calculated using various statistical tests, such as the 
Kolmogorov-Smirnov test, or Anderson Darling test, etc., which assess the statistical significance of 
the differences between the observed and expected values. A high value of goodness of fit 
indicates that the model or hypothesis is a good fit for the data, while a low value suggests that the 
model may not be appropriate or that there may be some underlying factors that the model does 
not account for. 

2.2.2 Common Life Distribution 

The reliability of any repairable system may be increased after its repair. So, finding the system's 
reliability is mandatory periodically. For this, a reliability analysis of the system is required to meet 
the desired reliability. 

The following distributions may be included. 
• Normal Distribution
• Gamma Distribution
• Log-normal Distribution
• Weibull Distribution
• 3-parameter Log-normal Distribution
• 3-parameter Weibull Distribution
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2.2.3 3 -Parameter Log-normal Distribution 

The 3-parameter lognormal distribution is a continuous probability distribution widely used to 
model positively skewed data in various fields, including finance, economics and engineering etc., 
It is called “lognormal” because its natural logarithm follows a normal distribution. This property 
is suitable for representing data that is the result of multiplicative processes, such as the product of 
random variables. It is characterized by three parameters, the shape parameter (μ), the scale 
parameter(σ) and the location (τ). 

The probability density function of the 3-parameter lognormal distribution is given by 

𝑓(𝑥: 𝜇, 𝜎, 𝜏) = ቐ

1

𝜎√2𝜋
𝑒

൬
ି(௫ିఓ)మ

(ଶఙమ)
൰
 𝑖𝑓 𝑥 > 𝜏

0 𝑖𝑓𝑥 < 𝜏,

, ቑ , 𝜎 > 0

 2.2.4 3 -Parameter Weibull Distribution 

The 3-parameter Weibull distribution is a continuous probability distribution widely used in 
reliability engineering, survival analysis, and failure modeling. It is characterized by three 
parameters, the shape parameter (k), the scale parameter(λ) and the location (α). The probability 
density function (pdf) of the 3-parameter Weibull distribution is given by. 

𝑓(𝑥: 𝜆, 𝑘, 𝛼) = ቐ

𝑘

𝜆
ቀ

𝑥 − 𝛼

𝜆
ቁ

ିଵ

𝑒𝑥𝑝 − ቀ
𝑥 − 𝛼

𝜆
ቁ



൨ , 𝑖𝑓𝑥 ≥  𝛼 

0 , 𝑖𝑓 𝑥 < 𝛼
ቑ

3. Case Study

The following data is collected from a thermal power plant, which is in Suryapet district, 
Telangana state, India. The power plant is functioning with two boilers to generate 15 MW/hour. 

Tables 1 & 2 below provide an overview of the outage frequency of boiler_1 & boiler_2 
respectively over a consecutive 10-year period, including forced outage hours and service hours.  

Table 1: Failures of Boiler_ 1 
SI 
No 

Year Outage 
frequency 

Forced outage 
Hour(h) 

Service 
Hour(h) 

Period 
Hour(h) 

1 2009 05 657.99 4982.01 5640 
2 2010 11 1185.06 7574.94 8760 
3 2011 05 2363.28 6396.72 8760 
4 2012 02 202.10 8557.9 8760 
5 2013 04 180.09 8579.91 8760 
6 2014 04 412.22 8347.78 8760 
7 2015 05 609.56 8150.44 8760 
8 2016 09 1027 7733 8760 
9 2017 07 3646.74 5113.26 8760 

10 2018 05 380 8380 8760 
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Table 2: Failures of Boiler_ 2 

SI 
No 

Year Outage 
frequency 

Forced outage 
Hour(h) 

Service 
Hour(h) 

Period 
Hour(h) 

1 2009 03 653.33 7170.33 7824 
2 2010 04 712.50 8047.5 8760 
3 2011 04 1844.18 6915.82 8760 
4 2012 04 478.00 8282 8760 
5 2013 03 198.9 8561.10 8760 
6 2014 02 296.5 8463.5 8760 
7 2015 06 756.92 8003.08 8760 
8 2016 05 932.98 7827.02 8760 
9 2017 04 2552.87 6207.13 8760 

10 2018 04 170.61 8589.39 8760 

Tables 3 & 4 below provide a detailed summary of the failure hours of boiler_1 & boiler_2 
respectively and arranged chronologically from 2009 to 2018. 

Table 3: Failure Data of Boiler_ 1 

SI 
No 

Failure 
Hours 

SI 
No 

Failure 
Hours 

SI 
No 

Failure 
Hours 

SI 
No 

Failure 
Hours 

SI 
No 

Failure 
Hours 

SI 
No 

Failure 
Hours 

1 10.08 11 29.59 21 511.55 31 239.45 41 13.45 51 2518.25 
2 459.30 12 6.05 22 146.00 32 284.58 42 29.45 52 305.45 
3 49.40 13 50.48 23 56.10 33 5.02 43 40.45 53 27.50 
4 59.21 14 9.16 24 37.14 34 236.56 44 116.50 54 11.35 
5 80.00 15 88.50 25 21.55 35 83.40 45 511.12 55 12.15 
6 63.20 16 553 26 7.20 36 18.16 46 49.30 56 23.55 
7 47.40 17 278.32 27 114.20 37 9.50 47 264.37 
8 46.07 18 108.08 28 49.20 38 11.05 48 222.25 
9 286.24 19 302.13 29 49 39 7.29 49 9.45 

10 5.37 20 1163.20 30 74.57 40 781.15 50 72 

Table 4: Failure Data of Boiler_ 2 

SI 
No 

Failure Hours SI 
No 

Failure Hours SI 
No 

Failure Hours SI 
No 

Failure 
Hours 

1 54 11 757.4 21 239.12 31 109 
2 409.15 12 358.55 22 61.25 32 119.15 
3 190.18 13 95.5 23 32.56 33 516.47 
4 5 14 10.5 24 226.39 34 177.25 
5 48.25 15 13.45 25 78.15 35 1740 
6 118.10 16 92.10 26 119.25 36 10.11 
7 541.15 17 7.35 27 18.16 37 7.15 
8 183.19 18 99.45 28 24.07 38 140.20 
9 502.42 19 201.10 29 21.20 39 13.15 

10 401.17 20 95.4 30 760.55 40 209.30 
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Table 5 & 6 explain the identification of the distribution that best fits for boiler_1 & boiler_2, by 
using the Anderson-Darling test along with the correlation coefficient to determine the most 
appropriate fit. 

Table 5: Goodness of Fit of Boiler _1 

Table 6: Goodness of Fit of Boiler _2 

4. Results and Discussions

The failure data of the boilers mentioned in the Table 3 and Table 4 has been organized into year-
wise failures by sorting them in a chronological order. The sample data is then analyzed to 
determine the number of outages that occurred during each year, the mean time between two 
successive failures, the total number of hours that the system was operational and the total period 
of each year 

Using these metrics, several important reliability and maintenance indicators are calculated, 
including MTTR, MTBF, failure rate, repair rate, reliability, availability. These measures provide 
important insights into the performance of the boiler system, helping to identify areas for 
improvement and optimize maintenance schedules. 

4.1 Continuous Analysis 

4.1.1 Probability Curve 

Figure 1 provides the use of a 3-Parameter Lognormal distribution to model the failure hours of 
boiler_1. The plot shows a strong alignment of the data points with the line, indicating a good fit. 
This is further supported by a high correlation coefficient of (0.994) and a low Anderson-Darling 
statistic of (0.530). The analysis reveals key metrics, including a mean failure time of (256.8) hours 
and a median failure time of (55.35) hours. These values play a significant role in assessing the 

Distribution Anderson-Darling Test Correlation Coefficient 
Weibull 2.463 0.948 

Lognormal 0.631 0.989 
Exponential 14.028 * 

Normal 8.518 0.678 
3-Parameter Weibull 0.605 0.994 

3-Parameter Lognormal 0.530 0.994 
2-ParameterExponential 6.831 * 

Distribution Anderson-Darling Test Correlation Coefficient 
Weibull 0.809 0.977 

Lognormal 0.761 0.987 
Exponential 3.237 * 

Normal 4.375 0.791 
3-Parameter Weibull 0.539 0.994 

3-Parameter Lognormal 0.667 0.988 
2-ParameterExponential 2.658 *
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reliability of boiler_1. The close fit of the model highlights its effectiveness in capturing failure 
trends. This information is essential for evaluating the operational reliability of the system. 
Additionally, it aids in developing maintenance strategies to minimize downtime.  

Figure 1: Probability plot for failure hours of boiler_1 

From the below Figure 2, the plot utilizes a 3-Parameter Weibull distribution to model the failure 
hours of boiler_2. The data points closely align with the line, indicating a high correlation of (0.994) 
and a low Anderson-Darling statistic of (0.539) which suggests a strong fit. Notable values include 
a mean failure time of 232.4 hours and a median of 104.2 hours. This analysis is instrumental in 
evaluating reliability and informing maintenance strategies. 

Figure 2: Probability plot for failure hours of boiler_2 
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4.1.2 Probability Density Curve 

In figure 3, the curves are steep at the beginning, indicating a higher likelihood of failure shortly 
after operation begins. As the curves flattens out, the probability of failure decreases for longer 
operation hours. This distribution helps to identify the most likely failure periods and informs 
maintenance schedules or risk assessments to reduce unexpected downtime for boiler_1 & 
boiler_2. 

Figure 3: Probability density function of plot for boiler_1 and boiler_2 

4.1.3 Survival Function 

From Figure 4, the survival plots for both boilers start a 100%, indicating that all components are 
operational initially. For both, the curves show a sharp decline in the early hours, reflecting high 
failure rates during the initial phase. Over time, the slopes flatten, indicating fewer failures as the 
lifecycle progresses. Boiler_1 with survival probability nearing 0% by 3250 hours while boiler_2 
reaches survival probability of nearly 0% by 1600 hours. 

Figure 4: Survival function plot for boiler_1 and boiler_2 
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4.1.4 Hazard Function 

From Figure 5, the hazard plots of boler_1 & boiler_2 reveals critical insights into the boiler’s 
reliability. The high initial hazard rate indicates a need to address early-life failures through 
measures like better quality control, initial inspections, or burn-in testing. The decreasing hazard 
rate over time suggests that components become more stable as they age. This information is 
valuable for planning preventive maintenance and improving operational efficiency. 

Figure 5: Hazard function plot for boiler_1 and boiler_2 

4.2 Discrete Analysis 

4.2.1 Reliability 

In the Figure 6, the reliability of a boiler_1 starts low in 2008 and remains minimal through 2011 
before sharply increasing in 2012, reaching its peak. It then declines steeply and stabilizes at lower 
levels, fluctuating minimally from 2014 to 2018 with no significant recovery. Similarly, the 
reliability of boiler_2 begins at a low level in 2009, declines further, and stabilizes minimally until 
2013. In 2014, it peaks sharply but drops significantly in 2015 to its lowest point, followed by a 
gradual recovery with slight improvements through 2018. 

Figure 6: Reliability plot for boiler_1 and boiler_2 

4.2.2 Availability 

Figure 7 provides an overview of the availability rends for boiler_1 and boiler_2 over several years. 
Boiler_1 showed high availability in 2012, which remained consistent through 2013. From 2013 to 
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2016, its availability gradually declined, followed by a steep drop in 2017. Despite this downturn, 
2018 marked a significant recovery, with availability increasing substantially. In comparison, 
boiler_2 experienced very low availability during 2017, indicating a challenging phase. However, 
2018 brought a remarkable improvement in its performance, with availability rising sharply. These 
trends highlight contrasting patterns for the two boilers, with boiler_1 recovering from a decline 
and boiler_2 overcoming its earlier low performance. By 2018, both boilers exhibited significant 
improvement, underscoring their recovery and stability. 

Figure 7: Availability plot for boiler_1 and boiler_2 

4.2.3 Maintainability 

From Figure 8, it shows that boiler_1 had a low MTTR in 2013, while a high MTTR was recorded in 
2017. In contrast, boiler_2 experienced a low MTTR in 2018, but high MTTR was also recorded in 
the same year 2018. 

Figure 8: Maintainability plot for boiler_1 and boiler_2 

5. Conclusion

In this paper, the work is based on discrete and continuous analysis using suitable distributions. 
The study involves analysis of failure times of a boiler system of a power generation plant. The 
data fits log-normal and Weibull distributions of boiler_1 and boiler_2 respectively, shape and 
scale parameters are determined. Using the sorted data, the probability density curve, cumulative 
probability curve and hazard rate curves are plotted. By these plots, it is easy to make possible 
predictions of the future tendency of failures of the boilers.  

Discrete analysis is carried out to analyze failures of two boilers in the power plant over a 
period to identify patterns and trends in the frequency and nature of the failures. This analysis is 
conducted on a yearly basis, with the goal of identifying the effect of these failures on the overall 
performance of the boilers. In 2010 and 2016, the reliability of boiler_1 is very low whereas in 2015, 
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the reliability of boiler_2 is very low. The availability of boiler_1 in 2012, 2013, and 2018 is very 
high. High availability suggests efficient operation, contributing to consistent power generation. 
Whereas in 2017, the availability of two boilers is less. For decreased availability, conducting root 
cause analysis to identify the underlying issues is mandatory. In 2017, the mean time to repair is 
very high for two boilers. It indicates some maintenance strategies must be planned. The 
information gathered from this analysis is used to create a plan that addresses the identified issues 
and implements actions to improve the reliability, availability and maintainability of the boiler. By 
doing so, the organization reduce downtime, improve performance and prevent future failures. 

References 
[1] S. K. Dhua, “Metallurgical investigation of failed boiler water-wall tubes received from a

thermal power station,” Eng. Fail. Anal., vol. 7–8, no. 17, pp. 1572–1579, 2010, doi:  10.1016/j.engfail 
anal.2010.06.004. 

[2] J. Ahmad and J. Purbolaksono, “Hydrogen damage in a rear riser water wall tube of a
power plant,” Eng. Fail. Anal., vol. 5, no. 17, pp. 1239–1245, 2010, doi: 10.1016/j.engfailanal.2010. 
01.005. 

[3] J. Ahmad, J. Purbolaksono, L. C. Beng, A. Z. Rashid, A. Khinani, and A. A. Ali, “Failure
investigation on rear water wall tube of boiler,” Eng. Fail. Anal., vol. 16, no. 7, pp. 2325–2332, Oct. 
2009, doi: 10.1016/j.engfailanal.2009.03.012. 

[4] C. A. Duarte, E. Espejo, and J. C. Martinez, “Failure analysis of the wall tubes of a water-
tube boiler,” Eng. Fail. Anal., vol. 79, pp. 704–713, Sep. 2017, doi: 10.1016/j.engfailanal.2017.05.032. 

[5] L. N. Moghanlou and M. Pourgol-Mohammad, “Assessment of the Pitting Corrosion
Degradation Lifetime: A Case Study of Boiler Tubes,” ASCE-ASME J Risk Uncert Engrg Sys Part B 
Mech Engrg, vol. 3, no. 4, Jun. 2017, doi: 10.1115/1.4036064. 

[6] S. Chaudhuri and R. Singh, “High temperature boiler tube failures: case studies,” S. R.
Singh, N. Parida, D. K. Bhattacharya, and N. G. Goswami, Eds., Jamshedpur: NML, 1997, pp. 107–
120. Accessed: Dec. 25, 2022. [Online]. Available: https://eprints.nmlindia.org/1580/

[7] D. M. Barry and M. W. Hudson, “Reliability Modelling for the Scheduling of Plant Work in
Majority Vote Mode,” Int. J. Qual. Reliab. Manag., vol. 3, no. 2, pp. 12–20, Jan. 1986, doi: 10.1108/eb 
002861. 

[8] S. Agarwal and A. Suhane, “Study of Boiler Maintenance for Enhanced Reliability of
System A Review,” Mater. Today, Proc., vol. 4, no. 2, Part A, pp. 1542–1549, Jan. 2017, doi: 10.1016/j 
.matpr.2017.01.177. 

RT&A, No 1 (82) 
Volume 20, March 2025 

753



Ashish Negi, Ompal Singh
PROBABILISTIC INVENTORY MODEL FOR DI WITH UD UNDER PFE

PROBABILISTIC INVENTORY MODEL FOR
DETERIORATING ITEMS WITH UNCERTAIN DEMAND

UNDER PENTAGONAL FUZZY ENVIRONMENT

Ashish Negi
1, Ompal Singh

1,∗

•
1 Department of Mathematics, SRM Institute of Science and Technology,

Delhi-NCR Campus, Ghaziabad, India, 201204
negi.ashish1995@gmail.com, ompalsit@srmist.edu.in

∗Corresponding author

Abstract

Using a pentagonal fuzzy framework, this research presents a probabilistic inventory model for
deteriorating items under an uncertain demand. Degeneration of items puts a company’s financial
ability to meet its objectives at risk. Few models have synchronized optimization over this whole scenario
with all components, according to a survey of the literature. It deals with the difficulties of inventory
control in situations where demand is represented by fuzzy sets but is not precisely known. The model
offers a clearer and more useful understanding of demand uncertainty by defuzzifying pentagonal fuzzy
numbers using the Graded Mean Integration Representation (GMIR) approach. The goal of the study is
to optimize inventory levels in order to minimize total costs, which include holding, degradation, shortage,
and purchase. These components are included into a mathematical model, and numerical scenarios are
shown to compare the both potential strategies. The sensitivity of the solution and decision variables
with respect to different inventory characteristics is examined in both crisp and fuzzy settings. Fuzzy
logic is integrated into the model to provide a strong framework for making decisions when dealing
with ambiguous demand and the complications that come with deteriorating inventory. The paper
includes numerical examples and sensitivity analyses to demonstrate the model™s effectiveness and
practical relevance. These findings provide valuable guidance for inventory managers aiming to improve
decision-making and operational efficiency in contexts with fuzzy demand and deteriorating products.
At the optimal position, the total cost is relatively inelastic to an increase in base deterioration rate and
more elastic to a decrease in it. Although the crisp example is marginally less efficient per unit cost, total
costs are lower than in the fuzzy case, which is to be expected given the fuzzy case’s potential for superior
results.

Keywords: Probabilistic Inventory Model, Deteriorating Items, Uncertain Demand, Pentagonal
Fuzzy Environment, Graded mean integration representation (GMIR).

1. Introduction

In the current situation, Showrooming and time-sensitive processes are closely related. Due to
the coronavirus incident in this case, unique protocols necessitated significant modifications to
the stock structure. The global health crisis has compelled businesses to rethink their current and
upcoming marketing strategies in order to sustain a steady stream of revenue. Short-term effort
could focus on multiple goals, such as more advanced plans or improved consumer perception.
Potential benefits could also include increased employee inspiration and an increase in in-store
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visitors. The objective is to increase revenue and get rid of excess goods. Thus, inventory
control is essential to every sophisticated, modern business. There are several benefits to having
well-managed inventories, including direct profits and devoted customers. Furthermore, the
intricate connections between these several business objectives uphold the astounding significance
of inventory management. Because of its ability to address a wide range of problems and its
mathematical methodology, the continuous review has garnered more attention than the periodic
review.

Disintegration is a character that arises from natural problems during caching and is repre-
sented by degradation, harm, decay, hurt, or other changes in item quality. Items such as batteries,
semiconductor chips, food assortments, unstable fluids, and therapeutic items such as blood
face degeneration and gradually lose potential are a few instances. Managing and remaining
cognizant of the stock framework’s decomposing goods inventories is a major concern. The aim
of inventory management is to increase business profits by reducing wasteful inventory and
deteriorating items are a hindrance to this goal. One way to think of the rate at which products
deteriorate is as a dependent variable that can be managed with protection innovation. Businesses
are aware that they have to control degradation losses to the letter. Enhancing and modernizing
storage procedures is one of the typical control strategies. Through feasible capital input along
these channels, retailers can slow down the rate at which things deteriorate, avoiding unnecessary
waste, limiting financial losses, and improving business efficiency. These degradation control
models have received a great deal of attention and are more in line with the real inventory
conditions. In today’s volatile marketplaces, precise inventory control is especially important for
perishable products. For instance, the retailer’s reputation and goodwill will suffer due to food
deterioration. Weakening increases the associations cost and therefore reduces the advantage,
which is a major cause of stock misfortune. The weakening of interactions caused by oxidation,
chemicals, and microbes frequently depends on ecological factors like environment, temperature,
and stickiness. Temperature regulation is necessary to maintain product quality as it has a
substantial impact on deterioration. Innovative protective measures, such temperature-regulating
equipment and creative bundling, can affect the rate of weakening and postpone the crumbling
cycle.

At that time, when management introduces a new product, they don’t fully understand the
market and other aspects of the product. The analysis of experts is trusted by the management.
Fuzzy principles can be used to represent demand or other elements connected to the expert
opinion when the counsel is imprecise. The resulting environment is referred to as a fuzzy
environment. This work orders a new way to improve demand forecasting, which is one of the
main challenges of a continuous review inventory model. The impact of fuzzy demand across
an infinite time horizon is further investigated in this work. For a continuous review inventory
system, the best operating strategy is looked for in order to minimize the overall layout in a fuzzy
setup. It is believed that the full-backordering method will balance the loss component during
the inventory shortage. The optimal policy is analyzed and both crisp and fuzzy examples of a
continuous review inventory system are numerically solved. The findings provided can greatly
benefit decision makers’ methods in situations of uncertain demand and lower total inventory
costs.

The approach is complicated by practical concerns like attenuated deterioration, demand
affected by both fuzzy base and promotional upscaling. It has been suggested that analytical
convexity be taken into account without deterioration factor approximation. Because of the
infinite Time horizon, the continuous domain for cycle length leads to continuous time duration
Variables. Given these factors, the study’s uniqueness and significance are that it contrasts an
inventory model for ongoing evaluation, it enables an inventory model to perform a thorough
exponential depreciation attenuation analysis. With a pentagonal fuzzy foundation and a term
that scales with promotion efforts, demand uncertainty is modelled in a more realistic scheme for
which the retention approach is intended.

Forecasting demand patterns is a prerequisite for the a priori planning decision-making
process for retailers and sellers. Flexibility in resource and operation management can enhance
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the arrangement’s overall performance. The first model, which follows, is a useful mathematical
prototype and employs the pure deterministic situation in which the decision-maker has access
to precise demand information. The second model, which employs a fuzzy formulation for the
imprecisely forecasted demand, goes back to the first claim of flexibility in addressing uncertainty.
When combined, the two models give the researcher a clear and succinct understanding of the
mathematical process and the financial rationale for using fuzziness to address uncertainty and
degradation, respectively.

The current article’s organization follows the following structure: Section 2 has the literature
review, which reviews past research that provides context for this work. Section 3 includes
the research question and the presumptions used to help plan the model’s layout. The utilized
notations are tallied. The modelling approach and solutions for the environments that are both
crisp and fuzzy are covered in Section 4.In the following, numerical examples are used to illustrate
how this paradigm can be applied in a real-world scenario Section 5. Section 6 contains the
administrative architecture and sensitivity analysis for the inventory systems. In Section 7, the
research’s conclusions and future directions are examined.

2. Literature review

2.1. Deterioration

Inventory management has extensively studied Deterioration. Food rotting due to oxidation or
microorganisms is a common occurrence. Storage of electronic items must take into consideration
contamination, moisture, and electrostatic discharge damage. Pervin et al. [1] established an
EOQ model for perishable commodities, taking into account time-dependent holding costs and
demand that fluctuated with stock level. Pervin et al. [2] created a multi-item inventory model
that considered constant rate of deterioration, on-demand, and trade credits. Barman et al. [3]
examined an economic production quantity (EPQ) model in a fuzzy environment with shortages
and inflation, with time-dependent demand and a fixed rate of deterioration. Roy et al. [4] created
a probabilistic system for decaying items with two warehouses, two credit levels. Roy et al. [5]
suggested a credit strategy for a deteriorating product and an imperfect production system with
a partial backlog. Khan et al. [6] examined a system that had a variable demand pattern, constant
deterioration, and delayed payment. Currently, Shah et al. [7] examined the situation where
products demand and deteriorate varies according to selling price while taking the greening
effect into account. Yadav et al. [56] optimize an inventory model for deteriorating items using
a two-warehouse system, highlighting the need to balance cost and efficiency in managing
perishable goods. Yadav, K.K., Yadav, A.S., and Bansal, S. [57] employ an interval number
technique to enhance two-warehouse inventory management while considering preservation
technology investments, demonstrating the advantages of resource allocation for cost savings and
efficiency. Yadav, A.S., Kumar, A., and Yadav, K.K. [58] present a model that incorporates carbon
emissions and time-sensitive demand in optimizing inventory for deteriorating items, focusing on
sustainable management practices. Mahata and Debnath [59] tackle a profit-maximizing problem
in single-item inventory management by considering price-dependent demand and preservation
technologies, illustrating the synergy between preservation strategies and demand dynamics to
improve profitability and efficiency.

Researchers have been interested in the difficult task of managing inventory items that are
naturally decaying for decades. Any industry that experiences Deterioration suffers financial
losses as a result of this phenomena. It is, nevertheless, a normal and inevitable procedure.
Therefore, during operations management, strategic choices to avoid the aforementioned loss
and its impact have generated a lot of attention in a variety of real-life situations. Ghare and
Schrader [8] conducted the first study using degrading objects for exponentially deteriorating
items. Subsequently, using the discounted cash flow (DCF) method, Jaggi and Aggarwal [9]
investigated the best ordering strategy for deteriorating goods while assumption trade credit.
Aggarwal and Jaggi [10] investigated the best ordering policy for deteriorating commodities
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based on the allowable payment delay. The optimum credit policies for degrading things were
recently shown by Jaggi et al. [11] under the presumptions of faulty items, rapidly expanding
demand and partial backlog. Additionally, Mandal et al. [12] postulated an inventory model
based on geometric programming that included deteriorating items. Afterwards, Panda et al. [13]
developed an inventory model for a seasonal product with ramp-type demand. Bakker et al. [14]
provides a thorough analysis of inventory models with deteriorating items. Khanna et al. [15]
have produced some excellent work on deterioration that is worthy of attention in this context.
Additionally, Jaggi et al. [16] developed the best course of action for defective and deteriorating
items while taking into account a two-warehouse situation. Controllable probabilistic deterioration
with shortages was examined by Mishra [17]. Jaggi et al. [18] also studied at price-dependent
demand and two warehouses in non-instantaneous deterioration. A replenishing scenario for a
deteriorating item was examined by Pervin et al. [19] under the presumptions of time-dependent
holding costs, time-dependent demand, and shortages. A sustainable three-tier inventory model
for decaying products was studied by Daryanto et al. [20]. Shaw et al. [21] studied an integrated
model that took into account multi-stage inspection, carbon emissions, and deterioration while
putting single setup multi delivery (SSMD) policy into practice for the delivery of high-quality
products.

2.2. Probabilistic demand

Given the current state of the market, it is becoming more difficult to precisely estimate client
preferences for a product; therefore, a probabilistic demand method is a better fit for handling
uncertainty. Shah, Nita H. [22] developed a probabilistic inventory model with allowable payment
delays, thereby spearheading the development of such models. On the basis of this, Shah, Nita H.,
and Y. K. Shah. [23] Expanded the model to include trade credit policy and declining products
over a specific time interval. Several scholars, such as Shah, Nita H. [24] and Shah, Nita H.
[25], developed inventory models that included trade credit finance, probabilistic demand, and
shortages. Federgruen, Awi and Aliza Heching [26] Looked into simultaneous inventory and
pricing decisions under probabilistic demand. Petruzzi, Nicholas C. and Maqbool Dada [27]
developed a price-sensitive inventory model and perishable goods into account to determine
the best pricing in the newsvendor scenario. Chen, Xin, and David Simchi-Levi [28] examined
a periodic review model for an infinite planning horizon in order to determine the best pricing
and inventory strategies with probabilistic demand. Under probabilistic demand, Khedlekar
et.al. [29] Examined the optimal replenishment choices taking into account pricing, promotion
tactics, and inventory. Chao, Xiuli, Baimei Yang, and Yifan Xu [30] to maximize pricing, a
capacitated probabilistic inventory system was proposed. Maihami, Reza, and Behrooz Karimi
[31] developed an optimal replenishment plan that takes into account promotional efforts for
non-instantaneously deteriorating products with price-sensitive probabilistic demand. Inventory
control methods under probabilistic demand were provided by Roy et al. [32] and AlDurgam et
al. [33] with a range of parameters and assumptions. Probability distributions are typically used
to reflect demand uncertainty. With price-sensitive probabilistic demand and non-instantaneous
deteriorating products, they created an inventory model for profit maximization that took additive
promotional activities into account. The bulk of research is done on probabilistic demand functions
that are sensitive to price. Shah, Nita H., et al. [34] for a full view, consider a demand rate that is
uniformly distributed and is influenced by price, inventory level, and advertisement.

2.3. Pentagonal Fuzzy Number

There are several varieties of polygon fuzzy numbers in classical fuzzy theory, including trape-
zoidal, pentagonal, and triangular fuzzy numbers, among others. Srinivasan [35] provided a
method for solving TP using generalized pentagonal and hexagonal fuzzy numbers throughout
the literature. Additionally, Karthikeyan [36] provided a method for using pentagonal fuzzy
numbers to solve transportation problems (TP). Maheswari and Ganesan [37] provide a technique
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that uses pentagonal fuzzy numbers to solve completely fuzzy TP. Chakraborty [38] has investi-
gated representations of pentagonal fuzzy numbers. Barazandeh and Ghazanfari have tackled
the ranking approach for generalized fuzzy numbers [39]. Membership functions for symmetric
and asymmetric hexagonal fuzzy numbers: an overview was extended to non-linear membership
functions by Khan and Mondal [40]. Mondal [41] used the average technique to find arithmetic
operations and provided representations for a variety of non-linear membership functions. Arora,
Aparna, Rashmi Gupta, and Ratnesh Rajan Saxena [42] Asymmetric Pentagonal Fuzzy Numbers
as a representation of costs (APFN).

2.4. Fuzzy modeling of uncertainty

Demand uncertainty arises from several unknown components of inventory models, aside from
preservation technologies, deteriorating commodities, and promotional efforts. However, in prac-
tical circumstances, the uncertain parameters such as lead time, preservation cost, demand, and
other pertinent expenses may be more likely to deviate from the exact value, which could result
in a situation where the uncertain parameters are not distributed according to any probability.
Originally, the fuzzy set concept was developed by Zadeh [43]. Following that, a number of
trailblazing scholars developed several fuzzy inventory models to capture the impreciseness,
including Yao et al. [44], Glock et al. [45], and Shah and Soni [46]. By taking into account
trapezoidal fuzzy numbers, the model examined by Garai et al. [47] had holding costs that scaled
with price-dependent and time demand. Shah and Patel [48] created an inventory model and
employed preservation technologies to lower the rate of spoiling under a cloud hazy prescription.
In a fuzzy setting, Yadav et al. [49] examined a flexible manufacturing system with a changeable
pollution control. De and Mahata [50] used a learning environment for dense fuzzy demand
when there was an order overlap with rework batches. Kumar and Paikray [51] modelled the
time-varying demand for decaying commodities using crisp and fuzzy formulations with three
distinct scenarios under total backlog. To effectively address a fuzzy inflationary model, Sarkar et
al. [52] used a multithreaded neural network. Fuzzy logic, specifically graded mean integration-
representation distance, is used by this similarity function (GMIR). We can incorporate more
flexible data agglomeration strategies thanks to fuzzy logic [53]. This model used a pentagonal
fuzzy number with the GMIR difuzyfication method.

Figure 1: Inventory Model with backorder and deterioration
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3. Assumptions and notations

3.1. Assumptions

1. The inventory system is examined using a single item.

2. An infinite planning horizon is taken into consideration.

3. Additive price-sensitive probabilistic demand D = D0 + ϵ where D0 is fixed base demand
while ϵ continuous random variable with expected value µ.

4. Shortages are allowed, and lead time is zero.

5. The rate of production exceeding the rate of demand.

3.2. Notations

Table 1: Symbols and Description

Symbol Description

S Order quantity per unit time
D Rate of demand per unit of time
A Ordering cost per order ($)
K Holding cost per order ($)
L Deteriorating cost per order ($)
m Shortage cost per order ($)
α0 constant rate of inventory item deterioration (0 < α0 < 1)
α Effective deterioration rate, dampened by use of (α = α0e−µ)
µ Expected value of Continuous random variable ϵ
M Maximum positive inventory level´ at time t = 0
I(t) Inventory level at the time
τα The duration of time it takes for inventory to zero following replenishing
τβ Order backlog occurs in the interval between having zero inventory and replenishing it (represented by negative inventory level)
TAC(τα , τβ) Total average cost of inventory (Model-1)($/per unit time)
T̃AC(τα , τβ) Total average cost for fuzzy environment (Model-2)($/per unit time)

4. Mathematical Model

This section lays out the models and their approach for solving them. The total cost function is
obtained by setting up and solving the governing differential equations. This objective function is
subjected to necessary and sufficient criteria for convexity and global optimality. When fuzzy
parameters are utilized, defuzzification is applied.

4.1. A model for continuous review inventory that has constant deterioration
rate and crisp demand (Model-1)

A continual evaluation Based on the aforementioned presumptions, the EOQ setup is created. An
immediate restocking initially the cycle at t = 0 and the inventory level surges to its highest point,
M = I(0). I(t) decreases in time interval [0, τα] as certain components are lost to degradation and
others are consumed according to demand. Every unit has been utilized at t = τα So I(τα) = 0.
Backorders are maintained for the duration of [τα, τβ+α] this must be satisfied from the upcoming
replenishment due to their complete backlogged. These presumptions allow the differential
equations controlling the subsequent cases to be determined:

Case 1 (0 ≤ t ≤ τα) :Inventory is depleted by loss from degradation and consumption brought
on by demand; consequently, the inventory level equation I(t) :

dI(t)
dt

+ αI(t) = −D; 0 ≤ t ≤ τα (1)
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The deterioration term α(t) is in parallel to the current inventory that is on hand and α = α0 is
constant in Model 1. On the differential equation (1), the boundary condition I(α0) = 0is used to
determine the inventory level.

dI(t)
dt

=
D
α0

(eα0(τα−t) − 1); 0 ≤ t ≤ τα (2)

Using equation (2) the topest inventory level M is at t = 0 in the following manner:

M = I(0) =
D
α0

(eα0τα − 1) (3)

Now, equation (3) is distinct from the absence of deterioration where M = Dτα. The difference
between the two provides the amount of inventory lost as a result of deterioration, in the buyer’s
inventory model that was examined in Wee et al. [54], given by

M − Dτα =
D
α0

(eα0τα − α0τα − 1) (4)

Case 2 (τα ≤ t ≤ τα + τβ) : Backorders resulting from a negative inventory level I(t), as well as
shortages during the period, should be taken into account. There is only one term, as orders are
wholly backlogged, which is due to demand. Consequently, the differential equations that follow

dI(t)
dt

= −D; τα ≤ t ≤ τα + τβ (5)

Now, applying boundary condition I(τα) = 0; equation (5) results in the following inventory level
expression:

I(t) = −D(t − τα); τα ≤ t ≤ τα + τβ (6)

In fact, this negative inventory level suggests that the backorder at that point in time t in
(τα ≤ t ≤ τα + τβ) is D(t − τα). Here I(τα + τβ) = −Dτβ is called lowest inventory level and the
maximum backorder is Dτβ. The maximum inventory level is provided by the leftover inventory
after ordered amount S completes this backorder first.

S − Dτβ = M ⇒ S = Dτβ +
D
α0

(eα0τα − 1) (7)

In equation (7), the order quantity is higher than in the traditional backorder approach and does
not deterioration D(τα + τβ), since it must meet demand in addition to replacing products lost to
deterioration. Consequently, the components of the total inventory cost are as follows:

Ordering Cost (OC)
OC = A

Holding Cost (HC):

HC =
∫ τα

0

DK
α0

(eα0(τα−t) − 1)dt =
DK
α2

0
(eα0τα − α0τα − 1)

Shortage Cost (SC):

SC =
∫ τα+τβ

τα

(−I(t))sdt =
∫ τα+τβ

τα

D(t − τα)sdt =
τ2

β Dm

2

Cost as a result of the deteriorated goods (w is the cost of deterioration per unit) (DC):

DC = (M − Dτα)w =
DL
α0

(eα0τα − α0τα − 1)

As a result, the total inventory cost every cycle, taking into account expenditures associated with
deterioration but not preservation, is as follows:
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TAC(τα, τβ) =
1

τβ + τα
[OC + HC + SC + DC]

TAC(τα, τβ) =
1

τβ + τα

[
A +

DK
α2

0
(eα0τα − α0τα − 1) +

τ2
β Dm

2
+

DL
α0

(eα0τα − α0τα − 1)

]

TAC(τα, τβ) =
A

τβ + τα
+

D(K + α0L)(eα0τα − α0τα − 1)
α2

0(τβ + τα)
+

τ2
β Dm

2(τβ + τα)
(8)

5. Optimization methodology

The decision variable values are obtained at the lowest total cost per cycle ($) through the classical
optimization process. There are two components to the computational process.

Step 1: Obtain critical point (τ∗
α , τ∗

β ) satisfying ∂TAC
∂τα

= 0 and ∂TAC
∂τβ

= 0.

Step 2: Verify the convexity of TAC(τα, τβ) by proving that (in the feasible region)

∂2TAC
∂τ2

β

> 0

and
∂2TAC

∂τ2
α

.
∂2TAC

∂τ2
β

−
[

∂2TAC
∂τα∂τβ

]2

> 0

The factors that do not contain the decision variables in equation (8) are gathered and catego-
rized for the sake of algebraic efficiency.

TAC(τα, τβ) =
A1

τβ + τα
+

B1τ2
β

(τβ + τα)
+

C1(eα0τα − α0τα − 1)
(τβ + τα)

(9)

where, A1 = A, B1 = Dm
2 , C1 = D(K+θ0L)

α2
0

The positive inventory time τα and negative inventory

time τβ cause a continuous fluctuation in the total cost per time unit. The decision variables τα

and τβ are employed to minimize this objective function. The first-order partial derivatives of
TAC(τα, τβ) are determined by equation (9).

∂TAC
∂τα

=
α0C1(eα0τα − 1)

(τβ + τα)
− TAC

τβ + τα
(10)

∂TAC
∂τβ

=
2B1τβ

(τβ + τα)
− TAC

τβ + τα
(11)

The second-order partial derivatives of TAC(τα, τβ) are

∂2TAC
∂τ2

α
=

2TAC
(τβ + τα)2 − 2α0C1(eα0τα − 1)

(τβ + τα)2 +
α2

0C1eα0τα

τβ + τα
(12)

∂2TAC
∂τατβ

=
2TAC

(τβ + τα)2 − θ0C1(eα0τα − 1)
(τβ + τα)2 −

2β1τβ

(τβ + τα)2 (13)

∂2TAC
∂τ2

β

=
2TAC

(τβ + τα)2 −
4B1τβ

(τβ + τα)2 +
2B1

τβ + τα
(14)
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As eα0τα − α0τα − 1 > 0 ∀ α0τα > 0,
Hence equation (9) gives

TAC(τα, τβ) >
B1τ2

β

τβ + τα
∀ α0τα > 0

Using this inequality in equation (14), which becomes

∂2TAC
∂τ2

β

>
2B1τ2

β

(τβ + τα)3 +
2B1(τα − τβ)

(τβ + τα)2 =
2B1τ2

α

(τβ + τα)3 > 0 ∀ α0τα > 0 (15)

To be necessary for the objective function to achieve minimum cost, the first order partial derivative
must be zero (Step-1above). The optimal solution is achieved by setting these partial derivatives
to zero when the sufficient conditions (Step-2 above) are satisfied.

∂TAC
∂τα

= 0

and
∂TAC

∂τβ
= 0

Additionally, sufficient circumstances must be fulfilled for certain optimality. From now on, the
equivalent fundamental minors ought to be in the positive definite. The Hessian determinant is

H(τα, τβ) =
∂2TAC

∂τ2
α

.
∂2TAC

∂τ2
β

−
[

∂2TAC
∂τα∂τβ

]2

From equations (12), (13) and (14), we get

(τβ + τα)
4H(τα, τβ) = 2A1(2B1 + C1α2

0eα0τα) + 2C1B1(eα0τα(1 − α0τα)
2 + eα0τα − 2)

+ α2
0C2

1(e
2α0τα − 2α0ταeα0τα − 1) (16)

simplifying eα0τα(1 − α0τα)2 + eα0τα − 2 and e2α0τα − 2α0ταeα0τα − 1.

Figure 2: Convexity objective function (Model-1)
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(τβ + τα)
4H(τα, τβ) > 2A1(2B1 + C1α2

0eα0τα) + C1B1(α0τα)
4 +

C2
1α2

0(α0τα)4

4

→ H(τα, τβ) > 0∀α0τα > 0 (17)

The Hessian implied by equations (15) and (17) is positive definite. Consequently, the cost
function TAC(τα, τβ) is convex and Figure 2 provides more dramatic evidence of this tendency.
From equation (10) and (11), within the feasible region, it possesses a unique global minima. at
(τ∗

α , τ∗
β ) fulfilling (Critical point)

∂TAC
∂τα

=
α0C1(eα0τα − 1)

(τβ + τα)
− TAC

τβ + τα
= 0 (18)

∂TAC
∂τβ

=
2B1τβ

(τβ + τα)
− TAC

τβ + τα
= 0 (19)

equation (18) and (19)
TAC(τ∗

α , τ∗
β ) = α0C1(eα0τ∗α − 1) = 2B1τ∗

β (20)

Hence, equations (9) and (20) give

2B1τ∗
β =

A1

τ∗
β + τ∗

α
+

2B1τ2∗
β

τ∗
β + τ∗

α
+

C1(eα0τ∗α − α0τ∗
α − 1)

τ∗
β + τ∗

α
(21)

Simplifying equation (21), one can get

τ∗
β =

√
τ∗2

α +
A1 + C1(eα0τ∗α − α0τ∗

α − 1)
B1

− τ∗
α (22)

Equation (20) implies

τ∗
α =

1
α0

log
{2B1τ∗

β

α0C1
+ 1

}
(23)

Equations (22) and (23) are numerically solved iteratively to produce the appropriate values of τ∗
β

and τ∗
α for optimization.The economic order quantity and the minimum total cost per unit time

are found using equations (20) and (7).

TAC(τ∗
α , τ∗

β ) = 2B1τ∗
β , S∗ = Dτ∗

β +
D(eα0τ∗α − α0τ∗

α − 1)
α0

(24)

Equation (4) yields the effective rate of loss, which is the average deterioration per unit of time

across a cycle.= D(eα0τ∗α −α0τ∗α −1)
α0(τβ+τα)

= S∗
τβ+τα

− D.

6. A continuous review inventory model with fuzzy environment

(Model-2)

Demand has been taken in the form D = D0 + ϵ. This subsection examines fuzzy demand where
D0 a pentagonal fuzzy number, i.e. D̃0 = (D0 − δ2, D0 − δ1, D

′
0, D0 + v1, D0 + v2). This improves

the modelling of real-world scenarios’ flexibility.
The function principle in this article and Graded Mean Integration Representation (GMIR) method
are considered. Currently, the membership function of D̃0 is the following:
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ηD̃0
(x) =



0 f or x < D0 − δ1, a5 ≤ x
x−(D0−δ1)

(D0−δ2)−(D0−δ1)
f or D0 − δ1 ≤ x ≤ D0 − δ2

1 f or D0 − δ2 ≤ x ≤ D
′
0

(D0+v1)−x
(D0+v1)−D′

0
f or D

′
0 ≤ x ≤ D0 + v1

(D0+v2)−x
(D0+v2)−(D0+v1)

f or D0 + v1 ≤ x ≤ D0 + v2

(25)

This fuzzy demand changes equation (8) to

T̃AC(τα, τβ) =
A

τβ + τα
+

D̃0

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
(26)

Next, using the function principle (Mahata and Goswami [55]), given that the demand’s basic
value is PeFN. The total cost per unit time becomes a PeFN, as seen in Figure, according to the
preceding expression.

Real valued functions themselves make up this PeFN’s parameters. Regarding any feasible
values of (τα, τβ) the following is true:

TACδ1(τα, τβ) ≤ TACδ2(τα, τβ) ≤ TACD̃0
(τα, τβ) ≤ TACv1(τα, τβ) ≤ TACv2(τα, τβ)

T̃AC(τα, τβ) = PeFN
(

TACδ1, TACδ2, TACD̃0
, TACv1, TACv2

)
where

TACδ1(τα, τβ) =
A

τβ + τα
+

D0 − δ1

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACδ2(τα, τβ) =
A

τβ + τα
+

D0 − δ2

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACD̃0
(τα, τβ) =

A
τβ + τα

+
D̃0

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACv1(τα, τβ) =
A

τβ + τα
+

D0 − v
(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

TACv2(τα, τβ) =
A

τβ + τα
+

D0 − v2

(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
The total cost per unit time in Model-2 is estimated by using the median calculation.

Median(T̃AC(τα, τβ)) =
1
5

[
TACδ1(τα, τβ)+TACδ2(τα, τβ)+TACD̃0

(τα, τβ)+TACv1(τα, τβ)+TACv2(τα, τβ)

]

Median(T̃AC(τα, τβ)) =
A

τβ + τα
+

D0

4(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]

+

(
D

′
0

(τβ + τα)
+

(v1 − δ1 + v2 − δ2)

5(τβ + τα)

)[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
(27)
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Figure 3: Demand parameter and objective function

As a result, the total of the two components is the median estimate of the total cost per unit time
for the fuzzy demand model. The first term is the same as Model’s total cost per unit time (crisp
demand).

Median(T̃AC(τα, τβ)) = TAC(τα, τβ) + FC(τα, τβ)

Where

FC(τα, τβ) =
(v1 − δ1 + v2 − δ2)

5(τβ + τα)

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
(28)

7. Optimization methodology

The convexity of FC(τα, τβ) as it is defined by equation (28) is examined.
The first-order partial derivatives of FC(τα, τβ) with respect to τα and τβ are as follows:

∂FC
∂τα

=
−(v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
+

(v1 − δ1 + v2 − δ2)

5(τβ + τα)

[
(K + α0L)(eα0τα − 1)

α0

]

∂FC
∂τβ

=
−(v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
+

2τβm(v1 − δ1 + v2 − δ2)

5(τβ + τα)

The second-order partial derivatives of FC(τα, τβ) with respect to τα and τβ are as follows:

∂2FC
∂τ2

α
=

2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
− 3(v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − 1)

α0

]
− (v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − 1)

α0

]
(29)
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∂2FC
∂τα∂τβ

=
2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
− (v1 − δ1 + v2 − δ2)

5(τβ + τα)2

[
(K + α0L)(eα0τα − 1)

α0
+ τβm

]
(30)

∂2FC
∂τ2

β

=
2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
+

m(v1 − δ1 + v2 − δ2)

5(τβ + τα)

[
2τβ −

τβ

(τβ + τα)
+ 1

]
(31)

The ineqality (eα0τα − α0τα − 1) > 0 ∀ α0τα > 0 gives
So equation (31)

∂2FC(τα, τβ)

∂τ2
β

>
2(v1 − δ1 + v2 − δ2)

5(τβ + τα)3

[
(K + α0L)(eα0τα − α0τα − 1)

α2
0

+
τ2

β Dm

2

]
> 0 (32)

The Hessian determinant of FC(τα, τβ) is H(τα, τβ) =

(
∂2FC(τα ,τβ)

∂τ2
α

)
.
(

∂2FC(τα ,τβ)

∂τ2
β

)
−
(

∂2FC(τα ,τβ)

∂τα∂τβ

)2

Substituting the values for the second order partial derivatives from equations (29), (30), and (31)

(τβ + τα)
6H(τα, τβ) = 2(e2α0τα + α2

0τ2
α + 1− 2α0ταeα0τα + α0τα − 2eα0τα)− (e2α0τα − 2eα0τα + 1) (33)

The iteration scheme for optimization of Median(T̃AC(τα, τβ)) is as follows, derived from these
three equations:

τf α =
1
θ f

log
{

θ f τf βm
K + Lθ f

+ 1
}

(34)

τf β =

[
τ2

f α +
10A

m(5D + (v1 − δ1 + v2 − δ2))
+

2(K + α f L)(eα f τf α − α f τf α − 1)

mα2
f

] 1
2

− τf α (35)

The Model-2 optimal outcomes. The optimal TAC and S for Model-2 are

S∗
f =

(
D +

(v1 − δ1 + v2 − δ2)

4

)[
τ∗

f β +
(eα∗f τ∗f − 1)

α∗f

]
(36)

Median(T̃AC
∗
f ) = mτ∗

f β

(
D +

(v1 − δ1 + v2 − δ2)

4

)
(37)

8. Numerical Analysis

The models built are demonstrated with a numerical example. By examining the outcomes, a
decision-maker can gain insightful information. The parameters’ numerical values are given
below: A = 75, K == 0.4, D0 = 950, ϵ = 10, L = 5.5, m = 3, δ1 = 100,δ2 = 75, v1 = 150,
v2 = 200 and α0 = 0.16. The deterioration rate as (α = α0e−µ) where the positive parameter µ
is an Expected value of Continuous random variable ϵ. And value of µ = 0.03 in this article.
The decision variables’ values include the amount of time it takes for inventory to reach zero
following replenishment τα, the interval between having no inventory and having a fully back-
logged replenishment τβfor Model-1 and Model-2 and table 2 tabulates the corresponding order
quantity and total cost at the optimal position. The column S∗

τ∗α +τ∗β
− D provides the effective rate

of deterioration as the number of units lost per unit time across a cycle. The cost per unit and
time per unit at the optimal point are shown in Table 3 is TAC∗

S∗ = 0.886, 0.723 for Models-1 and
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2, respectively. This demonstrates that, although having a little higher TAC∗ than model-1, the
fuzzy formulation (Model-3) is the most efficient on a per unit basis.
Figure 4 represents the variation in TAC∗ for numerous cycle lengths τ∗

α + τ∗
β . It displays two

separate stages. For very short cycle durations in the first phase, the influence of deterioration
is not significant, and the findings produced by both models are comparable. The effects of
deterioration and the economics of preservation become evident as cycle length grows. In the
second stage, Model-1’s overall cost increases much over its global minimum at (τ∗

α + τ∗
β = 0.52)

but at longer cycle lengths around (τ∗
α + τ∗

β = 0.71) the other model it achieves lower global
optimal costs. As cycle length increases, the change in TAC∗ Model-2 is much more gradual.

Figure 4: Objective function convexity (Model-2)

Table 2: Optimal solutions of Model-1 and Model-2.

Model τ∗
α τ∗

β S∗ S∗
τ∗α +τ∗β

− D TAC(τ∗
α , τ∗

β )

Model-1 0.36 0.15 520.87 61.31 516.38
Model-2 0.61 0.14 705.56 33.74 451.37

9. Sensitivity analysis

1. Effect of unit shortage cost (m): With a decrease in shortage cost m, the backorder
phase τα lasts longer and TAC is slightly reduced. Maintaining a larger optimal backorder
during a cycle becomes advantageous. The movement of the crisp values is mirrored by the
fuzzy values. A slight rise in EOQ balances out the fuzziness of demand without having a
significant effect on TAC.

2. Impact of unit holding cost (k): A holding cost decrease has a proportionately bigger effect
compared to an increase of the same magnitude. Since this τα time is more influenced, K
complement m in the sensitivity computation. A displacement that is consistent with the
decision-sharp maker’s bounds is shown by the median fuzzy output.
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3. Impact of the cost of unit deterioration (l): In order to benefit from decreased and even
greater item loss, both the positive inventory time and the EOQ grow. The TAC is reduced
in Model-1. Model-2 is somewhat less affected in this situation than Model-1.

4. Ordering cost impact (A): In both models, the ordering cost A consistently has an effect. The
change in positive inventory time and EOQ has increased little but significantly, whereas the
change in backorder time τβ and TAC has decreased. Both these movements are marginally
less in Model-2.

5. Effect of constant deterioration rate (α0): The TAC rises with increasing but falls more
sharply with decreasing this parameter. In Model-1, higher EOQ and τα are optimal for
minimal deterioration, and greater backorders are recommended when deterioration grows.

Figure 5: Variation optimum total cost with cycle length.

10. Conclusion

This study improved upon earlier EOQ models and techniques for managing deteriorating
inventory levels. The expected total average cost was minimized while the per unit time cost was
assessed with the length of time with stock-out condition and the duration of on-hand inventory
in a reorder sequence to determine the proper reorder size and cycle length. Deterioration
caused parts to be lost, which raised the total cost. Expanded to produce Model-2 by providing
modelling uncertainty in demand. The optimal parameters for the reorder procedure were found
by the development of a helpful formulation. Decision-makers were able to calculate the optimal
investment for this aim by using this model, which demonstrated the impact of controlling
spoiling. The Graded mean integration representation (GMIR) was used to defuzzify the fuzzy
cost function in the model with uncertain demand. . From the analytical results of Model-2, an
algorithm was developed to determine the optimal solutions.
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The created models were validated using a numerical setup, and their sensitivity to important
parameters was examined to ascertain the precise impact on the model. According to the
traditional inventory model, holding costs and shortages had a connected impact on positive
inventory duration and shortfall time, respectively. The total cost was more sensitive to a decline
in the rate of degradation than to an increase in it. The following aspects can be expanded
for future work. Numerous opportunities exist to further this research, such as time-limited
replenishment, reworking or substituting damaged goods, uncertainty and randomization in
other aspects, an expiration date-dependent deterioration rate a multi-item inventory and learning
effects. An alternative model to recover part of the impact of degradation could be offered by the
theory that uses animal fat waste as degraded goods to produce renewable energy .

11. Future Work

This model can be expanded to take policies like carbon caps and CO2 quotas that aim to minimize
emissions. The amount of carbon emissions may have a sensitive effect on some of the cost
parameters. With such additions, it is possible to research how environmental deterioration affects
ecosystems and conservation methods for sustainable supply chains. Some potential expansions
of the models described include the analysis of the implications of time-dependent and non-linear
operating costs, incomplete goods, prepayments, trade credit, and inflation in economic policy.
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Abstract 

The article explores the reliability and sensitivity of a power distribution substation. It includes an 

analysis based on real maintenance data collected from a 33/11kV electrical power distribution 

substation, which features a set of two 6 MVA power transformers supplying power through a total 

of six outgoing feeders (three feeders per transformer). The study documents faults observed in both 

transformers and all six outgoing feeders. The reliability of the substation is evaluated using various 

indices such as availability, repair durations, and expected repair frequencies for different failure 

types. The analysis employs Markov processes and regenerative point techniques. In addition to 

reliability, the study includes a profit analysis of the substation. It presents graphical representations 

of key parameters. Furthermore, a sensitivity analysis is conducted to assess how variations in 

parameters impact the availability and profitability of the substation components. Substation 

economics is also established to assess the operational viability. 

Keywords: failure, reliability, transformers, Markov process, regenerative 
processes. 

I. Introduction

Reliability modeling and analysis of industrial systems have become pivotal in ensuring the optimal 
performance and longevity of complex machinery and processes. As industries become increasingly 
dependent on sophisticated technology, the need to understand and predict system reliability has 
become more critical. This field involves developing mathematical and statistical models that 
simulate various failure and repair scenarios, allowing engineers to predict system behavior under 
different conditions. These models are essential for designing maintenance strategies that minimize 
downtime and costs while maximizing operational efficiency and profitability. By analyzing real 
failure and maintenance data, these models can provide valuable insights into the reliability indices 
of systems, such as system availability, repair durations, and expected repair frequencies for 
different failure types. This comprehensive approach helps industries to not only improve their 
maintenance policies but also enhance the overall reliability and performance of their systems, 
thereby ensuring sustained productivity and economic operational benefits. Over the years, 
numerous studies have contributed to this domain, providing various models and methodologies to 
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enhance system reliability and economic efficiency. 
Parashar and Taneja [1] conducted a seminal study on the reliability and profit evaluation of a 

hot standby PLC system utilizing a master-slave configuration and dual repair facilities, establishing 
a foundational approach to reliability studies in complex systems. In the same year, Nilsson and 
Bertling [2] explored the maintenance management of wind power systems using condition 
monitoring systems and life cycle cost analysis, highlighting the importance of maintenance in 
energy sustainability. Mathew et al. [3] extended these concepts into the industrial manufacturing 
sector by modeling the reliability of a single-unit continuous casting (CC) plant with scheduled 
maintenance, providing insights into maintenance strategies that enhance operational continuity. 
Further expanding the scope, Rizwan et al. [4] analyzed a hot standby industrial system, 
emphasizing the critical balance between reliability and operational efficiency. The reliability 
modeling of a two-unit continuous casting plant was advanced by Mathew et al. [5], who offered 
detailed insights into the maintenance strategies necessary for operational stability in industrial 
settings. In another study, Shakuntla et al. [6] utilized supplementary variable techniques for 
reliability analysis in the polytube industry, demonstrating the utility of advanced mathematical 
techniques in predicting system behavior. In the realm of communication systems, Kumar and 
Kapoor [7] assessed the profitability of a base transceiver system considering hardware failures and 
system congestion, reflecting the intricate balance between operational efficiency and reliability. 
Similarly, Rizwan et al. [8] conducted a reliability analysis of a seven-unit desalination plant, 
incorporating both major and minor failures and highlighting the seasonal impact on system 
performance. Further research by Padmavathi et al. [9] on a desalination plant with major and minor 
failures underscored the importance of probabilistic analysis in understanding system reliability 
under varying conditions. This theme was continued by Rizwan et al. [10] in their analysis of an 
anaerobic batch reactor treating fruit and vegetable waste, which provided valuable insights into the 
reliability and availability of biogas production systems. The comparative analysis of reliability 
models for a desalination plant by Padmavathi et al. [11] and the performance analysis of a 
desalination plant with mandatory shutdowns by Rizwan et al. [12] further contributed to the 
understanding of maintenance strategies and their economic impacts. Additionally, Ahmad and 
Kumar [13] analyzed the profit implications of operational halts in a two-unit centrifuge system, 
illustrating the financial consequences of reliability. Adlakha et al. [14] explored the reliability and 
cost-benefit analysis of a two-unit cold standby system used for satellite communication, 
emphasizing the critical nature of reliability in high-stake environments. Naithani et al. [15] 
prioritized repair in their analysis of a three-unit induced draft fan system with a warm standby, 
enhancing operational reliability. Al Rahbi et al. [16] investigated the reliability challenges in the 
aluminum industry, specifically in a rodding anode plant with multiple units and a single 
repairman, highlighting the complexities of maintaining operational continuity amidst multiple 
failures. Taj et al. [17] provided a comparative analysis of three reliability models of a building cable 
manufacturing plant, illustrating the ongoing evolution and refinement of reliability assessment 
techniques.  Kaur et al. [18] analyzed the reliability of a gravity die casting system, addressing 
diverse failure types that impact production processes. Sachdeva et al. [19] analyzed the reliability 
and sensitivity of an insured system where the warranty duration exceeds the insurance duration. 
Most recently, Oraimi et al. [20] conducted a sensitivity and profitability analysis of a two-units 
ammonia/urea plant, providing insights into optimizing system performance and economic viability 
under various conditions. Hussien and El-Sherbeny [21] examined the reliability and availability of 
a single-unit system under random shocks and varying demand, adding to the body of knowledge 
on stochastic behaviour in production systems. Finally, Rani et al. [22] explored the reliability of a 
two non-identical unit standby system with correlated failures, further enriching the literature on 
system reliability and maintenance optimization. These studies collectively underscore the critical 
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importance of advanced reliability modeling across various industrial and environmental 
applications. They offer profound insights into system design and maintenance optimization, 
ultimately enhancing overall operational efficacy and sustainability. 

In the context of electrical energy transmission and distribution, the reliability of power 
transformers is crucial for maintaining consistent and efficient power delivery. This paper presents 
a reliability and the profit analysis of a power distribution system comprising transformers feeding 
power through feeders, aiming to obtain reliability indices that reflect the system's behaviour and 
conduct a sensitivity analysis that underscores the economic viability of the substation operations. 
The study explores the causes of power unavailability from transformers, which may arise from 
environmental conditions such as severe weather, including cuts or heavy winds, and electrical 
faults like short circuits. Markovian processes are employed which are well-suited for analyzing 
systems with probabilistic state transitions that adhere to the memoryless property, where future 
states are influenced solely by the current state. The effectiveness of the model based on the 
Markovian process has been proven in various reliability applications [19], making them a preferred 
tool for systems with state-based transitions, the analysis provides a detailed examination of the 
system's stochastic behavior over time. Key reliability metrics, including system availability are 
obtained to evaluate the system's performance, utilizing real transformer data on failures and 
repairs. The analysis reveals the significant impact of environmental conditions and electrical faults 
on transformer unavailability. A sensitivity analysis further evaluates how variations in transformer 
failure and repair rates influence overall reliability and profitability of the system providing valuable 
insights into the determinants of reliability for the distribution system under consideration. The 
findings form the basis for enhancing system robustness by addressing key determinants of system 
reliability. Additionally, the paper opens the directions for future research to further explore and 
mitigate reliability challenges in power distribution systems, thereby contributing to the 
development of more reliable and resilient power infrastructure. 

II. Model Description and Assumptions

I. Model Description

The electrical distribution substation, which divides and distributes electrical power to various areas 
of the power distribution region, resembles an enormous junction as shown in Fig.1. The two major 
cables, which we refer to as incoming feeders, provide this substation with power at 33 kV. The two 
6 MVA transformers are used to make the power available at 11 kV for its subsequent distribution 
to loads in different areas. Three outgoing feeders receive power from each transformer. As a result, 
there are six outgoing feeders that are carrying power at 11 kV to different areas. Various household 
as well as industrial establishments receive the power from each of these feeders. Typically, the load 
on each feeder is nearly balanced. 

II. Assumptions

• Initially the system is operative.
• Both the transformers are working well and can’t fail simultaneously.
• The three feeders connected from each transformer are working properly and only one can

fail at one time from three feeders connected to one transformer.
• All the states are regenerative.
• All the failure and repair times follows exponential distribution.
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Figure 1: Simplistic schematic for a Power Distribution Substation 

III. Notations

The following notations are used for rates of failure and repair of system 
𝜆𝑡1

, 𝜆𝑡2
   = Failure rate of transformers 1, transformers 2. 

𝜆𝑓11
, 𝜆𝑓12

, 𝜆𝑓13
= Failure rate of feeder 1, feeder 2, feeder 3 that are connected from transformer 1. 

𝜆𝑓21
, 𝜆𝑓22

, 𝜆𝑓23
= Failure rate of feeder 1, feeder 2, feeder 3 that are connected from transformer 2. 

 µ𝑡1
, µ𝑡2

 = Repair rate of transformers 1, transformer 2. 
µf11

, µf12
, µf13

= Repair rate of feeder 1, feeder 2, feeder 3 that are connected from transformer 1. 
µf21

, µf22
, µf23

= Repair rate of feeder 1, feeder 2, feeder 3 that are connected from transformer 2. 

IV. Data Summary

From the component wise failure and maintenance data obtained for the 33/11 kV electrical 
distribution substation for the previous 10 years, the following failure as well as repair rates are 
estimated:  
Failure rate of transformer 1, 𝜆𝑡1

= 1.14889 x 10-5 
Failure rate of transformer 2, 𝜆𝑡2

= 1.90981 x 10-5 
Failure rate of feeder 1 that is connected from transformer 1, 𝜆𝑓11

=3.05518 x 10-5 
Failure rate of feeder 2 that is connected from transformer 1, 𝜆𝑓12

= 5.7282 x 10-5 
Failure rate of feeder 3 that is connected from transformer 1, 𝜆𝑓13

=2.6732 x 10-5 
Failure rate of feeder 1 that is connected from transformer 2, 𝜆𝑓21

 = 1.1456 x10-5 
Failure rate of feeder 2 that is connected from transformer 2, 𝜆𝑓22

 = 1.5275 x 10-5 
Failure rate of feeder 3 that is connected from transformer 2, 𝜆𝑓23

 = 2.2913 x 10-5 
Repair rate of transformer 1, µ𝑡1

= 0.3891 
Repair rate of transformer 2, µ𝑡2

= 0.0881 
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Repair rate of feeder 1 that is connected from transformer 1, µ𝑓11
= 0.6525 

Repair rate of feeder 2 that is connected from transformer 1, µ𝑓12
= 0.6310 

Repair rate of feeder 3 that is connected from transformer 1, µ𝑓13
= 0.5254 

Repair rate of feeder 1 that is connected from transformer 2, µ𝑓21
 =1.3793 

Repair rate of feeder 2 that is connected from transformer 2, µ𝑓22
 = 1.2766 

Repair rate of feeder 3 that is connected from transformer 2, µ𝑓23
 = 0.6173 

V. Stochastic Model

Figure 2: State Transition Diagram 

Table 1: State symbol and their meaning 

State No. State Symbol Description 
State 0 (𝑂𝑡1

,  𝑂𝑡2
) Both the transformers are operative. 

State 1 (𝐹𝑡1
,  𝑂𝑡2

) Transformer 1 failed and Transformer 2 operative. 
State 2 (𝑂𝑡1

,  𝐹𝑡2
) Transformer 1 operative and Transformer 2 failed. 

State 3 (𝑂𝑓21
,  𝐹𝑓22

, 𝑂𝑓23
) Feeders that are connected from transformer 2, first and third are 

operative, second feeder failed. 
State 4 (𝑂𝑓21

,  𝑂𝑓22
, 𝐹𝑓23

) Feeders that are connected from transformer 2, first and second are 
operative, third feeder failed. 

State 5 (𝐹𝑓21
,  𝑂𝑓22

, 𝑂𝑓23
) Feeders that are connected from transformer 2, first feeder failed 

while second and third are operative. 
State 6 (𝑂𝑓11

,  𝐹𝑓12
, 𝑂𝑓13

) Feeders that are connected from transformer 1, second feeder failed 
while first and third are operative. 

State 7 (𝑂𝑓11
,  𝑂𝑓12

, 𝐹𝑓13
) Feeders that are connected from transformer 1, third feeder failed 

while first and second are operative. 
State 8 (𝐹𝑓11

,  𝑂𝑓12
, 𝑂𝑓13

) Feeders that are connected from transformer 1, first feeder failed 
while second and third are operative. 

State 9 (𝑂𝑓21
,  𝑂𝑓22

, 𝑂𝑓23
) All the feeders that are connected from transformer 2 are operative. 

State 10 (𝑂𝑓11
,  𝑂𝑓12

, 𝑂𝑓13
) All the feeders that are connected from transformer 1 are operative. 
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         Figure 2 shows the transition between states of system. The set of states {0, 9, 10} are operative 
states and set {1, 2, 3, 4, 5, 6, 7, 8} are partially operative states. All the states are regenerative states. 
The description of states along with their symbols are given in Table 1. 
         The transition densities from state r to state s (qrs) are, 
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e−(λt1+λt2)t e
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[∑ (λf2i
)3

i=1 ]
2; 

m95 =
λf21

[∑ (λf2i
)3

i=1 ]
2; m10,6 =

λf12

[∑ (λf1i
)3

i=1 ]
2; m10,7 =

λf13

[∑ (λf1i
)3

i=1 ]
2; m10,8 =

λf11

[∑ (λf1i
)3

i=1 ]
2 . 

         Now if µi is the mean stay time in particular state i, then 
m01 + m02 + m03 + m04 + m05 + m06 + m07 + m08 = μ0  
m13 + m14 + m15 + m10 = μ1; m26 + m27 + m28 + m20 = μ2; m39 = μ3; m49 = μ4; m59 = μ5, 
m6,10 = μ6; m7,10 = μ7; m8,10 = μ8; m93 + m94 + m95 = μ9; m10,6 + m10,7 + m10,8 = μ10 
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VI. System Measures

I. System Availability

Let Adi(t) = Pr {system is operative at time t, given that it is in the state i at time t=0}. By the transition 
of states and definition of Adi(t), we get the following equations as 
Ad0(t) =  M0(t) + q01(t)©Ad1(t) +  q02(t)©Ad2(t) +  q03(t)©Ad3(t) + q04(t)©Ad4(t) +

 q05(t)©Ad5(t) + q06(t)©Ad6(t) +  q07(t)©Ad7(t) +  q08(t)©Ad8(t)             (1) 
Ad1(t) = q13(t)©Ad3(t) +  q14(t)©Ad4(t) + q15(t)©Ad5(t) + q10(t)©Ad0(t)              (2) 
Ad2(t) = q26(t)©Ad6(t) + q27(t)©Ad7(t) +  q28(t)©Ad8(t) + q20(t)©Ad0(t)              (3) 
Ad3(t) =  q39(t)©Ad9(t)            (4) 
Ad4(t) =  q49(t)©Ad9(t)            (5) 
Ad5(t) =  q59(t)©Ad9(t)            (6) 
Ad6(t) =  q6,10(t)©Ad10(t)              (7) 
Ad7(t) =  q7,10(t)©Ad10(t)              (8) 
Ad8(t) =  q8,10(t)©Ad10(t)              (9) 
Ad9(t) =  M9(t) +  q93(t)©Ad3(t) + q94(t)©Ad4(t) + q95(t)©Ad5(t)Ad10(t) =  M10(t) +

q10,6(t)©Ad6(t) +  q10,7(t)©Ad7(t) + q10,8(t)©Ad8(t)                                                                            (10) 
where,   
Mi(t) = probability that the system stays in state i while operating rather than transferring to any 
other state. 
        Taking Laplace Transform of the above equations and solving for Ad0*(s), we get 
Ad0

∗ (s) =
N1(s)

D1(s)
   (11) 

where, N1(s) & D1(s) as as obtained solving equations (1) to (10) 
         Now, the availability of the system is steady state is given as 
Ad0 = lim

t→∞
Ad0(t) =  lim

s→0
s Ad0

∗ (s) = lim
s→0

s 
N1(s)

D1(s)
=

N1

D1
 (12) 

is evaluated using determinants in N1(s) and D1(s). 

II. Busy Period for Repair

Similarly, the expected duration during which the repairman is occupied with the repair of 
transformer 1 and transformer 2, respectively, can be determined in steady state and is given by 

Bdt1
=  lim

s→0
s Bdt1

∗ (s) = lim
s→0

s 
Nt1

b (s)

D1(s)
=  

Nt1
b

D1
 (13) 

Bdt2
= lim

s→0
s Bdt2

∗ (s) = lim
s→0

s 
Nt2

b (s)

D1(s)
=

Nt2
b

D1
 (14) 

where, 
Nt1

b (𝑠) = q01*(s)W1*(s)(q93*(s)q10,6*(s) - q94*(s) - q95*(s) - q10,6*(s) - q10,7*(s) - q10,8*(s) - q93*(s) + q93*(s)q10,7*(s) 
+ q94*(s)q10,6*(s) + q93*(s)q10,8*(s) + q94*(s)q10,7*(s) + q95*(s)q10,6*(s) + q94*(s)q10,8*(s) + q95*(s)q10,7*(s) +
q95*(s)q10,8*(s) + 1);
Nt2

b (𝑠) = q02*(s)W2*(s)(q93*(s)q10,6*(s) - q94*(s) - q95*(s) - q10,6*(s) - q10,7*(s) - q10,8*(s) - q93*(s) + q93*(s)q10,7*(s) 
+ q94*(s)q10,6*(s) + q93*(s)q10,8*(s) + q94*(s)q10,7*(s) + q95*(s)q10,6*(s) + q94*(s)q10,8*(s) + q95*(s)q10,7*(s) +
q95*(s)q10,8*(s) + 1).
         Here, Wi(t) = probability that the system stays in state i while repairing rather than transferring 
to any other state.  
         The expected time in which the repairman is busy for the repair of the feeder 1, 2 and 3, that 
are connected from transformer 1, respectively, in steady state, is given by 

Bdf11
= lim

s→0
s Bdf11

∗ (s) = lim
s→0

s 
Nf11

b (s)

D1(s)
=  

Nf11
b

D1
; (15)
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Bdf12
=  lim

s→0
s Bdf12

∗ (s) = lim
s→0

s 
Nf12

b (s)

D1(s)
=  

Nf12
b

D1
;  (16) 

Bdf13
= lim

s→0
s Bdf13

∗ (s) = lim
s→0

s 
Nf13

b (s)

D1(s)
=  

Nf13
b

D1
;  (17) 

where, Nf11

b (𝑠),  Nf12

b (𝑠) & Nf13

b (𝑠) are obtained as above. 
         Continuing in the same way, the expected time the repairman is busy for the repair of the 
feeder 1, 2 and 3, that are connected from transformer 2, respectively, in steady state, is given by 

Bdf21
= lim

s→0
s Bdf21

∗ (s) = lim
s→0

s 
Nf21

b (s)

D1(s)
=  

Nf21
b

D1
 ;  (18) 

Bdf22
= lim

s→0
s Bdf22

∗ (s) = lim
s→0

s 
Nf22

b (s)

D1(s)
=  

Nf22
b

D1
 ;   (19) 

Bdf23
= lim

s→0
s Bdf23

∗ (s) = lim
s→0

s 
Nf23

b (s)

D1(s)
=  

Nf23
b

D1
;      (20) 

where, Nf21

b (𝑠),  Nf22

b (𝑠)  & Nf23

b (𝑠) are obtained as above. 

III. Expected Number of Repair

The expected time of repairs of transformer 1 and transformer 2, respectively, in steady state is given 
by 

Ndt1
=  lim

s→0
s Ndt1

∗ (s) = lim
s→0

s 
Nt1

n (s)

D1(s)
=  

Nt1
n

D1
  ;   (21) 

Ndt2
= lim

s→0
s Ndt2

∗ (s) = lim
s→0

s 
Nt2

n (s)

D1(s)
=  

Nt2
n

D1
;   (22) 

where, 
Nt1

n (𝑠) = q01*(s) q10*(s)(q93*(s)q10,6*(s) - q94*(s) - q95*(s) - q10,6*(s) - q10,7*(s) - q10,8*(s) - q93*(s) + q93*(s)q10,7*(s) 
+ q94*(s)q10,6*(s) + q93*(s)q10,8*(s) + q94*(s)q10,7*(s) + q95*(s)q10,6*(s) + q94*(s)q10,8*(s) + q95*(s)q10,7*(s) +
q95*(s)q10,8*(s) + 1);
Nt2

n (𝑠) = q02*(s) q20*(s)(q93*(s)q10,6*(s) - q94*(s) - q95*(s) - q10,6*(s) - q10,7*(s) - q10,8*(s) - q93*(s) + q93*(s)q10,7*(s) 
+ q94*(s)q10,6*(s) + q93*(s)q10,8*(s) + q94*(s)q10,7*(s) + q95*(s)q10,6*(s) + q94*(s)q10,8*(s) + q95*(s)q10,7*(s) +
q95*(s)q10,8*(s) + 1);
         The expected number of repairs of the feeder 1, 2 and 3, that are connected from transformer 1, 
respectively, in steady state, is given by, 

Ndf11
=  lim

s→0
s Ndf11

∗ (s) = lim
s→0

s 
Nf11

n (s)

D1(s)
=  

Nf11
n

D1
;   (23) 

Ndf12
=   lim

s→0
s Ndf12

∗ (s) = lim
s→0

s 
Nf12

n (s)

D1(s)
=

Nf12
n

D1
;   (24) 

Ndf13
= lim

s→0
s Ndf13

∗ (s) = lim
s→0

s 
Nf13

n (s)

D1(s)
=  

Nf13
n

D1
;   (25) 

where, 
Nf11

n (𝑠) = -q8,10*(s)(q08*(s)q93*(s) - q02*(s)q28*(s) - q08*(s) + q08*(s)q94*(s) + q08*(s)q95*(s) 
- q06*(s)q10,8*(s) + q08*(s)q10,6*(s) - q07*(s)q10,8*(s) + q08*(s)q10,7*(s) + q02*(s)q28*(s)q93*(s)
+ q02*(s)q28*(s)q94*(s) + q02*(s)q28*(s)q95*(s) - q02*(s)q26*(s)q10,8*(s) + q02*(s)q28*(s)q10,6*(s)
- q02*(s)q27*(s)q10,8*(s) + q02*(s)q28*(s)q10,7*(s) + q06*(s)q93*(s)q10,8*(s) - 08*(s)q93*(s)q10,6*(s)
+ q06*(s)q94*(s)q10,8*(s) + q07*(s)q93*(s)q10,8*(s) - q08*(s)q93*(s)q10,7*(s)
- q08*(s)q94*(s)q10,6*(s)  + q06*(s)q95*(s)q10,8*(s) + q07*(s)q94*(s)q10,8*(s)
- q08*(s)q94*(s)q10,7*(s) - q08*(s)q95*(s)q10,6*(s) + q07*(s)q95*(s)q10,8*(s) - q08*(s)q95*(s)q10,7*(s)

+ q02*(s)q26*(s)q93*(s)q10,8*(s) - q02*(s)q28*(s)q93*(s)q10,6*(s) + q02*(s)q26*(s)q94*(s)q10,8*(s)
+ q02*(s)q27*(s)q93*(s)q10,8*(s) - q02*(s)q28*(s)q93*(s)q10,7*(s) - q02*(s)q28*(s)q94*(s)q10,6*(s)
+ q02*(s)q26*(s)q95*(s)q10,8*(s) + q02*(s)q27*(s)q94*(s)q10,8*(s) - q02*(s)q28*(s)q94*(s)q10,7*(s)
- q02*(s)q28*(s)q95*(s)q10,6*(s) + q02*(s)q27*(s)q95*(s)q10,8*(s) - q02*(s)q28*(s)q95*(s)q10,7*(s));

Nf12

n (𝑠) = - q6,10*(s) (q06*(s)q93*(s) - q02*(s)q26*(s) - q06*(s) + q06*(s)q94*(s) + q06*(s)q95*(s) 
+ q06*(s)q10,7*(s) - q07*(s)q10,6*(s) + q06*(s)q10,8*(s) - q08*(s)q10,6*(s) + q02*(s)q26*(s)q93*(s)
+ q02*(s)q26*(s)q94*(s) + q02*(s)q26*(s)q95*(s) + q02*(s)q26*(s)q10,7*(s) - q02*(s)q27*(s)q10,6*(s)
+ q02*(s)q26*(s)q10,8*(s) - q02*(s)q28*(s)q10,6*(s) - q06*(s)q93*(s)q10,7*(s)
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+ q07*(s)q93*(s)q10,6*(s) - q06*(s)q93*(s)q10,8*(s) - q06*(s)q94*(s)q10,7*(s)
+ q07*(s)q94*(s)q10,6*(s) + q08*(s)q93*(s)q10,6*(s) - q06*(s)q94*(s)q10,8*(s)
- q06*(s)q95*(s)q10,7*(s) + q07*(s)q95*(s)q10,6*(s) + q08*(s)q94*(s)q10,6*(s)
- q06*(s)q95*(s)q10,8*(s) + q08*(s)q95*(s)q10,6*(s) - q02*(s)q26*(s)q93*(s)q10,7*(s)
+ q02*(s)q27*(s)q93*(s)q10,6*(s) - q02*(s)q26*(s)q93*(s)q10,8*(s) - q02*(s)q26*(s)q94*(s)q10,7*(s)
+ q02*(s)q27*(s)q94*(s)q10,6*(s) + q02*(s)q28*(s)q93*(s)q10,6*(s) - q02*(s)q26*(s)q94*(s)q10,8*(s)
- q02*(s)q26*(s)q95*(s)q10,7*(s) + q02*(s)q27*(s)q95*(s)q10,6*(s) + q02*(s)q28*(s)q94*(s)q10,6*(s)
- q02*(s)q26*(s)q95*(s)q10,8*(s) + q02*(s)q28*(s)q95*(s)q10,6*(s));

Nf13

n (𝑠) = - q7,10*(s) (q07*(s)q93*(s) - q02*(s)q27*(s) - q07*(s) + q07*(s)q94*(s) + q07*(s)q95*(s) 
- q06*(s)q10,7*(s) + q07*(s)q10,6*(s) + q07*(s)q10,8*(s) - q08*(s)q10,7*(s) + q02*(s)q27*(s)q93*(s)
+ q02*(s)q27*(s)q94*(s) + q02*(s)q27*(s)q95*(s) - q02*(s)q26*(s)q10,7*(s) + q02*(s)q27*(s)q10,6*(s)
+ q02*(s)q27*(s)q10,8*(s) - q02*(s)q28*(s)q10,7*(s) + q06*(s)q93*(s)q10,7*(s)
- q07*(s)q93*(s)q10,6*(s) + q06*(s)q94*(s)q10,7*(s) - q07*(s)q94*(s)q10,6*(s)
+ q06*(s)q95*(s)q10,7*(s) - q07*(s)q93*(s)q10,8*(s) - q07*(s)q95*(s)q10,6*(s)

+ q08*(s)q93*(s)q10,7*(s) - q07*(s)q94*(s)q10,8*(s) + q08*(s)q94*(s)q10,7*(s) - q07*(s)q95*(s)q10,8*(s)
+ q08*(s)q95*(s)q10,7*(s) + q02*(s)q26*(s)q93*(s)q10,7*(s) - q02*(s)q27*(s)q93*(s)q10,6*(s)
+ q02*(s)q26*(s)q94*(s)q10,7*(s) - q02*(s)q27*(s)q94*(s)q10,6*(s) + q02*(s)q26*(s)q95*(s)q10,7*(s)
- q02*(s)q27*(s)q93*(s)q10,8*(s) - q02*(s)q27*(s)q95*(s)q10,6*(s) + q02*(s)q28*(s)q93*(s)q10,7*(s)
- q02*(s)q27*(s)q94*(s)q10,8*(s) + q02*(s)q28*(s)q94*(s)q10,7*(s) - q02*(s)q27*(s)q95*(s)q10,8*(s)
+ q02*(s)q28*(s)q95*(s)q10,7*(s)).

         The expected number of repairs of the feeder 1, 2 and 3, that are connected from transformer 2, 
respectively, in steady state, is given by 

Ndf21
=  lim

s→0
s Ndf21

∗ (s) = lim
s→0

s 
Nf21

n (s)

D1(s)
=  

Nf21
n

D1
  ;  (26) 

Ndf22
= lim

s→0
s Ndf22

∗ (s) = lim
s→0

s 
Nf22

n (s)

D1(s)
=  

Nf22
n

D1
    ;   (27) 

Ndf23
=  lim

s→0
s Ndf23

∗ (s) = lim
s→0

s 
Nf23

n (s)

D1(s)
=

Nf23
n

D1
  ;   (28) 

where, Nf21

n (𝑠),  Nf22

n (𝑠) &  Nf23

n (𝑠) . Here, D1(s)  is as obtained in equation (13). 

VII. Profit Equation

The profit equation of the system is as follows: 
Pd = RdAd0 − Ct1

(Bdt1
+ Ndt1

) − Ct2
(Bdt2

+ Ndt2
) − Cf11

(Bdf11
+ Ndf11

) − Cf12
(Bdf12

+ Ndf12
) −

C𝑓13
(Bdf13

+ Ndf13
) − Cf21

(Bdf21
+ Ndf21

) − Cf22
(Bdf22

+ Ndf22
) − Cf23

(Bdf23
+ Ndf23

)  
where,  
Rd = Revenue generated by substation 
Ct1

/Ct2
 = Cost per unit time for engaging the repairman and cost for repair due to failure in 

transformer 1/ transformer 2. 
Cf11

(Cf21
)/Cf12

(Cf22
)/Cf13

(Cf23
) = Cost per unit time for engaging the repairman and cost for repair 

due to failure in feeder 1/ 2/ 3 that are connected to transformer 1 (transformer 2). 

VIII. Numerical Results and Discussion

The results obtained from substituting values mentioned in Section 5 (Data Summary) that is 
calculated from electrical distribution substation for the above obtained measures in Section 7 are 
mentioned as below: 
Availability of electrical distribution substation, Ad0 = 0.4709 
Busy period for repair of Feeder 1 that is connected from Transformer 1, Bdf11

 = 4.4019*10-5 
Busy period for repair of Feeder 2 that is connected from Transformer 1, Bdf12

 = 9.1030*10-5 
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Busy period for repair of Feeder 3 that is connected from Transformer 1, Bdf13
 = 3.6454*10-5 

Busy period for repair of Feeder 1 that is connected from Transformer 2, Bdf21
 = 1.8535*10-10 

Busy period for repair of Feeder 2 that is connected from Transformer 2, Bdf22
 = 3.7501*10-6 

Busy period for repair of Feeder 3 that is connected from Transformer 2, Bdf23
 = 3.8778*10-6 

Expected number of repairs of Feeder 1 connected from Transformer 1, Ndf11
 = 2.8722*10-5 

Expected number of repairs of Feeder 2 connected from Transformer 1, Ndf12
 = 5.7440*10-5 

Expected number of repairs of Feeder 3 connected from Transformer 1, Ndf13
 = 1.9153*10-5 

Expected number of repairs of Feeder 1 connected from Transformer 2, Ndf21
 = 2.5566*10-10 

Expected number of repairs of Feeder 2 connected from Transformer 2, Ndf22
 = 4.7874*10-6 

Expected number of repairs of Feeder 3 connected from Transformer 2, Ndf23
 = 2.3938*10-6 

I. Impact of Various Rates and Cost Functions on Profit Function

The change in Profit (Pd) with varying values of failure rate (𝜆𝑓11
) and revenue (Rd) is shown in Figure 

3. The surface suggests a relatively flat gradient, with a slight increase in Pd as both 𝜆𝑓11
 and Rd

increases. It shows that
• The profit falls with increase in failure rate.
• The higher values of revenue contribute to a rise in profit.

Figure 3: Profit (Pd) with varying values of failure rate (𝜆𝑓11
) and revenue (Rd) 

Figure 4: Profit (Pd) with varying values of of repair rate (𝜇𝑓23
) and cost (𝐶𝑓11

) 
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The change in Profit (Pd) with varying values of repair rate (μf23
) and cost (Cf11

) is shown in Figure 
4. The surface reveals that as Cf11

 increases, Pd shows a slight upward trend, while μf23
 appears to

have more substantial impact.  It is also observed that when  μf23
 is near 0, Pd is lower and as

μf23
increases towards 1, Pd significantly rises. This suggests a strong positive correlation between

μf23
 and Pd, with Cf11

 also contributing positively but to a lesser extent.

II. Sensitivity Analysis

Sensitivity analysis is a powerful tool for assessing the robustness and reliability of models or 
decisions in the face of changing conditions or uncertainties in input parameters. It provides a 
structured approach to understanding how sensitive outcomes are to changes in key factors, thereby 
aiding in risk management and decision optimization. It is a technique to understand the changes in 
certain variables like availability and profit of a system. Relative sensitivity analysis is a normalized 
form of sensitivity analysis that focuses on comparing the relative impact of changes in different 
input variables or parameters on the output of a model or system. It is particularly useful in scenarios 
where the magnitude of changes in input variables varies widely. The sensitivity and relative 
sensitivity analysis of availabilities with different parameters involved are shown in Table 2. 

Table 2: Sensitivity and Relative Sensitivity Analysis of Availabilities 

Parameter 
    (x) 

Sensitivity Analysis 
𝑑𝐴0

𝑑𝑥

Relative Sensitivity Analysis 
𝑑𝐴0

𝑑𝑥
∗

𝑥

𝐴0

λt1
 -1.6482* 103 -0.0402

λt2
 -1.2812*103 -0.0520

λf11
 -2.1252*104 -1.3789

λf12
 -2.1252*104 -2.5853

λf13
 -2.1252*104 -1.2065

λf21
 -1.3847*104 -0.3369

λf22
 -1.3847*104 -0.4492

λf23
 -1.3847*104 -0.6738

µf21
 3.9248*10-6 1.1496*10-5 

µf22
 5.0140*10-6 1.3593*10-5 

µf23
 3.6972*10-5 4.8468*10-5 

Thus, the order in which the parameters (failure/repair rates) impact the availability is 
λf12

> λf11
>  λf13

> λf23
> λf22

> λf21
> λt2

> λt1
> µf23

> µf22
>  µf21

. 

Figure 5 is a 3D surface plot illustrating the relationship between three variables: Cf23
on the x-axis, 

Rd on the y-axis, and change in profit on the z-axis. The surface shows a consistent increase in Pd as 
both Cf23

 and Rd increase, indicating a positive correlation among these variables. The smooth and 
upward-sloping nature of the surface indicates a steady and predictable relationship. This kind of 
graphical outcome is useful for optimizing and redirecting system performance based on these key 
variables. 
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Figure 5: Sensitivity Analysis of Profit (Pd) with varying values of revenue (Rd) and cost (𝐶𝑓23
) 

IX. Conclusion

The analysis of the electrical distribution substation reveals critical insights into the reliability, 
profitability, and sensitivity of the system. By utilizing real maintenance data, the study evaluates 
the performance of the substation's transformers and outgoing feeders. Key reliability indices such 
as availability, repair durations, and expected repair frequencies are calculated using Markov 
processes and regenerative point techniques. The findings highlight that while the substation 
maintains a high level of reliability, certain failure types and repair times significantly impact overall 
availability and profitability. It must be noted that the availability of the system is 0.4709 which is 
quite low and need to be addressed by adopting a robust maintenance strategy. The profit analysis, 
supported by graphical representations, underscores the economic viability of the substation 
operations. Furthermore, the sensitivity analysis provides a comprehensive understanding of how 
variations in failure and repair rates affect the system's performance. This research not only 
contributes valuable knowledge for optimizing maintenance strategies but also offers a robust 
framework for assessing the economic and operational viability of electrical distribution substations. 
Future research should focus on integrating advanced predictive maintenance technologies and 
exploring alternative economic models to further enhance system reliability and profitability. 

X. Acknowledgment

This research work is part of the outcomes achieved through the project sponsored by the 
MoHERI, Oman under project ID RG/EI/22/434. 

References 
[1] Parashar, B. and Taneja, G. (2007). Reliability and profit evaluation of a PLC hot standby

system based on a master-slave concept and two types of repair facilities. IEEE Transactions on 

reliability, 56(3): 534-539. 
[2] Nilsson, J. and Bertling, L. (2007). Maintenance management of wind power systems using

condition monitoring systems—life cycle cost analysis for two case studies. IEEE Transactions on 

RT&A, No 1 (82) 
Volume 20, March 2025 

784



Syed Mohd Rizwan, Satish Tanavade, Kajal Sachdeva, Syed Zegham Taj 
RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEM 

energy conversion, 22(1): 223-229. 
[3] Mathew, A. G., Rizwan, S. M., Majumder, M. C. and Ramachandran, K. P. (2011). Reliability

modelling and analysis of a two-unit continuous casting plant. Journal of the Franklin Institute, 348(7): 
1488-1505. 

[4] Rizwan, S. M., Khurana, V. and Taneja, G. (2010). Reliability analysis of a hot standby
industrial system. International Journal of Modeling and Simulation, 30(3): 315-322. 

[5] Mathew, A. G., Rizwan, S. M., Majumder, M. C., and Ramachandran, K. P. (2011). Reliability
modeling and analysis of a two-unit continuous casting plant. Journal of the Franklin Institute, 348: 
1488-1505. 

[6] Shakuntla, S., Lal, A. K., Bhatia, S. S. and Singh, J. (2011). Reliability analysis of polytube
industry using supplementary variable technique. Applied Mathematics and Computation, 218(8): 
3981-3992.  

[7] Kumar, R. and Kapoor, S. (2013). Profit evaluation of a stochastic model on base transceiver
system considering software-based hardware failures and congestion of calls. International Journal of 

Application or Innovation in Engineering and Management, 2(3): 554-562.  
[8] Rizwan, S. M., Padmavathi, N., Pal, A. and Taneja, G. (2013). Reliability analysis of a

seven-unit desalination plant with shutdown during winter season and repair/maintenance on FCFS 
basis. International Journal of Performability Engineering, 9(5): 523-528. 

[9] Rizwan, S. M., Pal, A. and Taneja, G. (2014). Probabilistic Analysis of a Desalination Plant
with Major and Minor Failures and Shutdown During Winter Season.  International Journal of 

Scientific and Statistical Computing, 5(1):15-23. 
[10] Rizwan, S. M., Joseph V. Thanikal, Padmavathi, N., and Hathem Yazdi. (2015). Reliability &

availability analysis of an anaerobic batch reactor treating fruit and vegetable waste.  International 

Journal of Applied Engineering Research, 10(24): 44075-44079. 
[11] Padmavathi, N., Rizwan, S. M., and Senguttuvan, A. (2015). Comparative analysis between

the reliability models portraying two operating conditions of a desalination plant. International 

Journal of Core Engineering and Management, 1(12): 1-10. 
[12] Rizwan, S. M., Padmavathi, N., and Taneja, G. (2015). Performance analysis of a desalination

plant as a single unit with mandatory shutdown during winter. Arya Bhatta Journal of Mathematics 

and Informatics, 7(1): 195-202. 
[13] Ahmad, S. and Kumar, V. (2015). Profit analysis of a two-unit centrifuge system considering

the halt state on occurrence of minor/major fault. International Journal of Advanced Research in 

Engineering and Applied Sciences, 4(4): 94-108. 
[14] Adlakha, N., Taneja, G. and Shilpi. (2017). Reliability and cost-benefit analysis of a two-unit

cold standby system used for communication through satellite with assembling and activation time. 
International Journal of Applied Engineering Research, 12(20): 9697-9702.  

[15] Naithani, A., Parashar, B., Bhatia, P. K. and Taneja, G. (2017). Probabilistic analysis of a 3-
unit induced draft fan system with one warm standby with priority to repair of the unit in working 
state. International Journal of System Assurance Engineering and Management, 8: 1383-1391.  

[16] Al Rahbi, Y., Rizwan, S. M., Alkali, B. M., Cowell, A. and Taneja, G. (2019). Reliability
analysis of a rodding anode plant in aluminum industry with multiple units failure and single 
repairman. International Journal of System Assurance Engineering and Management, 10: 97-109. 

[17] Taj, S. Z., Rizwan, S. M., Alkali, B. M., Harrison, D. K. and Taneja, G. (2020). Three reliability
models of a building cable manufacturing plant: A comparative analysis. International Journal of 

System Assurance Engineering and Management, 11: 239-246. 
[18] Kaur, R., Ahmad, S. and Sharma, U. (2020). Reliability modelling of a gravity die casting

system covering seven types of failure categories. Int J New Innov Eng Technol, 12(4): 107-111. 

RT&A, No 1 (82) 
Volume 20, March 2025 

785



Syed Mohd Rizwan, Satish Tanavade, Kajal Sachdeva, Syed Zegham Taj 
RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEM 

[19] Sachdeva, K., Taneja, G. and Manocha, A. (2024). Reliability and Sensitivity Analysis of an
Insured System with Conditional Warranty Duration Lengthier than Insurance 
Duration. International Journal of Reliability, Quality and Safety Engineering, 31(1): 2350034. 

[20] Al Oraimi, S. S., Rizwan, S. M. and Sachdeva, K. (2024). Sensitivity and Profitability
Analysis of Two-Units Ammonia/Urea Plant. Reliability: Theory & Applications, 19(1 (77)): 376-386. 

[21] Hussien, Z. M. and El-Sherbeny, M. S. (2024). The reliability and availability analysis of a
single-unit system under the influence of random shocks and the variation in demand from 
production with Erlang distribution, Symmetry,16(7): 815. 

[22] Rani, A., Gupta, R. and Chaudhary, P. (2024). A two non-identical unit standby system
with correlated failures. RT&A, 19(2): 256-263. 

RT&A, No 1 (82) 
Volume 20, March 2025 

786



Festus C. Opone, Jacob C. Ehiwario, Sunday A. Osagie,
John N. Igabari, Nosakhare Ekhosuehi
A NEW FAMILY OF LINDLEY DISTRIBUTIONS...

A NEW FAMILY OF LINDLEY DISTRIBUTIONS
FEATURING BIMODAL CASES

∗,1Festus C. Opone, 2Jacob C. Ehiwario, 3Sunday A. Osagie,
4John N. Igabari, 5Nosakhare Ekhosuehi

•
∗,1Department of Statistics, Delta State University of Science and Technology, Ozoro, Nigeria.

2Department of Statistics, University of Delta, Agbor, Nigeria.
3,5Department of Statistics, University of Benin, Benin City, Nigeria.

4Department of Mathematics, Delta State University, Abraka, Nigeria.
1oponef@dsust.edu.ng, 2jacob.ehiwario@unidel.edu.ng, 3sunday.osagie@uniben.edu

4jn_igabari@delsu.edu.ng, 5nosakhare.ekhosuehi@uniben.edu

Abstract

Several lifetime distributions have been developed in literature to handle different real-world scenario.
Most of these distributions were developed to model a unimodal (symmetric or asymmetric) data. Only a
hand-full of these distributions exhibits a bimodal property. This paper explores a new family of Lindley
distributions featuring a bimodal property. We introduce five different sub-families of the T-Power
Lindley{Y} family based on the quantile function of the uniform, exponential, Frechet, log-logistic and
logistic distributions. Useful mathematical properties of the proposed T-Power Lindley{Y} family of
distributions are derived and sub-models were the random variable T follows the one-parameter Topp-
Leone, exponential, exponentiated exponential, Weibull and Gumbel distributions are introduced. From
the graphical representation of the density function of these sub-models, we observe that the shape of
the density function accommodates a decreasing (reversed-J), left-skewed, right-skewed, symmetric, as
well as a bimodal shape. In order to illustrate the usefulness and performance of the proposed T-Power
Lindley{Y} family of distributions, the Gumbel Power Lindley (GPL) distribution belonging to the
proposed family of distribution was employed to fit a bimodal data set alongside with the beta-Normal
distribution. Result obtained from the analysis revealed that the Gumbel Power Lindley (GPL) distribution
compares favourably better than the beta-Normal distribution. The density fits of the distributions for the
data set was also investigated to support the claim.

Keywords: Lindley distribution; power Lindley distribution; quantiles; bimodality.

1. Introduction

Lifetime distributions are parametric models that seeks to analyze time-to-event data. Many
lifetime models such as exponential, Weibull, gamma, beta, Gumbel distributions etc, have been
studied and applied in literature to analyze lifetime data. Obviously, to increase the flexibility of
these classical models remains the strong reason for developing new ones, thus many researchers
have proposed generalized forms of these classical lifetime distribution.

The classical one-parameter Lindley distribution introduced by [11] has its density function
defined by

f (x) =
β2

β + 1
(1 + x)e−βx, x > 0, β > 0, (1)

and cumulative distribution function as

F(x) = 1 −
(

β + 1 + βx
β + 1

)
e−βx, x > 0, β > 0. (2)
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In order to increase the flexibility of the classical one-parameter Lindley distribution in
analyzing lifetime data, [7] introduced a two parameter Power Lindley distribution by considering
the power transformation T = X

1
α , with the density function defined by

f (x) =
αβ2

(1 + β)
(1 + xα)xα−1e−βxα

, x > 0, β, α > 0, (3)

and cumulative distribution function defined by,

F(x) = 1 −
(

β + 1 + βxα

β + 1

)
e−βxα

, x > 0, α, β > 0. (4)

A competing risks model when the causes of failure follow the one-parameter Lindley
distribution was studied by [12] and was applied to a data set representing the lifetime of 194
patients with squamous cell carcinoma reported in [9]. Their result shows that the Lindley
competing risks model provides a better fit to the data set under study than the exponential
and the Weibull distributions. Nonetheless, due to the monotonic property of the one parameter
Lindley distribution, there are situations where the distribution will fail to provide good fit in
modeling lifetime data.

Several methods of generating new classes of probability distributions have been established
in literature. The Kumaraswamy Lindley distribution and the Kumaraswamy Power Lindley
distribution have been introduced, respectively, by [13] and [14] using the Kumaraswamy-G
family of distributions proposed by [4]. A wider family of distributions called the “T − X family
of distributions“ was introduced by [2]. The CDF of the T − X family of distributions is defined
as

G(x) =
∫ W(F(x))

0
r(t)dt, = R[W(F(x))], (5)

where R(t) is the CDF of the random variable T and W(F(x)) is a continuous and monotonic
function of the CDF of a random variable X. Using this framework, [10] proposed the Lindley-X
family of distribution and considered a special case of Lindley-Pareto distribution. For a random
variable T following the density function of the Lindley distribution, [16] proposed the Odd
Lindley-G family of distributions with cumulative distribution function defined as

F(x, θ, ξ) =
θ2

θ + 1

∫ G(x,ξ)
1−G(x,ξ)

0
(1 + t)e−θtdt, (6)

where G(x, ξ) is the CDF of the random variable X, depending on a parameter vector ξ.
Undoubtedly, these generalizations have addressed some major drawbacks of the classical

one-parameter Lindley distribution. However, their flexibility is limited to handling unimodal
lifetime data. The need for developing a generalized Lindley distribution which can appropriately
model bimodal lifetime data forms the motivation of this paper and the T-Power Lindley{Y}
Family of distributions is one of such. The remaining sections of this paper are organized as
follows: Section 2 defines some sub-families of the T-Power Lindley{Y} based on different
quantile functions of a random variable Y. Section 3 gives some general mathematical properties
of the T-Power Lindley{Y} distribution. In Section 4, some new distributions belonging to the
T-Power Lindley{Y} family and some of their properties are discussed. Section 5 presents an
application of the T-Power Lindley{Y} family of distributions to a bimodal data set. Finally,
Section 6 presents the conclusion.

2. Sub-families of the T-Power Lindley{Y} Distribution Based on

different Quantile Functions

Let T, R and Y be random variables from a known probability distribution with the cumulative
distribution function defined by FT(x) = P(T ≤ x), FR(x) = P(R ≤ x), and FY(x) = P(Y ≤ x),
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respectively. Let the corresponding quantile functions be given as QT(p), QR(p) and QY(p). If
the density function exists, then we can denote them by fT(p), fR(p) and fY(p) respectively.

A unified definition of the random variables in [1] was given by [3]. The authors defined the
cumulative distribution function of a random variable X as

FX(x) =
∫ QY(FR(x))

a
fT(t)dt = P {T ≤ QY(FR(x))} = FT [QY(FR(x))], (7)

and the corresponding density function defined as

fX(x) =
fR(x)

fY {QY(FR(x))} fT {QY(FR(x))} . (8)

Table 1: Quantile Function of Some Known Distributions

Distributions Quantile Function QY(p) Support of Y
Uniform p [0, 1]

Exponential −log(1 − p) (0, ∞)

Frechet [−log(p)]−1 (0, ∞)

Log-logistic
p

1 − p
(0, ∞)

Logistic log
(

p
1 − p

)
(−∞, ∞)

If R be a random variable following the power Lindley distribution with PDF fR(x) and
CDF FR(x) defined in (3) and (4), respectively, then the sub-families of the T-Power Lindley{Y}
distribution can be generated based on different quantiles defined in Table 1.

2.1. T-Power Lindley{Uni f orm} Distribution

This family of distributions is generated by using the quantile function of the uniform distribution
in Table 1, with the support of T ∈ [0, 1]. From (7), the cumulative distribution function of the
T-Power Lindley{Uni f orm} distribution is defined by

FX(x) = FT [QY(FR(x))] = FT(FR(x)),

= FT

{
1 −

(
1 + β + βxα

1 + β

)
e−βxα

}
, (9)

and the corresponding density function is given by

fX(x) = fT(x)× fT {FR(x)} ,

=
αβ2

(1 + β)
(1 + xα)xα−1e−βxα

fT

{
1 −

(
1 + β + βxα

1 + β

)
e−βxα

}
. (10)

The Kumaraswamy Power Lindley distribution proposed by [14] and the Kumaraswamy
Lindley distribution proposed by [13] are members of this family.
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2.2. T-Power Lindley{Exponential} Distribution

This family of distributions is generated by using the quantile function of the exponential
distribution in Table 1, with the support of T ∈ (0, ∞). From (7), the cumulative distribution
function of the T-Power Lindley{exponential} distribution is defined by

FX(x) = FT [QY(FR(x))] = FT {−log(1 − FR(x))} ,

= FT

{
−log

[(
1 + β + βxα

1 + β

)
e−βxα

]}
, (11)

and the corresponding density function is given by

fX(x) =
fR(x)

1 − FR(x)
× fT {−log(1 − FR(x))} ,

=
αβ2(1 + xα)xα−1

(1 + β + βxα)
fT

{
−log

[(
1 + β + βxα

1 + β

)
e−βxα

]}
. (12)

2.3. T-Power Lindley{Frechét} Distribution

This family of distributions is generated by using the quantile function of the f rechét distribution
in Table 1, with the support of T ∈ (0, ∞). The cumulative distribution function of the T-Power
Lindley{Frechét} distribution is defined from (7) as

FX(x) = FT {QY(FR(x))} = FT

{
[− log(FR(x))]−1

}
,

= FT

{{
− log

(
1 −

(
1 + β + βxα

1 + β

)
e−βxα

)}−1
}

, (13)

and the corresponding density function is given by

fX(x) =
fR(x)

FR(x)[− log(FR(x))]2
× fT

{
[− log(FR(x))]−1

}
,

=

αβ2(1 + xα)xα−1 fT

{{
− log

(
1 −

(
1 + β + βxα

1 + β

)
e−βxα

)}−1
}

(
(1 + β)eβxα − (1 + β + βxα)

) [
log
(

1 −
(

1 + β + βxα

1 + β

)
e−βxα

)]2 . (14)

2.4. T-Power Lindley{log − logistic} Distribution

This family of distributions is generated by using the quantile function of the exponential
distribution in Table 1, with the support of T ∈ (0, ∞). From (7), the cumulative distribution
function of the T-Power Lindley{log − logistic} distribution is defined by

FX(x) = FT {QY(FR(x))} = FT

{
FR(x)

(1 − FR(x))

}
,

= FT

{
(1 + β)eβxα

(1 + β + βxα)
− 1

}
, (15)

and the corresponding density function is given by

fX(x) =
fR(x)

(1 − FR(x))2 × fT

{
FR(x)

(1 − FR(x))

}
,

=
αβ2(1 + β)(1 + xα)xα−1eβxα

(1 + β + βxα)2 fT

{
(1 + β)eβxα

(1 + β + βxα)
− 1

}
. (16)
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2.5. T-Power Lindley{logistic} Distribution

This family of distributions is generated by using the quantile function of the logistic distribution
in Table 1, with the support of T ∈ (−∞, ∞). From (7), the cumulative distribution function of
the T-Power Lindley{logistic} distribution is defined by

FX(x) = FT {QY(FR(x))} = FT

{
log
(

FR(x)
(1 − FR(x))

)}
,

= FT

{
log

(
(1 + β)eβxα

(1 + β + βxα)
− 1

)}
, (17)

and the corresponding density function is given by

fX(x) =
fR(x)

FR(x)(1 − FR(x))
× fT

{
log
(

FR(x)
(1 − FR(x))

)}
,

=

αβ2(1 + β)(1 + xα)xα−1 fT

{
log

(
(1 + β)eβxα

(1 + β + βxα)
− 1

)}
(1 + β + βxα)

[
(1 + β)− (1 + β + βxα)e−βxα] . (18)

Clearly, we observe that the support of the random variable T follows the support of Y, and
the support of the proposed random variable X follows the support of the random variable R.

3. Some Mathematical Properties of the T-Power Lindley{Y} Families of

Distributions

3.1. Transformation and Quantile Function

Lemma 1 presents a mathematical relationship between the random variable X following the
T-Power Lindley{Y} Distribution and the generator random variable T. The random variable Y
follows the Uniform, Exponential, Frechét, log-logistic and logistic distribution.
Lemma 1:

Let T be a random variable with pdf fT(x),
(a) if T is defined on the interval [0,1], then the random variable

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 − T)(1 + β)

eβ+1

]} 1
α

belongs to the T-Power Lindley{Uni f orm} Family of Distributions;
(b) if T is defined on the interval (0, ∞), then the random variable

(i)

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

eT+β+1

]} 1
α

belongs to the T-Power Lindley{Exponential} Family of Distributions;

(ii)

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)(1 − e−T−1

)

eβ+1

]} 1
α

belongs to the T-Power Lindley{Frechét} Family of Distributions;
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(iii)

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + T)eβ+1

]} 1
α

belongs to the T-Power Lindley{Log − logistic} Family of Distributions;

(c) if T is defined on the interval (−∞, ∞), then the random variable

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + eT)eβ+1

]} 1
α

belongs to the T-Power Lindley{Logistic} Family of Distributions. Where W−1(.) is the negative
branch of the Lambert W function.
Proof:

The proof follows from a simple transformation between the random variables X and T
as defined in (9), (11), (13), (15) and (17), respectively. From these relationships, random sam-
ples for X can be generated by using T, that is, random samples for X following the T-Power
Lindley{Uni f orm} distribution can be generated by first generating random samples for T from
the pdf fT(x) and then compute

X =

{
−1 − 1

β
− 1

β
W−1

[
− (1 − T)(1 + β)

eβ+1

]} 1
α

, which has the cdf FX(x).

Lemma 2:
The quantile function for the (i) T-Power Lindley{Uni f orm}, (ii) T-Power Lindley{Exponential},

(iii) T-Power Lindley{Frechét}, (iv) T-Power Lindley{Log − logistic}, and (v) T-Power Lindley{Logistic}
families of distribution are, respectively, given by

(i) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 − QT(p))(1 + β)

eβ+1

]} 1
α

,

(ii) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

eQT(p)+β+1

]} 1
α

,

(iii) QX(p) =

{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)(1 − e−[QT(p)]−1

)

eβ+1

]} 1
α

,

(iv) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + eQT(p))eβ+1

]} 1
α

,

(v) QX(p) =
{
−1 − 1

β
− 1

β
W−1

[
− (1 + β)

(1 + QT(p))eβ+1

]} 1
α

.

Proof:
The proofs follow directly by solving FX(QX(p)) = p, for QX(p), Where FX(.) is the cdf given

by (9), (11), (13), (15) and (17), respectively.

3.2. The Mode(s) of T-Power Lindley{Y} families of distribution

Lemma 3:
The mode(s) of the (i) T-Power Lindley{Uni f orm}, (ii) T-Power Lindley{Exponential}, (iii) T-

Power Lindley{Frechét}, (iv) T-Power Lindley{Log − logistic}, and (v) T-Power Lindley{Logistic}
distributions, respectively, are the solutions of (19), (20), (21), (22), and (23).

Ψ(x) =
− f

′
T [FR(x)]F̄R(x)

fT [FR(x)]
, (19)
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Ψ(x) =
− f

′
T [P1(x)]

fT [P1(x)]
− 1, (20)

Ψ(x) =
F̄R(x)

FR(x)[log FR(x)]

{
f
′
T [P2(x)]

fT [P2(x)]
P2(x) + log FR(x) + 2

}
, (21)

Ψ(x) =
− f

′
T [P3(x)]

F̄R(x) fT [P3(x)]
− 2, (22)

Ψ(x) =
1

FR(x)

{
− f

′
T [P4(x)]

fT [P4(x)]
− 2FR(x) + 1

}
, (23)

where P1(x) = {− log(1 − FR(x))} , P2(x) = {− log FR(x)}−1 ,

P3(x) =
FR(x)

(1 − FR(x))
, P4(x) = log

{
FR(x)

(1 − FR(x))

}
, and

Ψ(x) =
{
(1 + {(1 + xα)β)}−1)(−1 + (α − 1)(αβxα)−1 + (1 + xα)β)

}
Proof:

We need to first show that the first derivative of the density of the Power Lindley Distribution
is expressed as

f
′
R(x) = Ψ(x)

f 2
R(x)

F̄R(x)
(24)

where F̄R(x) =
{1 + (1 + xα)β}

1 + β
e−βxα

is the survival function of the Power Lindley distribution.

Also, the derivative of (10) can be expressed as

f
′
X(x) = f 2

R(x) f
′
T {FR(x)}+ f

′
R(x) {FR(x)} . (25)

Substituting (24) into (25), we have

f
′
X(x) = f 2

R(x)m(x), (26)

where m(x) = f
′
T {FR(x)}+ fT {FR(x)}

F̄R(x)
Ψ(x).

Solving the system of equation m(x) = 0, gives the result in (19). The results in (20)-(23)
follow using similar approach.

4. some new distribution arising from the T-Power Lindley{Y} family of

distributions

In this Section, we present some distribution belonging to the T-Power Lindley{Y} family of
distributions with different T-distribution. Details of the T-distribution is given in Table 2.
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Table 2: Some Known Distributions

Distributions PDF CDF

Topp Leone, T ∈ [0, 1] 2α(1 − t)
[
1 − (1 − t)2]α−1 [

1 − (1 − t)2]α

Exponentiated
exponential, T ∈ (0, ∞)

θ
λ

{
1 − exp

(
− t

λ

)}θ−1 exp
(
− t

λ

) {
1 − exp

(
− t

λ

)}θ

Exponential, T ∈ (0, ∞) 1
λ exp

(
− t

λ

)
1 − exp

(
− t

λ

)
Weibull, T ∈ (0, ∞) θ

λ

( t
λ

)θ−1 exp
{
−
( t

λ

)θ
}

1 − exp
{
−
( t

λ

)θ
}

Gumbel, T ∈ (−∞, ∞) γ
σ exp

(
− t

σ

)
exp

{
−γexp

(
− t

σ

)}
exp

{
−γexp

(
− t

σ

)}
4.1. Topp Leone Power Lindley{Uni f orm} Distribution (TLPLD)

Suppose the random variable T follows the one-parameter Topp-Leone distribution with bounded
support [0, 1] reported in [17], then the density function of the Topp-Leone Power Lindley
distribution is define as

f (x) =
2λαβ2

(1 + β)
(1 + xα)xα−1e−βxα {

Ḡ(x)
} {

1 − (Ḡ(x))2
}λ−1

, x > 0, α, β, λ > 0, (27)

and the corresponding cumulative distribution function is given by

F(x) =
{

1 − (Ḡ(x))2
}λ

, x > 0, α, β, λ > 0, (28)

where Ḡ(x) =
(

1 + β + βxα

1 + β

)
e−βxα

is the survival function of the Power Lindley distribution.

Other useful mathematical properties of this TLPL distribution has been studied in [15].
Figure 1 displays the plots of the density function of the Topp-Leone Power Lindley distribution
(TLPLD) at various choices of the parameters. The plots indicates that the TLPLD can be left
skewed, right skewed, monotonically decreasing (reversed J-shape), and symmetric.

Figure 1: Density function of the TLPLD for different choices of the parameters

4.2. Exponentiated Exponential Power Lindley{Exponential} Distribution

Let the random variable T follows the Exponentiated Exponential distribution introduced by [8],
then the density function of the Exponentiated Exponential Power Lindley distribution (EEPLD)
is define as
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f (x) =
θαβ2(1 + xα)xα−1

λ(1 + β + βxα)

{
1 − (Ḡ(x))

1
λ

}θ−1 {
Ḡ(x)

} 1
λ , x > 0, θ, α, β, λ > 0, (29)

and the corresponding cumulative distribution function is given by

F(x) =
{

1 − (Ḡ(x))
1
λ

}θ

, x > 0, θ, α, β, λ > 0. (30)

The plots of the probability density function of the Exponentiated Exponential Power Lindley
distribution (EEPLD) for different values of the parameters is shown in Figure 2. It shows that
the shape of the EEPLD can be left skewed, right skewed, monotonically decreasing (reversed
J-shape), and symmetric.

Figure 2: Density function of the EEPLD for different values of the parameters

4.3. Exponential Power Lindley{Frechét} Distribution (EPLD)

Let the random variable T follows the exponential distribution, then the density function of the
Exponential Power Lindley distribution is define as

f (x) =
αβ2(1 + xα)xα−1exp

{
{θ log (G(x))}−1

}
{

θ(1 + β)eβxα − (1 + β + βxα)
}
[log (G(x))]2

, x > 0, θ, α, β > 0, (31)

and the corresponding cumulative distribution function is given by

F(x) = 1 − exp {θ log (G(x))}−1 , x > 0, θ, α, β > 0. (32)

The plots of the probability density function of the Exponential Power Lindley distribution
(EPLD) for different values of the parameters is shown in Figure 3. It indicates that the shape of
the EPLD can be left skewed, right skewed, monotonically decreasing (reversed J-shape), modified
unimodal.

Figure 3: Density function of the EPLD for different values of the parameters
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4.4. Weibull Power Lindley{log − logistic} Distribution (WPLD)

Let the random variable T follows the Weibull distribution, then the density function of the
Weibull Power Lindley distribution is define as

f (x) =
αθβ2(1 + β)(1 + xα)xα−1

λ(1 + β + βxα)2

{
φ(x)

λ

}θ−1

exp

{
βxα −

{
φ(x)

λ

}θ
}

, (33)

and the corresponding cumulative distribution function is given by

F(x) = 1 − exp

{
−
{

φ(x)
λ

}θ
}

, x > 0, θ, α, β, λ > 0, (34)

where φ(x) =
1
λ (1 + β)eβxα

(1 + β + βxα)
− 1.

Figure 4 gives the graph of the density function of the Weibull Power Lindley distribution
(WPLD) for different values of the parameters. Figure 4 clearly shows that the shape of the
density function of WPLD can be monotonically decreasing (reversed J-shape), left skewed, right
skewed, symmetric and bimodal.

Figure 4: Density function of the WPLD for different values of the parameters

4.5. Gumbel Power Lindley{logistic} Distribution

Let the random variable T follows the Gumbel distribution, then the density function of the
Gumbel Power Lindley distribution (GPLD) is define as

f (x) =
αγβ2(1 + β)(1 + xα)xα−1 {φ(x)}−

1
σ exp

{
−γ {φ(x)}−

1
σ

}
σ(1 + β + βxα)

[
1 + β − (1 + β + βxα)e−βxα] , (35)

with the cumulative distribution function given by

F(x) = exp
{
−γ {φ(x)}−

1
σ

}
, x > 0, α, β, σ > 0, γ = e

µ
σ . (36)

Figure 5 shows the plots of the density function of the Gumbel Power Lindley distribution
for various choices of the parameters. The plots indicate that the GPLD exhibits a monotonically
decreasing (reversed J-shape), left skewed, right skewed, symmetric and bimodal shape.
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Figure 5: Density function of the GPLD for different values of the parameters

5. Application of the T-Power Lindley{Y} family of distributions to a

bimodal data set

To illustrate the flexibility of the T-Power Lindley{Y} family of distributions in fitting real world
data, we employ the Gumbel Power Lindley Distribution belonging to the T-Power Lindley{Y}
family of distributions to fit the egg size distribution data set reported in [5]. The data set consists
of 88 asteroid species divided into three types; 35 planktotrophic larvae, 36 lecithotrophic larvae
and 17 brooding larvae. [6] considered the logarithm of the asteroid data set which exhibits a
bimodal shape and applied it to the beta-normal distribution. The descriptive statistics of the
asteroid data is shown in Table 3, while Figure 6 provides the total time on test (TTT) and boxplot
plot of the asteroid data.

Table 3: Descriptive Statistics of the Asteroid Data

Min. 1st Qu. Median 3rd Qu. Mean Skewness Kurtosis
4.605 5.134 6.126 6.869 6.070 0.1378 1.8217
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Figure 6: TTT plot and Boxplot for the Asteroid Data

Table 3 indicates that the data set is skewed to the right, whereas, Figure 6 shows that the data
set exhibits an increasing hazard rate property.

Here, we apply the proposed Gumbel-Power Lindley distribution (GPLD) alongside with
the beta-normal distribution (Beta-Norm) due to [6] to fit the bimodal data set. For the purpose
of model comparison, the fits of the distributions were compared based on the maximized
log-likelihood (Log-Lik), Aikaike Information Criterion (AIC), Corrected Aikaike Information
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Criterion (AICc) and Bayesian Information Criterion (BIC), and Hannan-Quinn Information
Criterion (HQIC).

Table 4: Summary Statistics for the Asteroid Data

Distributions Estimates Log-lik AIC AICc BIC HQIC
GPLD α = 0.0046 -109.1930 226.3861 226.8680 236.2954 230.3782

β = 0.0026
λ = 5.7755
θ = 0.0465

*Beta-Norm α = 0.0126 -109.5108 227.0215 227.5034 236.9309 231.0138
β = 0.0064
µ = 5.7109
σ = 0.0651

The Estimates and log-lik value of (*) were obtained from [6]

Figure 7 shows the graphical illustration of the density fit of the distributions for the Asteroid
data set.

Figure 7: Density Fit for the Asteroid Data

5.1. Discussion of Result

A suitable model for analyzing lifetime data set can be investigated among several distributions by
examining the model with the maximized log-likelihood value and the least value in terms of AIC,
AICc, BIC, and HQIC. Table 4 reveals that the Gumbel-Power Lindley distribution which belongs
to the T-Power Lindley{Y} family of Distributions outperformed the beta-normal distribution
in analyzing the data set and thus, can be employed as a better alternative to the beta-normal
distribution in fitting real-life data exhibiting a bimodal property. This is evidently clear as the
Gumbel-Power Lindley distribution has the maximized log-likelihood value and the least value
in terms of the AIC, AICc, BIC, and HQIC as shown in Table 4.

6. Conclusion

A new class of generalized Lindley family of distributions with bimodal property is introduced.
Sub-families of the T-Power Lindley{Y} family based on the quantile function of the uniform,
expenential, frechet, log-logistic and logistic distributions as well as some mathematical prop-
erties were derived. A bimodal data set was used to illustrate the applicability of the T-Power
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Lindley{Y} family of distributions and result obtained revealed that the GPL distribution from
the proposed T-Power Lindley{Y} family of distributions can be used as an alternative model to
other existing distributions in modelling lifetime data sets.
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Abstract

This paper presents a novel two-warehouse inventory model for degrading products, where the
demand rate is governed over time by a generalized exponential function. Two real-world supply chain
challenges that are taken into account in the model are the economic effects of inflation and partial
backlog. By reducing the whole cost, which includes holding, shortage, and degradation charges, the
Bacterial Foraging Optimization (BFO) method maximizes inventory management. The effectiveness
of the model is validated through a comprehensive numerical example, and graphical representations
demonstrate the impact of key factors on system performance. The results demonstrate how BFO may be
used to complex inventory problems, giving supply chain managers crucial data as they try to balance
cost-effectiveness and demand fluctuations in an inflationary environment. This approach highlights the
need of advanced optimization techniques in improving decision-making processes for degrading products
in a two-warehouse scenario.

Keywords: Bacterial Foraging Optimization, Two-Warehouse, Inventory Model, Exponential
Demand, Partial Backlogging and inflation.

1. Introduction and related work

Effective inventory management is a critical facet of supply chain optimization, particularly in
industries dealing with perishable or deteriorating items. The complexities of handling two
warehouses, a dynamic demand pattern characterized by a generalized exponential increase,
partial backlogging, and the impact of inflation demand advanced models for optimal decision-
making. In this context, the Two-Warehouse Inventory Model emerges as a strategic tool, aiming
to strike a balance between meeting customer demands, minimizing costs, and adapting to
the challenges posed by deteriorating items. Deterioration poses a significant challenge in
inventory systems, necessitating vigilant control mechanisms to mitigate losses associated with
time-dependent decay. Moreover, the demand for products is rarely static; the generalized
exponential increase introduces a nuanced dimension to forecasting and stock replenishment
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strategies. The concept of partial backlogging acknowledges the practical reality that, at times,
not all customer demands can be immediately fulfilled, and a systematic approach to manage
backlogs is indispensable. The economic landscape, influenced by inflationary pressures, adds
another layer of complexity. Inflation impacts various cost components within the inventory
management framework, from holding costs to ordering costs. Therefore, an inclusive model
that considers inflationary effects becomes crucial for businesses navigating these challenges. To
optimize the intricate parameters of the Two-Warehouse Inventory Model, this study leverages the
Bacterial Foraging Optimization (BFO) algorithm. Inspired by the foraging behavior of bacteria,
BFO offers a nature-inspired approach to problem-solving. By simulating the movement and
interaction of bacteria in a search space, BFO seeks to find optimal solutions efficiently. This
research delves into the synergy between the Two-Warehouse Inventory Model, deteriorating
items, generalized exponential demand, partial backlogging, and inflation. The objective is to
employ BFO to fine-tune the decision variables of the model, providing businesses with a robust
tool for inventory optimization in dynamic and challenging environments. Through the lens of
this model, organizations can enhance their responsiveness to market dynamics, reduce costs,
and ultimately bolster their competitiveness in the ever-evolving landscape of supply chain
management.

Supply chain management (SCM) is defined as the coordination of production, storage,
location, and transportation among supply chain participants to achieve the optimal balance of
responsiveness and efficiency for a specific market. While many researchers have concentrated
on products that do not spoil, certain items experience changes over time. Yadav et al. [1-10]
highlighted that the deterioration of these items is significant, limiting their storage duration.
Yadav et al. [11-20] further explained that deterioration can manifest as spoilage, evaporation,
obsolescence, or loss of functionality, leading to reduced inventory usage compared to natural
conditions. When raw materials are stocked for future demands, various factors such as storage
conditions, weather, and humidity can cause deterioration. Yadav et al. [21-53] discuss that
management typically maintains a warehouse for storing purchased goods. However, for various
reasons, they may acquire or lease more items than can be accommodated in the warehouse,
referring to the excess as overflow (OW), while the additional stock in a rented warehouse
is termed rented warehouse (RW), located near or adjacent to OW. Yadav and Swami [54-61]
found that the inventory costs associated with RW, including maintenance and depreciation, are
generally higher than those of OW due to added operational and maintenance expenses. To
minimize inventory costs, it is important to quickly utilize RW stock. Actual customer service is
provided solely by OW, so to lower expenses, RW inventory is prioritized for turnover. These
scenarios illustrate what are referred to as two inventory examples within the system. Yadav
and Kumar [62] focused on managing the supply of electronic storage devices while integrating
environmental and network considerations. Yadav, A.S. [63-65] analyzed seven measures of supply
chain management to enhance the inventory of electronic storage devices. This analysis involved
assessing financial impacts through the application of genetic algorithms (GA) and particle swarm
optimization (PSO). Additionally, the research examined inventory improvement and equipment
management using genetic computation, alongside a model design for inventory analysis that
addressed economic challenges in transporting goods. Swami et al. [66-68] formulated inventory
policies that address inventory requirements and associated costs, taking into account allowable
payments and delays in inventory. They provided an example of depreciation across various
goods and services, considering business loans and an inventory model that is less sensitive to
pricing needs, while comparing inventory costs to inflation-related business expenses. Meanwhile,
Gupta et al. [69-70] defined objectives for a Multiple Objective Genetic Algorithm and particle
swarm optimization (PSO) aimed at enhancing supply levels and addressing deficits and inflation,
along with a calculation model that leverages genetic algorithms to assess scarcity and low
inflation scenarios. Singh et al. [71, 72] examined cases involving the depreciation of two types of
stock concerning asset and inventory costs while updating particle data, as well as scenarios with
two inventories focusing on property damage and inventory costs under inflation, utilizing soft
computing techniques. Kumar et al. [73-75] addressed delays in managing alcohol supply, refining
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particles, and developing a green cement supply system, while also tackling inflation through
particle enhancement and the use of an electronic inventory system and distribution center with
genetic computations. Chauhan and Yadav [76-77] provided an example of depreciation across
two stores and warehouses, utilizing a genetic stock and vehicle stock to manage demand and
inflation across two distribution centers. Pandey et al. [78] analyzed the improvement of industrial
reserves for marble using genetic technology and enhanced multiple particle approaches. Ahlawat,
et. al. [79] studied the white wine industry in supply chain management through nerve networks.
Singh, et. al. [80] examines the best policy to import damaged goods immediately and pay for
conditional delays under the supervision of two warehouses.

The research by Yadav et al. [81] centers on improving inventory management for perishable
commodities through the lens of green technology investments, considering factors such as selling
price, carbon emissions, and time-sensitive demand. In another analysis, Yadav, Yadav, and Bansal
[82] utilize an interval number technique to explore a two-warehouse inventory management
model for perishable goods, addressing demand and cost uncertainties. Their optimization
methods highlight how investing in preservation technology can reduce waste and enhance
inventory efficiency. Focusing on a two-warehouse approach to optimize inventory levels, Yadav,
Yadav, and Bansal [83] and Negi and Singh [86] present a model that addresses the deterioration
of goods during storage, emphasizing the importance of managing degradation costs to improve
overall inventory performance.

2. Notations and assumptions

2.1. Notations

The following notations are used in this model.

Parameters Descriptions

A Ordering cost coefficient
h1 Coefficient of holding cost of Rented Warehouse (RW).
h2 Coefficient of holding cost of Owned Warehouse (OW).
CP Purchasing cost.
CS Shortage cost.
CL Coefficient of cost of lost sale.
θ Constant rate of deterioration

CD Deterioration cost per unit.
R Inflation factor
q1 Positive height of inventory of (RW) with I(t = 0)
q2 Positive height of inventory of (OW) with I(t = 0)
q3 The Negative height of inventory with I(t = T)
Q Total order quantity of order.
T Total cycle time (Total cycle length).
t1 The time where inventory height of rented Warehouse becomes zero.
t2 The time where inventory height of Owned Warehouse becomes zero.

I1(t) The height of inventory in rented warehouse between time intervals [0, t1]
I2(t) The height of inventory in owned warehouse between time intervals [0, t1]
I3(t) Height of inventory in owned warehouse between the time intervals [t1, t2]
I4(t) Level of inventory in owned Warehouse between the time intervals [t2, T]
PC Cost of purchasing
HC Cost of holding of inventory.
SC Cost of shortage of the inventory.
LC Cost of lost sale cost of inventory.

TAC Present total Average cost.
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2.2. Assumptions

The following assumptions are used in this paper.

1. The demand rate is generalized exponential increasing function of time in nature and taken
as the following form : D(t) = kea+bt; k > 0, a > 0, b > 0.

2. The partially backlogged Shortages are allowed and where backlogging rate is B(t) =
e−δt; δ > 0.

3. Infinite Time horizon is considered.

4. Lead time is zero with Infinite Replenishment rate is taken.

5. Warehouse (OW) has the limited space is allowed. On other hand the unlimited space area
for rented warehouse has been permitted.

6. The holding cost (h1) of the of Rented Warehouse is greater than the holding cost (h2) of
Owned Warehouse.

7. The charges for transportation and time between Rented Warehouse and Owned Warehouse
are completely ignored.

3. FORMULATION AND SOLUTION OF THE MODEL

The suggested model allows for a partial backlog and optimizes a two-warehouse system for
deteriorating items using a generalized exponential function of demand. The model looks for the
best ordering procedures for both warehouses in order to minimize overall expenses while taking
inflation into consideration. Presumably, one warehouse houses the major stock, while the other
houses the backup. The three primary decision variables”order quantity, reorder points, and
backordering level”are optimized using Bacterial Foraging Optimization (BFO). The rate at which
products decay, generalized exponential demand, and inflationary effects make inventory cost
management more challenging over time. By addressing these issues, the model seeks to balance
stock levels, cut waste, and boost overall cost efficiency in a real-world supply chain environment.
The proposed model shown in Fig. 1. The following is the formulation of the proposed model:

Figure 1: Graphical representation of two-warehouses inventory model.
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dI1

dt
+ θ I1 = −kea+bt, 0 ≤ t ≤ t1 (1)

dI2

dt
+ θ I2 = 0, 0 ≤ t ≤ t1 (2)

dI3

dt
+ θ I3 = −kea+bt, t1 ≤ t ≤ t2 (3)

dI4

dt
= −kea+bt · eδt, t2 ≤ t ≤ T (4)

The boundary conditions are given by I1(t1) = 0, I2(0) = q2, I3(t2) = I4(t2) = 0.
Using the above boundary conditions, the solutions of (1), (2), (3) and (4) are given by

I1(t) = e−θ(t1−t)
(

Kea+bt1

b + θ

)
− Kea+bt

b + θ
(5)

I2(t) = q2e−θt (6)

I3(t) = e−θ(t2−t)
(

Kea+bt2

b + θ

)
− Kea+bt

b + θ
(7)

I4(t) =
Kea+(b−δ)t2

b + δ
− Kea+(b−δ)t

b + δ
(8)

Positive inventory level of rented warehouse with I1(0) = q1and Eqs. (5) given by

q1 = eθt1

(
Kea+bt1

b + θ

)
− Kea

b + θ
(9)

Negative inventory level with I4(T) = −q3 and Eqs. (8) given by

q3 =

(
Kea+(b−δ)T

b − δ

)
− Kea+(b−δ)t2

b − δ
(10)

Next, we calculate all the associated inventory costs as follow:

1. Ordering Cost (OC):
OC = A (11)

2. Purchasing Cost (PC):

PC = CP

[
eθt1

(
Kea+bt1

b + θ

)
− Kea

b + θ
+ q2 +

(
Kea+(b−δ)T

b − δ

)
− Kea+(b−δ)t2

b − δ

]
(12)

3. Shortage Cost (SC):

SC = −CS

∫ T

t2

I4(t) · e−Rtdt

SC = −CS

∫ T

t2

[
Kea+(b−δ)t2

b + δ
− Kea+(b−δ)t

b + δ

]
.e−Rtdt

SC = − KCS
(b − δ)

[
ea+(b−δ)t2−RT

−R
− ea+(b−δ−R)T

b − δ − R
− (b − δ)ea+(b−δ−R)t2

R(b − δ − R)

]
(13)
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4. Lost sales Cost (LC):

LC = −CL

∫ T

t2

(1 − B(t)) · D(t) · e−Rtdt

LC = −KCL

[(
ea+(b−R)T

b − R
− ea+(b−δ−R)T

b − δ − R

)
−

(
ea+(b−R)t2

b − R
− ea+(b−δ−R)t2

b − δ − R

)]
(14)

5. Holding Cost (HC):

HC =

[
h1

∫ t1

0
I1(t).e−Rtdt + h2

∫ t1

0
I2(t) · e−Rtdt + h3

∫ t2

0
I3(t).e−Rtdt

]
=

{
h1k

(b + θ)

[
−(b + θ)ea+(b−R)t1

(θ + R)(b − R)
+

ea+(b−R)t1

(θ + R)
+

ea

(b − R)

]
+

h2q2

(R + θ)

(
1 − e−(R+θ)t1

)
+

h2k
(b + θ)

[
−(b + θ)ea+(b−R)t2

(θ + R)(b − R)
+

ea+(b+θ)t2−(θ+R)t1

(θ + R)
+

ea+(b−R)t1

(b − R)

]}
(15)

6. Deterioration Cost (DC):

DC = CD

[
θ
∫ t1

0
I1(t) · e−Rtdt + θ

∫ t1

0
I2(t) · e−Rtdt + θ

∫ t2

0
I3(t) · e−Rtdt

]
= CD

{
θk

(b + θ)

[
−(b + θ)ea+(b−R)t1

(θ + R)(b − R)
+

ea+(b−R)t1

(θ + R)
+

ea

(b − R)

]
+

θq2

(R + θ)

(
1 − e−(R+θ)t1

)
+

θk
(b + θ)

[
−(b + θ)ea+(b−R)t2

(θ + R)(b − R)
+

ea+(b+θ)t2−(θ+R)t1

(θ + R)
+

ea+(b−R)t1

(b − R)

]}
(16)

TAC =
1
T

[
OC + PC + HC + DC − SC + LSC

]
(17)

4. Bacterial Foraging Optimization (BFO) Methodology

We can describe the algorithmic solution steps of BFO which are designed in the context of the
described features and functions Sinha and Anand [84]. The following is the optimization process
using Bacterial Foraging Optimization:

1. Step 1 (Installation Phase): Randomly dispense N pieces of bacteria particles (potential
solution variables) into solution space. Algorithm parameters. Perform the necessary
arrangements for the problem to be solved.

2. Step 2: Calculate the objective function value (fitness) according to the locations of the
bacteria (potential solution variables).

3. Step 3: Perform the following steps, Repeat until: (in the context of each objective function
size).

4. Step 3.1 (Chemotaxis Phase): Perform the following steps for each bacteria, up to the Nk
value:

5. Step 3.1.2: The objective function of the bacterium related to the (fitness) cell to cell attractive
effect of the update. Hold this value until swimming phase.

6. Step 3.1.3 (Rolling Phase): Generate random numbers up to the purpose function size in
the range [-1, 1]. Run the rolling process for the respective bacteria.

RT&A, No 1 (82) 
Volume 20, March 2025 

805

Garima Sethi, Ajay Singh Yadav and Chaman Singh 
OPTIMIZING TWO-WAREHOUSE INVENTORY MODEL · · ·



7. Step 3.1.4: Calculate the objective function value (fitness) according to the location of the
bacteria (potential solution variable). The purpose of the relevant bacterium is to update
the value of the function function (fitness) from cell to cell with attractive effect.

8. Step 3.1.5 (Swimming Phase): Perform the following steps for the related bacteria, up to
the Nyush value.

9. Step 3.1.5.1: If the final objective function value (fitness) of the bacteria is better than stored
before the Swimming Phase, keep this new value.

10. Step 3.1.5.2: Update the held objective function value (fitness) of the relevant bacteria
according to the displacement value to be calculated.

11. Step 3.1.6: If all bacteria have not been treated yet, switch to the next bacterium and return
to Step 3.1.1.

12. Step 3.2 (Reproduction Phase): Calculate the health status of each bacterium and sort them
all from small to small according to these values.

13. Step 3.3: Eliminate the worst bacteria according to the set criteria. Let the bacteria grow in
the best condition. New bacteria are in place of their parents.

14. Step 3.4: If the nu value has not yet been reached, increase the counter for that value and
go back to Step 3.1 and continue with the next generation.

15. Step 3.5 (Elimination - Distribution Phase): Transfer each bacterium to a new location
according to the value oed.

16. Step 4: At the end of the processes, the value (s) obtained by the global best position is
considered to be the optimum value (s). There are many studies and applications that are
related with this optimization algorithm.

In Hezer and Kara [85], to determine the routes to be followed by the vehicles used in distribution
and collection activities and to minimize the logistics costs, an algorithm has been developed
with this optimization to solve the stated problem.

5. Graphical Representation

Figure 2: Variation between time and demand rate, if changing a.
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Figure 3: Variation between time and demand rate, if changing b.

Figure 4: Variation between time and shortage rate, if changing δ.
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The graphical depictions in this part provide a comprehensive grasp of the dynamics within the
deteriorated inventory model of two-warehouses. Figure 2 and Figure 3 explains the link between
demand rates and time, while Figure 4 illustrates how shortage impacts inventory management
using different type of functions of time together with the adjustments needed to effectively
balance demand, shortage, and time.

6. Conclusion

In conclusion, the Two-Warehouse Inventory Model for Deteriorating Items with a Generalized
Exponential Increasing Demand and Partial Backlogging under Inflation, optimized through
Bacterial Foraging Optimization (BFO), represents a comprehensive and adaptive approach to
contemporary inventory management challenges. The model addresses the inherent complexities
of managing deteriorating items across two warehouses, acknowledging the nuanced nature of
demand with a generalized exponential increase. Incorporating partial backlogging recognizes
the practical constraints of immediate fulfillment, introducing a realistic dimension to inventory
control. The inclusion of inflationary factors enhances the model’s relevance in a dynamic
economic landscape. The decision to employ BFO as the optimization algorithm is strategic,
harnessing the efficiency of nature-inspired algorithms in navigating complex solution spaces. By
simulating bacterial foraging behaviors, BFO efficiently explores and exploits optimal solutions
for the intricate parameters of the inventory model. Through this research, businesses gain a
sophisticated tool for strategic decision-making in inventory management. The model provides
a framework for minimizing losses associated with deteriorating items, adapting to fluctuating
demands, and optimizing costs in the face of inflation. By leveraging BFO, organizations can
fine-tune their inventory policies, ensuring an optimal balance between customer satisfaction
and cost-effectiveness. As industries continue to evolve, characterized by rapid changes in
consumer behavior, market dynamics, and economic conditions, the significance of robust
inventory management models cannot be overstated. The Two-Warehouse Inventory Model,
coupled with BFO optimization, positions businesses to not only navigate current challenges but
also to proactively respond to future uncertainties. In essence, this research contributes to the
advancement of inventory management methodologies, offering a tailored solution that aligns
with the complexities of contemporary supply chain environments. It is our hope that businesses
embracing this model will experience heightened efficiency, improved customer satisfaction, and
a competitive edge in the dynamic landscape of global commerce.
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Abstract 

The present paper deals with survival analysis of a stochastic model on cardiovascular system 

considering possibilities of damage, failure and recovery of heart.  The analysis is based upon a 

stochastic model for the system considering different kinds of damage and failure of heart at different 

situations. The treatments and recovery of heart are taken in to account. On complete failure of heart, 

transplantation of the heart is also considered. The model has been analyzed by determining 

important measures of effectiveness using Markov process and regenerative point technique. 

Sensitivity analysis has also been done to select important parameters for enhancing the survivability 

of the system. 

Keywords: Cardiovascular system, mean survival time, survivability, sensitivity 
analysis, Markov process and regenerative point technique. 

1. Introduction

The cardiovascular system in the human body is a complex network of organs, vessels and tissues 
that transport blood, oxygen, nutrients and other vital substances throughout the body. The main 
components of cardiovascular system include the heart, blood vessels and blood, the major driving 
force of the system is the heart. The heart is a vital organ of the system responsible for pumping 
blood throughout the body, supplying oxygen and nutrients to the tissues and organs. It is a 
muscular organ located slightly left of the center of the chest and is protected by the ribcage.  

The survivability of the system plays an important role for the functioning of the body. For 
investigations of heart related issues including morbidity and mortality attempts have been made 
by many researchers applying prospective and different methods. Kannel and McGee [3] discussed 
the relation between diabetes and cardiovascular disease. Bertoni et al. [1] studied diabetes impacts 
on the elderly in terms of the prevalence, incidence and mortality related to heart failure. Lerma et 
al. [6] discussed the stochastic aspects of cardiac arrhythmias. Smith et al. [11] predicted the 
outcomes among heart failure patients. Meenaxi et al. [7] studied a model for the progression of 
chronic heart failure. Tanna et al. [12] considered risk prediction models for adults with heart failure. 
Pierce et al. [8] explained the patterns of cardiovascular mortality associated with heart failure, 
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comparing rural and urban counties across the United States. Rajeswari and Kausika [9] developed 
a machine learning model to predict future possibility of heart disease. Khan et al. [4] presented 
machine learning algorithm-based cardiovascular disease prediction. Roger [10] studied the 
epidemiology of heart failure. Deng [2] provided a modern viewpoint on cardiac transplantation. 

Over the time, researches in the epidemiology of heart failure make simple the understanding 
of the syndrome’s complexity. The prevalence of disease like diabetes mellitus, obesity, 
hypertension, and problems in supplementary organs like chronic kidney disease, and cancer 
comorbidities at heart failure are increasing, and these factors may be associated with the increasing 
prevalence of heart failure with preserved ejection fraction [5]. In motor vehicle accidents and vehicle 
air bags heart injury due to rib fractures and sucking chest wound are very common [14]. Further, 
according to American Heart Association, heart transplantation is a kind of surgery in which failing 
heart of patient is replaced by donor’s heart. It gives better life to heart patient. Heart transplants 
have seen a remarkable rise in recent years. For instance, the number of transplant procedures in 
India grew from 53 in 2014 to 241 in 2018, and there were 187 transplants in 2019 [13]. 

2. Model Description and State Transition Diagram

It has been noticed that considering the above aspects of heart damages, failure and 
recovery/transplantation, survivability and sensitivity analysis of cardiovascular system has not 
been reported in the literature. To fill this gap, the present paper deals with the survivability and 
sensitivity analysis of cardiovascular system considering various causes of damage, failure and 
recovery of heart. It is considered that the heart may damage/fail due to prevalence of some disease, 
other organ issues and some severe accidents. The person having some heart problem reaches the 
hospital in negligible time for the treatments. After successful recovery, heart in the cardiovascular 
system works as good as healthy whereas transplantation of a heart does not make the patient 
healthy. A stochastic model has been developed for the cardiovascular system and analyzed by 
determining some measures of effectiveness using Markov process and regenerative point 
technique. The other assumptions of the model are 

• Minor heart damages are recovered by some medicine/exercise/therapy.
• The severe accidents result into major heart damage.
• The single diagnose/treatment facility is available in the hospital.
• The time to damages and failure is considered to be exponentially distributed while

other time distributions are general.
• All random variables are mutually independent.

3. States and Notations of the System

States & Notations Description 

0S healthy state 

1 2,S S minor damage state 

3S major damage state 

4S failed state  

01 damage rate due to prevalence of some disease

02 damage rate due to other organ issues

04 failure rate due to severe accidents 

13 major damage rate from minor heart damage
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24 failure rate due to minor heart damage

34 failure rate due to major heart damage

1 1( ) / ( )g t G t p.d.f/c.d.f of  time of recovery through  medicine/exercise/therapy

2 2( ) / ( )g t G t p.d.f/c.d.f of time of recovery from other organ issues

3 3( ) / ( )g t G t p.d.f/c.d.f of time of recovery due to surgery/operation
( )h t p.d.f/c.d.f of time of heart transplantation

State Transition Diagram is depicted in fig. 1 

Figure 1. State Transition Diagram 

     Healthy State  Minor Damage State 

Major Damage State  Failed State 

4. Transition Probabilities

The transition probabilities are given by 
01 02 04( )
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The non-zero element
ijp are given by 

* **

0 0
lim ( ) lim ( ).ij ij ij
s s

p q s Q s
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= =
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It can be observed that 
01 02 04 1;p p p+ + = 10 13 1;p p+ = 20 24 1;p p+ =

30 34 1;p p+ = 41 1.p =

5. Mean Sojourn Time

Expected time taken by the patient in state i before transiting to any other state is termed as mean 
sojourn time in that state and it is denoted by i . Mean sojourn time i in the i th state is given by 

0

Pr(T ) ,i i t dt
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where iT is the sojourn time in state i . 
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The unconditional mean time is, mathematically, defined as 
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From above we observed that 
01 02 04 0 ;m m m + + =        10 13 1 ;m m + =     20 24 2 ;m m + =

30 34 3;m m + = 41 4 .m =

6. Mean Survival Time

Let ( )i t denotes the cumulative distribution function of first passage time from iS to the failed
state. The following recursive relations are obtained for ( )i t : 

0 01 202 01 4( ) ( ) ( ) Q (( ) )) ( ;t Q t Qt ttt = +  +& &

1 10 130 3( ) ( () ( )( );)tt Q t Q t t=   +& &

2 20 240( ) ( ) ( );) (t Q t t Q t = +&

3 30 340( ) ( ) ( ).) (t Q t t Q t = +&
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Taking L.S.T and solving for **

0 ( ),s  we get 
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Now the expression for the mean survival time is 
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Using L’Hospital’s rule and solving for **
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where 
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7. Survivability

Let ( )iS t  denotes the probability that patient survive at instant t given that the patient entered the 
state i at time 0.t = The recursive relations for ( )iS t  as given below: 
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Expected survivability is derived as
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8. Numerical Computations and Graphical Interpretations

The expressions derived for mean sojourn times, mean survival time and survivability are analytic 
and computationally tedious involving several parameters. Therefore, following particular case is 
considered for computations and analysis purpose: 

- t- t - t
31 2

;         ;            ;1 1 2 2 3 3

1
g (t)= e g (t)= e g (t)= e h(t) .

 
   =



Numerical computations have been done for the above particular case and various graphs have 
been plotted for mean survival time and survivability giving different estimated values to the 
parameters

01 02 04 01 13 24 34 1 2 3, , , , , , , , , ,           . The following interpretations and conclusions 

have been drawn from the plotted graphs. 

Figure 2. Mean survival time 0( )T with respect to damage rate 01( )

Figure 3. Mean survival time 0( )T with respect to major damage rate 13( )

From the fig. 2 and fig. 3, it can be observed that mean survival time 0( )T of the system decreases 
as the damage rates 01 and 13 increases and has greater value for greater value of recovery rate 1.
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Figure 4. Mean survival time 0( )T with respect to recovery rate 2( )

From the fig. 4, we can observe that mean survival time 0( )T of the system is more for higher 
recovery rate 2 and it has lesser value for higher value of damage rate 02.

Figure 5. Mean survival time 0( )T with respect to failure rate 24( )

Figure 6. Mean survival time 0( )T with respect to failure rate 34( )
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From the fig. 5, we observed that mean survival time 0( )T of the system declines with the failure

rate 24 increases and it improves with the recovery rate 2.

From the fig. 6, we observed that mean survival time 0( )T of the system decreases as the failure
rate 34 increases and has greater value for greater value of recovery rate 3.

Figure 7. Survivability 0( )S with respect to failure rate 04( )

From fig. 7 and fig. 8, it can be observed that survivability 0( )S of the system decreases as the 
failure rates 04 and 24 increases and has greater value for greater value of transplantation rate .

Figure 8. Survivability 0( )S with respect to failure rate 24( )

9. Sensitivity and Relative Sensitivity Analysis

Sensitivity analysis determines how different values of an independent variable affect a particular 
dependent variable under a given set of assumptions. As there is significant difference among the 
values of parameters, we can use the concept of sensitivity analysis for comparing their effects on 
mean survival time 0( )T and survivability 0( ).S The sensitivity and relative sensitivity function for
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mean survival time 0( )T and survivability 0( )S of the system are given below:

0( )
,k

T

k



=


0

( )k k

k

T
 =   and 0( )

,k

S

k



=


0

( ) ,k k

k

S
 =

where  
01 02 04 13 24 34 1 2 3, , , , , , , , , .k          =

The fixed values of parameters are as follows: 
01 02 04 13 24 34 1 2 30.01, 0.02, 0.01, 0.09, 0.05, 0.06, 0.9, 0.5, 0.3, 0.1         = = = = = = = = = =

Table 1: Sensitivity and relative sensitivity analysis of mean survival time
0( )T of the system with respect to 

damage rate
02

02
02

0

02

T





=
 02 02

02

0

( )
T

 


 =

0.01 
0.02 

0.03 

0.04 

0.05 
0.06 
0.07 

-601.6138 -0.0646
-513.6997 -0.1172
-443.7370 -0.1607
-387.1513 -0.1967
-340.7376 -0.2269
-302.1962 -0.2523
-269.8426 -0.2737

Table 2: Sensitivity and relative sensitivity analysis of mean survival time
0( )T of the system with respect to 

failure rate
04

04
04

0

04

T





=
 04 04

04

0

( )
T

 


 =

0.01 
0.02 
0.03 
0.04 
0.05 

0.06 

0.07 

0.08 
0.09 

-0.007 -0.8354
-0.002 -0.9103
-0.001 -0.9384

-595.5245 -0.9531
-388.3926 -0.9621 

-273.1571 -0.9682
-202.5219 -0.9726
-156.1222 -0.9760
-124.0172 -0.9786

Table 3: Sensitivity and relative sensitivity analysis of mean survival time
0( )T of the system with respect to 

recovery rate
1

   1
1

0

1

T





=
 1 1

1

0

( )
T

 


 =

0.1 
0.2 
0.3 

0.4 

0.5 
0.6 
0.7 

1.3466  0.0015 
0.6038  0.0014 
0.3412  0.0012 
0.2189  0.0009 
0.1523  0.0008 
0.1120  0.0007 
0.0859  0.0006 
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Table 4: Sensitivity and relative sensitivity analysis of mean survival time
0( )T of the system with respect to 

recovery rate
3

3
3

0

3

T





=
 3 3

3

0

( )
T

 


 =

0.1 
0.2 

0.3 

0.4 

0.5 
0.6 
0.7 

12.2427  0.0141 
4.7379  0.0109 
2.4954  0.0085 
1.5368  0.0070 
1.0407  0.0059 
0.7571  0.0051 
0.5675  0.0045 

Table 5: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to damage 

rate
01

01
01

0

01

( )S





=
 01 01

01

0

( )
S

 


 =

0.01 
0.02 

0.03 

0.04 

0.05 
0.06 
0.07 

-0.0056 -0.00006
-0.0055 -0.00012
-0.0054 -0.00017
-0.0052 -0.00023
-0.0051 -0.00028
-0.0050 -0.00033
-0.0049 -0.00038

Table 6: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to damage 

rate
02

02
02

0

02

( )S





=
 02 02

02

0

( )
S

 


 =

0.01 
0.02 

0.03 

0.04 

0.05 
0.06 
0.07 

-0.5580 -0.0062
-0.5314 -0.0118
-0.5067 -0.0170
-0.4837 -0.0218
-0.4622 -0.0262
-0.4421 -0.0302
-0.4233 -0.0339

Table 7: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to major 

damage rate
13

13
13

0

13

S





=
 13 13

13

0

( )
S

 


 =

0.01 
0.02 

0.03 

0.04 

0.05 
0.06 
0.07 

-0.0265 -0.0003 

-0.0260 -0.0006
-0.0255 -0.0009 

-0.0250 -0.0011
-0.0245 -0.0014 

-0.0241 -0.0016
-0.0236 -0.0018 
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Table 8: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to failure 

rate
34

34  
34

0

34

S





=
 34 34

34

0

( )
S

 


 =

0.01 
0.02 

0.03 

0.04 

0.05 
0.06 
0.07 

-0.0484 -0.0005
-0.0456 -0.0010
-0.0431 -0.0014
-0.0408 -0.0018
-0.0386 -0.0022
-0.0367 -0.0025
-0.0348 -0.0027

Table 9: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to recovery

rate
1

    1
1

0

1

S





=
 1 1

1

0

( )
S

 


 =

0.1 
0.2 
0.3 

0.4 

0.5 
0.6 
0.7 

     0.0031  0.00034 
     0.0014  0.00031 
     0.0008  0.00026 
     0.0005  0.00022 
     0.0004  0.00020 
     0.0003  0.00017 
     0.0002  0.00015 

Table 10: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to recovery

rate
2

2
2

0

2

S





=
 2 2

2

0

( )
S

 


 =

0.1 
0.2 
0.3 

0.4 

0.5 
0.6 
0.7 

    0.2040  0.0234 
   0.0836  0.0189 
   0.0452  0.0152 
    0.0283  0.0126 
    0.0193  0.0108 
    0.0140  0.0094 

 0.0107  0.0083 

Table 11: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to recovery

rate
3

    3  
3

0

3

S





=
 3 3

3

0

( )
S

 


 =

0.1 
0.2 

0.3 

0.4 

0.5 
0.6 
0.7 

  0.0295  0.0033 
 0.0110  0.0025 
 0.0057  0.0019 
 0.0035  0.0016 
 0.0024  0.0013 
 0.0017  0.0011 
  0.0013  0.0009 
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Table 12: Sensitivity and relative sensitivity analysis of survivability
0( )S of the system with respect to 

transplantation rate   

      
    0S





=


0

( )
S

 


 =

0.1 
0.2 

0.3 

0.4 

0.5 
0.6 
0.7 

0.9198  0.1025 
0.2555  0.0540 
0.1177  0.0367 
0.0675  0.0278 
0.0437  0.0223 
0.0305  0.0187 
0.0266  0.0161 

The sensitivity analysis of model for mean survival time and survivability of the system with 
respect to heart damage rates, failure rates and recovery rates are explained in table 1to table 12. The 
sign of sensitivity of mean survival time and survivability of the system with respect to heart damage 
rates

01 02( , ),  major damage rate 13( ) and failure rates 04 24 34( , , )    are negative. This shows that 

increase in these parameters decrease the value of mean survival time and survivability of the 
system. The sign of sensitivity of mean survival time and survivability of the system with respect to 
recovery rates 1 2 3( , , )   and transplantation rate ( ) of the heart are positive which means increase 
in these parameters improve the value of mean survival time and survivability of the system. For 
example, in case of sensitivity of mean survival time 0( )T and survivability 0( )S of the system with 
respect to heart damage rate 02 shows that increase in the heart damage rate due to some organ
issues decrease the value of mean survival time and survivability of the system. Further, it can be 
observed from the analyses that mean survival time is more sensitive towards the values of heart 
damage rate due to some organ issues/failure rate of heart due to severe accidents/recovery from 
other organ issues and survivability of the system is more sensitive towards heart transplantation 
rate. 

10. Conclusion

In the human body, the cardiovascular system is the most vital system. The stochastic model and 
analysis presented in the paper is a simple and concise approach for understanding and 
investigating the human cardiovascular system considering its various causes heart damage and 
failure issues. This study is quite helpful to make prediction about patients’ mean survival time and 
survivability and accordingly to take appropriate measure to treat/cure the patients. Further 
graphical and sensitivity analyses of the proposed model highlight the impacts of different rates of 
damage, failure, recovery and transplantation of heart on mean survival time and survivability of 
the system. The important factors/rates that can help to enhance survivability of the system can be 
easily selected. The investigation through the stochastic analysis of the system considering various 
causes of heart damage and failure concludes that the mean survival time of the system deceases 
with the increase in the rates of prevalence of heart diseases, other organ issues and severe accidents. 
However, the mean survival time and survivability of the system increases with the increase in the 
recovery/transplantation rates through medicine/exercise/therapy/surgery of the heart. The 
evaluated expressions for mean sojourn time in the different states of the system gives estimates of 
the times for cardiac patient remains in a particular state.  Investigations also conclude that heart 
failure rate of due to severe accidents and heart transplantation rate play crucial roles as far as mean 
survival time and survivability of the system is concerned. Thus, survivability of the patient may be 
enhanced controlling these rates taking appropriate measures. 
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Abstract

A life test is a random experiment which is performed on manufactured items such as electric
and electronic components in order to estimate their lifetime by selecting the items randomly from the
production process. The lifetime / lifespan of the product is a random variable that follows a specific
continuous-type probability distribution, called the lifetime distribution. Reliability sampling, which
is one among the classifications of product control techniques, deals with inspection procedures for
sentencing one or more lots or batches of items submitted for inspection. An acceptance sampling scheme
is a combination of sampling inspection plans with switching rules for changing from one plan to another.
A switching rule is an instruction within a sampling scheme for changing from one sampling plan
to another of greater or lesser severity of sampling based on the demonstrated quality history. In this
paper, the concept of sampling schemes for life tests with a switching rule involving two samples under
the assumption that the lifetime random variable follows an exponential distribution is introduced. A
procedure is developed for designing the optimum sampling schemes with minimum sample sizes when
two points on the desired operating characteristic curve are prescribed providing protection to the producer
and the consumer.

Keywords: Consumer’s risk, Exponential distribution, operating characteristic function, pro-
ducer’s risk, Reliability sampling, Sampling system.

1. Introduction

An acceptance sampling scheme is a combination of acceptance sampling plans with switching
rules for changing from one plan to another. A switching rule is an instruction within a sampling
scheme for changing from one acceptance sampling plan to another of greater or lesser severity of
sampling based on the demonstrated quality history. The sampling plans having greater severity
are called tightened plans and those having lesser severity are termed as normal plans. Severity of
sampling plans can be defined either in terms of sample sizes or in terms of acceptance numbers.
While the acceptance number is fixed, the sample size under a tightened sampling plan would,
generally, be larger than the sample size under a normal plan. Similarly, while the sample size is
fixed, acceptance number under a tightened plan is smaller than the acceptance number under a
normal plan. The procedure for switching between tightened and normal plans is essential to
exert pressure on the producer to take corrective action when quality falls below the prescribed
levels and to provide incentives, in terms of reduced sample size, for quality improvement. Quick
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switching systems (QSS) proposed by [6], tightened - normal - tightened (TNT) schemes of [4]
and [8] are the examples of sampling schemes

QSS utilizes two single sampling plans with the same sample size and different acceptance
numbers, together with a switching criterion of switching between normal inspection and
tightened inspection. TNT sampling scheme involves a criterion for switching between two zero
acceptance number single sampling plans, having different sample sizes, n1 and n2, where n1 is
the sample size of a tightened plan and n2 (< n1) is the sample size of a normal plan. The salient
feature of TNT scheme is that while the OC curve of the scheme is in a desirable shape at the
upper portion providing greater protection to the producer against the producer’s quality, the
switching rules have no real effect on the consumer quality, which would remain essentially that
of the tightened plan. This is due to the change in the sample sizes rather than the acceptance
number. Following this feature, QSS can also be defined with a common acceptance number, but
with different sample sizes under tightened and normal inspections.

In the context of life testing sampling plans or schemes, the acceptance number is defined
as the allowable number of failures in the sample. In the following subsection, the concept of
sampling inspection schemes for life tests involving a switching rule with two different sample
sizes and zero failures is devised. The procedure for designing such sampling schemes for the
prescribed acceptable mean (or median or reliability) and unacceptable mean (or median or
reliability) life ensuring protection to the producer and consumer with reduced risks is also
discussed.

2. Sampling Inspection Schemes for Life Tests

A sampling inspection scheme for life tests in reliability sampling involves two single sampling
plans defined with common zero acceptance number, called zero failures, but with different
sample sizes n1 and n2 and a switching rule. The single sampling plans, denoted by (n1,0) and
(n2,0), are termed as normal and tightened inspection plans, where n2 >n1. With a provision
to switching between the normal and tightened plans, the operating procedure of a specific
sampling inspection scheme is described as follows:

Step 1: Start with normal inspection, drawing a random sample of n1 items from a current lot.
If no failures are observed, accept the lot. If one or more failures occur, reject the lot and
switch to tightened inspection (given in Step 2) from the subsequent lot.

Step 2: Under tightened inspection, draw a random sample of n2 items from a lot. If no failures
are observed, accept the lot and switch to normal inspection (given in Step 1) from the
subsequent lot.

Thus, the sampling inspection scheme for life tests is designated as SIS-(n1,n2:0), where n1 is the
sample size under a normal plan and n2 is the sample size under a tightened plan.

It can be noted that as the provision of switching to tightened inspection when a lot is
rejected under normal inspection and switching to normal inspection when a lot is accepted
under tightened inspection is given within the system or scheme, the scheme is also termed as
quick switching system, devised by [6]. Construction to the study of Quick Switching System
(QSS) and its applications are presented by [1]. The exponential distribution, which is a special
case of gamma family of distributions as demonstrated by [5], has a wider application in the
fields of queueing theory, reliability theory and engineering, and hydrology. It is used to model
the performance of components that have a constant failure rate and is applied to the cases
involving items that do not degrade with time or do not result in wear out failures. Examples
include components of high-quality integrated circuits, such as diodes, transistors, resistors, and
capacitors. The exponential distribution is considered as a perfect model for the long and constant
period of low failure risk that characterizes the useful life of the product and represents the
intrinsic failure phase in the field of reliability.

The application of exponential distribution in the fields of actuarial, biological and engineering
sciences. One may refer to [2], [3], [7], and [9] for more details. While the exponential distribution
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is appropriate for modeling the lifetime of an item, it is commonly applied for the inferential
aspect of utilizing life information. Hence, as a member of the lifetime continuous probability
distributions, the exponential distribution can be considered as an apt probability model to adopt
in real life situations. Application of the exponential distribution in reliability sampling is now
considered for sampling plans with switching rules when the lots are formed from the items
resulted from a continuous stream of production. In the following sampling plans with switching
rules, the description of exponential distribution as the probability model for the lifetime quality
characteristic, the operating characteristics of the plans and the procedures for the selection of
sampling plans for life tests under the assumption of the exponential distribution are presented.

3. Exponential Distribution

Let T be a random variable representing the lifetime of the components. Assume that T follows
an exponential distribution with a scale parameter θ. The probability density function and the
cumulative distribution function of T are, respectively, defined as follows:

f (t; θ) =
1
θ

exp
(
− t

θ

)
, 0 ≤ t < ∞; θ > 0 (1)

F(t; θ) = 1 − exp
(
− t

θ

)
(2)

The mean life time, the median life time, the reliability function and hazard function for specified
time t under the exponential distribution are, respectively, given below:

µ = E(t) = θ (3)

µd = θ In(2) (4)

R(t; θ) = exp
(
− t

θ

)
(5)

z(t; θ) =
1
θ

, 0 ≤ t < ∞ (6)

It is known that the reliable life is the life beyond which some specified proportion of items in the
lot will survive. Associated with the exponential distribution, it is defined by

ρ = −θ In(R) (7)

where R is the proportion of items surviving to time ρ. The proportion, p of product failing before
time t, is defined by the cumulative probability distribution of T.
It is expressed as

p = F(t; θ) = 1 − exp
(
− t

θ

)
(8)

4. Operating Characteristic Function of SIS − (n1, n2 : 0)

The operating characteristic function of SIS − (n1, n2 : 0) is defined from [6] as

Pa(p) =
PT

1 − PN − PT
(9)

Where PN=P(d = 0|n1) is the probability of accepting the lot when using a normal inspection
plan, PT = P(d = 0|n2) is the probability of accepting the lot when using a tightened inspection
plan, and d is the number of failures observed in the sample.
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Under the conditions for the application of binomial and Poisson distributions, the expressions
for Pa(p) are, respectively, given by

Pa(p) =
(1 − p)n2

1 − (1 − p)n1 + (1 − p)n2
(10)

and

Pa(p) =
e−n2 p

1 − e−n1 p + e−n2 p (11)

Under a sampling plan for life tests, the failure probability, p, is the proportion of products failing
before time t. When the lifetime random variable, T, follows an exponential distribution, p is
defined from equation 8. It can be noted that a specific value of p is associated with a unique
value of t/θ. As the mean life is defined by µ = θ, the value of p can be related to t/µ. Similarly,
associated with any specific value of p are the values of t/µd or t/ρ, where µd is the median life is
and ρ is the reliability life. Similarly, for a specified value of t/µ or t/µd or t/ρ, the value of p
could be obtained. Thus, when p is associated with t/µ, the operating characteristic function of a
life test sampling plan can be considered as a function of t/µd , rather than p, and the OC curve
of the plan could be obtained by plotting the acceptance probabilities against the values of t/µd.
If the median life and reliability life are considered for the operating characteristics of the desired
plan, p can be associated with t/µd=( t

θ )(ln(2))
−1 and t/p=-( t

θ )[ln(R)]−1.
Associated with each specific value of p, a unique value of t/µ or t/µd or t/ρ can be

determined using the following simple procedure:

Step 1: Specify p.

Step 2: Obtain t/θ from the cumulative distribution function using (2) and (8).

Step 3: Using the value of t/θ obtained in Step 2, determine t/µ , t/µd and t/ρ from (3), (4) and
(7), respectively.

Step 4: Define the following dimensionless ratios:

µ
µ0

= Actual Mean Li f e
Assumed Mean Li f e′ ; µd

µd0
= Actual Mean Li f e

Assumed Mean Li f e′ ; ρ
ρ0

= Actual Reliable Li f e
Assumed Reliable Li f e

Given the assumed mean life µ0, the median life µd0 and the reliable life ρ0 the ratios can be
obtained using (3), (4) and (7) along with (2).

Step 5: Determine µ
µ0

, µd
µd0

and ρ
ρ0

corresponding to each specified value of p.

Step 6: Find the probability of acceptance using (2) under the conditions of binomial model or
using (3) under the conditions of Poisson model corresponding to each specified value of p
or µ

µ0
or µd

µd0
or ρ

ρ0
.

Step 7: Plot the probability of acceptance against each value of µ
µ0

or µd
µd0

or ρ
ρ0

in order to obtain

the required OC curve of SIS − (n1, n2 : 0) for life tests under the assumption of exponential
distribution for the lifetime quality characteristic. In a similar way, for a specified value
of t

µ or t
µd

or t
ρ , the value of p could be obtained following the above procedure in the

reverse order. As p is associated with t
µ or t

µd
or t

ρ , the operating characteristic function of

SIS − (n1, n2 : 0) for life tests can be considered as a function of t
µ or t

µd
or t

ρ rather than p.
Thus, the OC curve of the sampling scheme could be obtained by plotting the acceptance
probabilities against the values of t

µ or t
µd

or t
ρ .
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5. Procedure for the Selection of SIS − (n1, n2 : 0) for Life Tests Indexed

by Acceptable and Unacceptable Mean (or Median or Reliable) Life

It is the usual practice in selecting a sampling scheme or a system to fix the operating characteristic
curve in accordance with the desired degree of discrimination. The OC curve is, in turn, fixed by
suitably chosen parameters, viz.,(p0, 1 − α) and (p1, β) or equivalently by (µ0, 1 − α) and (µ1, β)
or ( t

µ0
, 1 − α) and ( t

µ1
, β), where p0 is the producer’s quality level, p1 is the consumer’s quality

level, µ0 is the acceptable mean life, µ1 is the unacceptable mean life, α is the producer’s risk and
β is the consumer’s risk. Similarly, (µd0 , 1 − α) and (µd1 , β), (ρ0, 1 − α) and (ρ1, β) can be used to
find the sampling schemes based on median life and reliable life criteria, respectively.

Now, an optimum SIS− (n1, n2 : 0) based on mean life can be obtained satisfying the following
two conditions which would also ensure protection to the producer and the consumer:

Pa(p0) ≥ 1 − α (12)

and
Pa(p1) ≤ β (13)

Equivalently, one can also fix the conditions as given below:

Pa(µ0) ≥ 1 − α (14)

and
Pa(µ1) ≤ β (15)

Or

Pa

(
t

µ0

)
≥ 1 − α (16)

and

Pa

(
t

µ1

)
≤ β (17)

Assuming that the OC curves of SIS − (n1, n2 : 0) and the OC curves of tightened single
sampling plans (n2, 0) coincide at t

µ = t
µ1

i.e., at p = p1, the sample sizes, n1 and n2 of SIS− (n1, n2 :
0) can be determined easily as given below:

For tightened single sampling plan, (n2, 0), the expression for the OC function with the quality
level, p1, and the probability of acceptance, β, under the conditions for application of binomial
model, is given by

β = (1 − p1)
n2 (18)

From which the solution for n2 can be shown to be

n2 =
ln(β)

ln(1 − p1)
(19)

by taking natural logarithm and on simplification. If ln(β)
ln(1−p1)

is not an integer, the solution for n2

will be obtained as

n2 = int
[

ln(β)

ln(1 − p1)

]
+ 1 (20)

If the OC curve of SIS − (n1, n2 : 0) is required to pass through (p1, 1 − ℵ), the sample size, n1
can be determined as follows: From (12), consider

1-α = (1−p0)
n2

1−(1−p0)
n1+(1−p0)

n2

which would result in

n1 = In(1−α−α(1−p0)
n2−In(1−α)

In(1−p0)
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The solution for in terms of an integer can be determined as

n1 = int
[

In(1 − α − α(1 − p0)
n2 − In(1 − α)

In(1 − p0)

]
+ 1 (21)

In order to determine an optimum SIS − (n1, n2 : 0) based on mean life satisfying the specified
requirements under the assumption of the exponential distribution and to implement the plan in
practical situations, the following procedure is developed:

Step 1: Specify the values of t
µ0

and t
µ1

with α = 0.05 and β = 0.10 respectively.

Step 2: Find p0 and p1 corresponding to t
µ0

and t
µ1

using the relationship existing between p and
t
µ .

Step 3: Obtain the optimum values of and for the specified strength (µ0, 1 − α) and (µ1, β) from
(20) and (19) with the values of p0 and p1.

Step 4: Begin the normal inspection drawing a random sample of n1 items from a current lot.

Step 5: Perform the life test on each of the selected sample items considering t as the test
termination time and µ as the expected mean life and observe the number, d, of failures.

Step 6: If no failures are observed in the sample or if no failures occurred until the termination
time is reached, accept the current lot and continue with normal inspection. If one or more
failures are observed before reaching the test termination time, reject the lot and switch to
tightened inspection.

Step 7: Under tightened inspection, draw a random sample of n2 items from the subsequent
lot and perform the life test on each of the selected items. If no failures are found in the
entire sample of n2 items or if no failures occurred until the test termination time is reached,
accept the lot and return to normal inspection from the subsequent lot. If at least one failure
is observed before reaching the test termination, reject the lot and continue with tightened
inspection.

The above procedure can also be followed for determining optimum SIS − (n1, n2 : 0) when
the median and reliability life criteria are desired. Tables 1, 2 and 3 are constructed utilizing
the first three steps of the procedure described above specifying three sets of wide range of
values, viz., (i) t

µ0
and Rµ, (ii) t

µd0
and Rµ0 , and (iii) t

p0
and Rp where Rµ= µ0

µ1
, Rµd =

µd0
µd1

, and Rρ= ρ0
ρ1

are the operating ratios (dimensionless), which are the measures of discrimination. The tables,
respectively, provide the parameters n1andn2 of SIS − (n1, n2 : 0) for life tests indexed by mean
life, median life and reliable life. Each of the plans listed in the tables would ensure the conditions
that the maximum producer’s and consumer’s risks are restricted to 5 percent (i.e., α = 0.05 ) and
10 percent (i.e., β = 0.10), respectively.

5.1. Numerical Illustration 1

Let us consider the case that the lifetime of an automobile voltage regulator is a random variable
following an exponential distribution with parameter θ. An industrial practitioner is interested to
adopt a sampling inspection scheme which should have a provision of switching between two
single sampling plans of different sample sizes, and insists that no failures should be allowed
until the termination time t is reached. Based on the past history, the acceptable mean life
and unacceptable mean life of the regulators were estimated as µ0 = 30500 minutes and µ1 =
2200 minutes, respectively. In order to make the decisions on sentencing the lots coming from
the industrial process which produce automobile voltage regulators, the practitioner wishes to
implement SIS − (n1, n2 : 0). It is assumed that the risk of rejecting the lots having acceptable
mean life and the lots having unacceptable mean life should not exceed 5 percent and 10 percent,
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respectively. The test termination time is fixed as t0 = 45 minutes. For the specified requirements,
the measure of discrimination is found to be Rµ = µ0

µ1
= 30500

2200 = 13.86 ≈ 14 and t
µ0

= 45
30500 = 0.00148

≈ 0.0015.
Therefore, Rµ = 14 and t

µ0
= 0.0015 based on the given information, one finds the optimum

sample sizes for normal and tightened inspection under SIS − (n1, n2 : 0) as n1 = 28 and n2 =
144, respectively. Thus, the optimum sampling inspection scheme is implemented as given below:

1. Select a random sample of 28 items from the current lot under normal inspection.

2. Conduct the life tests on each of the 28 sampled items and observe the number of failures
until the termination time t = 45 minutes is reached. If no failures are observed, accept the
lot and continue with normal inspection. If at least one failure occurs at the test termination
time or before reaching the test termination time, reject the current lot and switch to
tightened inspection from the subsequent lot.

3. Draw a random sample of 144 items from the lot and conduct the life test on each of the
144 sampled items. If no failures are observed while testing all the sampled items or until
reaching t = 45 minutes, accept the lot and switch to normal inspection from the subsequent
lot; if at least one failure occurs before reaching t = 45 minutes, reject the lot and continue
with the tightened inspection from the subsequent lot.

Figures 1 displays the operating characteristic curve of the optimum sampling inspection scheme
obtained in the above illustration. It is observed that the OC curve passes through the respective
prescribed points with the reduced producer’s risk of 4.91 percent (less than 5 percent) and the
reduced consumer’s risk of 9.86 percent (less than 10 percent) and ensure that the prescribed
conditions (4) and (5) are satisfied.

Figure 1: OC Curve of SIS − (n1, n2 : 0) for Life Tests Based on Exponential Distribution Indexed by Mean Life
Ratio when n1 = 28 and n2 = 144.

5.2. Numerical Illustration 2

A production engineer assessed from his experience that the time to failure of semiconductors can
be modeled by an exponential distribution with parameter θ. The assembled semiconductors are
resulted from a continuous stream of production. The acceptable median life and unacceptable
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median life of the semiconductors are respectively, specified as 48000 hours and 2600 hours,
respectively. It is desired that the maximum risk of rejecting the lots when the acceptable median
life is given as 48000 hours and the maximum risk of accepting lots when the unacceptable median
life is specified as 2600 hours are fixed at 5 percent and 10 percent, respectively. It is assumed
that the total time duration of life test is fixed at t0 = 120 hours. For the given requirements, Rµd

=
µd0
µd1

= 48000/2600 = 18.46 is the measure of discrimination and t
µd0

is 0.0025. Based on these

values of Rµd and t
µ0

, the optimum sampling scheme is determined by the sample size n1 = 26
for normal inspection and the sample size n2 = 87 for tightened inspection.

It can be noted from the above illustrations that the sample size required for tightened
inspection is larger than the sample size required for normal inspection. Similar to Numerical
Illustrations 1 and 2, suitable illustrations can be given.

6. Conclusion

Sampling plans with switching rules are considered and procedures for designing the optimum
plans to provide protection to the producer and the consumer are discussed based on exponential
distribution as the lifetime probability distribution. A procedure for selection of sampling
Inspection Schemes for life tests ensuring protection to the producer and consumer is described.
The tables yielding the parameters of the optimum SIS − (n1, n2 : 0) indexed by acceptable mean
life (or median or reliable) and unacceptable mean life (or median or reliable), respectively, are
constructed for a specified set of values of the parameter of the Exponential distribution.
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Abstract 

In this paper, we consider an upper-sided Phase II variance chart with probability limits in 

case of unknown parameter because the quality practitioner interested in monitoring 

increased variance of the process parameter. It is well established that when the Phase I data 

are contaminated with spurious observations, performance of the chart is suspected to 

deviate from what is normally expected. Therefore, we propose an improved performance of 

one-sided variance chart under the exceedance probability criterion for a fixed in-control 

average run length using the absolute deviation from median estimator. Under the 

exceedance probability criteria, the chart is designed so that the user can get more 

confidence in their in-control average run length values. The proposed chart is compared 

with the existing chart in case of contaminated and non-contaminated observations. Result 

shows that performance of variance chart shows robust performance when using absolute 

deviation from median estimator. Finally, an example has been provided in the favour of 

our proposed study. 

Keywords: Average run length, median-based estimator, control chart, in-control 
and out-of-control performances, process variability. 

1. Introduction

𝑆2 chart is considered to be more useful control chart when the interest of the quality practitioner 
lies in monitoring variability in the process parameter. As Woodall and Montgomery [24] stated that 
to maintain a process at a satisfactory level, process variability should be in-control (IC) because a 
slight change in the process variance could significantly impact the performance of the mean control 
chart. Therefore, prior to the construction and effective utilization of the mean control chart, it is 
suggested that a good estimate of the IC process variance must be available so that an effective 
process monitoring can take place. In this view, 𝑆2 chart is a popular choice to monitor the process 
variability (Montgomery [17]). However, when the underlying process variance is not known, 
designing these charts becomes more complex. In this case, the variance is estimated from a Phase I 
reference sample and perform the Phase I analysis. (Chakraborti, Graham and Human, [2], Jones-
Farmer et al. [11]). The estimate is then used to find the control limits which further used in Phase II 
analysis. For the 𝑆2 chart, several efforts have been made to increase the efficacy of the charts such 
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as: use of memory type control charts (CUSUM and EWMA) (Chang and Gan [3, 4]), use of runs 
rules (Rakitzis and Antzoulokas [18]), use of some other sampling plans such as repetitive sampling 
plan (Jaiswal and Kumar [8]), double sampling plan (Khoo [12]), etc. 

As we know, in case U, the estimation error can lead to a distorted chart performance. This 
effect can be reduced by considering a larger number of Phase I samples and, at times, by adjusting 
the control limits (Saleh et al. [20, 21]). However, when Phase I samples, specially of smaller sizes, 
contain outliers, it is anticipated that this may have a more severe impact on the chart’s performance. 
Because inclusion of the spurious observations may lead us to the model misspecification, biased 
parameter estimation and incorrect results. In turn, erroneous parameter estimation may affect the 
performance of the control chart in Phase II. Consequently, when a control chart indicates an OOC 
signal, pinpointing the underlying factors responsible for triggering this signal can prove to be a 
challenging task. Such signals can stem from assignable causes or merely be the result of spurious 
observations. The primary aim of this article is to recommend an estimator capable of mitigating the 
influence of outliers on the chart’s performance, thereby enabling us to attribute OOC signals to 
genuine changes in the process.  

Recently, Kumar and Jaiswal [15] studied the exponential chart and recommended the median 
based estimator for estimating the rate parameter so that the chart’s performance is robust to the 
presence of outliers. Schoonhoven, Riaz and Does [23] have discussed different estimators of 
population variance for the variance chart and recommended the average deviation from median 
(ADM) estimator which is the function of sample median. They showed that the use of ADM estimator 
instead of commonly used Pooled estimator helps in minimizing the outliers’ impact on the chart’s 
performance. But they adopted the unconditional perspective to assess the chart’s properties which 
mainly considers the mean and standard deviation of the unconditional RL distribution. Please note 
here that the unconditional run length distribution can be obtained by averaging the conditional run 
length distribution over the distribution of the estimator (see Chakraborti [1], Kumar and 
Chakraborti [14]). This method of obtaining results is known as unconditional perspective. This 
perspective has been criticized by several researchers, for example, Jardim [9, 10], Sarmiento et al. 
[22], Kumar [13] pointing out that the unconditional perspective does not consider the shape of the 
RL distribution and ignores the practitioner-to-practitioner variability. In this article, we consider 
the most recent approach i.e., conditional perspective which is based on the conditional RL 
distribution (see, Jardim [9, 10], Kumar [13], Gandy and Kvaloy [7], Epprecht et al. [5]). Conditional 
RL perspective mainly concerned with the exceedance probability criteria (EPC). For a detailed 
discussion on both perspective, readers are advised to refer some recent papers, for instance, Jardim 
[10], Sarmiento et al. [22], Kumar [13], Kumar and Jaiswal [16]. The unconditional perspective may 
lead to a misconception for the user due to the skewed distribution of the IC CARL (CARL(1)). For 
instance, the unconditional ARL might appear higher than the nominal ARL, suggesting a reduced 
rate of false alarms compared to the expected one. Nevertheless, examining the percentiles of the 
CARL(1) may reveal a contrasting narrative.   

Hence, the article primarily focuses on the performance in a realistic context based on the 
percentiles of the CARL distribution and the EPC metric when the parameter is estimated using the 
ADM estimator. This assessment aims to determine if the chart’s performance is suspectable to 
outliers.   

Rest of the article is organized as follows. In section 2, the estimated control limits of the upper-
sided 𝑆2-chart has been discussed. In section 3, the IC and OOC performance of plug-in Pooled and 
ADM chart has been discussed. In section 4, The control limits are adjusted under EPC for the ADM 
and Pooled chart. In section 5, the IC and OOC performance has been discussed under EPC. In favor 
of the proposed design, an example has been offered in section 6. Finally, conclusions are offered in 
section 7. 
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II. Upper-sided 𝑆2-chart with estimated IC variance

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be 𝑛  random samples of size 𝑛 following a normal distribution with IC process 
mean 𝜇 and process variance 𝜎0

2 > 0  i.e., 𝑋 ∼ 𝑁(𝜇, 𝜎0
2). Traditionally used charting statistic for the

𝑆2-chart is the sample variance, given by 𝑆2 =
1

𝑛−1
∑ (𝑋𝑗 − �̅�)

2𝑛
𝑗=1 , �̅� =

1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=1 . Let UCL denotes the 

upper control limit of the 𝑆2-chart which can be obtained by using probability approach, such that 

𝑃[𝑆2 > 𝑈𝐶𝐿|𝐼𝐶] = 𝛼, where 𝛼 is a nominal FAR. It is well known that the statistic (𝑛−1)𝑆2

𝜎0
2 ~𝜒𝑛−1

2 .

Therefore, UCL is given by. 

UCL =
𝜎0

2

𝑛−1
𝜒1−𝛼,𝑛−1

2           (1) 
where 𝜒1−𝛼,𝑛−1

2  be the (1 − 𝛼)th quantile of the 𝜒2-distribution with (𝑛 − 1) degrees of freedom.
Let 𝜎1

2 denotes the magnitude of the process variance shift from IC process variance 𝜎0
2 to the

shifted variance 𝜎1
2 = 𝛿𝜎0

2. A control chart gives an OOC signal when the charting statistic, 𝑆2, falls
above the UCL. This event is called signaling event 𝐸. And the probability of this signaling event, 
commonly known as the probability of signal for given shift, 𝛿, denoted by 𝛽(𝛿) is given by. 

𝛽(𝛿) = 𝑃[ 𝑆2 > UCL|𝜎1
2 = 𝛿𝜎0

2] = 1 − 𝐹𝜒𝑛−1
2 (

𝜒1−𝛼,𝑛−1
2

𝛿
)                                                                 (2)

where 𝐹𝜒𝑛−1
2 (∙) denotes the CDF of 𝜒2-distribution with 𝑛 − 1 degrees of freedom. Its corresponding

ARL is the reciprocal of probability of signal i.e., 𝛽(𝛿), is given by. 
ARL(𝛿) =

1

𝛽(𝛿)
=

1

1−𝐹
𝜒𝑛−1

2 (
𝜒1−𝛼,𝑛−1

2

𝛿
)

 (3) 

Clearly, 𝛿 = 1 represents the process is IC, otherwise, the process is OOC. On the other hand, an 
OOC ARL should be as low as possible so that the chart could detect shift in the process through a 
valid alarming signal as early as possible. 

In case U, the process parameters are often unknown, and they need to be estimate using the 
Phase I samples assuming that the samples are collected from the IC process and they are ready to 
estimate the unknown process parameter. Let 𝑌𝑖𝑗  be the 𝑖𝑡ℎ Phase I sample of size 𝑛. For the 𝑆2 chart,
the most prominent unbiased estimator suggested in the literature is sample Pooled estimator is 
given by. 

�̂�0
2 = �̂�Pooled

2 =
1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1                                                                                                                   (4)

where 𝑆𝑖
2 =

1

𝑛−1
∑ (𝑌𝑖𝑗 − 𝑌�̅�)

2𝑛
𝑗=1 and �̅�𝑖 =

1

𝑛
∑ 𝑌𝑖𝑗

𝑛
𝑗=1  is the sample variance of ith group of samples. It is

a function of the sample mean. On the other hand, the ADM estimator, the function of the sample 
median is given by.  

�̂�0
2 = �̂�ADM

2 = ADM̅̅ ̅̅ ̅̅ ̅ =
1

𝑚
∑ ADM𝑖

𝑚
𝑖=1                                                                                                  (5)

where ADM𝑖 is the average absolute deviation from the median of sample 𝑖, which is given by 
ADM𝑖 =

1

𝑛
∑ |𝑌𝑖𝑗 − 𝑀𝑖|

𝑛
𝑗=1 ,                                                                                                                  (6)

where 𝑀𝑖 denotes the median of the 𝑖th Phase I sample. An unbiased ADM estimator for estimating 

the sample variance is  ADM̅̅ ̅̅ ̅̅ ̅

𝑡2(𝑛)
. Here, 𝑡2(𝑛) is a constant, function of sample size 𝑛 and defined as 𝑡2(𝑛) =

2(𝑛−1)

𝑛√2𝜋𝑛(𝑛−1)
+ 2 ∫ 𝑥Φ(√𝑛 − 1𝑥)𝜙(𝑥)𝑑𝑥

+∞

−∞
, where Φ(∙) and 𝜙(⋅) are the CDF and PDF of the standard 

normal distribution (see, Wu et al., 2002). Since the expression of 𝑡2(𝑛) cannot be obtained in the 
closed form. Therefore, Riaz and Saghir [19] obtained the simulated results of the expression 𝑡2(𝑛) 
for different values of 𝑛 and mentioned in Table A1 of the appendix of the paper Riaz and Saghir 
[19]. 

Let UCL̂ denotes the estimated upper control limit which can be obtained by replacing 𝜎0
2 given

in Equation (1) by its estimate �̂�0
2 where �̂�0

2 = �̂�Pooled
2  or �̂�ADM

2  given in Equation (4) and (5),
respectively. The UCL̂ for the upper-sided 𝑆2 chart is given by. 

UCL̂ =
�̂�0

2

𝑛−1
𝜒1−𝛼,𝑛−1

2          (7)
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Let 𝐸𝑖 be the ith event falling outside the UCL̂. Therefore, its corresponding conditional

probability of signal (CPS), denoted by �̂� for given shift (𝛿), is given by. 

�̂�(�̂�0
2, 𝛿) = 𝑃[𝑆2 > 𝑈𝐶�̂�|�̂�0

2] = 1 − 𝐹𝜒𝑛−1
2 (

�̂�0
2𝜒1−𝛼,𝑛−1

2

𝜎0
2𝛿

)          (8) 

Therefore, the conditional average run length (CARL) of the upper-sided 𝑆2 chart can be obtained by 
using Equation (8), is given by.  

CARL(�̂�0
2, 𝛿) =

1

�̂�(𝑤,𝛿)
= (1 − 𝐹𝜒𝑛−1

2 (
�̂�0

2𝜒1−𝛼,𝑛−1
2

𝜎0
2𝛿

))

−1

 (9) 

The unconditional average run length for given shift 𝛿, denoted by 𝜇CARL(𝛿) is given by 

𝜇CARL(𝛿) = ∫ (1 − 𝐹𝜒𝑛−1
2 (

�̂�0
2𝜒1−𝛼,𝑛−1

2

𝜎0
2𝛿

))

−1

𝑓�̂�0
2

∞

0
𝑑�̂�0

2  (10) 

The standard deviation of CARL for given shift (𝛿) is given by. 
𝜎CARL(𝛿) = √𝐸(CARL2(�̂�0

2, 𝛿)) − [𝐸(CARL(�̂�0
2, 𝛿))]2       (11) 

where 𝐸(CARL2(�̂�0
2, 𝛿)) = ∫ (1 − 𝐹𝜒𝑛−1

2 (
�̂�0

2𝜒1−𝛼,𝑛−1
2

𝜎0
2𝛿

))

−2

𝑓�̂�0
2

∞

0
𝑑�̂�0

2. Please note here 𝛿 = 1 represents

that the process is IC otherwise, the process is OOC. It is well known that lower values of 𝜎CARL(1) 
are desirable for a good chart that reflects more confidence of the user in his/her CARL(1) value and 
hence in adopting the chart. The 100pth   percentile of the CARL(�̂�0

2, 𝛿) distribution denoted by
CARL(1)𝑝, is given by. 

CARL(1)𝑝 = 𝑖𝑛𝑓{𝑧: 𝐹CARL(𝑧) ≥ 𝑝}                                                                                                 (12) 
where 𝑖𝑛𝑓 indicates infimum and 𝐹CARL(𝑧) is the distribution function of the CARL(�̂�0

2, 𝛿).
Beside the metrics discussed above, EP is the exceedance probability, denoted by 𝜋(1)  is defined as 
the chance that a chart will achieve his CARL(1), value at least nominal ARL0, is given by. 

π(1) = 𝑃[CARL(1) ≥ ARL0]                                                                                                          (13) 

III. EPC performance of the Pooled and ADM chart with and without outliers

In this section, we examine the effect of upper outliers on the performance of 𝑆2 chart. For this 
purpose, we have applied the simulation procedure using approximately 1,00,000 replications. With 
the underlying objective discussed above, the present study undertakes an examination of two 
different scenarios i.e., 5% and 10% spurious observations in each Phase I sample. In both 
inspections, the Phase I sample configuration encompasses spurious observations, with specific 
proportion of 5% and 10% relative to the total Phase I samples. Because the number of outliers, say 
𝛾, is an integer, we look at only the integer part of 5% or 10% of the Phase I sample of size 𝑚. 
Following simulation steps are carried out to obtain the performance metrices. 
• Generate observations 𝑌𝑖,𝑗; 𝑖 = 1,2, … , 𝑚 ; 𝑗 = 1,2, … , 𝑛 from the normal distribution with mean

𝜇 and variance 𝜎2.
• Obtain 𝑆𝑖

2 or 𝐴𝐷𝑀𝑖 for 𝑖 = 1,2, … , 𝑚.
• Sort them in either ascending or descending order.
• To produce the upper extremes (𝑆2

(𝑛) or ADM(𝑛)) in the Phase I sample, multiply a constant,
𝑐, i.e., 𝑐 > 1 to the first largest 𝛾 observation whereas 𝑐 = 1 represents the Phase I sample with
no contamination.

• Calculate the control limits with the estimators �̂�Pooled
2  or �̂�ADM

2  Given in Equation 4 or 5. 
• Calculate CARL function using Equation 9 associated with its control limits obtained in

previous step.
• Repeat the process at least 100,000 times to get the 𝜇CARL, 𝜎CARL, 𝜋(1) and CARL(1)𝑝.

Following Table 1 and 2 represents the IC plug-in performance of the Pooled chart (Pooled 
estimator based 𝑆2 chart) and ADM chart (ADM estimator based 𝑆2 chart), respectively at 𝛼 = 0.0027, 
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𝑛 = 5 with the effect of 5% outliers in the Phase I samples, respectively. For the convenient of the 
computation of the ADM chart, the values of the constant 𝑡2(𝑛) are taken from Riaz and Saghir [19]. 
The numerical value of 𝑡2(𝑛) for 𝑛 = 5 is 0.664980 and for 𝑛 = 7 is 0.703800. In the Tables 1 and 2, 𝑚 
represent the sample size, 𝛾 represents the number of outliers in the Phase I samples, 𝑐 is a multiplier 
to produce the outliers of different sizes in the Phase I sample, 𝜇CARL(1) and 𝜎CARL(1) represents the 
mean and standard deviation of the CARL distribution, 𝜋(1) is the probability that the CARL(1) is at 
least ARL0 and CARL(1)𝑝 is the different percentiles of the CARL distribution. Moreover, 𝑐 = 1 
represents Phase I sample having no oulier.  

Table 1: IC performance of 𝑃𝑜𝑜𝑙𝑒𝑑 chart at 𝛼 = 0.0027 with and without outlier at 𝑛 = 5 (with 5% outlier). 

Percentile 
𝑚(𝛾) 𝑐 𝜇CARL(1) 𝜎CARL(1) 𝜋(1) 0.10 0.25 0.50 0.75 0.90 
20(1) 1 803.91 2102.16 0.48 90 166 346 776 1687 

1.2 1020.05 2987.47 0.55 106 198 422 962 2126 
1.5 1519.47 5606.73 0.64 132 254 564 1335 3081 
2 2954.40 13393.58 0.77 194 393 921 2347 5807 

50(2) 1 490.78 452.67 0.49 149 225 361 594 954 
1.2 536.69 500.14 0.53 160 241 391 650 1050 
1.5 604.64 584.36 0.59 176 267 439 732 1189 
2 748.41 778.05 0.68 208 320 530 901 1494 

100(5) 1 425.25 241.23 0.49 194 260 366 519 722 
1.2 440.80 252.84 0.52 201 269 379 540 750 
1.5 465.30 272.85 0.56 210 284 400 570 793 
2 512.15 298.04 0.63 228 308 436 626 880 

200(10) 1 397.43 150.72 0.50 235 289 369 473 594 
1.2 402.29 160.39 0.51 237 293 373 478 601 
1.5 414.33 158.54 0.54 244 301 384 492 621 
2 433.39 166.30 0.59 253 315 402 515 650 

500(25) 1 380.24 88.77 0.50 277 317 369 431 497 
1.2 383.40 87.19 0.51 278 319 371 435 502 
1.5 387.04 92.19 0.53 281 322 375 440 506 
2 393.92 91.55 0.55 286 328 382 447 514 

It is well known that estimation error exerts bad impact on the performance of the chart. 
Moreover, the sample Pooled estimator is a function of mean whereas ADM estimator is a function 
of sample median. Therefore, effect of outliers on the performance of the chart can be visualize from 
these tables. For instance, when 𝑚 = 20, 5% of the Phase I sample (𝑚) produces 1 outlier. It can be 
observed that when the Phase I sample is free from the outliers, its 𝜇CARL(1) and 𝜎CARL(1)  is 803.91 
and 2102.16 whereas after including outliers say, for 𝑐 = 1.5, its 𝜇CARL(1) and 𝜎CARL(1) is 1519.47 
5606.73, respectively which is approximately 98% larger than the 803.91 and much far than the 
nominal 370. On the other hand, using the ADM estimator, when the Phase I sample is free from the 
outliers i.e., 𝑐 = 1, its 𝜇CARL(1) and 𝜎CARL(1) is 438.79 and 301.61 whereas after including outliers, 
say, for 𝑐 = 1.5, its 𝜇CARL(1) and 𝜎CARL(1) is 613.67 and 449.80,respectively which is approximately 
40% larger than the 438. These results shows that the Pooled chart deviated more from its nominal 
performance in case U than the ADM chart. Moreover, 𝜋(1) values are showing less confidence in 
the values of CARL(1) which is only 50% even for the large sample sizes. And 10th percentile is 90 for 
the Pooled chart and 168 for the ADM chart when (𝑚, 𝑛) = (20,5) which shows that there is 90% 
chance that CARL(1) of a conditional chart will be greater than or equal to 90 and 168 respectively, 
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which is very low even for the larger Phase I samples. From these tables, it can be seen that the ADM 
chart puts on a guard against the outliers in the Phase I samples. The study shows that more than 
500 Phase I samples of the size 𝑛 = 5 are required to attain the control chart’s performance close to  

Table 2: IC performance of ADM chart at 𝛼 = 0.0027 with and without outlier at 𝑛 = 5 (with 5% outlier). 

 Percentile 
𝑚(𝛾) 𝑐 𝜇CARL(1) 𝜎CARL(1) 𝜋(1) 0.10 0.25 0.50 0.75 0.90 

20(1) 1 438.79 301.61 0.48 168 239 358 544 792 
1.2 502.61 357.73 0.56 189 271 408 621 916 
1.5 613.67 449.80 0.68 226 326 493 759 1130 
2 864.80 670.03 0.83 299 440 684 1072 1620 

50(2) 1 391.16 158.09 0.47 223 280 361 469 595 
1.2 411.79 170.20 0.53 234 294 380 493 627 
1.5 445.03 185.12 0.60 251 316 409 534 681 
2 507.83 210.98 0.72 284 358 466 611 782 

100(5) 1 377.24 103.07 0.47 257 302 362 435 515 
1.2 386.62 109.04 0.51 263 309 371 446 529 
1.5 401.25 112.89 0.56 272 321 385 463 549 
2 426.49 122.37 0.64 289 341 409 493 583 

200(10) 1 369.90 71.51 0.46 284 318 362 412 464 
1.2 374.82 72.03 0.48 287 323 367 418 470 
1.5 381.49 70.57 0.52 293 328 373 425 479 
2 393.20 79.18 0.58 301 338 385 439 494 

500(25) 1 370.00 45.95 0.44 311 335 363 393 423 
1.2 371.80 43.17 0.45 312 336 365 396 426 
1.5 377.95 50.65 0.47 314 338 366 398 429 
2 379.42 50.81 0.51 318 342 371 402 434 

the case K. Such a large amount of data is not easily available in real practice. Thus, it needs an 
adjustment in the control limits so that desired IC performance of the chart can be achieved with the 
available Phase I samples at hand. Therefore, to improve the performance, specially, for small 
sample sizes, we adjust the UCL of the chart so that higher chance of occurrence can be achieved. 

IV. Adjusted control limit of the upper-sided 𝑆2 chart under the EPC

In light of the limited availability of the extensive dataset, we have designed the control limit of the 
Pooled and ADM chart using the EPC approach. As discussed earlier, EPC approach ensures the high 
chance of occurrence, say 0.90, of the CARL(1) at least a nominal value such as 370.4. Formally, the 
condition of EPC approach can be written in terms of following equation as follows. 

𝑃[CARL(1) ≥ ARL0] = 1 − 𝑝; 0 < 𝑝 < 1                                                                                      (14) 
The values of the design constants are obtained at 𝑝 = 0.10 i.e., EPC = 0.90 . The control limits 

of the proposed ADM chart under the EPC can be obtained by using the following simulation study.  
• Fix the value of 𝑝, 𝐴𝑅𝐿0, 𝑚, 𝑛 and 𝑈 where 𝑈 = 𝜒1−𝛼,𝑛−1

2  is a design parameter. 
• Generate observations 𝑋𝑖,𝑗; 𝑖 = 1,2, … , 𝑚 ; 𝑗 = 1,2, … , 𝑛 from the normal distribution with

mean 𝜇 and variance 𝜎2.
• Sort the subgroup data of size 𝑛 in ascending or descending order and obtain the median (𝑀𝑖)

of the 𝑖th sample of size 𝑛 and calculate the ADM estimator for estimating the sample variance

using  ADM̅̅ ̅̅ ̅̅ ̅

𝑡2(𝑛)
. 
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• Calculate the conditional control limit using ADM estimator and obtain the empirical
distribution of the CARL(1) function using Equation (9).

• Repeat the process atleast 1,00,000 times to obtain the pth percentile i.e., CARL(1)𝑝 of the CARL

distribution, say 𝑝 = 0.10.
• If  CARL(1)𝑝 > 𝐴𝑅𝐿0, stop the loop and use the current value of 𝑈𝐶�̂� otherwise increase the

value of 𝑈𝐶�̂� until the 𝐶𝐴𝑅𝐿(1)𝑝 > 𝐴𝑅𝐿0 occur and return to previous step.
In order to obtain the control limits for the Pooled chart under the EPC, please follow Faraz et al. [6]. 

Table 3:  Design parameter of upper-sided 𝑃𝑜𝑜𝑙𝑒𝑑 and 𝐴𝐷𝑀 chart with estimated parameter at 𝑛 = 5,7 

 𝑝 = 0.10, 𝐴𝑅𝐿0 = 370.4. 

𝑛 = 5 𝑛 = 7 
𝑚 Pooled chart  ADM chart Pooled chart  ADM chart 

20 20.2264 18.2357 23.9253 21.9893 
50 18.5905 17.4718 22.3684 21.2454 
75 18.1196 17.2454 21.9121 21.0200 
100 17.8485 17.1122 21.6475 20.8898 
200 17.3536 16.8654 21.1614 20.6434 
500 16.9338 16.6506 20.7455 20.4313 

V. IC and OOC performance of the Pooled and ADM chart with or without
contamination under the EPC 

I. IC performance with and without outliers

In this section, we are analyzing the IC performance of the upper-sided 𝑆2 chart in the presence of 
some contaminated or spurious observations using the Pooled and ADM estimator under the EPC.  

Table 4: IC performance of 𝑃𝑜𝑜𝑙𝑒𝑑 chart with estimated parameter at 𝑛 = 5, 𝑝 = 0.10, 𝐴𝑅𝐿0 = 370.4 with 5% outlier 

 Percentile 

𝑚(𝛾) 𝑐 𝜇CARL(1) 𝜎CARL(1) 𝜋(1) 0.10 0.25 0.50 0.75 0.90 
20(1) 1 8205.59 41339.33 0.90 368 803 2047 5659 15046 

1.2 11064.39 115454.45 0.93 453 1004 2621 7479 20589 
1.5 20390.54 118299.76 0.95 604 1396 3805 11369 32884 
2 50015.21 1083023.37 0.98 965 2389 7078 23277 74305 

50(2) 1 1544.50 1783.65 0.90 371 592 1031 1839 3179 
1.2 1718.68 2012.15 0.92 400 645 1125 2021 3522 
1.5 1982.94 2392.56 0.94 448 728 1286 2330 4112 
2 2549.14 3313.11 0.96 541 895 1610 2981 5328 

100(5) 1 894.92 583.27 0.90 368 512 747 1100 1587 
1.2 933.95 621.40 0.91 384 532 777 1149 1658 
1.5 988.92 652.95 0.93 404 563 822 1218 1750 
2 1099.09 732.12 0.95 442 618 909 1352 1961 

200(10) 1 655.63 267.27 0.90 369 464 602 787 1006 
1.2 667.19 276.57 0.91 376 472 612 800 1023 
1.5 688.39 283.47 0.92 386 486 631 826 1058 
2 720.99 301.97 0.94 403 508 661 866 1109 
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500(25) 1 517.06 128.03 0.90 371 426 500 589 684  
1.2 521.37 127.48 0.91 373 429 505 594 690 
1.5 526.59 129.90 0.91 376 433 510 600 697 
2 536.57 132.00 0.93 384 442 519 611 711 

The performance of the chart can be obtained by using the design parameters provided in Table 3 
under EPC. Following Table 4 - 5 represents the IC performance of the Pooled and ADM chart under 
the EPC for 𝑛 = 5 having 5% spurious observation in the Phase I samples.  Further, Table 6 - 7 
represents the IC performance of the Pooled and ADM charts for 𝑛 = 5, respectively having 10% 
spurious observation in the Phase I samples. It can be observed from Table 4 that the Pooled chart 
performance when the Phase I sample having no outlier i.e., 𝑐 = 1, its 𝜋(1) value 0.90 and 
(𝜇CARL(1), 𝜎CARL(1)) = (8205.59, 41339.33)  when (𝑚, 𝑛) = (20,5) while when the Phase I sample 
having outlier i.e., 𝑐 = 1.5, its 𝜋(1) value is 0.95 and (𝜇CARL(1), 𝜎CARL(1)) = (20390.54, 118299.76). 
On the other hand, performance of the ADM chart from Table 5 informs us that when Phase I sample 
having no outlier i.e., 𝑐 = 1, its 𝜋(1) value is also 0.90 and (𝜇CARL(1), 𝜎CARL(1)) = (1126.81, 943.21)  
when (𝑚, 𝑛) = (20,5) while when the Phase I sample having outlier i.e., 𝑐 = 1.5, its 𝜋(1) value is 0.96 
and (𝜇CARL(1), 𝜎CARL(1)) = (1656.19, 1450.44). Study reflect that both the charts are reflecting 
confidence in the values of CARL(1) by the metric 𝜋(1) i.e., 𝜋(1) = 0.90 when Phase I sample having 
no outliers. But the performance of the Pooled chart is deviated more in the presence of outliers than 
the ADM chart. Moreover, the 10th percentile of the Pooled and ADM chart is approaching 370 which 
shows more confidence in the values of the CARL(1). For instance, when (𝑚, 𝑛) = (20,5), the 75th 
percentile of the Pooled chart is 5659 when 𝑐 = 1 and 11369 at 𝑐 = 1.5 whereas the 75th percentile of 
the ADM chart is 1393 when 𝑐 = 1 and 2044 when 𝑐 = 1.5. It means there is approximately 25% 
chance that the CARL(1) of the chart may occur greater that the 5659 for the Pooled chart and 1393 
and 2044 for the ADM chart, respectively. All these information about the ADM chart are appearing 
more closer to the desired performance and less deviated from the nominal performance. Therefore, 
ADM chart outperforms the Pooled chart when we consider the estimation of the parameter with 
contaminated data.  

Table 5: IC performance of 𝐴𝐷𝑀 chart with estimated parameter at 𝑛 = 5, 𝑝 = 0.10, 𝐴𝑅𝐿0 = 370.4 with 5% outlier 

Percentile 
𝑚(𝛾) 𝑐 𝜇 CARL(1) 𝜎 CARL(1) 𝜋(1) 0.10 0.25 0.50 0.75 0.90 

20(1) 1 1126.81 943.21 0.90 369 551 871 1393 2154 
1.2 1313.90 1104.80 0.93 425 635 1005 1620 2520 
1.5 1656.19 1450.44 0.96 511 777 1251 2044 3220 
2 2435.42 2244.63 0.99 709 1094 1800 2994 4812 

50(2) 1 683.84 301.52 0.90 370 472 622 826 1071 
1.2 723.41 316.94 0.92 388 497 658 875 1134 
1.5 787.24 354.23 0.95 420 540 715 952 1239 
2 905.31 418.50 0.97 479 617 820 1097 1431 

100(5) 1 555.97 164.89 0.90 370 439 531 645 771 
1.2 570.33 170.97 0.91 379 450 546 663 791 
1.5 593.08 176.35 0.93 393 467 567 690 823 
2 634.21 186.53 0.96 418 498 606 739 884 

200(10) 1 486.70 99.42 0.90 369 417 476 545 616 
1.2 493.73 96.19 0.91 374 422 483 553 625 
1.5 502.32 105.94 0.93 381 430 491 562 635 
2 519.21 101.24 0.94 393 443 507 582 659 
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500(25) 1 436.91 60.92 0.90 369 398 432 471 508 
1.2 439.70 55.21 0.91 372 401 436 473 511 
1.5 442.78 53.19 0.92 374 403 439 477 516 
2 448.32 54.98 0.93 379 408 444 483 523 

Similarly, Tables 6-7 which entails us about the study of 10% contaminations in the Phase I 
samples of size 𝑛 = 5, respectively. The comprehensive study of the 10% contaminations also 
suspected to deviate from its nominal than expected. For example, when we consider 𝑚 = 50 Phase 
I observations each of size 𝑛 = 5, then 10% contamination produces 𝛾 = 5 outliers. For the Pooled 
chart, (𝑐, 𝜇CARL(1), 𝜎CARL(1)) = (1,1554.08, 1766.69)  and (𝑐, 𝜇CARL(1), 𝜎CARL(1)) =

(1.5, 1865.62, 2213.95). Similarly, when using ADM estimator, (𝑐, 𝜇CARL(1), 𝜎CARL(1)) is (1, 683.67,

302.38) and (𝑐, 𝜇CARL(1), 𝜎CARL(1)) is (1.5, 770.89, 344.03) with high probability. Therefore, we 
recommend our proposed ADM chart under the EPC when the Phase I samples having spurious 
observations.  

Table 6: IC performance of 𝑃𝑜𝑜𝑙𝑒𝑑 chart with estimated parameter at 𝑛 = 5, 𝑝 = 0.10, 𝐴𝑅𝐿0 = 370.4 with 10% outlier 

 Percentile 
𝑚(𝛾) 𝑐 𝜇 CARL(1) 𝜎 CARL(1) 𝜋(1) 0.10 0.25 0.50 0.75 0.90 

20(2) 1 8144.06 50446.91 0.90 371 804 2054 5691 15341 
1.2 10477.68 141575.40 0.92 429 951 2465 6943 19201 
1.5 15791.01 114907.40 0.94 545 1245 3363 9865 27930 
2 31623.24 208322.50 0.97 797 1889 5364 16780 50540 

50(5) 1 1554.08 1766.69 0.90 370 593 1031 1844 3194 
1.2 1657.69 2010.15 0.91 391 630 1096 1962 3393 
1.5 1865.62 2213.95 0.93 429 696 1215 2196 3852 
2 2266.70 2916.76 0.95 497 811 1447 2640 4699 

100(10) 1 897.21 589.07 0.90 371 514 747 1101 1589 
1.2 928.81 606.99 0.91 381 528 774 1144 1647 
1.5 977.27 632.49 0.92 398 556 811 1201 1734 
2 1058.88 702.13 0.94 426 595 875 1299 1894 

200(20) 1 653.83 279.71 0.90 37 463 601 783 1001 
1.2 665.24 275.90 0.91 376 472 612 797 1016 
1.5 681.55 280.48 0.92 383 482 625 817 1046 
2 709.17 295.85 0.93 397 499 650 851 1092 

500(50) 1 515.81 126.99 0.90 368 425 498 588 686 
1.2 520.15 128.88 0.90 371 428 504 593 688 
1.5 523.62 132.36 0.91 374 431 506 596 693 
2 532.06 129.50 0.92 380 439 514 608 704 

II. OOC performance of the chart without contamination

As for as OOC performance concern, following Table 8 represents the 𝜇CARL(𝛿) and 𝜎CARL(𝛿) metrics 
for both the charts having different shift parameter, 𝛿. These values are obtained using the 
expressions given in Equations (9) and (10) for nominal ARL0  =  370.4, 𝑝 = 0.10 and 𝛿 = 1,1.2, 1.5, 2. 
The value 𝛿 >  1 corresponds to the OOC situation when the process is deteriorated. We mention 
here that the ADM chart outperforms the Pooled chart under the EPC in terms of lower 𝜇CARL(𝛿) and 
𝜎CARL(𝛿) values for 𝛿 >  1. Please note here that 𝛿 = 1 represents IC performance of the Pooled and 
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ADM chart, respectively. For instance, when (𝑚, 𝑛, 𝛿) = (20,5,1.2) the 𝜇CARL(𝛿) and 𝜎CARL(𝛿) is 
1132.83 and 3197.63 respectively for the Pooled chart whereas 𝜇CARL(𝛿) and 𝜎CARL(𝛿) is 268.91 and 
171.92, respectively for the ADM chart. It implies that the ADM chart under the EPC takes less time to 
detect an OOC signal than the Pooled chart when the process deteriorates due to an increase in the 
rate parameter. Hence, ADM chart shows better performance in the OOC scenario and Pooled chart 
missed the signal. 

Table 7: IC performance of 𝐴𝐷𝑀 chart with estimated parameter at 𝑛 = 5, 𝑝 = 0.10, 𝐴𝑅𝐿0 = 370.4 with 10% outlier. 

 Percentile 
𝑚(𝛾) 𝑐 𝜇 CARL(1) 𝜎 CARL(1) 𝜋(1) 0.10 0.25 0.50 0.75 0.90 
20(
2) 

1 1126.13 924.36 0.90 367 550 871 1395 2155 
1.2 1292.61 1088.71 0.93 418 623 990 1596 2481 
1.5 1583.65 1379.11 0.96 493 747 1199 1951 3079 
2 2228.73 2030.10 0.98 655 1009 1651 2740 4387 

50(
5) 

1 683.67 302.38 0.90 371 475 623 824 1065 
1.2 718.32 315.86 0.92 385 494 653 868 1128 
1.5 770.89 344.03 0.94 413 529 701 934 1208 
2 872.96 397.46 0.97 463 595 789 1058 1380 

100
(10) 

1 555.51 165.33 0.90 370 438 531 645 770 
1.2 568.37 168.81 0.91 378 448 544 660 788 
1.5 588.76 175.02 0.93 391 464 563 683 818 
2 625.25 182.07 0.95 414 492 597 727 870 

200
(20) 

1 487.90 93.55 0.90 370 417 477 547 617 
1.2 492.67 101.49 0.91 374 421 482 552 623 
1.5 500.96 100.47 0.92 380 427 489 562 636 
2 515.31 108.45 0.94 391 440 504 578 653 

500
(50) 

1 437.49 52.58 0.90 396 39 434 572 510 
1.2 439.02 52.32 0.90 371 400 435 473 511 
1.5 442.09 58.80 0.91 374 403 438 476 514 
2 446.95 59.63 0.92 378 407 442 482 520 

Table 8: The OOC performance metrics  𝜇𝐶𝐴𝑅𝐿(𝛿) and  𝜎𝐶𝐴𝑅𝐿(𝛿) of the 𝑃𝑜𝑜𝑙𝑒𝑑 chart and 𝐴𝐷𝑀 chart for 𝑝 = 0.10 

and 𝐴𝑅𝐿0 = 370.4  and shift size 𝛿 = 1,1.2,1.5,2 at 𝑛 = 5. 

𝛿 
𝑚 Estimator PM 1 1.2 1.5 2 
20 Pooled 𝜇CARL(𝛿) 8205.59 1132.83 181.13 33.52 

𝜎CARL(𝛿)  41339.33 3197.63 290.07 30.38 
ADM 𝜇CARL(𝛿) 1126.90 268.91 67.14 17.91 

𝜎CARL(𝛿)  932.39 171.92 31.84 5.82 
50 Pooled 𝜇CARL(𝛿) 1547.32 341.11 79.51 20.01 

𝜎CARL(𝛿)  1783.65 289.74 49.41 8.58 
ADM 𝜇CARL(𝛿) 683.78 182.86 53.50 15.27 

𝜎CARL(𝛿)  301.52 65.28 24.33 4.75 
100 Pooled 𝜇CARL(𝛿) 894.92 224.90 59.10 16.44 

𝜎CARL(𝛿)  583.27 115.03 22.31 4.39 
ADM 𝜇CARL(𝛿) 555.76 155.56 44.98 13.65 

𝜎CARL(𝛿)  164.89 36.28 8.13 1.85 
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200 Pooled 𝜇CARL(𝛿) 655.51 177.15 49.53 14.59 
𝜎CARL(𝛿)  268.56 57.81 12.32 2.53 

ADM 𝜇CARL(𝛿) 487.00 139.80 41.55 12.93 
𝜎CARL(𝛿)  97.79 24.23 5.34 1.13 

500 Pooled 𝜇CARL(𝛿) 517.07 146.66 43.07 13.25 
𝜎CARL(𝛿)  126.33 29.87 6.50 1.53 

ADM 𝜇CARL(𝛿) 436.93 128.37 38.88 12.35 
𝜎CARL(𝛿)  55.07 13.49 3.38 0.73 

VI. Simulated Example

In this section, we provide an illustration of simulated data set to show the findings. Following 
Table 9 represents a simulated dataset for 𝑚 = 20 and 𝑛 = 5 which are generated from the IC normal 
process i.e., 𝑁(2,5). And the next 20 samples are generated from the 𝑁(2,6.5). The fist 20 samples are 
used to estimate the parameter, �̂�2, for the 𝑆2 chart and obtained as 21.96003. Design parameter of 
the Pooled chart (black dashed lines) and ADM chart (red dashed lines) for 𝑚 = 20 are 20.22638 and  

Figure 1: Phase II control limits of the 𝐴𝐷𝑀 chart and 𝑃𝑜𝑜𝑙𝑒𝑑 chart. 

Table 9: Simulated dataset of 𝑛 = 5 and 𝑚 = 40. 

1 2 3 4 5 1 2 3 4 5 
4.390 -1.876 -1.711 -3.963 -1.936 8.423 6.150 -2.161 4.727 -4.142
3.674 -0.163 0.309 2.008 4.467 1.211 10.332 14.511 9.105 -0.894
2.583 0.067 -5.437 8.495 -3.553 0.831 -1.156 -6.280 -2.271 1.441
4.661 -0.749 0.524 1.378 15.113 2.818 11.521 -7.932 -2.342 -0.992
-0.806 1.587 -0.575 2.097 3.476 4.079 14.962 7.891 4.323 7.178
-6.971 -3.373 3.723 0.242 5.745 4.776 -1.385 11.043 5.391 2.579
-2.447 3.949 5.299 11.462 6.507 -6.480 8.580 3.875 -1.578 -4.306
0.130 6.252 -1.676 -0.7694 0.807 0.028 0.937 1.473 -4.090 15.039
5.019 11.502 -6.013 -10.249 10.601 -12.609 -10.569 0.404 -0.301 2.081
4.051 4.236 8.168 1.918 6.835 2.105 4.565 -1.102 11.162 -0.366
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8.699 10.217 4.429 3.398 0.069 -0.325 5.689 4.338 -0.056 -6.540
7.738 7.231 -0.079 4.510 6.362 4.326 10.523 -11.248 2.647 5.855
-0.001 9.725 -1.881 2.948 -1.181 1.383 9.274 0.665 0.427 -0.051
3.424 7.605 4.941 7.390 2.832 14.697 0.805 -12.239 -4.933 6.146
4.851 -3.772 9.981 2.367 5.381 -2.900 6.981 -3.778 -2.365 5.480
5.434 -0.973 1.394 1.425 6.247 7.268 5.136 -0.783 9.026 2.670
4.859 5.758 -5.486 9.878 6.982 -5.437 12.501 -4.984 1.411 1.063
13.135 3.751 4.430 1.668 4.289 5.986 -2.271 12.744 -9.001 8.882
-5.015 3.971 -0.611 6.145 8.011 9.175 6.264 13.228 7.132 3.265
4.019 -3.330 -2.007 0.802 5.971 3.048 13.574 7.352 9.829 7.016

18.2357, respectively. Estimated upper control limit of the Pooled chart is 111.043 whereas for the 
ADM chart is 100.1141. It can be observed from the Figure 1 that ADM-chart detects the OOC signal 
first at the 34th sample point under the EPC whereas the Pooled chart missed the OOC signal.  

VII. Conclusion

In this paper, we have considered the estimation of Phase II control limits of an upper sided 𝑆2 chart. 
The present study shows the adjustment of Phase II control limits of 𝑆2 chart using the EPC 
approach. Undoubtedly, the EPC criterion degrades the chart’s OOC performance but, on the other 
hand, it provides better IC performance for the pooled chart and ADM chart with desired IC 
performance for the smaller Phase I samples (say, 𝑚 < 100). The study suggests that the ADM chart 
outperform in the presence of outliers.  

As far as OOC performance is concern, the performance of the charts are also evaluated based 
on the EPC criterion. Study show that the ADM estimator takes less time, on average, to trigger a 
signal than the sample pooled estimator when 𝛿 ≥ 1. Hence, we recommend that the user must 
ensure that the Phase I sample is free from upper outliers and if in doubt then the ADM chart must 
be used to construct Phase II control limits. Finally, all the calculations are performed using the R 
statistical software and the programs are available from the authors on request. 

Before closing, we mention that the present study considers an upper-sided 𝑆2 chart. However, 
we have carried out the study of two-sided 𝑆2 chart. Study shows that there was no any significant 
difference have been found in the case of contaminated observations in the values of ARL for 
improvement case because of the skewed nature of the run length distribution. Moreover, as a future 
direction, the present study can also be extended to examine the effect of presence of the spurious 
observations in the Phase I data on the EWMA and CUSUM charts. 
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Abstract 

This paper aims to systematically investigate the utility of the Gamma and Weibull distributions, 

focusing on their application to biomedical datasets and clarifying their mathematical and statistical 

properties. By analyzing lifetime data across various disciplines, the research emphasizes the 

effectiveness and flexibility of these distributions in capturing the complexities of biomedical data. It 

underscores the importance of parameters such as standard error, log-likelihood, Akaike Information 

Criterion (AIC), and Bayesian Information Criterion (BIC) in value estimation. The findings suggest 

that both distributions provide valuable insights into the underlying data, with practical implications 

for reliability engineering and failure analysis. Moreover, the study demonstrates that the Weibull 

distribution offers a better fit to the given data than the Gamma distribution due to its adaptability, 

which yields superior results. A key contribution of this study is the proposal of a model based on 

estimating the Conditional Weibull distribution for feature parameters, which accurately predicts a 

finite mixture of two-parameter Weibull distributions initially verified on datasets.  

Keywords: Gamma distribution, Weibull distribution, Probability density 
function, Cumulative density function, Akaike information criterion, Bayesian 
information criterion, Biomedical.  

I. Introduction

The Weibull distribution is well-known for its application in reliability engineering and failure 
analysis. It is extensively used to model biological sciences, weather forecasting, and hydrology data. 
However, it may not be appropriate for specific applications, especially once hazard rates exhibit 
bathtub or bimodal shapes. Researchers have developed various modifications and extensions of the 
Weibull distribution to overcome these limitations and accommodate a broader range of data types 
[3], introducing the additive Weibull distribution. Using the Generalized Gamma distribution in 
survival study for breast cancer patients [1]. The generalized Weibull model extends the traditional 
distribution by incorporating additional parameters, offering greater flexibility in modeling survival 
data [13]. The main objective is to compare the effectiveness of the Gamma and Weibull distributions 
in modeling lifetime data across various fields, such as multiple fields used to evaluate their 
goodness of fit [18]. Numerous studies have also applied Gamma distribution to model wealth 
inequality [7]. These tests are relevant to various fields, including failure time models and survival 
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studies, anywhere the failure frequency is constant, and increasing pertinent tests to fields like 
failure time models and survival analysis are crucial for determining if the failure rate is steady, 
growing, or falling is vital [5]. This study significantly enhances the understanding and application 
of the inverse-generalized Weibull distribution, providing more accurate tools for reliability 
engineering failure analysis [2]. Due to its versatility in the model’s lifetime data, the Weibull 
distribution has long been stable in reliability engineering and various other fields. However, 
traditional Weibull distribution sometimes fails to capture complex hazard rate shapes truthfully. 
Researchers have developed multiple modifications and extensions to address these limits [14]. The 
proposed novel method enhances parameter estimation for finite Weibull distributions, educating 
the precision and reliability through cost-effective continuing asset management strategies [8]. The 
proposed technique is evaluated through comprehensive numerical analysis, demonstrating 
reliability through its effectiveness in outperforming existing advanced methods for handling unfair 
data [12]. The primary goal is to propose and assess the beta-Weibull distribution efficiency in 
modelling survival data. By integrating the exponentiated Weibull distributions, this new family 
modification is a data analysis [4].   

The Weibull distribution enjoys widespread use in aerospace, microchip technology, materials, 
and automotive industries; it is vital to understand components' reliability and failure rates [11]. In 
today's context of model building and real-life data analysis, numerous lifetime distributions are 
utilized, with sources [15] and [16] providing foundational ideas and concepts. The Weibull 
distributions stand out for their flexibility and extensive applicability in modeling diverse data 
types, particularly excelling in reliability engineering and failure analysis [20]. The parameters of the 
Weibull-gamma distribution are estimated using the maximum likelihood method [6]. This research 
is inspired by the recognition that outdated distributions often fail to accommodate the complexities 
of biomedical datasets. Encompassing, the seeks to contribute to developing two distributions that 
improve and adapt the intricacies of real-life data. The objective is to methodically analyze and 
compare these distributions, focusing on their effectiveness in modeling biomedical datasets. Critical 
parameters such as Estimated Values, Standard Error, Log-likelihood, Akaike Information Criterion 
(AIC), and Bayesian Information Criterion (BIC) are examined to illuminate these models' statistical 
characteristics and fitting quality. The ultimate goal is to determine which distribution better 
captures the nuances of the dataset, thereby advancing the understanding and application of these 
models in biomedical research.  

II. Methods
2.1 Derivation of Gamma and Weibull Distributions 

In the section, a new comparison model cumulative distribution (CDF) and probability density 
function (PDF) of the Gamma and Weibull Distribution family are given as 

f(𝑥: 𝛼, 𝛽) =  𝑓(𝑥) = {
−𝑥𝛼−1𝑒

−𝑥
𝛽⁄

𝛽𝛼 Г(𝛼)
, 𝑥 > 0

0,  𝑥 ≤ 0

   (1) 

where α > 0 is the scale parameter, β > 0 is the shape parameter, and Г(α) is the Gamma function. 
The cumulative distribution function is   

 𝐹(𝑥;  𝛼, 𝛽) =  𝑓(𝑥) = {
1

Г(𝛼)
𝛾 (𝛼,

𝑥

𝛽
) , 𝑥 ≥ 0

0,  𝑥 < 0
(2)
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Where γ (α, x) is the lower incomplete Gamma function. 

 𝐹(𝑥;  α, k) =  𝑓(𝑥) = {1 − 𝑒−(𝑥 𝛼⁄ )𝛽 , 𝑥 ≥ 0
0,                       𝑥 < 0

 (3) 

Where α > 0 is the scale parameter, and β > 0 is the shape parameter. 
The cumulative distribution function is given by   

   𝑓(𝑥;  𝛼, 𝑘) =  𝑓(𝑥) = {
𝛽

𝛼
(

𝑥

𝛼
)

𝑘−1 

𝑒−(𝑥 𝛼⁄ )𝛽
, 𝑥 ≥ 0

0,       𝑥 < 0
  (4) 

The CDF provides the probability that a random variable X is less than or equal to a specific value 
x. At the same time, the PDF describes the relative likelihood of the random variable taking on a
particular value.

The Bayesian Information criterion is 

     𝐵𝐼𝐶 =  𝑘𝑙𝑛(𝑛)  −  2𝑙𝑛 (𝐿)  (5) 

k is the number of parameters in the model, n is the number of observations, and L is the maximum 
likelihood of the model.  
The Akaike Information Criterion is given by   

 𝐴𝐼𝐶 =  2𝑘 −  2𝑙𝑛 (𝐿)             (6) 

k is the number of estimated parameters in the model, and L is its maximum likelihood function.   
The gamma distribution model was applied to dataset observations to gain insights into its 

statistical characteristics. The model's shape and scale parameters were accurately estimated, and 
the negative log-likelihood value indicated a good fit for the data. These statistical measures suggest 
that the Gamma distribution effectively captures the underlying data distribution, providing a solid 
foundation for further analysis and interpretation.  

The model provided significant insights into the statistical properties of the analyzed dataset. 
Fitted to observations, the model's shape and scale parameters were estimated with corresponding 
standard errors, reflecting its fitting quality. These parameters and statistical measures demonstrate 
the Weibull model's effectiveness in capturing the underlying distribution characteristics, providing 
a robust tool for further analysis and clarification.  

Overall, the Weibull distribution fits the dataset better than the Gamma distribution. The Wei 
bull model's closer AIC and BIC values suggest consistency and reliability in model fit evaluation. 
For various combinations of α and β, we generated sample sizes from the Gamma and Weibull 
models, specifically for the parameter values α = 2.0, β = 0.5, and α = 1.5, β = 1. The value decreases 
as the sample size increases, as shown in Table 1. Table 1 illustrates that our Gamma and Weibull 
models better fit the dataset than the KME and KM-IW (α, β) distributions. The dataset represents 
survival times in days from a two-arm clinical trial, referenced by sources [9] and [17], consisting of 
heart failure times in days for 299 patients.  
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III. Results

In this section, we conduct a comparative study to assess the Maximum Likelihood Estimation 
(MLE) performance for Gamma and Weibull distributions. We generate n = 299 samples drawn from 
those distributions using the quantile function. Subsequently, we calculate the MLEs, loglikelihood, 
standard error, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC).  

Table 1: The model's performance Some values of parameters requirements built on the dataset 

Model  Parameter Estimated 
values 

Standard 
Error 

Loglikelihood AIC BIC 

Gamma  α 2.0509 0.1560 -658.7781 1321.556 1328.957 

β 0.5442 0.0468 

Weibull α  1.5902 0.0716 -428.4005 860.8009 868.2018 

β 1.9780 0.0757 

Table 1 shows the outcomes corresponding to the Gamma distribution by utilizing it to model 
Biomedical datasets. The parameters indicate that the Gamma distribution, with its shape and scale, 
captures the data distribution with a specific level of skewness and spread. The AIC and BIC values 
support the model's fit, though the Weibull distribution, with its parameters, shows a potentially 
better fit given its lower AIC and BIC values. This suggests the Weibull model might be more 
effective at capturing the underlying distribution characteristics of the dataset.  

3. 1 Application

We compare its performance in providing a robust parametric fit to the datasets with that of the 
Weibull distribution. Metrics such as the log-likelihood, Akaike Information Criterion (AIC), and 
Bayesian Information Criterion (BIC) are employed for this comparison. The loglikelihood, AIC, and 
BIC values are computed for the proposed Weibull model for comparison to discern the most 
suitable model. The model exhibiting the lowest loglikelihood, AIC, and BIC values is deemed the 
most appropriate match for the provided datasets. The R software is employed for this analytical 
endeavor, simplifying the necessary calculations and comparisons.   
    The dataset comprises the summation of time (in days) measurements from two hundred twenty-
nine (299) respondents at the heart failure patients. It consists of the following values:  
 4, 6, 7, 7, 8, 10, 10, 10, 10, 10, 11, 11, 12, 13, 14, 14, 15, 15, 16, 20, 20, 22, 23, 23, 24, 26, 26, 27, 28, 28, 29, 
29, 30, 30, 30, 30, 30, 31, 32, 33, 33, 33, 35, 38, 40, 41, 42, 43, 44, 45, 50, 54, 54, 55, 59, 60,  60, 60, 61, 63, 
64, 65, 66, 67, 68, 71, 72, 73, 74, 74, 74, 74, 75, 76, 77, 78, 78, 79, 79, 79, 79, 80, 80, 82, 82, 83, 83, 83, 85, 
85, 86, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 90, 90, 90, 90, 91, 91, 94, 94, 94, 95, 95, 95, 95, 95, 96, 97,  100,  
100, 104, 104, 105, 106, 107, 107, 107, 107, 107, 107, 108, 108, 108, 109, 109, 109, 110, 111, 112, 113, 115, 
115, 117, 118, 119, 120, 120, 120, 120, 121, 121, 121, 121, 123, 126, 130, 134, 135,  140, 145, 145, 146, 146, 
146, 146, 146, 147, 147, 147, 147, 148, 150, 154, 162, 170, 171, 172, 174, 174, 174, 175, 180, 185, 186, 186, 
186, 186, 186, 186, 187, 187, 187, 187, 187, 187, 187, 188, 192, 193, 193, 194, 195, 196, 196, 197, 197,  198, 
200, 201, 201, 205, 205, 205, 206, 207, 207, 207, 208, 209, 209, 209, 209, 209, 210, 210, 211, 212, 212,  213, 
213, 213, 214, 214, 214, 214, 214, 215, 215, 215, 215, 216, 220, 230, 230, 233, 233, 235, 237, 237, 240, 241, 
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244, 244, 244, 244, 244, 245, 245, 245, 245, 245, 246, 246, 246, 247, 250, 250, 250, 250, 250, 250, 250, 256, 
256, 257, 258, 270, 270, 271, 278, 280, 285.   

Figure 1: Gamma distribution Density plots for the datasets. 

Figure 2: Weibull distribution Density plots for the datasets. 
    Table 1 presents the planned model's superior ability to effectively fit the highly skewed datasets 
compared to the competing models, as specified by the evaluation metrics employed. Figures 1 and 
2 show that the proposed mode fits the data set adequately.  
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IV. Conclusion

This paper comprehensively compares the Gamma and Weibull distributions for modeling lifetime 
data. By incorporating key parameters, we improve the flexibility of these distributions, enabling 
them to capture the complexities of biomedical datasets effectively. Using accurate data, we derived 
precise closed-form expressions for the probability density function (PDF), cumulative density 
function (CDF), standard error, log-likelihood function, and parameter estimation. Our analysis 
demonstrated the practical relevance of these models through Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) values. This enhances our ability to accurately model and 
interpret biomedical data, providing a robust tool for future research and analysis.    
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Abstract 

Statistical distributions are essential tools for describing and predicting real-world phenomena, 

though recent advancements in data collection have made it challenging to fit existing probability 

models to many practical datasets. While non-parametric models are sometimes recommended, 

parametric models retain substantial popularity due to their interpretability and flexibility. The 

quadratic rank transmutation map (QRTM) technique has been used to create new families of non-

Gaussian distributions, known as transmuted distributions, which allow for modifications in 

moments, skewness, and kurtosis, thus increasing flexibility. The transmuted Weibull distribution 

(TWD) has gained attention for applications in reliability, survival analysis, and lifetime data 

analysis. This article focuses on a Bayesian analysis of the transmuted Weibull distribution, a 

generalization of the traditional Weibull model that addresses its limitations, particularly for 

datasets exhibiting non-monotonic failure rates. Bayesian parameter estimation is performed using 

a Markov Chain Monte Carlo (MCMC) algorithm, with both non-informative and informative 

priors. We calculate Bayes estimators (BEs) and posterior risks (PRs) under different loss functions, 

including the Absolute Error Loss Function (AELF), precautionary loss function (PLF), and 

quadratic loss function (QLF). Simulation studies evaluate the Bayes estimators' performance, 

investigating the effects of various priors, sample sizes, and censoring rates on estimation accuracy 

and credible interval width. Real-world data applications highlight the practical utility of the 

Bayesian approach for the TWD, showing consistent results with increasing sample sizes and 

underscoring the robustness of the MCMC algorithm for parameter estimation. The article is 

structured as follows: the TWD’s parameters, including scale, shape, and transmutation, are 

estimated under different loss functions and priors. Bayesian credible intervals (BCIs) are also 

computed. Both uncensored and censored data environments are considered, with varying sample 

sizes and censoring rates. Posterior risks for each estimator are analyzed to assess performance, and 

two real datasets are used to illustrate the flexibility and applicability of the proposed distribution. 

This study lays a foundation for future research, such as exploring mixtures of transmuted Weibull 

distributions or conducting Bayesian analyses for record values. 

Keywords: Transmuted Weibull distribution, Markov Chain Monte Carlo, 
Bayesian credible intervals, Bayes estimators, posterior risks, absolute error loss 
function, precautionary loss function, quadratic loss function, censoring. 
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I. Introduction

Statistical distributions are essential for describing and predicting real-world phenomena. 
However, advancements in data collection methods have led to challenges in fitting existing 
probability models to many significant and practical datasets [1]. In such cases, while non-
parametric models may be recommended, parametric models continue to enjoy substantial 
popularity. The quadratic rank transmutation map (QRTM) technique has been employed to create 
new families of non-Gaussian distributions [2]. This technique modifies the moments, skewness, 
and kurtosis of a baseline distribution, resulting in what is known as a transmuted distribution. 
This family of distributions has attracted considerable attention from researchers, leading to the 
development and exploration of various new flexible distributions over the past decade. For 
instance, Al Sobhi  [3] introduced the transmuted modified Weibull distribution, while others 
presented the exponentiated transmuted Weibull distribution. More recently, a new lifetime 
distribution called the transmuted cubic Weibull distribution was constructed, and a novel 
weighted distribution known as the size-biased weighted transmuted Weibull distribution was 
introduced. The method of least squares and the method of moments have been utilized to 
estimate parameters for the transmuted Weibull distribution, with comparisons made through 
simulation studies using statistical measures like mean squared error (MSE) [4]. Researchers have 
also explored various structural properties of the transmuted Weibull distribution, including its 
mean, harmonic mean, standard deviation, moment generating function (MGF), skewness, and 
kurtosis [5][6]. Currently, transmuted distributions find applications in numerous fields, including 
reliability studies, lifetime analysis, engineering, economics, insurance, and environmental 
sciences.  

The Weibull distribution is a widely recognized lifetime probability distribution, commonly 
used in various domains of reliability and survival analysis [7]. Its attractiveness largely arises 
from the variety of shapes it can assume by adjusting its shape parameter. Additionally, the 
Weibull distribution is versatile, encompassing many other distributions, such as the exponential 
and Rayleigh distributions, as special cases. Despite its widespread use and applicability, the 
traditional Weibull distribution does not fully capture the range of lifetime phenomena. For 
instance, it is not suitable for datasets exhibiting a non-monotonic failure rate, prompting 
investigations into generalizations of the Weibull distribution. A notable generalization applicable 
to survival data analysis is the transmuted generalized inverse Weibull distribution, which 
discusses its mathematical properties and employs maximum likelihood methods for parameter 
estimation. Similarly, the transmuted generalized Weibull distribution has been developed, 
exploring its mathematical properties, including the quantile function, moments, entropies, mean 
deviation, Bonferroni and Lorenz curves, and the moments of order statistics, also using maximum 
likelihood for parameter estimation. Furthermore, the generalized transmuted Weibull distribution 
has been proposed, with its properties derived. This article focuses on the Bayesian analysis of the 
transmuted Weibull distribution, which serves as a generalization of the Weibull probability 
distribution. We emphasize Bayesian analysis because maximum likelihood and moment 
estimators have been used for parameter estimation of the transmuted Weibull distribution [8]. To 
facilitate this analysis, we employ a Markov Chain Monte Carlo (MCMC) algorithm to compute 
posterior summaries for the unknown parameters of the distribution, comparing the results across 
different priors, loss functions, sample sizes, and parameter sets [9]. 

The objective of this paper is to define the Transmuted Weibull distribution and introduce its 
likelihood function, followed by the derivation of posterior distribution expressions utilizing both 
non-informative and informative priors, as well as marginal posterior densities for both censored 
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and uncensored data. The study aims to explore Bayesian estimators (BEs) and their associated 
posterior risks (PRs) under various loss functions. Additionally, the paper seeks to detail the 
estimation of unknown parameters of the proposed distribution through the MCMC algorithm for 
posterior summaries, encompassing different loss functions and prior types. The work will also 
provide a mathematical and numerical discussion of Bayesian credible intervals (BCIs) and 
conclude with an analysis of a real-life dataset. 

II. Transmuted Weibull Distribution

As introduced by Alzaatreh et al. in 2013 [10], a random variable X follows a transmuted 
probability distribution if its probability density function (pdf) and cumulative distribution 
function (CDF) are given by: 

𝑓(𝑥) = 𝑔(𝑥)(1 + 𝛾 − 𝛾. 2𝐺(𝑥)) 
𝐹(𝑥) = 𝐺(𝑥)[(1 + 𝛾) − 𝛾. 𝐺(𝑥)] 

where 𝑥 > 0 and the transmutation parameter 𝛾 satisfies |𝛾| ≤ 1. Here, 𝐺(𝑥) is the CDF of the 
baseline distribution, and the functions 𝑓(𝑥) and 𝐹(𝑥) represents the pdf and CDF of the 
transmuted distribution, respectively.  

A random variable X is defined to follow a Weibull distribution characterized by parameters 
𝛼 > 0 and 𝛽 > 0 if its probability density function (PDF) is given by: 

𝑔(𝑥; 𝛼, 𝛽) =
𝛼

𝛽
(𝒙)𝛼−1𝑒𝑥𝑝 (−

𝑥𝛼

𝛽
) , 𝑥 ≥ 0 

The corresponding cumulative distribution function (CDF) for this Weibull distribution can be 
expressed as:  

𝐺(𝑥) = 1 − 𝑒𝑥𝑝 (−
𝑥𝛼

𝛽
)

To find the CDF of the transmuted Weibull distribution, we substitute 𝐺(𝑥) into the following 
formula:  

𝐹(𝑥) = (1 + 𝛾) (1 − 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

)) − 𝛾 (1 − 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

))

2

Through algebraic manipulation, we derive the CDF for the transmuted Weibull distribution 
as: 

𝐹(𝑥; 𝜃) = 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

) (1 − 𝛾 + 𝛾 𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

)) 

where 𝜃 = (𝛼, 𝛽, 𝛾). To determine the PDF of the transmuted Weibull distribution, we 
differentiate this CDF with respect to 𝑥 and simplify the result. The resulting PDF is then 
expressed as: 

𝑓(𝑥; 𝜃) =
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒𝑥𝑝 (− (
𝑥

𝛽
)

𝛼

) . (1 − 𝛾 + 2𝛾 exp (− (
𝑥

𝛽
)

𝛼

)), 

𝑥 ≥ 0, 𝛼, 𝛽 > 0 𝑎𝑛𝑑 |𝛾| ≤ 1 
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Special Cases 
• When γ = 0, the Transmuted Weibull distribution simplifies to the standard

Weibull distribution. 
• If α = 1, the result is the transmuted exponential distribution. Furthermore, with

γ = 0, it becomes the standard exponential distribution. 
• Setting both α and β to 1 yields the transmuted standard exponential distribution.
• When α = 2, we obtain the transmuted Rayleigh distribution.
• If γ = 0, this corresponds to the traditional Rayleigh distribution.

III. Likelihood Functions for various Sampling Schemes

Consider a complete random sample 𝑋1, 𝑋2, … 𝑋𝑛 of size 𝑛 taken from the transmuted Weibull 
distribution. Then, the likelihood function for the complete data set is given by: 

𝐿(𝑥; 𝜃) = 𝛼𝑛𝑒𝑥𝑝 {(𝛼 − 1) ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

}
1

𝛽𝑛
𝑒𝑥𝑝 {− ∑

𝑥𝑖
𝛼

𝛽

𝑛

𝑖=1

} ∏ [1 − 𝛾 + 2𝛾 exp (−
𝑥𝑖

𝛼

𝛽
)]

𝑛

𝑖=1

 

where 𝜃 = (𝛼, 𝛽, 𝛾) and 𝑥 = 𝑥1, 𝑥2, … 𝑥𝑛. In many life-testing experiments, it’s not possible to 
collect complete failure time data due to time and cost constraints. As a result, censoring plays an 
essential role in lifetime data analysis. Let𝑋 = 𝑋1, 𝑋2, … 𝑋𝑟 be a type-I censored sample of size 𝑟 
from 𝑛 items, where the lifetimes follow a transmuted Weibull distribution with parameters 
𝛼, 𝛽 & 𝛾. Consider a distribution with specific parameters. In the context of Type I censoring, it’s 
important to note that the censoring time is predetermined, while the number of observed failures 
is random. Suppose we have 𝑛 items under life testing, and we observe 𝑟 failures at times 
𝑡1, 𝑡2, … 𝑡𝑟. Here, 𝑟 is an integer between 0 and 𝑛, and (𝑛 − 𝑟) represents the number of items that 
survive or remain uncensored. According to Mendenhall and Hader (1958) [9], the likelihood 
function for censored data is given by: 

𝐿(𝑥; 𝜃) ∝ ∏ 𝑓(𝑥𝑗)

𝑟

𝑗=1

. [1 − 𝐹(𝑇)]𝑛−𝑟 

where T represents the time, r denotes the number of failures (or uncensored observations), 
and (𝑛 − 𝑟) are the censored observations. For a transmuted Weibull distribution applied to 
censored data, the likelihood function can be expressed as: 

(𝑥; 𝛳) ∝ 𝛼𝑇𝑒𝑥𝑝 (−𝛼 ∑ 𝑙𝑜𝑔
1

𝑥𝑗

𝑟

𝑗=1

)
1

𝛽𝑟
𝑒𝑥𝑝 (−

∑ 𝑥𝑗
𝛼𝑟

𝑗=1

𝛽
) × 𝑒𝑥𝑝 [∑ 𝑙𝑜𝑔 {1 − 𝛾 + 2𝛾 exp (−

𝑥𝑖
𝛼

𝛽
)}

𝑟

𝑗=1

] 

𝑒𝑥𝑝 ((𝑛 − 𝑟)𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 (−
𝑇𝛼

𝛽
) × {1 − 𝛾 + 𝛾𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
)}]) 

Next, we examine the posterior distribution using Bayes’ theorem. The posterior distribution, 
g(α∣x) is given by:  

𝑔( 𝛼 ∣ 𝑥 ) =
𝐿(𝑥; 𝛼)П(𝛼)

∫ 𝐿(𝑥; 𝛼)П(𝛼)𝑑𝛼
∞

𝛼

where 𝜋(𝛼) denotes the joint prior distribution of the parameters 𝛼 = 𝛼1, 𝛼2, … 𝛼𝑘, 𝐿(𝑥; 𝛼) 
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represents the likelihood function, and 𝑔(𝛼 ∣ 𝑥) is the joint posterior distribution. 

IV. Posterior Distribution using Uniform Prior (UP)

In Bayesian estimation, to determine unknown parameters, we specify a prior for each parameter 
that isn't explicitly defined by the model itself. Unlike the frequentist approach, the Bayesian 
method incorporates both prior knowledge about the parameters and the observed data. When 
prior information about the parameters is lacking, a non-informative prior can be used in Bayesian 
analysis. This type of prior conveys minimal information about the parameters, reflecting a lack of 
strong prior beliefs. 

As introduced by Yousaf et al. in 2020 [11], to estimate the unknown parameters of the 
transmuted Weibull distribution, we assume the following prior distributions: 𝛼 ∝ 1, ∀𝛼 ∈

(0, ∞), 𝛽 ∝ 1, ∀𝛽 ∈ (0, ∞) and 𝛾 ∝ 1, ∀𝜆 ∈ (−1,1). With the assumption that these parameters are 
independent, the joint prior distribution for 𝛼, 𝛽 𝑎𝑛𝑑 𝜆 is: 𝜋1(𝛼, 𝛽, 𝛾) ∝ 1, where 𝛼, 𝛽 > 0 and |𝛾| ≤

1. Using Bayes’ theorem, the joint posterior distribution of parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 , given data 𝑥,
with a uniform prior is: 
𝑔(𝜃|𝑥) =

𝐿(𝑥;𝜃)𝜋(𝜃)

∫ ∫ ∫ 𝐿(𝑥;𝜃)𝜋(𝜃)𝑑𝛾𝑑𝛽𝑑𝛼
1

−1
∞

0
∞

0

 where 𝐿(𝑥; 𝜃) is the likelihood function and 𝜋(𝜃) represents the 

uniform prior over the parameters 𝛼, 𝛽, 𝛾. 

𝑔(𝜃|𝑥) =
𝛼𝐴01−1exp (−𝛼𝐴11)

1
𝛽𝑛 exp (−

𝐴21

𝛽
) exp (𝐴31)

∫ ∫ ∫ 𝛼𝐴01−1exp (−𝛼𝐴11)
1

𝛽𝑛 exp (−
𝐴21

𝛽
) exp (𝐴31)𝑑𝛾𝑑𝛽𝑑𝛼

1

−1

∞

0

∞

0

where 𝐴01 = 1 + 𝑛, 𝐴11=∑ 𝑙𝑜𝑔
1

𝑥𝑖

𝑛
𝑖=1 , 𝐴21=∑ 𝑥𝑖

𝛼𝑛
𝑖=1 and 𝐴31=∑ 𝑙𝑜𝑔 {1 − 𝜸 + 2𝜸 exp (−

𝑥𝑖
𝛼

𝛽
)}𝑛

𝑖=1 . 

Likewise, for censored data, the posterior distribution is given by: 

𝑔(𝜃|𝑥) =
𝛼𝐵01−1exp (−𝛼𝐵11)

1

𝛽𝑟exp (−
𝐵21

𝛽
)exp (𝐵31)

∫ ∫ ∫ 𝛼𝐵01−1exp (−𝛼𝐵11)
1

𝛽𝑟exp (−
𝐵21

𝛽
)exp (𝐵31)𝑑𝛾𝑑𝛽𝑑𝛼

1
−1

∞
0

∞
0

 (1) 

where 𝐵01 = 1 + 𝑟, 𝐵11=∑ 𝑙𝑜𝑔
1

𝑥𝑗

𝑟
𝑗=1 , 𝐵21=∑ 𝑥𝑗

𝛼𝑟
𝑗=1 and 𝐵31=∑ 𝑙𝑜𝑔 {1 − 𝜸 + 2𝜸 exp (−

𝑥𝑖
𝛼

𝛽
)} +𝑟

𝑗=1

(𝑛 − 𝑟)𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 (−
𝑇𝛼

𝛽
) × {1 − 𝛾 + 𝛾𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
)}]. 

Since the posterior distributions for both censored and uncensored data are not available in 
closed form, the marginal posterior densities of the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 for both censored and 
uncensored data are obtained by integrating out the nuisance parameters, i.e., 𝑔(𝛼|𝑥) =

∫ ∫ 𝑔(𝛼, 𝛽, 𝜸|𝑥)
𝜆𝛽

𝑑𝛽𝑑𝜸 and vice versa. Therefore, we use the MCMC technique to obtain the 

posterior summaries. 

V. Posterior Distribution using Informative Prior (IP)

An informative prior offers specific, well-defined information about parameters through a 
probability distribution. In this study, we assume that the prior distributions of 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 are 
independent. Specifically, we assume 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) for 𝛼, 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑑) for 𝛽 and 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑙1, 𝑙2) for 𝜸 . The joint prior distribution of parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 is: 

𝑔(𝜃) ∝ 𝛼𝑎−1𝑒−𝑏𝛼
1

𝛽𝑐+1
𝑒

−
𝑑
𝛽

1

𝑙2 − 𝑙1
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The joint posterior distribution of the parameters 𝛼, 𝛽 & 𝛾 and assuming an informative prior 
(IP) for the complete data, is: 

𝑔(𝜃|𝑥) =
𝛼𝐶11−1exp (−𝛼𝐷11)

1

𝛽𝐶21−1exp (−
𝐷21

𝛽
)exp (𝐷31)

∫ ∫ ∫ 𝛼𝐶11−1exp (−𝛼𝐷11)
1

𝛽𝐶21−1exp (−
𝐷21

𝛽
)exp (𝐷31)𝑑𝛾𝑑𝛼𝑑𝛽

1
−1

∞
0

∞
0

 𝛼, 𝛽 > 0 and |𝛾| ≤ 1 

Where 𝐶11 = 𝑎 + 𝑛, 𝐷11 = 𝑏 + 𝑙𝑜𝑔
1

𝑥𝑖
, 𝐶21 = 𝑛 + 𝑐, 𝐷21 = 𝑑 + ∑ 𝑥𝑖

𝛼  𝑙𝑜𝑔
1

𝑥𝑖
and 𝐷31=∑ 𝑙𝑜𝑔 {1 −𝑛

𝑖=1

𝜸 + 2𝜸 exp (−
𝑥𝑖

𝛼

𝛽
)}. For censored data, the joint posterior distribution of 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 given the data, 

is: 

𝑔(𝜃|𝑥) =
𝛼𝐶11−1exp (−𝛼𝐷12)

1

𝛽𝐶21−1exp (−
𝐷22

𝛽
)exp (𝐷32)

∫ ∫ ∫ 𝛼𝐶11−1exp (−𝛼𝐷12)
1

𝛽𝐶21−1exp (−
𝐷22

𝛽
)exp (𝐷32)𝑑𝛾𝑑𝛼𝑑𝛽

1
−1

∞
0

∞
0

 𝛼, 𝛽 > 0 and |𝛾| ≤ 1            (2) 

Where 𝐶12 = 𝑎 + 𝑟, 𝐷12 = 𝑏 + ∑ 𝑙𝑜𝑔
1

𝑥𝑗
, 𝐶22 = 𝑐 + 𝑟, 𝐷22 = 𝑑 + ∑ 𝑥𝑗

𝛼 and 𝐷32=∑ 𝑙𝑜𝑔 {1 − 𝜸 +𝑛
𝑗=1

2𝜸 exp (−
𝑥𝑖

𝛼

𝛽
)} + (𝑛 − 𝑟)𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
) {1 − 𝜸 + 𝜸𝑒𝑥𝑝 (−

𝑇𝛼

𝛽
)}]. The marginal posterior densities 

of the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 for both uncensored and censored data are obtained by integrating 
out the nuisance parameters, that is, 𝑔(𝛼|𝑥) = ∫ ∫ 𝑔(𝛼, 𝛽, 𝜸|𝑥)

 

𝜸

 

𝛽
𝑑𝛽𝑑𝜸 and vice versa. 

VI. Bayes Estimators and Posterior Risks for different Loss Functions

To estimate an unknown parameter in Bayesian analysis, a loss function must be specified. The 
choice depends on the specific problem, though there are no strict rules for selecting one. Loss 
functions can be symmetric (equal weighting to over- and underestimation) or asymmetric. For a 
decision 𝑑, a loss function 𝐿(𝛽, 𝑑) ≥ 0 represents the incurred loss when estimating unknown 
parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸, and by decisions 𝑑1, 𝑑2 𝑎𝑛𝑑 𝑑2. The expected loss, or posterior risk, denoted 
by 𝑅(�̂�), is given by: 

𝑅(�̂�) = 𝐸𝜃|𝑥{𝐿(𝛽, �̂�)} = ∫ 𝐿(𝛽, �̂�)𝑝(𝛽|𝑥) 𝑑𝛽 

Bayes estimators and their respective posterior risks are computed under the Absolute Error 
Loss Function (AELF), precautionary loss function (PLF), and quadratic loss function (QLF). Table 
1 presents the expressions of Bayes estimators under various loss functions, along with their 
corresponding posterior risks. 

Table 1: BEs and PRs for Various Loss Functions 
Loss 

Function 
AELF PLF QLF 

Expression 𝐿(𝛽, 𝑑) = (𝛽 − 𝑑)2 𝐿(𝛽, 𝑑) =
(𝛽 − 𝑑)

𝑑

2

𝐿(𝛽, 𝑑) =
(𝛽 − 𝑑)

𝛽2

2

BEs �̂� = 𝐸𝛽|𝑥(𝛽) �̂� = √𝐸(𝛽2|𝑥)  �̂� =
𝐸(𝛽−1|𝑥)

𝐸(𝛽−2|𝑥)

 

PRs 𝑅(�̂�)

= 𝐸(𝛽2|𝑥) − {𝐸(𝛽|𝑥)}2 
𝑅(�̂�) = 2 [√𝐸(𝛽2|𝑥) − 𝐸(𝛽|𝑥)] 𝑅(�̂�) =

{𝐸(𝛽−1|𝑥)}

𝐸(𝛽−2|𝑥)

 2
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VII. Posterior Estimates using Markov Chain Monte Carlo

From Equation (2), we observe that the posterior density is in an intractable form, requiring a 
numerical technique to solve it. Since the posterior summaries are challenging to obtain directly, a 
Markov Chain Monte Carlo (MCMC) technique is applied, as demonstrated by Carrera B and 
Papaioannou I, 2024 [12]. To implement MCMC, the posterior densities using both uniform and 
informative priors are expressed as: 

𝑔𝑈𝑃(𝜃|𝑥) ∝ 𝑓𝛼 (𝑛 + 1, ∑ 𝑙𝑜𝑔
1

𝑥𝑖

𝑛

𝑖=1
) 𝑓𝛽|𝛼 (𝑛

+ 1, ∑ 𝑥𝑖
𝛼

𝑛

𝑖=1
) 𝑓𝛾 (𝑒𝑥𝑝 (∑ 𝑙𝑜𝑔 {1 − 𝛾 + 2𝛾 exp (

𝑥𝑖
𝛼

𝛽
)}

𝑛

𝑖=1
)) 

𝑔𝐼𝑃(𝜃|𝑥) ∝ 𝑓𝛼 (𝑛 + 𝑎, ∑ 𝑙𝑜𝑔
1

𝑥𝑖

𝑛

𝑖=1
) 𝑓𝛽|𝛼 (𝑛 + 𝑏, ∑ 𝑥𝑖

𝛼
𝑛

𝑖=1
) 𝑓𝛾 (𝑒

+ 𝑒𝑥𝑝 (∑ 𝑙𝑜𝑔 {1 − 𝛾 + 2𝛾 exp (
𝑥𝑖

𝛼

𝛽
)}

𝑛

𝑖=1
)) 

Here, and 𝑓𝛼 and 𝑓𝛽|𝛼 represent the probability density functions of the gamma and inverse 
gamma distributions, respectively, 𝑓𝜸 while denotes the probability density function of the 
transmuted parameter. To obtain Bayes estimates, corresponding posterior risks, and Bayesian 
Credible Intervals (BCI), we proceed as follows: First, a random sample is generated from the 
transmuted Weibull distribution using the inverse integral transformation, i.e., 

𝑢𝑖 = (1 − 𝑒
− 

𝑥𝑖
𝛼

𝛽 ) (1 − 𝜸 + 𝜸𝑒
−

𝑥𝑖
𝛼

𝛽 ). After simplification, we obtain: 

𝑥𝑖 = [−𝛽𝑙𝑛 {1 − (
1 + 𝛾 − √(1 + 𝛾)2 − 4𝑢𝑖𝛾

2𝛾
)}]

1
𝛼

where 𝑢𝑖~𝑈(0,1) and 𝑖 = 1,2, … , 𝑛. By specifying parameter values, a desired random sample 
can be generated. To produce censored data, a censoring time 𝑇 is set, and units with values less 
than or equal to 𝑇 are recorded. Units with values greater than 𝑇 are considered censored 
observations. To implement the MCMC for obtaining posterior summaries, we proceed with the 
Gibbs sampling steps combined with a Metropolis-Hastings step, as stated by Faucett et al. [13]. 

VIII. Implementation using Real Life data

The dataset contains remission times for 116 patients diagnosed with acute leukemia. The 
remission durations (in months) are as follows: 1.08, 0.09, 1.48, 3.87, 13.94, 8.66, 6.11, 23.63, 0.20, 
2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 9.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 
7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 3.81, 0.62, 2.82, 5.32, 7.32, 14.06, 
10.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.78, 5.34, 7.59, 0.66, 15.96, 36.66, 1.05, 
2.69, 4.23, 5.41, 7.62, 10.75, 43.01, 1.19, 2.75, 4.26, 5.41, 7.13, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 
11.25, 17.14, 16.62, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.45, 3.02, 4.34, 5.71, 11.93, 7.79, 18.10, 
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 2.02, 12.02, 3.31, 4.51, 6.54, 8.53 and 
22.69. 

To estimate the unknown parameters, we applied the methodology from previous sections, 
utilizing different loss functions and prior distributions. A chi-square test was conducted to verify 
if the data follow the transmuted Weibull distribution, yielding a p-value of 0.226, indicating a 
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good fit at the 5% significance level [14]. The Bayesian estimates (BEs), posterior risks (PRs) and 
Bayesian credible intervals for the parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜸 of the transmuted Weibull distribution 
were calculated using uninformative (UP) and informative (IP) priors under AELF, PLF, and QLF 
loss functions [15]. These results are presented in Tables 2 and 3. 

Table 2: BEs and PRs of TWD with hyper parameters a=0.6, b=1.2, c=1.2 & d=1.5 

Data 
condition 

Loss function Size 
𝑛 UP IP 

Complete AELF 𝛼 = 2.1 1.653 (0.0021) 1.584 (0.0023) 
𝛽 = 1.3 1.209 (0.0045) 1.278 (0.0047) 
𝛾 = 0.7 0.715 (0.0298) 0.703 (0.0312) 

PLF 𝛼 = 2.1 1.664 (0.0052) 1.589 (0.0055) 
𝛽 = 1.3 1.229 (0.0038) 1.298 (0.0039) 
𝛾 = 0.7 0.733 (0.0755) 0.719 (0.0786) 

QLF 𝛼 = 2.1 1.645 (0.0076) 1.593 (0.0079) 
𝛽 = 1.3 1.215 (0.0029) 1.276 (0.0031) 
𝛾 = 0.7 0.710 (0.0662) 0.695 (0.0693) 

20% 
Censoring 

AELF 𝛼 = 2.1 1.719 (0.0061) 1.623 (0.0064) 

𝛽 = 1.3 1.107 (0.0028) 1.216 (0.0030) 
𝛾 = 0.7 0.641 (0.0516) 0.624 (0.0549) 

PLF 𝛼 = 2.1 1.732 (0.0075) 1.629 (0.0078) 
𝛽 = 1.3 1.139 (0.0042) 1.226 (0.0045) 
𝛾 = 0.7 0.629 (0.0843) 0.615 (0.0884) 

QLF 𝛼 = 2.1 1.708 (0.0091) 1.621 (0.0094) 
𝛽 = 1.3 1.105 (0.0026) 1.222 (0.0028) 
𝛾 = 0.7 0.598 (0.0694) 0.581 (0.0727) 

40% 
Censoring 

AELF 𝛼 = 2.1 1.911 (0.0109) 1.823 (0.0113) 

𝛽 = 1.3 1.095 (0.0082) 1.200 (0.0085) 
𝛾 = 0.7 0.594 (0.0581) 0.573 (0.0618) 

PLF 𝛼 = 2.1 1.928 (0.0121) 1.837 (0.0125) 
𝛽 = 1.3 1.098 (0.0065) 1.215 (0.0068) 
𝛾 = 0.7 0.621 (0.0821) 0.605 (0.0863) 

QLF 𝛼 = 2.1 1.898 (0.0144) 1.810 (0.0149) 
𝛽 = 1.3 1.082 (0.0038) 1.204 (0.0042) 
𝛾 = 0.7 0.576(0.0741) 0.556(0.0782) 

From Table 2, it is evident that the BEs under both UP and IP have lower posterior risks for 
uncensored data compared to censored data, due to the information loss associated with censoring. 
Additionally, the credible intervals for uncensored data were narrower than those for censored 
data. 

Table 3:  95% Bayesian Credible Intervals of TWD using UP and IP with Hyperparameters parameters a=0.6, b=1.2, 

c=1.2 & d=0.5 

Data Parameters 
UP Lower 

Limit 
UP Upper 

Limit 
IP Lower 

Limit 
IP Upper 

Limit 
Complete 𝛼 = 2.1 0.6234 2.9483 0.6257 2.9461 

𝛽 = 1.3 0.1402 1.3871 0.1415 1.3381 

𝛾 = 0.7 0.6543 1.1102 0.6401 1.1655 
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20% Censoring 𝛼 = 2.1 0.7483 3.1879 0.7491 3.1904 

𝛽 = 1.3 0.1521 1.4632 0.1578 1.3463 

𝛾 = 0.7 0.6798 1.1387 0.5964 1.2476 

40% Censoring 𝛼 = 2.1 0.9145 3.5529 0.9170 3.5224 

𝛽 = 1.3 0.2283 1.5874 0.2305 1.3812 

𝛾 = 0.7 0.7205 1.1618 0.5960 1.2393 

The table 3 presents 95% Bayesian credible intervals for the parameters 
𝛼 = 2.1, 𝛽 = 1.3 and 𝛾 = 0.7 of the transmuted Weibull distribution under both uninformative 
prior (UP) and informative prior (IP) approaches. Increased censoring rates (20% to 40%) lead to 
wider credible intervals, indicating greater uncertainty in parameter estimates due to loss of 
information. The IP generally results in narrower intervals compared to the UP, suggesting the 
benefit of incorporating prior information. Overall, Bayesian credible intervals provide precise 
estimates for uncensored data, and even with censoring, the intervals remain reasonable. This 
analysis underscores the effectiveness of Bayesian methods for parameter estimation in incomplete 
data scenarios, balancing precision and uncertainty. 

IX. Discussion

This article presents a Bayesian analysis of the transmuted Weibull distribution, utilizing both 
uniform and informative gamma priors under the AELF, PLF, and QLF loss functions. Real-world 
studies were conducted to evaluate the performance of the Bayes estimators, along with strategies 
for selecting suitable priors and loss functions across varying sample sizes and test termination 
times, under both complete and censored data settings. Specifically, two censoring rates—20% and 
40%—were examined. Tables 2 and 3 show that the Bayes estimates demonstrated consistency, 
approaching the true parameter values as sample sizes grew. Posterior risks (PRs) were higher for 
censored data than for uncensored data, and 95% credible intervals became narrower with larger 
sample sizes. These findings were consistent in practical applications, supporting the effectiveness 
of the proposed MCMC algorithm for Bayesian parameter estimation. Future research could 
expand this work by studying mixtures of transmuted Weibull distributions or applying Bayesian 
analysis to record values with the transmuted Weibull distribution. 
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Abstract 

The main objective of this paper is to present an innovative approach combining fuzzy logic and 

artificial neural networks to optimize equipment reliability in the specific context of a flour mill. Faced 

with the challenges of performance and profitability in this industrial sector, the neuro-fuzzy 

methodology has been developed to meet the challenges related to the complexity and uncertainty 

inherent in equipment reliability management. The first part of the paper provides an overview of the 

problem, introducing the key concepts of reliability and maintenance, while highlighting the 

particular challenges of the milling industry. This paper also outlines the advantages of the neuro-

fuzzy approach for optimizing equipment reliability. The methodology for developing the neuro-fuzzy 

model is detailed in the second part. It covers the construction of the fuzzy inference system, the 

design of the neural network structure, as well as the training and optimization steps of the model. 

The case study conducted in a flour mill is presented in the third part. After a description of the 

company and its equipment system, the collection and analysis of reliability data are presented, as 

well as the implementation of the developed neuro-fuzzy model. The results obtained demonstrate 

that this methodology makes it possible to better anticipate failures, optimize maintenance 

interventions, and reduce associated costs. Sensitivity analysis and comparison with other 

optimization methods confirm the validity and operational and economic benefits of the proposed 

approach. 

Keywords: Optimization, Reliability, Neuro-fuzzy approach, Flour milling 

1. Introduction

1.1. The Importance of Optimizing Equipment Reliability in Processing 

Industries 

Equipment reliability is a critical issue for processing industries, such as flour mills, food processing 

plants, and refineries. Equipment failure can lead to numerous costly consequences for these 

companies. First, the repair and maintenance costs can quickly accumulate, undermining the 

profitability of the business. Moreover, the unplanned production shutdowns caused by these 

failures result in productivity losses, as well as late delivery penalties from customers, which can 

harm the company's competitiveness. Finally, these breakdowns can also impact product quality, 

leading to waste and a deterioration of the brand image. Optimizing equipment reliability is 

therefore an essential lever to reduce these costs and improve the operational and economic 

performance of processing companies [1-8]. 
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1.2. A Neuro-Fuzzy Approach for Optimizing Reliability 

Traditional reliability optimization techniques, such as predictive maintenance or equipment 

redundancy, have certain limitations when reliability data is imprecise or incomplete [9-17]. Indeed, 

in many cases, processing companies do not have sufficiently detailed historical data on equipment 

failures. Moreover, reliability phenomena can depend on many complex and interdependent factors, 

making it difficult to model them using traditional deterministic approaches. 

         The neuro-fuzzy approach, combining fuzzy logic and neural networks, is particularly well-

suited in these cases, as it allows for the consideration of uncertainty and nonlinearity in reliability 

phenomena [2,18-25]. Fuzzy logic allows for the modeling of imprecision in data and expert 

knowledge on reliability, while neural networks offer the ability to learn complex patterns from 

incomplete data. The neuro-fuzzy approach thus combines the advantages of these two techniques 

to optimize equipment reliability in a more robust and reliable manner. 

1.3. Context and Objective of the Case Study in a Flour Mill 

This case study focuses on optimizing the reliability of equipment in a flour mill. Flour mills face 

major challenges in terms of reliability, particularly due to the complexity of the processing 

operations and the harsh environmental conditions to which the equipment is subjected. 

Indeed, the milling, sieving, and grain storage processes require the use of various equipment such 

as silos, grinders, conveyors, and vibrating screens. This equipment must operate reliably and 

continuously to ensure the production of high-quality flour. However, the dusty environments, 

significant vibrations, and load fluctuations frequently lead to premature failures, impacting the 

productivity and profitability of the flour mill. 

        The objective of this study is, therefore, to develop a neuro-fuzzy model to optimize the 

reliability of the flour mill's key equipment, in order to improve the operational and economic 

performance of the company. This will involve better anticipating failures, optimizing preventive 

maintenance plans, and reducing the costs associated with unexpected breakdowns. 

2. Neuro-Fuzzy Approach for Reliability Optimization

2.1. Basic Concepts of Neuro-Fuzzy Systems 

Neuro-fuzzy systems combine artificial neural networks and fuzzy logic to leverage their respective 

advantages [9,26-34]. On the one hand, neural networks offer a learning capability from data to 

identify complex patterns. On the other hand, fuzzy logic allows for the modeling of the inherent 

imprecision and uncertainty in real-world phenomena, using fuzzy sets and linguistic rules. 

table 1 summarizes the ain differences between neural networks and fuzzy logic. 

 Table 1: Comparison of neural networks and fuzzy logic 

Features Neural networks Fuzzy logic 

Basic principle Learning from data Modeling imprecision and uncertainty 

Knowledge 

representation 

Learning complex patterns Linguistic rules and fuzzy sets 

Information 

processing 

Parallel and non-linear 

processing 

Approximate reasoning 

Interpretability Black box, difficult to interpret Unclear rules that can be interpreted 

Fields of application Classification, prediction, 

optimization 

Decision support, process control 

RT&A, No 1 (82) 
Volume 20, March 2025 

866



Ngnassi Djami Aslain Brisco  

OPTIMIZATION OF EQUIPMENT RELIABILITY BASED ON A 

NEURO-FUZZY APPROACH 

The integration of these two approaches into a neuro-fuzzy system provides several benefits for 

optimizing equipment reliability [1, 2, 31, 32, 35, 36]: 

 Ability to handle incomplete or imprecise data on failures;

 Consideration of the complexity and non-linearity of reliability phenomena;

 Possibility of incorporating operator expertise in the form of fuzzy rules;

 Automatic learning to refine the model over time.

figure 1 illustrates the general architecture of an ANFIS (Adaptive Neuro-Fuzzy Inference

System) type of neuro-fuzzy system, one of the most widely used models in the literature. 

Figure 1: ANFIS architecture [26] 

As shown in this figure, the neuro-fuzzy system combines a neural network and a fuzzy 

inference system. The inputs are fuzzified, the fuzzy inference engine applies the fuzzy rules, then 

the fuzzy outputs are defuzzified to obtain the final output of the system. 

2.2. Advantages of the Neuro-Fuzzy Approach for Equipment Reliability 

Compared to classical reliability optimization methods, the neuro-fuzzy approach has several 

advantages [9, 26, 37, 38]: 

 Robustness to uncertainty and lack of reliable historical data

Neuro-fuzzy systems are particularly well-suited to handle the uncertainty and imprecision inherent 

in reliability data, especially when failure histories are incomplete or unreliable. They allow 

leveraging the expertise of maintenance experts to compensate for these shortcomings. This can be 

modeled by equation 1: 

( , )R f X E (1) 

      where R represents reliability, X represents quantitative data, and E represents expert 

knowledge. 

      Based on the references cited previously, a comparison of the neuro-fuzzy approach and classical 

methods for reliability modeling in the presence of uncertainty is provided in table 2. 
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Table 2: Comparison of the neuro-fuzzy approach and classical methods for modeling reliability in the 

presence of uncertainty 

Criteria Classic methods Neuro-fuzzy approach 

Uncertainty management Limited High 

Use of experts' expertise Difficult Easy 

Adaptability to new cases Low High 

 Ability to identify complex relationships between reliability factors

Thanks to their neural architecture, neuro-fuzzy models are able to capture and model non-linear 

and complex interactions between the different parameters influencing the reliability of equipment. 

This allows for a more realistic representation of failure phenomena, as shown in equation 2: 

1 2( , ,..., )nR g x x x  (2) 

where 𝑥1, 𝑥2,…,𝑥𝑛  represent the different reliability factors. 

 Ability to integrate the expertise of maintenance experts

The neuro-fuzzy approach offers the possibility of directly incorporating the knowledge and 

expertise of maintenance experts in the form of fuzzy rules. This improves the relevance and 

reliability of the developed model, as shown in equation 3: 

         ( , , ')R h X E R   (3) 

where R' represents the reliability predicted by the neuro-fuzzy model. 

 Continuous improvement of the model through machine learning

Thanks to their learning capabilities, neuro-fuzzy systems can adapt and refine themselves 

progressively as new reliability data is collected. This allows for continuous optimization of 

reliability modeling and prediction, as shown in equation 4: 

 ( 1) ( ), ( 1)R t i R t X t    (4) 

         where R(t) and X(t+1) represent reliability and reliability factors at times t and t+1 respectively. 

2.3. Methodology for Developing the Neuro-Fuzzy Model 

The development of a neuro-fuzzy model for reliability optimization generally follows these steps 

[2, 26, 39]: 

Step 1: Identification of the relevant input and output variables for reliability 

 Analysis of the main factors influencing the reliability of equipment in a flour mill (e.g.

operating temperature T, workload C, maintenance quality M);

 Selection of input variables (predictors) X = [T, C, M] and output variables (reliability

indicators) Y = [MTBF, Failure rate λ].

Step 2: Definition of fuzzy sets and fuzzy rules based on domain expertise 

 Fuzzification of the input and output variables using membership functions μ(x);

For example, for the temperature T:

    2 2exp / 2low low lowT T T    (5)

    2
2exp / 2average average averageT T T    (6)

    2
2exp / 2high high highT T T    (7) 
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 Elicitation of fuzzy rules from the flour mill experts, in the form: If T is high and C is high

then λ is high.

Step 3: Design of the neural network architecture and learning on the data 

 Selection of a multilayer neural network with n inputs, p hidden neurons and q outputs:

  2 1 1 2y f W f W x b b      (8) 

 Collection and preparation of the historical reliability data [X, Y] for training

 Training by backpropagation of the gradient to minimize the mean squared error:

 
2

E y y   (9) 

Step 4: Integration of the fuzzy model and the neural network to obtain the neuro-fuzzy system

 Fuzzy inference to obtain the fuzzy outputs from the fuzzy inputs:

   ( ) ( ) /y x f x dx x dx     (10) 

 Optimization of the parameters of the neuro-fuzzy system (𝑊1,𝑊2, 𝑏1, 𝑏2, fuzzy rules) to

minimize E

Step 5: Testing and validation of the neuro-fuzzy model on independent data 

 Evaluation of the generalization capabilities on new reliability data

 Analysis of the robustness and accuracy of the neuro-fuzzy model (R², RMSE, etc.)

Step 6: Deployment of the model for optimizing the reliability of equipment 

 Integration of the neuro-fuzzy model into the maintenance decision-making processes;

 Monitoring of operational (MTBF, failure rate) and economic impacts.

3. Case study in a flour mill

3.1. Presentation of the company and the equipment system 

The case study was carried out at a large industrial flour mill located in the town of Ngaoundéré in 

Cameroon. The company produces over 30,000 tons of flour a year for the food industry. Its 

equipment includes milling, sifting, storage and packaging systems, spread over three production 

sites. figure 2 shows an overall drawing of the flour mill's at a production site. 

Figure 2: Overall diagram of a flour mill on a production site 
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3.2. Collection and analysis of reliability data 

Historical reliability data was collected from the maintenance department of the flour mill, covering 

a 5-year period (2020-2024). This data includes operating times, failure dates and maintenance 

actions carried out for each critical equipment in the system [40]. Analysis of this data allowed the 

calculation of reliability indicators such as mean time between failures (MTBF) and failure rates λ 

for each type of equipment [40, 41]. Table 3 presents an excerpt of the results of this analysis. 

Table 3: Reliability indicators for main milling equipment 

Equipment MTBF (hr) Failure rate λ (𝒉𝒓−𝟏) 

Grinder 1 2 500 0.0004 

Grinder 2 3 200 0.0003 

Sieve Shaker 1 1 800 0.0006 

Sieve Shaker 2 2 100 0.0005 

Silo 1 4 500 0.0002 

Silo 2 4 800 0.0002 

3.3. Development of the neuro-fuzzy model 

The development of the neuro-fuzzy model requires the following steps to be followed: 

Step 1: Identification of input and output variables 

After analyzing the main factors influencing the reliability of the flour mill's equipment [40], the 

input (predictors) and output (reliability indicators) variables were selected as follows: 

 Input variables X = [Operating temperature T (°C), Workload C (%), Maintenance quality M (%)]

 Output variables Y = [Mean time between failures MTBF (hr), Failure rate λ (ℎ𝑟−1)]

Step 2: Design of the neural network structure

A multi-layer neural network was chosen for its ability to approximate complex non-linear functions 

[26,42]. The network structure has 3 inputs (T, C, M), 2 hidden layers of 10 neurons each, and 2 

outputs (MTBF, λ), as illustrated in figure 3 [43-47]. 

Figure 3: Neural network architecture for the neuro-fuzzy model 

Step 3 : Definition of fuzzy rules 

In collaboration with the flour mill experts, 27 fuzzy rules have been defined to link the input 

variables to the output variables [9,39]. 

 If input A is Low and input B is Low, then the output is Low.

 If input A is Low and input B is Medium, then the output is Low.

 If input A is Low and input B is High, then the output is Medium.

 If input A is Medium and input B is Low, then the output is Low.

 If input A is Medium and input B is Medium, then the output is Medium.

 If input A is Medium and input B is High, then the output is High.

 If input A is High and input B is Low, then the output is Medium.
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 If input A is High and input B is Medium, then the output is High.

 If input A is High and input B is High, then the output is High.

 If input A is Low and input B is Low-Medium, then the output is Low.

 If input A is Low and input B is Medium-High, then the output is Medium.

 If input A is Low-Medium and input B is Low, then the output is Low.

 If input A is Low-Medium and input B is Medium, then the output is Low-Medium.

 If input A is Low-Medium and input B is High, then the output is Medium.

 If input A is Medium and input B is Low-Medium, then the output is Low-Medium.

 If input A is Medium and input B is Medium-High, then the output is High.

 If input A is Medium-High and input B is Low, then the output is Medium.

 If input A is Medium-High and input B is Medium, then the output is High.

 If input A is Medium-High and input B is High, then the output is High.

 If input A is High and input B is Low-Medium, then the output is Medium-High.

 If input A is High and input B is Medium, then the output is High.

 If input A is High and input B is Medium-High, then the output is High.

 If input A is Low-Medium, input B is Low-Medium, then the output is Low-Medium.

 If input A is Low-Medium, input B is Medium-High, then the output is Medium.

 If input A is Medium-High, input B is Low-Medium, then the output is Medium.

 If input A is Medium-High, input B is Medium-High, then the output is High.

 If input A is Low-Medium, input B is Low-Medium-High, then the output is Medium.

For example: 

 If Temperature T is High AND Load C is High, THEN Failure rate λ is High

 If Temperature T is Medium AND Load C is Low, THEN Mean Time Between Failures

MTBF is High

Step 4: Training and optimization of the model 

The training of the neural network was carried out by backpropagation of the gradient, with the 

objective of minimizing the mean square error between the predicted outputs and the real reliability 

values [X, Y] [48, 49]. This supervised learning method allows iteratively adjusting the weights of 

the neural network in order to progressively reduce the gap between the model's predictions and 

the historical reliability data. 

          In parallel, the parameters of the fuzzy rules were optimized in order to improve the 

consistency between the fuzzy inference and the neural network predictions [26, 50].  

     Optimization methods such as the least squares method or the genetic algorithm were used to 

find the optimal values of the parameters of the membership functions and the rules of the fuzzy 

knowledge base. 

         This iterative process of training the neural network and optimizing the fuzzy parameters has 

made it possible to converge towards a powerful neuro-fuzzy model, capable of combining the 

advantages of machine learning and fuzzy reasoning. The details of the final model structure and its 

performance are presented in the following section. 

4. Results and discussion

4.1. Optimization of equipment reliability using the neuro-fuzzy model 

4.1.1 Developed neuro-fuzzy model 

The neuro-fuzzy model was developed following the methodology described in Section 3.3. It takes 

as input the identified key operational parameters, such as: 

 Operating temperature of the motors;

 Pressure in the pneumatic system;

 Humidity level in the storage silos;
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 Frequency of filter cleaning.

The neuro-fuzzy model in question is given in figure 4.

Figure 4: Proposed ANFIS neuro-fuzzy model 

After implementing the developed neuro-fuzzy model as part of the case study, the following results 

are obtained, which we will comment on: 

 Information on the ANFIS model:

o Number of nodes: 34

o Number of linear parameters: 32

o Number of non-linear parameters: 18

o Total number of parameters: 50

o Number of training data pairs: 80

o Number of verification data pairs: 0
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o Number of fuzzy rules: 8

This information shows that the ANFIS model is of relatively moderate size, with 8 fuzzy rules and 

50 parameters to be adjusted. 

 Training results :

o The root mean square error (RMSE) of the training gradually decreases over the

epochs, going from 0.0181705 to 0.0164845 at the end of the training (50 epochs).

o The learning rate also decreases over the epochs, going from 0.9 to 0.282430 after 48

epochs.

These results show that the model improves over the course of the training, with a regular decrease 

in the error. The gradual decrease in the learning rate is also a good practice to stabilize the 

convergence. 

 Final training error :

o The final training RMSE is 0.0164845.

This training error seems relatively low, indicating that the model has learned the training data well. 

However, it would also be necessary to evaluate the model's performance on the test set to get a 

more complete picture of its generalization capability. 

Overall, the information provided shows that the neuro-fuzzy model has been implemented and 

trained appropriately. 

4.1.2 Parameter optimization 

Simulations were carried out with the neuro-fuzzy model to identify the optimal settings of the input 

parameters to maximize the overall system reliability. 

        figure 5 shows the evolution of the average equipment availability as a function of the motor 

operating temperature and the filter cleaning frequency. 

Figure 5: Optimizing availability 
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         We can see that a temperature between 45°C and 50°C and weekly filter cleaning allow reaching 

an availability of 92%, compared to only 85% with the initial settings. 

         Furthermore, table 4 presents the optimal values obtained for each input parameter, as well as 

their impact on the average MTBF and the system failure rate. 

Table 4: Optimal parameters and impact on reliability 

Parameter Optimum value MTBF average Failure rate 

Motor temperature 47°C 1500 hours 0.067% 

Pneumatic pressure 5.2 bar 1400 hours 0.071% 

Silo humidity 65% 1450 hours 0.069% 

Cleaning frequency Weekly 1600 hours 0.063% 

As indicated in table 4, the optimal values identified for the operational parameters allow 

significantly improving the system's reliability indicators: 

 The average MTBF increases from 1,300 hours with the initial settings to 1,600 hours with

the optimal settings, an increase of 23%.

 The average failure rate decreases from 0.077% to 0.063%, a decrease of 18%.

By combining these improvements, the average system availability increases from 85% with the

initial settings to 92% with the optimal settings, an increase of 8 percentage points. This demonstrates 

the effectiveness of the developed neuro-fuzzy model in identifying the optimal parameters to 

achieve high overall system reliability. 

4.2. Comparison with other optimization methods 

In order to evaluate the performance of the developed neuro-fuzzy model, we compared it to two 

other optimization methods commonly used in this field: the genetic algorithm (GA) and particle 

swarm optimization (PSO). 

4.2.1 Comparative results 

table 5 presents the results obtained for each of the three optimization methods, in terms of 

reliability, average MTBF and failure rate. The results presented in table 5 were obtained by 

implementing the Matlab code developed in figure 6. 

Table 5: Performance comparison of optimization methods 

Method Reliability MTBF average Failure rate 

Neuro-flou model 95% 1000 hours 0.1% 

Genetic algorithm (GA) 92% 950 hours 0.2% 

Particle swarm optimization (PSO) 93% 980 hours 0.15% 

We can see that the neuro-fuzzy model outperforms the other two methods in terms of 

reliability, reaching 95% compared to 92% for the GA and 93% for the PSO. Similarly, it achieves a 

higher average MTBF and a lower failure rate. 
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Figure 6: Matlab code developed to obtain Table 5 
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4.2.2 Analysis of the results 

These superior performances are explained by the neuro-fuzzy model's ability to better capture the 

complex relationships between the input parameters and the reliability indicators, thanks to its 

hybrid architecture combining fuzzy logic and neural networks. 

         Indeed, figure 7 illustrates the response surfaces obtained with the three methods for the impact 

of the motor temperature and the filter cleaning frequency on availability. 

Figure 7 : Comparison of Response Surfaces 

          We can see that the neuro-fuzzy model is more accurate in modeling these non-linear 

interactions. 

          In conclusion, these results demonstrate that the developed neuro-fuzzy model constitutes a 

more efficient approach for optimizing equipment reliability, offering significant gains in terms of 

availability, MTBF and failure rate compared to classical optimization methods. 

4.3. Sensitivity analysis and model validation 

4.3.1 Sensitivity analysis 

The sensitivity analysis was performed by varying each input parameter by ±20% around its 

reference value, while keeping the other parameters constant. 

 The results of this analysis are presented in table 6. 

Table 6: Sensitivity analysis of input parameters 

Parameter Variation of -20% Reference value 20% increase 

Temperature (°C)) 87.2% 92.0% 85.4% 

Cleaning frequency (per 

day) 

90.3% 92.0% 89.1% 

Failure rate 88.7% 92.0% 87.4% 

Repair time 91.3% 92.0% 90.1% 

         These results show that the parameter with the greatest influence on system availability is 
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temperature, followed by cleaning frequency. The failure rate and repair time have a less significant 

impact. 

4.3.2 Model validation 

To validate the developed model, the model results were compared to the actual availability data 

measured in the field. figure 8 presents this comparison for different operating conditions. 

Figure 8: Comparison of model results with real data 

        figure 8 shows generally good agreement between the behavior predicted by the model and the 

experimental results. 

        Indeed, we can observe that the general trend of the model curves follows well that of the points 

representing the real data. This indicates that the model correctly captures the dynamics and 

variations of the system as a function of the different operating conditions. 

Furthermore, the observed differences, although sometimes exceeding 5% in certain cases, remain 

within a relatively reasonable range, not exceeding 7 percentage points. This suggests that the model 

provides a satisfactory representation of reality, with an acceptable margin of error. 

        Overall, this figure demonstrates that the developed model is generally valid and can be used 

with good confidence to predict the behavior of the system, while keeping in mind that larger 

individual deviations may occur in certain specific conditions. 

        In its current state, we can consider that the model has satisfactory validity in view of the 

experimental results represented in this figure. 

In conclusion, the sensitivity analysis made it possible to identify the most influential parameters on 

system availability, namely temperature and cleaning frequency. Furthermore, the validation of the 

model by comparison with real data has confirmed the reliability of the developed model for 

predicting system availability. 
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4.4. Operational and economic impacts of the proposed approach 

The analyses carried out in the previous sections made it possible to evaluate the technical 

performance of the developed model. In order to have a more complete view, it is also important to 

examine the potential operational and economic impacts of this approach. 

4.4.1 Operational impacts 

       table 7 summarizes the main operational indicators compared between the current approach 

and the proposed approach. 

Table 7: Comparison of key operational indicators between the current and proposed approaches 

Indicator Current approach Proposed approach Variation 

Average diagnosis 

time 

45 minutes 28 minutes -37.8%

Diagnostic success 

rate 

85% 92% +8.2 pts

Number of corrective 

maintenance visits 

12 per year 8 per year -33.3%

Average downtime 3.2 hours 1.9 hours -40.6%

       As shown in this table, the proposed approach would allow for significant improvements on all 

key operational indicators: 

 37.8% reduction in average diagnostic time;

 8.2 percentage point increase in diagnostic success rate;

 33.3% decrease in the number of corrective maintenance visits;

 40.6% reduction in average downtime.

These operational gains would result in a notable improvement in the availability and reliability

of the system for end users. 

4.4.1.1 Economic impacts 

To assess the economic impact, we modeled the costs over a 5-year horizon, taking into account the 

following elements: 

 Initial investment costs in the development of the proposed approach;

 Annual maintenance and operating costs;

 Savings achieved through operational gains.

figure 9 shows the evolution of the cumulative costs over 5 years for the current approach and

the proposed approach. 
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Figure 9 : Cumulative costs over 5 years 

         As can be seen, although the initial investment is higher for the proposed approach, the savings 

generated by the operational gains make it possible to exceed the breakeven point as early as the 3rd 

year. Over the entire 5-year period, the proposed approach would represent cumulative savings 

compared to the current approach. 

        In conclusion, the analysis of operational and economic impacts demonstrates that the proposed 

approach brings tangible benefits in terms of technical performance, reliability and long-term costs. 

These results confirm the relevance and viability of this innovative solution. 

5. Conclusion

This work has demonstrated the effectiveness of the neuro-fuzzy approach for optimizing the 

reliability of equipment in the specific context of a flour mill. The developed model has significantly 

improved the prediction of failures and the optimization of maintenance interventions, resulting in 

substantial performance and profitability gains. The sensitivity analysis confirmed the robustness 

and reliability of the model, which outperforms traditional optimization methods. This approach 

offers better consideration of the complexity and uncertainty inherent in equipment reliability 

management. Despite these encouraging results, the study presents certain limitations opening the 

way for improvement prospects, such as extension to other industrial sites, integration of additional 

contextual data or automation of certain steps. This work makes a significant contribution to 

improving the management of industrial equipment reliability, opening interesting prospects for 

industrialists and providing avenues for future methodological developments for researchers. 
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Abstract

In today’s fast-changing technological environment, the number of Internet-connected devices has grown
significantly, raising the risk of cybersecurity threats for both individuals and organizations. Network
Intrusion Detection Systems (NIDS) have become vital tools for protecting networks from these increasing
threats. This paper presents a GWO-SOMNN approach (Gray Wolf Optimization with Self-Organizing
Map Neural Network) that combines Grey Wolf Optimization (GWO), Self-Organizing Maps (SOM)
and Neural Networks (NN) for feature selection and classification on the UNSW-NB15 dataset. The
proposed method leverages GWO to optimize feature selection, reducing the dataset’s dimensionality and
computational load, while SOM is employed for clustering and visualizing high-dimensional data. Neural
Networks are then used for effective classification of network attacks. The GWO-SOMNN approach is
evaluated on the UNSW-NB15 dataset, and its performance is measured in terms of 97.18% accuracy
and 97.15% F1-score for binary classification and 82.41% accuracy and 78.92% F1-score for multiclass
classification. The results demonstrate significant improvements over traditional methods, particularly
in enhancing the classification of both binary and multi-class network attacks. These findings highlight
the potential of this integrated approach in developing more efficient and accurate network intrusion
detection systems.

Keywords: Grey Wolf Optimization, Neural Networks, Self-Organizing Maps, Classification,
Intrusion Detection, reliability

1. Introduction

In this section, a brief background introductory note relating to the development and evaluation
of a hybrid approach combining Grey Wolf Optimization (GWO), Self-Organizing Maps (SOM),
and Neural Networks (NN) for enhanced feature selection and classification in UNSWNB-15
datasets is presented in brief. In the rapidly evolving landscape of UNSWNB-15, the ability to
efficiently and accurately detect threats and intrusions is paramount [1]. As cyber-attacks become
more sophisticated, traditional methods of threat detection struggle to keep up. This research
focuses on enhancing the detection and classification of cyber threats through the development
and evaluation of a novel hybrid approach that integrates GWO, SOM, and NN. Feature selection
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plays a critical role in UNSWNB-15, as the enormous volume of data produced by network
systems can overcome traditional detection mechanisms [2]. By identifying the most relevant
features, we can reduce the complexity and improve the performance of classification algorithms.
GWO, a nature-inspired metaheuristic algorithm, offers a promising solution for optimal feature
selection due to its simplicity and efficiency [3].

In the digital era, cybersecurity attacks have escalated in both frequency and sophistication,
presenting substantial risks to individuals, businesses, and governments alike. This surge in cyber
threats is closely linked to the increasing dependence on technology, the widespread adoption
of Internet of Things (IoT) devices, and the exponential growth of online data. Cybercriminals
exploit vulnerabilities in networks and systems, targeting sensitive information and launching
attacks such as ransomware, data breaches, phishing, and distributed denial-of-service (DDoS).
These incidents can occur unexpectedly, leading to operational disruptions, financial loss, and
reputational damage.

An Intrusion Detection System (IDS) is a crucial cybersecurity tool that monitors network
traffic and system activities for malicious activities or policy violations. It can be categorized into
Network-based IDS (NIDS) and Host-based IDS (HIDS). IDS helps identify vulnerabilities within
the network or system, providing alerts to administrators to mitigate risks. It also maintains the
integrity and confidentiality of sensitive data, reducing the likelihood of data breaches. IDS is a
crucial element of a multi-layered security strategy, working with firewalls, antivirus software,
and other security measures to protect against evolving cyber threats. As technology evolves,
new and advanced attacks emerge, exploiting weaknesses in hardware, software, and human
behavior. Zero-day exploits, IoT devices, botnets, and remote work increase the attack surface.
Advanced persistent threats (APTs) and ransomware attacks are also growing. Organizations
must stay vigilant and proactive in their cybersecurity efforts, including regular software updates,
multi-layered security strategies, and employee education on best practices.

The integration of GWO, SOM, and NN in our GWO-SOMNN approach offers several ad-
vantages. GWO ensures optimal feature selection, reducing dimensionality and computational
complexity. SOM aids in clustering and visualizing the selected features, enhancing interpretabil-
ity. NN provides robust classification, leveraging the refined feature set for accurate threat
detection. This research contributes to the field of UNSWNB-15 by proposing a novel method
for feature selection and classification. By combining the strengths of GWO, SOM, and NN,
we aim to develop a solution that addresses the limitations of traditional methods and offers
improved performance. The results of our evaluation demonstrate the potential of the hybrid
approachto attain a high degree of categorization precision and provide a robust solution for
network intrusion detection.

The remaining part of the paper is structured as follows: The prior research on anomaly
detection with machine learning techniques is covered in Section 2. The data set is described in
Section 3. The proposed hybrid approach presented in Section 4. After outlining the experimental
parameters and performance metrics, Section 5 presents results and discussion of proposed GWO-
SOMNN approach with the state-of-the-art methods, and Sections 6 and 7 present conclusions
and future work plans, respectively.

2. Related Work

In the literature, numerous models for intrusion detection have been presented. This section
covers a number of deep learning, machine learning, and data mining-based intrusion detection
models.

In a novel approach, a weight embedding autoencoder was proposed by authors in [4] to
enhance feature representation in network intrusion detection systems. This method facilitates
the sharing of feature representations between the autoencoder and classifier, leading to improved
detection accuracy. Their experiments on the NSL-KDD and UNSW-NB15 datasets demonstrate
the model’s effectiveness, with accuracy improvements of up to 2.8% on UNSW-NB15 and
0.5% on NSL-KDD. An IDS framework was implemented by by authors in [5], utilizing various
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Recurrent Neural Networks (LSTM, GRU, and Simple RNN) to enhance network security. To
improve detection accuracy, they applied an XGBoost-based feature selection algorithm on the
NSL-KDD and UNSW-NB15 datasets. Their results indicate that XGBoost-LSTM achieved the
best performance in binary classification, while XGBoost-GRU performed well for multiclass
classification on these datasets.

An intrusion detection model was proposed by authors in [6], utilizing an Improved Social
Network Search (ISNS) algorithm to optimize the BP neural network. By incorporating chaotic
mapping and an elite mechanism into the original SNS algorithm, they successfully mitigated
the BP network’s tendency to get trapped in local optima. The optimized model, ISNS_BP,
demonstrated superior classification accuracy on the NSL-KDD and UNSW-NB15 datasets,
achieving 98.62% and 93.97%, respectively. A novel approach for uncertainty quantification in
anomaly detection was introduced by authors in [7], using Bayesian Autoencoder (BAE) models.
Their method incorporates heteroscedastic aleatoric uncertainty modeling, jointly accounting for
both aleatoric and epistemic uncertainties. Applied to cybersecurity datasets such as UNSW-NB15
and CIC-IDS-2017, this framework enhances the trustworthiness of anomaly predictions, reducing
false positives and improving decision-making in cybersecurity.

A hybrid method for anomaly detection in IoT devices, called CNN-BMECapSA-RF, was
implemented by [8]. This approach combines a convolutional neural network (IoTFECNN) for
feature extraction and a binary multi-objective Capuchin Search Algorithm (BMECapSA) for
feature selection. Tested on the NSL-KDD and TON-IoT datasets, it achieved high accuracy rates of
99.99% and 99.85%, respectively, by identifying 27% and 44% of relevant features, outperforming
existing deep learning and machine learning-based approaches. In another study, [9] proposed a
novel intrusion detection approach, LR-ABC, which combines logistic regression (LR) with the
artificial bee colony (ABC) algorithm for hyper-parameter optimization. The model improves the
accuracy and reliability of network intrusion detection systems (NIDS) by addressing limitations
in metrics such as accuracy, F1-measure, and false positives. Tested on the UNSW-NB15 and NSL-
KDD datasets, the LR-ABC model achieved accuracy scores of 88.25% and 90.11%, respectively,
demonstrating its effectiveness in enhancing detection systems.

Additionally, [10] introduced a hybrid Hunger Games Search and Remora Optimization
Algorithm (HHGS-ROA) to tackle security issues in IoT networks. This model enhances the
performance of intrusion detection systems by extracting relevant features from the Aegean Wi-Fi
Intrusion Dataset (AWID) and classifying network traffic as either normal or malicious using an
SVM classifier. The approach outperformed existing methods, achieving high accuracy (99.16%)
and a low false-positive rate (0.20%), along with improved metrics such as precision, recall, and
F1 score.

3. Dataset Description

The UNSW-NB15 dataset was utilized in this study to detect and classify network intrusions. It
contains both normal and abnormal network traffic, with a total of nine categories representing
different types of attacks alongside normal traffic. These categories include Denial of Service
(DoS), Reconnaissance, Exploits, Backdoors, Fuzzers, Generic attacks, Analysis, Shellcode, and
Worms, offering a diverse and comprehensive range of attack patterns for effective evaluation of
intrusion detection systems (IDS). The distribution of training and testing set of UNSW-NB15
data set is shown in Table 1 [11].
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Table 1: Class distribution of UNSW-NB15

Symbols Set Size

Type Name Training Set Testing Set

0 Normal 56,000 37,000
1 Backdoor 1,746 583
2 Analysis 2,000 677
3 Fuzzers 18,184 6,062
4 Shellcode 1,133 378
5 Reconnaissance 10,491 3,496
6 Exploit 33,393 11,132
7 DoS 12,264 4,086
8 Worms 130 44
9 Generic 40,000 18,871

The dataset consists of 49 features that describe various aspects of the network traffic. These
features were generated using twelve distinct algorithms applied to the raw traffic captured by
the TCP dump tool. This diverse set of features makes the UNSW-NB15 dataset suitable for
assessing the performance of machine learning and deep learning models in the field of intrusion
detection. The dataset provides a challenging environment for anomaly detection, offering a
balanced representation of modern attack types in network security research.

4. Proposed GWO-SOMNN Approach

In this section, we present the GWO, SOM and NN, a hybrid approach along with how do we
evaluate the entire process which is shown in fig 1. The proposed GWO-SOMNN approach
integrates GWO for feature selection and SOM combined with NN for classification. The GWO
is employed to optimize feature subsets, enhancing the model’s efficiency by selecting the most
relevant features from the UNSW-NB15 dataset. Subsequently, SOM visualizes the data patterns
while the Neural Network accurately classifies it into attack or normal categories, ensuring a
robust intrusion detection mechanism. In this research, each component GWO, SOM, and NN
plays a specific role in detecting and classifying intrusions. A detailed explanation of their roles
is presented.

4.1. Grey Wolf Optimization

GWO is inspired by the hierarchical social structure and hunting behavior of grey wolves (Canis
lupus). In this optimization algorithm, the population of candidate solutions is categorized into
four main groups based on their leadership hierarchy: alpha (α), beta (β), delta (δ), and omega
(ω).

• Alpha wolves (α) are considered the most dominant and lead the pack. They are responsible
for decision-making and guiding the hunting process.

• Beta wolves (β) hold the second rank and assist the alpha in decision-making while also
enforcing the alpha™s commands within the pack.

• Delta wolves (δ) are subordinate to both alpha and beta but rank higher than omega wolves.
This group includes hunters, scouts, and sentinels. Hunters are responsible for locating
prey and providing food for the pack. Scouts monitor the surroundings for threats, while
sentinels ensure the pack’s safety.
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Figure 1: GWO-SOMNN Approach for IDS

• Omega wolves (ω) are the lowest in the hierarchy. They play a crucial role in maintaining
pack structure by following orders from the other groups, especially during hunting
activities.

The hierarchical structure ensures that information from the environment is processed and
actions are taken efficiently, allowing the wolves to hunt successfully.

GWO mimics this natural hunting mechanism, where the wolves encircle their prey during
the hunt. The position of the prey (optimal solution) is estimated by the leading wolves (α, β, and
δ), while the remaining wolves update their positions relative to these leaders. The behavior of
encircling prey can be mathematically modeled using the following equations [12]:

#»

F (t + 1) =
#»

F p(t)−
#»

A · #»

D (1)

#»

D =
∣∣∣ #»

C · #»

F p(t)−
#»

F (t)
∣∣∣ (2)

Where
#»

F p(t) represents the position of the prey,
#»

F (t) is the position of a grey wolf, and
#»

A and
#»

C are coefficient vectors used to simulate the encircling behavior. These vectors are calculated as
follows:

#»a = 2 − t
(

2
Maxiter

)
(3)

#»

A = 2 #»a · #»r 1 − #»a (4)
#»

C = 2 #»r 2 (5)
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Where t is the current iteration, Maxiter is the maximum number of iterations, and #»r 1 and #»r 2
are random vectors in [0,1].

The algorithm proceeds by iteratively updating the positions of the wolves, with the alpha,
beta, and delta wolves guiding the optimization process. Over time, the wolves converge toward
the optimal solution, mimicking the grey wolves’ real-life hunting strategy.

GWO algorithm, the natural hunting strategy of grey wolves is emulated to optimize search
processes. Grey wolves typically locate and encircle their prey, led by the alpha wolf, with the
beta and delta occasionally assisting, adding a layer of complexity as the prey™s exact location
within the search space is often unknown. In GWO, this behavior is simulated by treating the
alpha, beta, and delta wolves as having the most accurate knowledge of the prey’s whereabouts,
making them the primary guides in the search. The remaining wolves, including omegas, adjust
their positions based on the guidance from these top three wolves. The algorithm keeps these top
three candidate solutions at the forefront of the process and dynamically adjusts the positions of
all other wolves through a following set of equations, effectively simulating the encircling and
attacking phases of wolf hunting [13].

#»

Dα =
∣∣∣ #»

D1 ·
#»

F α −
#»

F
∣∣∣ (6)

#»

Dβ =
∣∣∣ #»

D2 ·
#»

F β −
#»

F
∣∣∣ (7)

#»

Dδ =
∣∣∣ #»

D3 ·
#»

F δ −
#»

F
∣∣∣ (8)

#»

F 1 =
#»

F α −
#»

A1 ·
#»

Dα (9)
#»

F 2 =
#»

F β −
#»

A2 ·
#»

Dβ (10)
#»

F 3 =
#»

F δ −
#»

A3 ·
#»

Dδ (11)

#»

F (t + 1) =
#»

F 1 +
#»

F 2 +
#»

F 3

3
(12)

In the GWO algorithm, the equations above describe the process by which the positions of grey
wolves (potential solutions) are updated based on the positions of the three leading wolves”alpha
(

#»

F α), beta (
#»

F β), and delta (
#»

F δ). In this model, the grey wolves encircle their prey, represented by
the optimal solution.

The first set of equations calculates the distance vectors (
#»

Dα,
#»

Dβ, and
#»

Dδ) between the current
wolf’s position (

#»

F ) and each of the leading wolves (
#»

F α,
#»

F β, and
#»

F δ), adjusted by dynamic
coefficients (

#»

D1,
#»

D2, and
#»

D3) to control the movement towards these leaders.
Subsequently, the positions of the wolves (

#»

F 1,
#»

F 2, and
#»

F 3) are updated by subtracting a
second set of coefficients (

#»

A1,
#»

A2, and
#»

A3) scaled by the distance vectors. Finally, the new
position of each grey wolf (

#»

F (t + 1)) is calculated as the average of the positions derived from the
three leaders, ensuring that the wolves converge towards the prey, which represents the optimal
solution in the search space. This process is repeated iteratively until convergence is achieved.

In this implementation of the GWO algorithm for feature selection, two primary parameters
are adjusted: ‘SearchAgents_no‘ and ‘Max_iter‘. The ‘SearchAgents_no‘ is set to 5, indicating
the number of grey wolves (agents) used to explore the search space, which directly affects the
diversity of potential solutions. The ‘Max_iter‘ parameter is set to 100, controlling the maximum
number of iterations for the optimization process, ensuring a balance between computational
cost and optimization depth. Additionally, upper (‘ub‘) and lower (‘lb‘) bounds for the feature
selection space are defined, allowing features to be represented as binary values (0 or 1). The
exploration-exploitation balance is controlled through the ‘a‘ parameter, which linearly decreases
over iterations, guiding the wolves’ movements from global exploration to local exploitation.
Random vectors ‘r1‘ and ‘r2‘ introduce variability, making the search process robust by allowing
each wolf to update its position relative to the best (Alpha), second-best (Beta), and third-best
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Table 2: The list of features selected by GWO

Feature Information
Sr. No Feature Number Feature Name

1 1 dur
2 2 proto
3 3 service
4 7 sbytes
5 8 dbytes
6 9 rate
7 11 dttl
8 12 sload
9 17 dinpkt

10 20 swin
11 25 synack
12 27 smean
13 28 dmean
14 30 response_body_len
15 33 ct_dst_ltm
16 34 ct_src_dport_ltm
17 35 ct_dst_sport_ltm
18 38 ct_ftp_cmd
19 43 label

(Delta) solutions. This configuration ensures that the algorithm efficiently searches for the most
optimal subset of features.

GWO selected key features in Table 2 based on network flow characteristics for enhancing
classification performance. These features include attributes like connection duration, protocol
types, data rate, and packet statistics. Features such as source-to-destination transaction bytes,
TCP window advertisement, and SYN-ACK flags are critical in identifying attack patterns. This
optimized feature subset enables a more efficient and accurate detection of network intrusions.

4.2. Self-Organizing Maps

SOMs are widely used for grouping and displaying high-dimensional data in a lower-dimensional
area [14].

The SOM algorithm begins with the initialization of a weight matrix, which is randomly
assigned and represents the position of each neuron within the input feature space. The algorithm
iteratively maps data points to the SOM grid, identifying the "best matching unit" (BMU), or
winner neuron, for each input. The weights of the BMU and its neighboring neurons are
then adjusted, bringing them closer to the input data point. This iterative process allows the
SOM to progressively refine its mapping and organization of the data. SOMs are particularly
advantageous in exploratory data analysis, offering researchers the capability to uncover latent
patterns or groupings within complex datasets. Additionally, SOMs serve as a robust tool for data
visualization, enhancing the interpretability and analysis of data across various fields, including
bioinformatics, finance, and marketing.

Initialization: For each input vector
#»

W(i,j) for each neuron (i, j)
Training:For each input vector #»x :
Find Best Matching Unit (BMU): Here, we use the BMU model as:

BMU = arg min
i,j

∥ #»x − #»

Wi,j∥ (13)

#»

Wi,j(t + 1) =
#»

Wi,j(t) + θ(t, i, j) · α(t) · ( #»x − #»

Wi,j(t)) (14)

RT&A, No 1 (82) 
Volume 20, March 2025 

889



Ms. Archana Gondalia, Dr. Apurva Shah
ENHANCING INTRUSION DETECTION SYSTEM RELIABILITY
USING GWO-SOMNN

where, θ(t, i, j) is the neighborhood function, which decreases over time. α(t) is the learning rate,
which also decreases over time.

After selecting the optimal features using the GWO algorithm, a SOM is employed to visualize
and further process the selected data. In this implementation, the SOM is initialized with a 5x5
grid (‘x=5, y=5‘) to create a map of neurons that represents the input space. The ‘input_len‘
parameter is dynamically set to match the number of features selected by GWO, ensuring that
each neuron can accommodate the reduced feature set. The ‘sigma‘ parameter, which controls the
radius of influence for each neuron during the learning process, is set to 1.0, allowing a moderate
neighborhood influence on the weight updates. The learning rate is initialized at 0.5, guiding the
network’s convergence speed as it adapts to the data. The SOM is trained using random samples
from the training set for 25 iterations, facilitating the clustering and visualization of attack and
normal data in an unsupervised manner. This approach allows the model to discover inherent
patterns in the dataset and enhances its ability to differentiate between attack and normal classes.

4.3. Neural Networks

NNs represent a fundamental element of contemporary artificial intelligence, drawing inspiration
from the structure and function of the human brain. These networks consist of multiple layers
of interconnected neurons that process input data, enabling the system to learn and recognize
patterns[15].

We have used the Multilayer Perceptron (MLP) neural network in our work, which is a
fundamental type of artificial neural network, characterized by its feedforward architecture,
where data flows in one direction”from the input layer through one or more hidden layers to the
output layer. This structure makes MLPs particularly effective for supervised learning tasks, such
as classification and regression. The MLP begins with an input layer, which serves as the entry
point for the data. Each neuron in this layer corresponds to a specific feature of the input data.
In our data set out of 45 features, the GWO algorithm has selected 19 features for binary and
multiclass classification, so the input layer will have 19 neurons, each representing one of those
features. Following the input layer with one or more hidden layers. These layers are the core of
the MLP, where the actual computation and learning take place. Each neuron in a hidden layer is
connected to every neuron in the previous layer, forming a fully connected network. The neurons
in the hidden layers perform computations by applying a weighted sum of the inputs from the
previous layer, followed by an activation function ReLU (Rectified Linear Unit), which introduces
non-linearity to the model. The Fig. 2 and 3 gives the NN diagram for binary classification and
multiclass classification respectively.

Figure 2: Multilayer Perceptron Neural network dia-
gram for binary classification

Figure 3: Multilayer Perceptron Neural network dia-
gram for multi class classification

The final layer of the MLP is the output layer, which produces the model’s predictions
or classifications based on the processed data. The number of neurons in the output layer
corresponds to the number of possible outputs. For binary classification, the output layer has
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two neuron with a Sigmoid activation function to produce a probability score and multi-class
classification has also used softmax activation function with multiple neurons, one for each class.
The forward propagation process in an MLP involves passing the input data through the network,
layer by layer. Each neuron computes a weighted sum of its inputs, applies the activation function,
and passes the result to the next layer, culminating in the output layer’s final prediction.

The neural network model is constructed using TensorFlow™s Keras library and consists of
three layers, three dense (fully connected) layers. The number of parameters in the neural network
depends on the sizes of these layers and the input size. We chose the size of the neural network
(128, 64, 2) is shown in Table 3. The first dense layer has 128 neurons, with parameters calculated
as 128 — input_len™ + 128 (weights plus biases). The second dense layer has 64 neurons, with
parameters 128 — 64 + 64 = 8,256. The output layer, with 2 neurons for binary classification,
has parameters 64 — 2 + 2 = 130. Thus, the total parameters in the neural network are 128 —
input_len™ + 8,514, where input_len™ describes the number of selected features with GWO
algorithm. Here, 19 optimal features are selected by applying the GWO algorithm, so 10,946 total
parameters are used in the neural network.

Table 3: Model Architecture and Parameters

Layer Type Output Shape Activation Parameters

Input Layer 19 - 0
Dense 128 ReLU 3,072
Dropout 0.5 - -
Dense 64 ReLU 8,256
Dropout 0.5 - -
Dense 2 Sigmoid 130

Total Parameters 10,946

Table 4: Model Architecture and Parameters

Layer Type Output Shape Activation Parameters

Input Layer 19 - 0
Dense 256 ReLU 4,352
Dropout 0.5 - 0
Dense 128 ReLU 32,896
Dropout 0.5 - 0
Dense 10 Softmax 1,290

Total Parameters 39,306

Similary, for multi-class classification, we chose neural network size (256, 128, 10) is shown in
table 4. The first dense layer has 256 neurons, with parameters calculated as 256 — input_len™ +
256 (weights plus biases). The second dense layer has 128 neurons, with parameters 256 — 128 +
128 = 32,896. The output layer, with 10 neurons for muticlass classification, has parameters 128 —
10 + 10 = 1290. Thus, the total parameters in the neural network are 256 — input_len™ + 34,442,
where input_len™ describes the number of selected features with GWO algorithm. Here, 19
optimal features selected by applying GWO algorithm so 39,306 total parameters used in neural
network.
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5. Results and Discussion

In this research, the proposed method implemented in the Google Colab environment, the
developed code was run & the simulation results were observed and displayed for UNSWNB15
Binary Classification as well as for Multiclass Classifications, the results are specified separately.

5.1. Evaluation Metrics

The following metrics are used to assess the proposed hybrid approach: accuracy, precision, recall
and F-measure. The following defines each measure:

• - Accuracy represents the proportion of correctly classified records out of the total dataset.

• Precision refers to the percentage of correctly identified anomalies among all records
predicted to be anomalies.

• Recall, also known as the True Positive Rate or detection rate, is the percentage of actual
anomalies that were correctly classified.

• F-measure is a metric that balances both precision and recall, providing a single performance
measure.

5.2. Results

The experiment was conducted using the UNSW-NB15 dataset, with the GWO algorithm applied
to select optimal features, SOM for data visualization, and MLP NN for classification. In Tables 5,
the following abbreviations are used: NU (Number of hidden Units), TAC (Training Accuracy),
VAC (Validation Accuracy), ET (Execution Time), and TEC (Testing Accuracy).

The experiment was performed in two phases. In the first phase, for binary classification, the
GWO algorithm selected various features based on the SOM grid size of 5x5, adjusted according
to the 3 hidden units. The activation functions used for the dense layers were ReLU, ReLU and
Sigmoid. Additionally, the training time (in seconds) was recorded for each model.

The following hyperparameters were used for binary classification:

• Loss function: ‘binary_crossentropy‘

• Optimizer: ‘adam‘ (an extension of Stochastic Gradient Descent)

In the second phase, for multiclass classification, the GWO algorithm selected different
features, and a SOM grid size of 5x5 was used based on varying hidden units. The following
hyperparameters were used for Multiclass Classification:

• loss =’sparse_categorical_crossentropy’

• optimizer = ’adam’‘ (an extension of Stochastic Gradient Descent).

Table 5: Performance metrics of the proposed GWO-SOMNN approach for Binary and Multiclass Classification

Classification NU
TAC
(%)

VAC
(%)

ET
(Sec)

Testing
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Binary 128,64,2 97.24 97.18 466.29 97.18 97.24 97.18 97.15
Multiclass 256,128,2 82.41 82.33 43.247 82.33 76.60 82.33 78.92

Table 5 presents the performance metrics of the proposed Grey Wolf Optimization combined
with Self-Organizing Map and Neural Network (GWO-SOMNN) approach for both binary and
multiclass classification tasks. For binary classification, the model achieved a TAC of 97.24%, VAC
of 97.18%, and required 466.29 seconds of execution time. The Testing Accuracy, Precision, Recall,
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and F1-Score for binary classification were 97.18%, 97.24%, 97.18%, and 97.15%, respectively. For
multiclass classification, the model achieved a TAC of 82.41%, VAC of 82.33%, and the execution
time was 43.247 seconds. The Testing Accuracy, Precision, Recall, and F1-Score for multiclass
classification were 82.33%, 76.60%, 82.33%, and 78.92%, respectively. These results indicate that
the GWO-SOMNN approach performs better in binary classification compared to multiclass
classification, especially in terms of accuracy and precision. Evaluation measures for Binary and
multiclass classification is presented in Figure 4 and 5 respectively.

Figure 4: Evaluation measures of Binary Classification
Figure 5: Evaluation measures of Multiclass Classifica-

tion

5.3. Confusion Matrix

For each model, a Confusion Matrix (CM) was generated to evaluate the model’s performance on
individual classes within the datasets. In Figure 6, class 0 represents normal traffic, and class 1
represents attacks. In Fig. 5, the classes are defined as: class 0 = Normal, class 1 = Generic, class 2
= Exploits, class 3 = Fuzzers, class 4 = DoS, class 5 = Reconnaissance, class 6 = Analysis, class 7 =
Backdoor, class 8 = Shellcode, and class 9 = Worms.

Figure 6: Binary Class Confusion Matrix
Figure 7: Multiclass Confusion Matrix

The GWO-SOMNN approach in Figure 6 correctly classified 23,768 benign instances and
10,313 malicious instances. However, some false negatives were observed, with 887 benign
instances misclassified as malicious, alongside 101 false positives, where malicious instances were
incorrectly classified as benign. In Figure 7, the confusion matrix reflects the GWO-SOMNN
approach’s performance across individual classes of the UNSW-NB15 dataset. The multiclass
confusion matrix shows varying performance across different classes. Based on the confusion
matrix, the approach correctly predicted classes such as Fuzzers (label 6), which demonstrated
high precision with minimal misclassifications. Similarly, Normal traffic (label 5) was also
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predicted with strong accuracy, as evidenced by the dense diagonal and almost no off-diagonal
entries.

However, certain attack types, such as Generic (label 3) and Exploits (label 2), were more
challenging for the model to classify accurately. The confusion matrix shows considerable
misclassification for these attacks, where instances of Generic were confused with Exploits, and
vice versa. This misclassification can be attributed to the overlapping feature patterns between
these attack types, as both may share similar network characteristics, making it harder for the
model to differentiate them effectively. Moreover, Reconnaissance (label 4) also exhibited some
degree of misclassification, potentially due to its similarity in network behavior to other less
specific attack types.

5.4. Discussion

For the binary classification, Table 6 compares the proposed methodology (PM) with other
research approaches. The proposed GWO-SOMNN approach achieved a significant accuracy
of 97.65% using 19 selected features. In contrast, previous methods such as Weight Embedding
AutoEncoder with Convolutional Neural Network (CNN) and Multi-Layer Neural Network
(MLNN) showed lower accuracies of 79.49% and 80.39%, respectively with 42 features. Other
approaches like XGBoost variants (LSTM, GRU, Simple-RNN) demonstrated accuracies ranging
from 85.08% to 87.07% with 17 features, whereas the Multivariate Correlations Analysis with Long
Short-Term Memory (MCA-LSTM) with 14 features and Feed-Forward Deep Neural Network
(FFDN) with 18 features achieved accuracies of 88.1% and 87.1%, respectively. The proposed
approach clearly outperforms these methods in terms of accuracy for binary classification.

Table 6: Comparison of Binary Classification

Author Method Accuracy (%)

[16]
Weight Embedding AutoEncoder with a
Convolutional Neural Network (WE-AE CNN)

79.49

[16]
Weight Embedding AutoEncoder with a
Multi-Layer Neural Network (WE-AE DNN)

80.39

[17] XGBoost-LSTM 85.08
[17] XGBoost-GRU 88.42
[17] XGBoost-Simple-RNN 87.07

[18]
Multivariate Correlation Analysis “
Long Short-Term Memory Network (MCA-LSTM)

88.1

[19] Feed-Forward Deep Neural Network (FFDN) 87.1
PM GWO-SOMNN Approach 97.65

For multiclass classification, as shown in Table 7, the proposed hybrid approach also outper-
forms other methods, achieving an accuracy of 82.41% with 19 selected features. In comparison,
Weight Embedding AutoEncoder with CNN and MLNN reached accuracies of 74.19% and 73.01%,
respectively with 42 features, while XGBoost-GRU with 17 features and FFDN with 18 features
yielded accuracies of 78.4% and 77.16%. Thus, the proposed GWO-SOMNN approach shows an
improvement in multiclass classification accuracy, demonstrating its effectiveness in handling
complex, real-world datasets.

6. Conclusion

This research introduced a hybrid approach integrating Grey Wolf Optimization (GWO), Self-
Organizing Maps (SOM), and Neural Networks (NN) to enhance feature selection and classifica-
tion for intrusion detection using the UNSW-NB15 dataset. The main goal was to optimize feature
selection and clustering to improve the performance of intrusion detection systems. By leveraging
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Table 7: Comparison of Multiclass Classification

Author Method Accuracy (%)

[16]

Weight Embedding
AutoEncoder with a
Convolutional Neural
Network (WE-AE CNN)

74.19

[16]

Weight Embedding
AutoEncoder with a
Multi-Layer Neural
Network (WE-AE DNN)

73.01

[17] XGBoost-GRU 78.4

[19]
Feed-Forward Deep
Neural Network (FFDN)

77.16

PM GWO-SOMNN Approach 81.53

GWO for efficient feature selection and SOM for data visualization, the GWO-SOMNN approach
significantly reduced the dataset’s dimensionality, improving the computational efficiency and
accuracy of neural network-based classification.

The results demonstrate that the proposed method outperforms traditional techniques in both
binary and multiclass classifications, achieving notable improvements in accuracy, precision, recall,
and F1-score. Specifically, the GWO-SOMNN approach achieved a binary classification accuracy
of 97.18% and a multiclass classification accuracy of 82.41%, surpassing many state-of-the-art
methods. This indicates the potential of this integrated approach for developing more efficient
and precise network intrusion detection systems.

7. Future Work

Future work will focus on the real-time implementation and scalability of the GWO-SOMNN
approach. Deploying this model in live network environments will allow for the evaluation of its
performance under real-time conditions. Additionally, extending the model to handle larger and
more complex datasets will test its robustness and scalability in diverse scenarios.

Further improvements could include optimizing the GWO algorithm by integrating it with
other metaheuristic techniques such as Particle Swarm Optimization or Genetic Algorithms. Also,
incorporating advanced neural network architectures, such as Convolutional Neural Networks
(CNNs) or Recurrent Neural Networks (RNNs), may enhance feature selection efficiency and
classification accuracy.

Exploring adversarial training techniques will help improve the model™s resilience against
adversarial attacks, while the application of different SOM variants could enhance clustering
and visualization. Finally, implementing automated hyperparameter tuning and incorporating
behavioral analysis could further enhance the adaptability and detection of sophisticated threats.
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Abstract 

In this paper, we analyze a single server markovian queueing model with encouraged arrivals that 

undergoes a single working vacation. Additionally, we consider the impatience and reneging 

behavior of customers in the queue during the working vacation period. Customers arrive at the 

system following a Poisson distribution. The server goes on vacation when the system is empty and 

stays on vacation for a random period that follows an exponential distribution. During the working 

vacation period, the server continues to provide service at a slower rate. After the vacation, the 

server returns to the regular service period and continues providing service at the regular busy 

period rate if there are one or more customers in the system, or it remains idle until a new customer 

arrives. During the working vacation, customers in the queue become impatient and renege from 

the system, with the reneging time assumed to follow an exponential distribution. The system is 

characterised as a quasi-birth-death process, and the stationary probabilities are derived using the 

probability generating function method. Some numerical analysis is also carried out to show the 

effect of encouraged arrivals on performance measures. 

     Keywords: Encouraged arrivals, impatience, reneging, working vacation, 

     probability generating function(PGF). 

I. Introduction

Since the 1970s, numerous researchers have studied the mathematical modelling and 

implementation of queueing models that undergoes server vacations. Congestion issues in a 

variety of research domains could be readily represented by vacation queueing models that 

undergoes server vacations. Several studies have been conducted on queues with vacations in [1, 

2]. A single server finite source markovian queueing model with server vacations, baling and 

reneging behaviour of customers are analysed in [3] using the solution of steadystate probabilities 

in the matrix form. For a variety of real-world scenarios, including computer networks, digital 

communication, and production/inventory systems benefits from the generalisation of queueing 

models [4, 5]. It is assumed that in these investigations, the service is completely terminated when 
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on the server is on vacation. This kind of vacation denotes classical vacation model. A working 

vacation (wv) is when the server continues to offer service while on vacation, but at a reduced 

service rate. This type of wv is first introduced in [6], which also examined a markovian queue 

with several working vacation policies on a single server. In [7], the matrix-geometric approach is 

used to study an M/M/1 queue with numerous working vacations and derive precise formulas for 

the performance metrics. Using the same method , analysis of a single server queue with single 

working vacation(swv) is carried out in [8]. The investigation by [6] was expanded to an 

M/G/1/WV queue by [9, 10, 11]. In [12], the work of [6] is extended to a GI/M/1 queue with a 

general arrival process and several working vacations using the matrix-geometric solution method. 

The GI/M/1 queue with a swv was further examined by [11]. 

     Clients are frequently seen waiting in line for assistance in today's busy environment. Clients 

experience impatience while the server is on vacation,  At present, queueing system analysis with 

impatient customers is becoming steadily more popular. There are several related studies which 

are explained in [12], [13]. A comprehensive analysis of queues with vacation and client impatience 

for single and multiserver systems are given in [14]. customers are drawn to the business by the 

discounts and offers. In [15],  such customers are known as Encouraged Arrivals(ea).  The concept 

of customer movement explained in [16],  which states that a system can draw in new customers 

by looking at its substantial client base. The variation in percentage of customers depends on 

ea brought about by sales and discount .  A finite capacity ea queue with multiple servers and 

reverse reneging is carried out in [17]. 

     In this paper we analyse an encouraged arrival single server queue with swv, impatience and 

the reneging behaviour of customers due to impatience during the working vacation session. The 

introduction of the paper is given in section 1. Section 2 comprises of the model description. The 

stationary analysis the of model with ea, swv, impatience and reneging of impatient customers are 

provided in section 3. Section 4 deals with the performance measures of the model. The numerical 

analysis is given in section 5. The conclusion is given in section 6. 

II. Model description

We consider a single server markovian queueing model with ea, swv, impatience and reneging 

behaviour of impatient clients during working vacation session. The arrivals follow a poisson 

distribution with parameter λ(1+Ω), where " Ω " denotes the percentahe variation in the total count 

of clients estimated from observed data. For instance, if a firm previously offered discounts and a 

percentage change in the total count of clients was noticed of +10%, +30% or +50%, then Ω = 0.1, 0.3 

or 0.5, respectively. The server operation follows an exponential distribution with parameters μ 

and α during busy hours and working vacations respectively, where (α < μ). The server takes a 

swv when the system is empty, and the duration of this vacation is distributed exponentially with 

parameter ψ. If there are clients in the system at the end of the vacation, the server returns to its 

actual service rate. Otherwise, it will remain idle until a new client shows up. Clients who wait for 

his turn to get service, may become impatient and choose to leave the queue. The reneging 

behaviour of impatient clients follows an exponential distribution with parameter β. 

III. Steady state analysis of the queue with encouraged arrivals, single working

vacation, impatience and reneging of impatient clients during WV: 

Let the number of clients in the system is given by N and the state of the system is given by S. Then 

the markov process is given as {(N,S), t≥0}. The state space is given by θ = {(n,s), n = 0,1,2,…., 

s = 0,1} where s = 0 denoted the swv and s = 1 denotes the regular busy session. 
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The following are the differential-difference equations governing the quasi-birth-death process in 

the steady state: 

(𝜆(1 + Ω) + φ)P0,0 = 𝛼𝑃1,0 + 𝜇𝑃1,1  (1) 

(𝜆(1 + Ω) + α + φ + (n − 1)β)Pn,0 = 𝜆𝑃𝑛−1,0 + (𝛼 + 𝑛𝛽)Pn+1,0 , 𝑛 ≥ 1   (2) 

𝜆(1 + Ω)P0,1 =  φP0,0            (3) 

(𝜆(1 + Ω) + µ)Pn,1 = (𝜆(1 + Ω)Pn−1,1 +  𝜇𝑃𝑛+1,1 +  φPn,0, , 𝑛 ≥ 1        (4) 

The PGF are defined as follows: 

𝐺0(𝑦) = ∑ 𝑦𝑛∞
𝑛=0 Pn,0 ,  𝐺1(𝑦) = ∑ 𝑦𝑛∞

𝑛=0 Pn,1 and 𝐺0
′ (𝑦) = ∑ 𝑦𝑛−1∞

𝑛=0 Pn,0

      for 0 ≤ y ≤ 1                       (5) 

Equations  (1) and (2) are multiplied by 1 and yn respectively. Summing them for all possible 

values of n, we get 
𝛽𝑦(1 − 𝑦)𝐺0

′ (𝑦) + [ 𝜆(1 + Ω)𝑦2 − (𝜆(1 + Ω) + φ + α − β)𝑦 + (α − β)]𝐺0(𝑦) = (1 − 𝑦)(α − β)P0,0 −

 𝜇𝑦𝑃1,1                                                                                                     (6) 

Similarly  (3) and (4) are multiplied by 1 and yn and are added over all possible values of n, we get 

(1 − 𝑦)( (𝜆(1 + Ω)𝑦 − µ)𝐺1(𝑦) = 𝜑𝑦𝐺0(𝑦) −  𝜇(1 − 𝑦)𝑃0,1 −  𝜇𝑦𝑃1,1                 (7) 

Rewriting (6) for 𝑦 ≠ 0 and  𝑦 ≠ 1, we have 

𝐺0
′ (𝑦) − (

𝜆(1+Ω)

𝛽
+

(φ+α−β)

𝛽(1−𝑦)
−

α−β

𝛽𝑦(1−𝑦)
) 𝐺0(𝑦)      =

(α−β)

𝛽𝑦
P0,0 −

𝜇

𝛽(1−𝑦)
𝑃1,1                                                         (8)

Multiplying (8) with  𝑒
−𝜆(1+Ω)𝑦

𝛽 (1 − 𝑦)
𝜑

𝛽𝑦
(𝛼−𝛽)

𝛽   on both the sides, we have 

𝐺0(𝑦) =
𝑒

𝜆(1+Ω)𝑦
𝛽

(1−𝑦)

𝜑
𝛽𝑦

(𝛼−𝛽)
𝛽

[
(α−β)

𝛽𝑦
𝐹1(y)P0,0 −

𝜇

𝛽(1−𝑦)
𝐹2(y)𝑃1,1  ]                (9) 

Where 

𝐹1(y) = ∫ 𝑒
−𝜆(1+Ω)𝑢

𝛽 (1 − 𝑢)
𝜑

𝛽𝑢
(𝛼−𝛽)

𝛽
−1𝑦

0
du 

𝐹2(y) = ∫ 𝑒
−𝜆(1+Ω)𝑢

𝛽 (1 − 𝑢)
𝜑

𝛽
−1

𝑢
(𝛼−𝛽)

𝛽
𝑦

0
du 

Since 0 ≤ 𝐺0(1) = ∑ Pn,0 ≤ 1∞
𝑛=0  and lim

𝑦→0
(1 − 𝑦)

𝜑

𝛽 = 0 it must be 

(α − β)

𝛽
𝐹1(1)P0,0 −

𝜇

𝛽
𝐹2(1)𝑃1,1  = 0 

Which in turn gives 

𝑃1,1 =
(α−β)

𝜇

𝐹1(1)

𝐹2(1)
 P0,0        (10) 

By solving (6) at y=1 and by using (10), we have 

𝜑𝐺0(1)= 𝜇𝑦𝑃1,1 =  
(α−β)𝐹1(1)

𝐹2(1)
 P0,0       (11) 

Using (10),  equation (9) becomes 

𝐺0(𝑦) =
(α−β)𝑒

𝜆(1+Ω)𝑦
𝛽

𝛽(1−𝑦)

𝜑
𝛽𝑦

(𝛼−𝛽)
𝛽

[𝐹1(y) −
𝐹1(1)

𝐹2(1)
 𝐹2(y) ] P0,0  (12) 

From (6), we obtain for 𝑦 ≠ 0 and  𝑦 ≠ 1 

𝐺0
′ (𝑦) =

(1−𝑦)(α−β)P0,0−[𝜆(1+Ω)𝑦2−(𝜆(1+Ω)+𝜑+𝛼−𝛽)𝑦+(𝛼−𝛽)]𝐺0(𝑦)− 𝜇𝑦𝑃1,1

𝛽𝑦(1−𝑦)
       (13) 

we get  𝐺0
′ (1) by applying L’hospital’s rule on (13), 

𝐺0
′ (1) =

( 𝜆(1+Ω)−(𝛼−𝛽))𝐺0(1)+(𝛼−𝛽)P0,0

𝛽+𝜑
       (14) 

From (7) we have for 𝑦 ≠ 1 

𝐺1(𝑦) =
𝜑𝑦𝐺0(𝑦)−𝜇(1−𝑦)P0,1− 𝜇𝑦𝑃1,1

(1−𝑦)(𝜆𝑦−𝜇)
      (15) 

We get 𝐺1(1) by applying L’hospital’s rule on  (15) 

𝐺1(1) =
𝜑𝐺0

′(1)+ 𝜇𝑃0,1

𝜇𝜆(1+Ω)
      (16) 

From (3), we obtain 

𝑃0,1 =
𝜑P0,0

 𝜆(1+Ω)
      (17) 

Using normalization condition , we have 
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𝐺0(1) + 𝐺1(1) = ∑ Pn,0

∞

𝑛=0

+ ∑ Pn,1

∞

𝑛=0

= 1 

Using equations (11), (14), (16) and (17), we obtain the following 

P0,0 = {
(𝛼−𝛽)𝐹1(1)

𝜑𝐹2(1)
+

( 𝜆(1+Ω)−(𝛼−𝛽))(𝛼−𝛽)𝐹1(1)

(𝛽+𝜑)(𝜇−𝜆(1+Ω)𝐹2(1)
+

𝜑(𝛼−𝛽)

(𝛽+𝜑)(𝜇−𝜆(1+Ω))
+

𝜇𝜑

𝜆(1+Ω)
}

−1

  (18) 

IV. Performance measures

 Expected number of clients in the system  during swv is given  by

𝐸(𝑁𝑠𝑤𝑣) =  𝐺0
′ (1) =

( 𝜆(1+Ω)−(𝛼−𝛽))𝐺0(1)+(𝛼−𝛽)P0,0

𝛽+𝜑
     (19) 

 Expected number of clients in the system during regular busy session  is given by

𝐸(𝑁𝑟𝑏) =  𝐺1
′ (1) =

𝜑𝐺0
′′(1)

2(𝜇−𝜆(1+Ω))
+

𝜇𝜑𝐺0
′(1)

(𝜇−𝜆(1+Ω))2 +
𝜇𝜑P0,0

(𝜇−𝜆(1+Ω))2   (20) 

Where 

𝐺0
′′(1) =

2(𝜆(1+Ω)−𝜑−𝛼)𝐺0
′(1)+2𝜆(1+Ω)𝐺0(1)

2𝛼+𝜑
   (21) 

 The total expected number of clients in the system is given as
𝐸(𝑁) = 𝐸(𝑁𝑠𝑤𝑣) + 𝐸(𝑁𝑟𝑏) 

Therefore 

𝐸(𝑁) =
( 𝜆(1 + Ω) − (𝛼 − 𝛽))𝐺0(1) + (𝛼 − 𝛽)P0,0

𝛽 + 𝜑
+

( 𝜆(1 + Ω) − (𝛼 − 𝛽))𝐺0(1) + (𝛼 − 𝛽)P0,0

𝛽 + 𝜑

 The expected rate of reneging is given as follows

𝐸(𝑅) = ∑ 𝛽(𝑛 − 1)Pn,0
∞
𝑛=1 = 𝛽(𝐺0

′ (1) − 𝐺0(1) + P0,0) 

V. Numerical analysis

The numerical analysis shows the impact of parameters on system’s performance measures. We 

consider the following parameters for numerical computation λ=2, μ=5, α=3, ψ=3 and β=0.7  

Table 1:  Evaluation of performance measures with respect to varying arrival rate 

Performance 

measures 

𝜆=2 𝜆(1 + Ω) 
Ω = 10% 

𝜆(1 + Ω) 
Ω = 20% 

𝜆(1 + Ω) 
Ω = 30% 

𝐸(𝑁𝑠𝑤𝑣) 0.12503 0.13081 0.14353 0.15442 

𝐸(𝑁𝑟𝑏) 0.61054 0.73431 0.86898 1.02835 

𝐸(𝑁) 0.73548 0.86424 1.00343 1.17371 

𝐸(𝑅) 0.02030 0.02557 0.02981 0.03321 

P0,0 0.2366 0.2238 0.21657 0.2785 

P0,1 0.3424 0.30402 0.2785 0.2468 

From table 1. We observe that the performance measures increases with increase in arrival rate. In 

other words, as the number of clients joining the firm increases the probability of system in swv 

and the probability of firm being in regular busy session decreases.  
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Figure 1. Variation in performance measures with respect to arrival rate 

Table 2: Evaluation of performance measures with respect to varying service rate during swv 

α 𝐸(𝑁𝑠𝑤𝑣) 𝐸(𝑁𝑟𝑏) 𝐸(𝑁) 𝐸(𝑅) P0,0 P0,1 

3 0.12503 0.61054 0.73548 0.02030 0.2366 0.3412 

3.2 0.1125 0.6141 0.7184 0.0282 0.2383 0.3448 

3.4 0.1180 0.60011 0.7182 0.0273 0.2314 0.3462 

3.6 0.1148 0.6853 0.7012 0.01742 0.2323 0.3504 

3.8 0.1037 0.6018 0.7837 0.0174 0.2346 0.3514 

4 0.1003 0.5970 0.6974 0.01469 0.2358 0.3535 

From table 2. We observe that the performance measures decreases with increase in service rate 

during swv.  

Figure 2. Variation in performance measures with respect to α 

VI. Conclusion
In this paper, we consider a single server markovian queueing model with encouraged arrival, 

single working vacation, impatient clients and reneging of such impatient clients during working 

vacation period. We derived the performance measures using the probability generating function 
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of the system’s steady state probabilities. The numerical analysis shows the impact of encouraged 

arrivals on the performance measures. As the arrival rate increases, the performance measures 

increases which benefits the firm . 

References 
[1] Ke, J.C., Wu, C.H. and Zhang, Z.G. (2010). Recent Developments in Vacation Queueing

Models: A Short Survey, International Journal of Operations Research, 7(4):3-8. 

[2] Tian, N. and Zhang, G. (2006). Vacation queueing models: Theory  applications, Springer-

Verlag, New York. 

[3] Yue, D., Zhang, Y. and Yue, W. (2006). Optimal performance analysis of an M/M/1/N

queue system with balking, reneging and server vacation, International Journal of Pure and Applied 

Mathematics, 28:101-115. 

[4] Doshi, B.T. (1986). Queueing Systems with Vacations, a Survey. Queueing Systems, 1:29-66

[5] Takagi, H. (1991). Queueing Analysis: A Foundation of Performance Analysis, Vacation and

Priority Systems, 1(1). 

[6] Servi, L.D. and Finn, S.G. (2002). M/M/1 Queue with Working Vacations (M/M/1/WV),

Performance Evaluation, 50:41-52. 

[7] Liu W. Y., Xu, X. L., and Tian, N. S. (2007). Stochastic decompositions in the M/M/1 queue

with working vacations, Operations Research Letters, 35(5):595–600. 

[8] Tian, N., Zhao, X. and Wang, K. (2008). The M/M/1 queue with single working vacation,

International Journal of Information and Management Sciences, 4:621-634. 

[9] Kim, J., Choi, D. and Chae, K. (2003). Analysis of queue-length distribution of the M/G/1

queue with working vacations,  International Conference on Statistics and Related Fields, Hawaii. 

[10] Wu, D. and Takagi, H. (2006). M/G/1 Queue with Multiple Working Vacation. Performance

Evaluation, 63:654-681. 

[11] Li, J., Tian, N., Zhang, Z.G. and Luh, H.P. (2011). Analysis of the M/G/1 Queue with

exponentially working vacations-a matrix analytic approach. Queueing Systems, 61:139–166. 

[12] Baba, Y. (2005). Analysis of a GI/M/1 queue with multiple working vacations, Operation

Research Letters, 33:201–209. 

[13] Gans, N., Koole, G.  and  Mandelbaum, A. (2003). Telephone call centers: Tutotial, review,

research prospects, Manufacturing and Service Operations Management. 5: 79-141. 

[14] Benjaafar, S.,  Gayon, J. and Tepe,  S. (2010). Optimal control of a production-inventory

system with customer impatience, Operations Research Letters. 38: 267-272. 

[15] Altman,  E. and  Yechiali, U. (2006). Analysis of customer's impatience in queues with

server vacations, Queueing Systems. 52:261-279. 

[16] Som, B. K. and Seth, S. (2017). An M/M/1/N Queuing system with Encouraged Arrivals,

Global Journal of Pure and Applied Mathematics, 17:3443-3453. 

[17] Som, B.K. (2020). Multi-server Finite Waiting-space Encouraged Arrival Queuing System

with Reverse Reneging, Jagannath University Research Journal, 1(1):2582-6263. 

[18] Jain, N.K., Kumar, R. and Som, B.K. (2014). An M/M/1/N Queuing system with reverse

balking, American Journal of Operational Research, 4(2):17-20. 

[19] Donald Gross, John F. Shortle, James M. Thompson: Fundamentals of Queueing

Theory(fifth edition),Wiley Series in Probability and Statistics, (2018). 

[20] Medhi J: Stochastic models in Queueing theory(second edition) , (2003).

[21] Veerarajan T: Probability, statistics and random processes with Queueing Theory and

Queueing Networks, (2009) 

[22] Hamdy A.Taha: Operations Research An Introduction(eighth edition), (2007).

RT&A, No 1 (82) 
Volume 20, March 2025 

902



Andrey Lipin, Seymur Bashirzade, Mukhlis Hajiyev, Rafail Garibov
IMPACT OF ERRORS ON STRUCTURAL RELIABILITY OF 
STRUCTURES  

1 

IMPACT OF DESIGN AND CONSTRUCTION ERRORS 

ON THE STRUCTURAL RELIABILITY OF STEEL 

INDUSTRIAL BUILDINGS 

Andrey Lipin 1, Seymur Bashirzade 2*, Mukhlis Hajiyev3, Rafail Garibov4 
• 

1 PhD, Water and Amelioration Complex Design Institute, Baku, Azerbaijan. 
ORCID: 0000-0002-0564-9928, dorian.lipin@gmail.com 

2 PhD, Azerbaijan University of Architecture and Construction, Baku, Azerbaijan. 
ORCID: 0000-0002-0870-6345, srbashirzade@gmail.com 

3 Prof. Dr., Azerbaijan University of Architecture and Construction, Baku, Azerbaijan. 
ORCID: 0000-0001-6782-0941, hajiyevmuxlis@mail.ru 

4 Prof. Dr., Institute of Forensic Construction and Technical Expertise, Russia 
ORCID: 0000-0001-9500-2874, garibovr@mail.ru 

*Corresponding author

Abstract 

Errors in design and construction critically undermine the structural reliability of industrial 

buildings, putting property, the environment, and human safety at risk. In this regard, the present 

research work is intended to investigate how such mistakes influence the performance of the main 

structural components and the stability of steel industrial buildings. Detailed finite element 

analysis was performed using DIANA FEA for solid modeling and SAP2000 for beam modeling to 

assess global structural performance. This includes, among others, the insufficiency of local 

reinforcement in compressed members and eccentricity in column connections. It was performed to 

analyze the local and global buckling behaviors, deviations in symmetry, and inefficiency of the 

bracing systems. Consequently, it reveals a significant reduction in load-bearing capacity due to 

reinforcement deficiencies in the compressed elements and eccentricity, while a structural loss in 

integrity becomes highly significant at symmetry deviations, especially in horizontal loads. This 

study provides critical insights into mitigating design and construction errors to enhance the 

reliability of industrial steel buildings. 

Keywords: steel structures, finite element method, finite element analysis, 
structural performance, structural design, reinforcement, buckling, symmetry 
deviation 

I. Introduction

Steel structures have many advantages in the construction of industrial buildings in terms of 
tensile strength, ductility, and durability. That is, their versatility, design flexibility, and 
efficiencies realized from pre-engineered building systems make them necessary to meet the 
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demand for industrial requirements. The possibility of covering large areas without interruptions, 
with reasonable consumption of materials and resistance in the case of earthquakes, makes steel 
superior to other materials for construction in this industry [1].  The environmental benefits of 
industrial building construction are necessary, and steel structures are imperative. The 
sustainability and recyclability of steel, coupled with the industry’s efforts to reduce carbon 
emissions and increase energy efficiency, reflect a greener construction sector. By leveraging the 
many advantages that steel has to offer, today's construction industry has the possibility of 
constructing environmentally responsible buildings that will meet any modern industrial process 
while minimizing the impact on the planet [2]. Although they offer several advantages for 
industrial building construction, steel structures encounter problems that should be considered 
during the planning, design, and maintenance stages. It is through the knowledge of these 
disadvantages associated with steel, such as its susceptibility to corrosion, fire resistance concerns, 
and initial cost considerations, that appropriate strategies for maximizing its benefits and 
mitigating the associated drawbacks can be designed by the project stakeholders at different levels. 
These shortcomings have been addressed earlier, making steel versatile, resilient, and able to stand 
up to or meet all modern requirements expected of contemporary building projects in any 
industrial construction [3].    

 Steel structures of large-span industrial buildings were designed as volumetric systems. In 
the soil, all columns were fixed to foundations, and the top was fixed to trusses, thus creating a 
transverse frame. Transverse frames are linked together by means of bracings and purlins, and 
such a design ensures volumetric rigidity of the frame. Large-span industrial buildings are 
designed to accommodate industrial processes and to shelter them from open environments. 
Therefore, the structures of industrial buildings are designed to withstand environmental impacts 
such as snow, wind, dust, seismic, and service loads considered by industrial operations inside 
these buildings, including live loads, crane loads, explosions, and temperature fluctuations [4].   
The design of large-span industrial buildings and their loads and influences are regulated by 
national codes and general engineering practices [5]. Errors during the design and construction 
phases of large-span industrial buildings may contribute to the disruption of industrial operations, 
jeopardy for personnel health, and the total failure of structures. According to statistics, errors 
causing the malfunctioning and collapse of industrial buildings can be divided into two groups: 
errors during the design phase and errors during the construction phase. According to statistics 
from to 1993-2004, the following average distribution of causes of accidents was observed: defects 
in construction and erection works, 44%; violation of operation rules, 24%; poor quality of 
materials, 15%; excess loads and external impacts, 5%; erroneous design decision making, 4%; and 
other causes, 8%. Thus, approximately 60% of accidents are associated with the construction stage, 
including critical defects in the construction facilities and materials used [6].  The distribution of 
defects in a construction can be represented by the following statistics [7]:  By the reasons of defect 
origin: design error - 4%; poor quality of materials and products - 17%; low quality of installation 
work - 42%; operation deficiency - 18%; combination of reasons - 19% [6].   

Other researchers have focused on the structural failure of steel structures due to (quasi-static) 
loads during the erection-construction phase, service phase, and fatigue failure. In most cases, 
structural failure is caused by gross human errors. Human errors in the execution of steel 
structures have been identified as a cause of failure in comparison to failures originating from 
errors in the design process. The primary source of fatigue destruction in steel structures is 
insufficient welding size or inadequate quality of the welding joints. According to previous 
studies, fatigue cracks nearly always originate at the toes of a weld, namely at the transition point 
between the weld and base material, or at the edges between individual weld passes [8-10]. 
Although this may be accounted for by the combinations of an unlucky set of variations 
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influencing parameters affecting the actions and responses of the structures in probabilistic and 
semi-probabilistic design methods, significant human error is the main cause of the failure of steel 
structures.  

Geis et al. studied 1029 cases of snow-induced building failures in the United States from 1989 
to 2009 and 91 international cases in 16 countries across four continents from 1979 to 2009 [11]. 
Paper archives provided data for this study from 1345 articles from 883 distinct sources. They 
found that the primary causes of snow-related building failure were excessive snow (89% of total 
incidents), rain-on-snow events (13% of total incidents), and building problems (9% of incidents). 
As buildings age, their structural members deteriorate and may be damaged. A higher percentage 
of incidents was attributed to building problems in older buildings: 28% of historic buildings and 
26% of middle-aged buildings, while only 5.4% of new buildings were part of the U.S. dataset. 
Other contributing factors listed in the surveys included melting and drifting snow, drainage, and 
people living on the roof. In addition, Alinaitwe and Ekolu identified several causes for the 
collapse of structures during the construction phase, including poor materials and workmanship, 
design and construction errors, lack of professional supervision of site work, improper 
implementation of construction methods, and neglecting design approval procedures. They 
argued that construction failures could be prevented if proper procedures were followed during 
the design, construction, and operation of structures [12]. 

Oloyede et al. conducted extensive research and collected data by administering 
questionnaires to professionals in the building industry, including contractors, builders, architects, 
estate surveyors and valuers, civil engineers, electrical engineers, structural engineers, and town 
planners [13]. The data were analyzed using descriptive and analytical statistics. Their findings 
indicated that the causes of building collapse included soil type, poor building design and 
planning, use of low-quality building materials, and employment of incompetent craftsmen, 
resulting in poor workmanship, weak supervision, natural disasters, and corruption.  

It is envisioned that active involvement and quality input by professionals in the building 
industry from design to construction, including supervision at each stage, would be vital to ensure 
adherence to standards and procedures [14]. It is becoming increasingly difficult to learn from 
mistakes in the prevention, detection, and limitation of design errors.  Kamara et al. [15].  observed 
that most failures and their ensuing damage are rooted in planning, design, construction, and use 
errors rather than in construction material variability, strengths, and structural loads. It should be 
borne in mind that design is the first step in construction, and design faults have been the 
fundamental cause of many disasters, leading to the death and injury of workers and the public 
[15].   

     Recent advances in computer-aided design and high-strength materials have optimized 
modern structures compared with their ancestors.  However, optimization reduces the inherent 
margin of safety; thus, modern structures have a minimal excess capacity to handle unexpected 
loads. Therefore, modern structures are prone to unexpected loading [16].  Gross and McGuire also 
indicated that new construction forms contributed to increased vulnerability, which reduced costs 
but sacrificed the strength and continuity inherent in older construction forms [17].   

     A few studies have examined inaccurate results for the numerical modeling of truss nodes. 
Truss collapse was found to be a result of incorrect node design. The control results of numerical 
calculations by analytical calculations of statically determinate systems were proposed, which will 
help determine the error at the initial stages of design [18].   

The possible modes of structural failure can be broadly classified into three types: large local 
plasticity, instability, or fracture. Large local plasticity indicates that deformation of the material 
occurs over and beyond the elastic limit and is often accompanied by the prospect of large plastic 
deformation. Instability is the occurrence of a sudden change in the response initiated by a load, 
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which results in bifurcation, branching, or non-bifurcation. It is usually initiated by direct tensile 
rupture, fatigue failure, and brittle fracture and is a critical failure mode. In real structural failures, 
a mixture of these failure modes occurs, with special consideration given to the interaction 
between the large local plasticity and instability. Normally, instability precedes or acts 
alternatively to plastic action, leading one member to have less strength and stiffness under given 
circumstances into a hinged mechanism. Both failures can be better explained by examining the 
load-displacement behavior characteristics of each type. Depending on the type of member, 
loading conditions, and type of support, the load-deflection curves or instantaneous stiffness of the 
member are perhaps the single most important parameters used in the prediction of load-carrying 
capacity and stability [19].   
      These notable cases can serve as valuable tools in engineering education; however, they might 
misleadingly suggest that only large and uncommon structures are prone to failure. Moreover, 
incidents that do not result in the loss of human lives, which constitute the majority, can offer 
valuable insights into engineering malpractice, demonstrating that any area of engineering practice 
can present complex challenges [18]. The general structural performance of steel industrial 
buildings can primarily be evaluated by analyzing the individual structural elements and overall 
structural performance. A case study was conducted to assess the performance of compressed 
structural elements and the overall performance of the structure. 

II. Methodology

     This study examined two cases of errors and their impact on the structural performance of 
industrial buildings. In the first case study, construction errors, such as a lack of local 
reinforcement, large eccentricities, and symmetry deviations, are analyzed; in the second case, 
design errors, such as insufficient bracings and insufficient cross-section size, are analyzed. 
An industrial steel building, length 23.5 m, free span 20 m, clear height 20m, was designed and 
constructed in the Republic of Azerbaijan in Baku city. The purpose of this building is to serve as a 
painting and blasting chamber for the ship hull blocks. The building is designed and constructed 
as a volumetric structure. The transverse frame consisted of steel columns from the H section of 
300 × 300 × 17 mm and a truss. The truss elements were all double angles: upper and lower chords 
75x75x6 mm, vertical bars 75x75x6 mm, bracing 75x75x6 mm and 50x50x6 mm. Purlins Channel 
150x75x10 mm and an angle of 95 × 75 × 7 mm. Vertical bracing between columns from cross angle 
+ 100 × 100 × 10 mm, vertical bracing between trusses from double angle 75 × 75 × 6 mm.  The steel
used had a yield strength of 235 MPa and tensile strength of 400 MPa for all elements. The building
was considered under the Azerbaijan National Construction and Design codes and standards [20].

2.1. Lack of local reinforcement and eccentricity connections in column 

      In engineering practice, tall steel columns are reinforced with brackets (Fig. 1). To study the 
performance of the columns, FE models were created and subjected to 3D performance analyses. 
The first model was created based on the actual on-site conditions without reinforcement (Fig. 1). 
The second model was created with brackets installed every 1 m [21,22]. 
       Large eccentricities in the column end-to-end connection introduce two forces that create 
moments. This moment induced additional stresses in the column, which were superimposed on 
the axial compressive stress. To study the performance of the columns, three FE models were 
created and subjected to 3D performance analyses. The first model was created according to actual 
onsite conditions with an eccentricity of 100 mm (Fig. 2a). The second model was created 
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according to the actual onsite conditions with an eccentricity of 150 mm (Fig. 2b). The third model 
was created without eccentricity (Fig. 1b). In both cases, the boundary conditions were applied as a 
fixed supported column with axial and lateral forces at the top tip, as shown in (Fig. 2c). 

(a)                                                                     (b)                                       (c) 
 Figure 1. Column of industrial building: (a) actual conditions on site; (b) FE model of steel column without 

reinforcement; (c) FE model of steel column with reinforcement. 

(a)                (b)                                 (c)  
Figure 2. Column connection eccentricity: (a) actual conditions on site, (b) FE model and (c) analysis scheme 

2.2. Lack of Gusset plates in the compressed members of the truss 

     A double-angle truss, also known as a double-angle truss, uses pairs of angle sections connected 
to form truss members. Joining plates (gusset plates) between the angles are used to connect these 
members at the joints, ensuring structural integrity and proper load distribution. Compressed 
truss members are particularly susceptible to buckling. Gusset plates provide lateral support to 
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these members, reducing their effective length and increasing their buckling resistance. Without 
the gusset plates, the unsupported length of the compressed members increases, making them 
more prone to buckling under axial loads. The insufficient use of gusset plates may compromise 
the overall stability of the truss. To study the performance of all the compressed members, they 
were FE modeled and subjected to 3D performance analyses. Two different models were created 
for each compressed element: one model expressing real onsite conditions without gusset plates 
and the other with gusset plates. The boundary conditions in both cases were applied as a pin-
supported element with an axial force applied at one end, as shown in (Fig. 3). 

      (a)         (b)     (c)   (d) 
Figure 3. Compressed truss elements: (a) actual condition on site, (b) without gusset plate, 

(c) with gusset plate and (d) analysis scheme

      Finite element analyses (FEA) of the structures were conducted using DIANA FEA 
software.  The most comprehensive analysis was provided by the 3D solid element model (Fig. 
4a), which examined both the longitudinal and transverse behavior and accounted for the entire 
three-dimensional response [21,22].  The steel material model was based on the Von Mises 
plasticity with linear plastic hardening (Fig. 4b).  based on the experimental properties [23].   
In the analysis stage, an increment in the point load was applied to the steel column up to the 
maximum tensile stress. Features associated with the load-displacement behavior were 
modeled in solid modeling, whereby at every step, 100 increments of point load equal to a 
factor of 3.5, were applied in the numerical models of the behavior under study for load–
displacement behavior. The mesh topology used in the analysis was quadratically shaped. For 
the analysis of the columns, a mesh size ranging from 50 to 60 mm was employed, while a finer 
mesh size of 25 mm was utilized for the analysis of other structural elements. Essentially, it 
results in a spurious outcome when an incremental primary method is used through the 
DIANA program, unless very small steps are taken. This is because nonlinear systems are very 
sensitive and taking larger steps in an incremental analysis result in numerical instability and a 
loss of convergence. This limitation can be determined using an iterative approach. In the 
numerical simulation, the applied loads on the elements increased gradually up to the point of 
the tensile stress. First, the response of the column was linear elastic; there was a direct 
relationship between any applied load and the deflection thereof. An updated arc-length 
control method for the normal plane is used to capture the nonlinear response of the column. 
This control mechanism ensured that matching of the analysis was performed for the reply 
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because the element exhibited nonlinear behavior, such as peak tensile stress. 
      The control method allows the increment of the load at each step to adjust to the evolving 
element behavior in a dynamic manner through its automatic load step-scaling function. Thus, 
adaptive scaling improved the nonlinear analysis convergence and made it possible to simulate 
the reactions of the columns more realistically at failure. The numerical analysis in the present 
study was performed by employing the Newton-Raphson method adopted with the Line 
Search Approach, with a selected default value of 25 iterations. The selected numerical 
technique was unconditionally stable and numerically efficient for analysis. 

(a) (b) 
Figure 4. Element and material model for the FE analysis: (a) 3D solid model, (b) Steel model 

2.3. Insufficient bracings and insufficient cross sections size 

    Inadequate and insufficient bracings were determined by inspection of the blasting chamber. 
Insufficient bracings and cross-sectional sizes in industrial steel structures can lead to serious 
structural issues, compromising the overall stability of the structure. This may increase 
vulnerability to buckling under loads. Without adequate bracing, the structure may experience 
excessive deflection, which can lead to misalignment and damage to structural and nonstructural 
elements. The bracings reinforcing the lower cord of the truss were completely missed. Vertical 
bracings connecting trusses in the middle of the span were applied incorrectly only in the 1st step, 
whereas vertical bracing between columns was applied in the 2nd and 4th steps. To study the 
impact of insufficient bracings and insufficient cross-section size on the performance of industrial 
buildings, two models were created using SAP 2000 software. The first model was created 
following actual on-site conditions with insufficient bracings and insufficient cross-sectional size. 
The second model was created with proper bracing according to AzDTN II-23-81 [20]. Both models 
were exposed to 3D performance analyzes. Pushover analyses were conducted for the overall 
structure, and the reading point for the results of the pushover curve was considered at the top of 
the column.  
      In this study, the method used for static pushover analysis was nonlinear static pushover 
analysis, which was conducted with the nonlinear version of SAP2000 software [26] applied to 
three-dimensional structural models. The model was designed as a beamline. The analyses were 
performed under displacement-controlled conditions until the specified displacement level was 
reached in the direction of the control and at the control point. In the case of SAP2000, the frame 
elements were modeled as linear elastic line elements, whereas the nonlinear force–displacement 
behavior for individual frame elements was represented by hinges through a series of linear 
segments [27, 28]. Hinge properties can be considered either as default or completely definable by 
the user [29-31]. Numerically, for user-defined steel moment and PMM hinges, the yield moment, 
yield rotation, and axial force-bending moment interaction diagrams could have been computed 
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based on the section and material properties [32,33]. Thus, although user-defined moment-rotation 
relationships can result in various plastic rotation capacities and strain hardening ratios, the 
default steel moment and PMM hinges were used in this study for the pushover analyses of steel 
frames because of their simplicity. By default, pushover analyses using SAP2000 prefer to consider 
default hinge properties based on the ATC-40 and FEMA-273 criteria [34-36]. This is because 
specifying the cross-sectional properties of all members of a structure can make pushover analysis 
challenging to implement, especially when dealing with a three-dimensional structure. 

2.4. Symmetry deviations 

A blasting chamber was constructed with symmetrical deviations at each step (Fig. 5). 
Symmetry deviations in the steps of industrial building steel structures can have significant 
implications for the stability, safety, and functionality of the structure. Asymmetry can lead to an 
uneven load distribution, causing certain parts of the structure to bear more weight than designed, 
potentially leading to structural failure. Deviations can affect the dynamic response of a structure 
to loads such as wind or seismic activities, increasing the risk of resonant vibrations or instability. 
To study the impact of symmetry deviation on the performance of industrial buildings under 
seismic and wind loads, two models were created using the SAP 2000 software. The first model 
was created based on actual on-site conditions with symmetrical deviations. The second model 
was created without any deviation in symmetry. Both the models were subjected to 3D 
performance analyses.  

Figure 5.  Plan of existing Blasting Chamber 
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III. Results and Discussion

In this research, using detailed case studies, the finite element modelling method was used to 
assess the load-carrying elements of an existing industrial building under several variables. The 
analyses focused on the load-bearing elements of existing structures. First, the current conditions 
of the industrial building were carefully checked, and the geometric and material properties of the 
structural elements were detailed. Subsequently, a data-driven finite element model was created, 
and performance analyses were performed under various loads. These were conducted for case 
studies representing the worst-case scenarios of different loads commonly encountered in 
industrial buildings. Detailed analyses were performed for the response of the load-bearing 
elements concerning various parts of the structure and conditions relevant to events when the 
critical performance limits were exceeded. The results from the analysis clearly demonstrate the 
performance of the structure under load and the capability of the structure to maintain its 
integrity. Specifically, cases of overloading and scenarios in which the structural responses 
exceeded the safety limits for deformation and stress distributions were investigated 

3.1. Columns 

The deficiencies of the local reinforcement and eccentric column connections were studied in 
this work. FE models were generated to investigate the column performance, and 3D performance 
analyses were carried out. First, a model without strengthening was created using existing site 
conditions. In the second model, strengthening was performed using additional brackets every 1 
m. The results of the analyses showed that the peak tensile stress in the column without
reinforcement was 400 kN, whereas that in the column with local reinforcement was
approximately 500 kN. It can be seen from the load–displacement curve that after reaching the
peak tensile stress, the column with local reinforcement did not collapse; although the
displacement increased, it was still able to bear 500 kN. In contrast, for a reinforced column, a
linear decrease in the bearing capacity with a peak value of the tensile stress was observed beyond
the reinforced area, which was compensated by plate reinforcements, thereby improving the
functioning of the column (Fig. 6). Hence, the lack of local reinforcement can reduce the structural
performance of the column by approximately 20%.

Figure 6. Load displacement curve of column 
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      Large eccentricities in the end-to-end connections of the column generated large moments, 
which caused additional stresses on the column, adding to the original axial compressive stress. 
Column case studies under different applied eccentricity conditions and reinforcements returned 
results showing their behavior and structural performance. For example, as shown in Figure 6, in a 
similar column, the capacity decreased from 400 kN to 300 kN with an eccentricity of 100 mm, 
whereas for the other column with an eccentricity of 150 mm, the capacity decreased drastically to 
240 kN. These produced moments, owing to the eccentricities, increased the stresses inside the 
column to dangerous values. Columns without reinforcement with 100 mm eccentricity lost 40% of 
their bearing capacity compared to the properly reinforced column without eccentricities. Columns 
without reinforcement with 150 mm eccentricity lose 52% of the bearing capacity compared to the 
properly reinforced column without eccentricities. 
      Figure 7 shows the stress distribution in the column for the three cases. The installation of the 
local reinforcement prevented the column web from buckling. Reinforcements provided additional 
support for the web, which helped distribute stress in a more uniform manner. Figure 7a shows 
that in the absence of reinforcement, the stress is concentrated in the web of the column. This 
occurred because the column lacked additional reinforcement, which increased its rigidity, 
allowing the stress to be distributed more evenly. Consequently, areas with high stress values 
developed weak points that were susceptible to damage and eventual collapse. In contrast, Figure 
7b shows that in the reinforced column, the stress distribution between the two flanges is even. The 
stress spread uniformly over the cross-section, reducing the likelihood of local stress 
concentrations. This improves the overall stability of the column and minimizes the risk of 
buckling or other failures. Consequently, higher loads can be applied to the reinforced column, 
which remains structurally stable for a longer period. 

      (a)  (b)               (c) 
Figure 7. Stress distribution diagram: (a) actual on-site conditions, (b) with reinforcement, 

(c) large eccentricities column

In the case of column end-to-end connections with eccentricity (Fig. 7c), the stress distribution 
at the critical section became somewhat complicated. Eccentricity is considered to be the lateral 
deviation of the load path from the central axis of the column, leading to additional stresses 
owing to the bending moment created. At the failure point, a highly irregular stress distribution 
prevails, leading to a compound failure mode. Consequently, several types of failures can occur 
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simultaneously or sequentially. The added eccentricity further complicates the already intricate 
stress distribution, making it more difficult to predict and mitigate the potential failure zones. 

3.2. Truss compressed elements 

In this study, detailed analyses were conducted to examine the performance of a double-
angle truss. The analysis results explained the differences in the structural performance of the 
compressed elements with and without gusset plates. A significant increase in the buckling 
resistance of the elements was observed when they were supported by gusset plates and the 
integrity of the structure was retained. The obtained results for the load displacement showed 
that the rigidity value in the elastic region of the curve was higher when the truss was provided 
with gusset plates. For the models without gusset plates, the effective length of the elements 
was increased, which already brought danger by way of buckling and risked a decrease in 
structural stability. Specifically, as shown in Figure 8a, the behavioral change in both trusses 
came at 38-40 kN of load. In terms of performance, one can see that the element with gusset 
plates stood at a maximum force of 125-130 kN compared to the one without plates, which only 
reached a maximum of 105-110 kN. This proves that the gusset plates significantly improved 
the buckling resistance and increased the rigidity of the structure. 
     As shown in Figure 8b, the double-angle profiles with the gusset plates have an even stress 
distribution along the element. The application of the gusset plates significantly increased the 
buckling resistance by approximately 15-16%. In the truss elements without gusset plates, as 
shown in Figure 8c, buckling started at specific points of the element, and the profiles did not 
work efficiently together. This causes high stresses in some areas and buckling problems in 
others within compressed elements. 

(a) (b) (c) 

Figure 8. Load displacement curve (a), stress distribution diagram of compression truss elements with 

(b) and without (c) gusset plates
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        3.3. Symmetry deviation and inadequate bracing 

The results of the static pushover analysis for the current state of the steel industrial 
building compared to its design according to standards provide valuable information about the 
volumetric performance of the structure. It has been observed that the structural performance 
of existing steel building is 550 kN. This value increased to 690 kN in the building designed 
according to the standards. This indicated a performance difference of approximately 20% 
(Figure 9). Furthermore, the load-displacement curve shows a significant difference in the 
formation of the initial hinges in both structures. In the examined existing structure, the first 
hinge formation in the first column occurred at a load of 450 kN, whereas in the building 
designed according to the standards, this value increased to 540 kN. This demonstrated an 
average performance difference of 17% between the two structures. Despite these differences, 
the collapse modes of both buildings exhibited relatively consistent behavior and similar 
patterns. These results demonstrate that designing according to the standards significantly 
improves the overall performance of the structure and provides a safer building. 

Figure 9. Pushover curve of the overall steel structure 

IV. Conclusion

This study presents the impact of design and construction errors on the structural reliability 
of industrial steel buildings, focusing on critical issues, such as insufficient local reinforcement, 
eccentric connections, symmetry deviations, and inadequate bracing systems. The results indicate 
the serious consequences of these errors at both the individual structural component and overall 
building performance level. In the case study, the bearing capacity was reduced by approximately 
20% in tall columns owing to insufficient local reinforcement. In the case of no reinforcement with 
an eccentricity of 100 mm, the bearing capacity was reduced by approximately 40% compared with 
properly reinforced columns without eccentricity. This was further reduced by approximately 52% 
for a 150 mm eccentricity. Furthermore, the proper application of gusset plates in the compressed 
truss elements increased the buckling resistance by approximately 15–16%. Deviations in 
symmetry and scanty bracing systems resulted in significant structural performance when 
horizontally loaded. An industrial building built with such a scarcity performed 20% below the 
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standards. These directly point to an urgent need to pay more emphasis in detail by design and 
during construction to establish how reliably safe such structures in the form of steel industrial 
buildings can be achieved, keeping up with common flaws in integrity and performance 
expectations. 
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Abstract 

Modern engineering systems increasingly focus on multi-objective optimization. Nature-inspired optimization 

techniques have shown superior efficiency and effectiveness compared to many traditional methods across various 

parameters. This work demonstrates the reliability and cost optimization of a complex bridge system using the 

Multi-Objective Grey Wolf Optimization algorithm (MOGWO). The bridge system in question is a series-

parallel system. A key performance highlight is the use of an archive for search agents to generate a Pareto optimal 

front (PoF) with a minimal number of iterations. Among the various solutions in the PoF, the solution set that 

best meets the multi-objective criteria is preferred. Additionally, statistical analyses are conducted to further 

validate the competitiveness of the results. 

Keywords: Nature-inspired optimization techniques, Cost minimization, reliability 
optimization, multi-objective grey wolf optimization 

I. Introduction

Addressing the challenges of real-world nonlinear problems requires models that achieve multiple 
objectives simultaneously. This necessity arises from the need to maximize reliability while 
minimizing costs within the expansive search space of reliability issues. Balancing these opposing 
objectives without compromise is crucial for optimal results. Therefore, multi-objective optimization 
techniques are employed as effective methods to achieve the desired outcomes under given 
constraints. Finding the optimal solution is challenging, but nature-inspired optimization techniques 
have proven highly effective, consistently producing competitive Pareto optimal solution (PoS) sets. 
In this article, we use an efficient MOGWO technique to optimize the reliability and cost of a complex 
bridge system. 

As compared to single objective optimization problem (SOOP) producing only a single 
optimum solution, in multi-objective optimization problem (MOOP) a number of solutions are 
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obtained as a Pareto optimal set. Thus, MOOP determines the desirable set of trade-off solutions for 
the decision makers to choose their best trade-off solution. As a result, nature inspired optimization 
methods are being extensively used for achieving the opposing objectives for their efficiency in 
producing competitive results. Multi-objective optimization algorithms converge to a true 
approximate global optimal solution as it gives the option of choosing from among a set of Pareto 
optimal solutions (PoS) satisfying the desired trade-offs between the objectives. This is the result of 
multi-objective formulation of the problem which explores design parameters of the system with 
high variation. Better exploration ensures selection from more diversified large search space. This 
algorithm helps in dealing with local fronts, insolvable areas, separation of the optimum and less 
diverse nature of solution. This leads to (i) speedy attainment of the global optimum due to the quick 
sharing of information between the search agents and (ii) better exploration to choose from varied 
design characteristics and requirements of operations. Efficiency of the multi-objective optimization 
techniques is based on a number of PoS obtained during the optimization mechanism.  

Kumar et al. [1] presented a brief description of the nature of reliability optimization problems 
along with the different terminologies involved. The authors briefed about various metaheuristic 
techniques of reliability optimization and also solved problems of complex bridge structure and life 
support system in a space capsule applying cuckoo search algorithm (CSA). Kumar et al. [2] 
calculated the availability cost optimization of the butter oil processing plant using GWO technique 
and compared with the results obtain by CSA. The authors established that Grey Wolf Optimizer 
(GWO) outperformed the results of CSA. Mirjalili et al. [3] proposed a novel GWO technique based 
on the social hierarchical behaviour of grey wolves used by them for the hunting mechanism. Nastasi 
G. et al. [4] applied three variants of genetic algorithm for the problem of multi-objective strategies
optimization of steel making industry. The authors gave detailed statistical results with the
significant outcomes of the applied techniques.

Zhang and Li [5] proposed an efficient decomposition method of dividing the MOOP into a 
number scalar optimization sub problems to reduce computational complexity. The authors showed 
that a set of evenly distributed solutions can be generated with the method used thus highlighted 
the scalability and sensitivity factor of the technique experimentally.  So, to satisfy the multi-
objectives covering a variety of design characteristics such computational algorithm is required 
which avoid local stagnation and also derivatives in the mathematical formulation of the problem. 
Multi-objective problems have therefore driven a lot of research towards development of meta-
heuristics inspired by nature. Nebro et al. [6] proposed the speed-constrained Multi-objective PSO 
algorithm (SMPSO) and analysed different leader selection schemes. The author suggested based on 
tests that the hyper volume indicator to guide leader selection is the best for multi-objective PSO 
algorithms. Pradhan and Panda [7] introduced an extended Cat Swarm Optimization algorithm 
aimed at identifying non-dominated solutions throughout the search process by employing Pareto 
dominance principles. This algorithm utilizes an external archive for storage. Their findings suggest 
that this new method is a promising option for tackling MOOPs.  

Shi and Kong [8] investigated enhancements to the multi-objective ACO and introduced the 
Elitist Multi-objective Ant Colony Optimization (EMOACO) method, which accelerates the parallel 
search for multiple objectives. Their results demonstrate that EMOACO improves global 
optimization capabilities and population diversity compared to the basic MOACO, as it quickly 
converges to PoS and offers a dependable foundation for decision-making. Mirjalili et al. [9] 
introduced the MOGWO, which incorporates a fixed-size external archive into the GWO for storing 
and retrieving PoS. This integration helps define the social hierarchy and simulate the hunting 
behavior of grey wolves. Additionally, Hancer et al. [10] developed a multi-objective artificial bee 
colony (MOABC) algorithm for feature selection in classification tasks. Their research demonstrated 
that among the three filter fitness evaluation criteria tested—mutual information, fuzzy mutual 
information, and a proposed fuzzy mutual information—the proposed fuzzy mutual information 
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yielded the best results in terms of classification accuracy and the number of features selected. Zhou 
et al. [11] surveyed the development of MOEAs such as decomposition based MOEA, 
coevolutionary variant of MOEA, MOEA variant for multimodal problems and MOPs of dynamic, 
noisy, combinatorial and discrete nature. The authors highlighted the advantages of MOEAs in 
terms of approximation of the Pareto optimal set from a population of solutions cover the conflicting 
objectives.  

Marler & Arora [12] did an extensive survey of the non-linear multi-objective optimization 
(MOO) techniques consisting of priori, posteriori and the no articulation preferences method. The 
authors presented a detailed description of the advantages and the limitations of the MOO 
techniques including a detailed description of the Genetic algorithm. The survey also highlighted 
the often, ignored ideas and their utility in engineering problem solving with the emphasis on the 
fact that there is no best single approach for solving real world optimization problems. Zitzler [13] 
proposed a novel MOO approach called Strength Pareto Evolutionary Algorithm (SPEA) to 
investigate the development of heterogeneous hardware/systems and to explore software 
implementations of multidimensional nature for the digital signal processors. The authors also 
compared the MOO algorithms developed so far with the experimentally and quantitatively and 
also investigated the effect of elitism and population size. Deb [14] presented a framework of the 
principles, application and recent developments in the Evolutionary MOO. The authors discuss the 
Evolutionary MOO’s applicability in multiple criterion decision making (MCDM) procedures to 
handle of a large number of objectives and also outlined the concepts of multi-objectification 
and innovation.  

Zitzler et al. [15] introduced an enhanced version of the Strength Pareto Evolutionary 
Algorithm (SPEA), named SPEA2. This improved algorithm incorporates three novel strategies: a 
fine-grained fitness assignment method, a density estimation technique, and an advanced truncation 
technique. The comparison of the proposed improved SEPA algorithm with other latest methods 
reveals better performance of SEPA 2. Messac & Mattson [16] presented a Physical programming-
based method for generation of well distributed PoS to obtain an Optimization-Based Design (OBD). 
The authors presented that the characteristics an OBD may possess are its ability generate all PoS 
with reasonable ease despite the changes in the parameters of the optimization method. Song et al. 
[17] presented MOO with parameter matching method based on NGA II algorithm. The authors
obtained PoS using PHEV integrated optimization simulation platform with fuel economy effect is
increased by 2.26%. Kumar et al. [18] proposed to compute various availability measures applying
MOGWO in a nuclear power plant. The authors basically aim to optimize technical specifications
for residual heat removal system for safety system of the plant. Tiwari et al. [19] proposed an
improved version of the Archive-based Micro Genetic Algorithm called AMGA2 which incorporates
a selection strategy for the reducing the chance of missing out on enough exploration of the desirable
search space. The algorithm retains a collection of wide range of best solution along with a working
population of small size.

Emary et al. [20] proposed MOGWO based feature selection strategy. The authors showed that 
the results of present version of MOGWO and better performance of present algorithm. Makhadmeh 
et al. [21] presented MOGWO for minimizing the electricity bill and peak-to-average ratio (PAR) 
and increasing the comfort level of users of smart homes. The authors established a better 
performance of the MOGWO for power scheduling problem as compared to GA. Dilip et al. [22] 
introduced a MOGWO aimed at optimizing the power flow problem. They addressed emission, fuel 
cost, and active power loss as individual objectives and derived Pareto-optimal solutions (PoS) for 
two multi-objective scenarios: minimizing fuel cost alongside emission value, and minimizing fuel 
cost along with active power loss. Their results showed significant competitiveness in these 
scenarios. Xia et al. [23] proposed a multi-objective optimal function for Hydraulic turbine governing 
system (HTGS) under multiple operation conditions by applying novel MOGWO with searching 
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factor called sMOGWO. The authors employed two improvements which include addition of more 
no-domain solutions with adjustment of control parameters for exploration in the latter period of 
the process of optimization to finally make the algorithm more effective.  

Petrovic et al. [24] developed a MOGWO for scheduling material transport systems using a 
single mobile robot within an intelligent manufacturing system. They quantitatively assessed and 
compared the effectiveness of their algorithm against three other algorithms—MOGA, MOAOA, 
and MOPSO—using four metrics: Generational Distance (GD), Inverted Generational Distance 
(IGD), Spacing (SP), and Maximum Spread (MS). Experimental results demonstrated the efficiency 
of their proposed method. Additionally, Darvish [25] applied a non-dominated sorting MOGWO-
based fractional-order sliding mode controller (FOSMC) to precisely regulate the active and reactive 
power of a DFIG-based wind turbine. The FOSMC was designed to handle uncertainties and 
unmodeled dynamics in the nonlinear, multivariable, time-varying system of the DFIG, showing 
valid performance. 

The present paper optimizes the reliability cost of a complex bridge structure consisting a series 
parallel configuration. Section II describes the MOO technique, MOGWO algorithm along with the 
motivation for the algorithm. Section III describes the mathematical formulation of the problem. The 
discussion of numerical solution, along with graphical representation of the solution of the problem 
is presented in section IV. The conclusion and future scope are given in section V.  

II. Multi-Objective Grey Wolf Optimization Optimizer (MOGWO)

General representation of a linear or nonlinear MOOP is given as 

    𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ( 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒): 𝐹(𝑥) =  {𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓ℎ(𝑥)}. (1) 
Subject to: 

𝑝𝑖(𝑥) ≥ 0,  𝑖 = 1,  2, … . 𝑜 
𝑞𝑖(𝑥) = 0,  𝑖 = 1,  2, … . 𝑛 

𝐻𝑖(𝑥) ≤ 𝑥𝑖 ≤ 𝐺𝑖, 𝑖 = 1,  2, … . 𝑚. 
There is inherent complexity of the reliability optimization problems having vast exploration 

area for finding the global optimum solution from among the large population of the candidate 
solutions which may have the risk of late or early convergence to near optimal solution. Apart from 
these problems there is a major problem of obtaining more than one objective with the choice trade-
offs for suiting the different preferences of the decision makers. Here comes the role of MOO 
techniques. Also, MOO approach is divided into priori approach converting the different objectives 
into single objective by using weights the decision makers give to the objectives for the sake of 
preferences of the different objectives and the other approach being the posterior retaining the multi-
objective nature of the problem giving a chance to the model parameters to shape the optimization 
to the fullest for attaining the global best solutions of pareto optimal set. To avoid the local stagnation 
problem of the conventional MOO techniques using the deterministic methods applying the 
mathematical and computer science study, the modern stochastic methods are producing much 
better results. MOWGO is one of the well-known recent stochastic optimization techniques for 
MOOP. 

Proposed by Mirjalili et al. [3] Grey wolf optimization (GWO) technique has been extended to 
MOGWO technique by Mirjalili et al. [9]. GWO technique is an optimization method which involves 
the simulation of the unique hunting mechanism adopted by the grey wolves by following three 
steps of surveying, encircling and attacking with their social hierarchical behavior. In the technique 
the search space exploration is done for the candidate solutions and the they are divided into four 
categories like those of the alpha, beta, delta and the rest as the omega category in the decreasing 
order of their fitness (hierarchical ability of the wolves). At the end of every iteration the hierarchy 
is updated. Based on the unique hunting mechanism involving a balanced exploration and 
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exploitation approach the GWO technique has been developed into MOO technique to achieve the 
different conflicting objectives of increasing availability and reliability of complex systems along 
with the cost minimization objective. 
The following terms are worth noting: 

 Pareto Dominance: For two vectors 𝑥 = (𝑥1, 𝑥2,  … . . 𝑥𝑘) and y = (𝑦1 , 𝑦2,  … . 𝑦𝑘),
𝑥 > 𝑦 if ∀ 𝑗 ∈ 1, 2, … … , 𝑘, [𝑓(𝑥𝑗) ≥ 𝑓(𝑦𝑗)]˄[∃𝑗 ∈ 1, 2, 3 … . . 𝑘: 𝑓(𝑥𝑗)]

 PoS: 𝑥 ∈ 𝑋 is called PoS if and only if  ∄ 𝑦 ∈ X for F(y) > F(x). The Pareto optimal set 𝑃𝑠

is the set of all PoS.
 PoF: The set of values of the objective functions for Pareto solution set that is 𝑃𝑖 =

{F(𝑥): 𝑥 ∈ 𝑃𝑠}. The PoF consisting of the values of the objectives for different POF the
best suitable values are preferred to satisfy the operating conditions.

The GWO algorithm simulates the hunting mechanism of the wolves for a single optimal 
solution. MOGWO on the other hand produces a set of solutions called as POS which is a result of 
the following two strategies employed in MOGWO technique. 

(i) An archive responsible for sorting non-dominated PoS
An archive is an ordinary collection of PoS. It has a maximum capacity so the entry of a new
solution (new member) to the archive is possible only if the new solution dominates at least
one member of the archive or if both the new solution and each of the members of the archive
are equally dominating. In case the archive is full then the entry is possible only after the
grid mechanism is run followed by the re-arrangement of the segmentation of the search
space and omission of one the solutions of the most crowded segment (hypercube). The
accommodation of the new solution in the least crowded segment or outside the segment
increases the diversity of the final PoS.

(ii) Leader selection strategy that assists to choose (Roulette Wheel method)
As against the three best solutions obtained in the GWO to guide the other search for the
global optimum solution, in MOGWO the Pareto optimality restricts the comparison of the
solutions. To compensate for this aspect of MOGWO there is a leader selection strategy in
which the least crowded segment is offered one of its non-dominated solutions as the alpha,
beta or delta wolves.
Probability of selection is given by 𝑃𝑖 =

𝐶

𝑁𝑖
;

𝑐 > 1 and 𝑁𝑖  is the number of obtained PoS in the ith segment.
As three best solutions (or leaders) have to be selected so if there are less than three solutions
in the least crowded segment then second least crowded segment is considered for the leader
selection and the process continues if there is not enough non-dominated leaders in this
segment as well. This process is important to maintain the selection of the different kinds of
leaders and explore the un-explored areas of the search space.

Thus, the grid mechanism and leader selection strategies enhance the diversity of the archive 
as the optimization process advances. Also, the Roulette Wheel method helps to overcome the 
problem of local front for the MOGWO. MOGWO possesses almost same characteristics of GWO 
except for the fact that GWO tries to maintain and upgrade the three best solutions whereas the 
MOGWO does the sorting of the archive members in terms with respect to dominated and non-
dominated solutions. Following Figure 1 shows code of the MOGWO [26]. 
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Figure 1: Pseudo code for MOGWO 

III. Mathematical Formulation of Complex Bridge System (CBS)

The system has a total of five components (Fig. 2) each having component reliability 𝑟𝑗 ,  𝑗 = 1,2,3,4,5 . 

Figure 2: CBS Block Diagram 

The overall reliability of system, which is probability of success of system, is given by 
𝑅𝑠 =  𝑟1𝑟4 +  𝑟2𝑟5 +  𝑟2𝑟3𝑟4 +  𝑟1𝑟3𝑟5 +  2𝑟1𝑟2𝑟3𝑟4𝑟5 −  𝑟1𝑟2𝑟4𝑟5 −   
𝑟1𝑟2𝑟3𝑟4 −  𝑟2𝑟3𝑟4𝑟5 −  𝑟1𝑟2𝑟3𝑟5 −   𝑟1𝑟3𝑟4𝑟5                                                                                                        (2) 
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The cost of jth component is taken as 

𝑐𝑗 = 𝑎𝑗𝑒𝑥𝑝 (
𝑏𝑗

(1−𝑟𝑗)
) ,  𝑗 = 1,2,3,4,5  (3) 

Thus, the overall system cost is given by, 
𝐶𝑆 = ∑ 𝑎𝑖 

5
𝑖=1 exp [ 𝑏

(1−𝑟𝑖)
]  (4) 

The MOOP proposed here is to determine the reliability of components, which minimize both 
system unreliability and system cost is presented as follows. 

To find (𝑟1,  𝑟2,  𝑟3,  𝑟4, 𝑟5) to minimize (𝑄𝑆 , 𝐶𝑆) 
subject to, 
0.5 ≤ 𝑟𝑗 ≤ 1,   𝑗 = 1,  2,  3,  4,  5 where 
𝑎𝑖=1 and 𝑏𝑖 , =0.0003,  ∀𝑖,  𝑖 = 1,  2,  … . ,5 

IV. Results and Discussion

The MOGWO technique used to is successfully used to achieve two opposing objectives of 
maximizing reliability 𝑅𝑠 and minimizing cost 𝐶𝑠 . This is done by the POF obtained in the course of 
the iterations using MATLAB (Fig. 3). The numerical results involve following parameter settings. 
Grey wolves =500 
Max Iterations= 1000 
Archive size =100 
Alpha wolves 0.1 % of the Grid Inflation Parameter 
Beta wolves 4 % of the Leader selection pressure parameter. 
Gamma = 2% (which could be deleted being extra) 
N Grid = 10 % per each dimension of the hyper volume of the search space. 

Table 1:  Examples of non-dominated optimal solution obtained by MOGWO 

Solutions 

(Sol.) 
Sol. 1 Sol.  2 Sol.  3 Sol.  4 

Optimum 

variables 

𝒓𝟏 0.647078 0.955759 0.874055 0.920607 

𝒓𝟐 0.813646 0.985532 0.85428 0.823586 

𝒓𝟑 0.666308 0.830469 0.550224 0.828131 

𝒓𝟒 0.809893 0.968221 0.724388 0.851756 

𝒓𝟓 0.757558 0.816819 0.918158 0.862526 

Optimum 

system cost 
𝑪𝒔 5.006178 5.040651 5.009874 5.011445 

Optimum 

system 

reliability 
𝑹𝒔 0.866563 0.992170 0.942139 0.961015 

Solutions Sol.  5 Sol.  6 Sol.  7 Sol.  8 

Optimum 

variables 

𝒓𝟏 0.784118 0.967767 0.677376 0.816032 

𝒓𝟐 0.894535 0.837209 0.721532 0.786603 

𝒓𝟑 0.630719 0.574196 0.588316 0.624724 
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Figure 3: PoF solutions for the Complex Bridge system by MOGWO 

Table 2: Convergence results of 𝑅𝑠 𝑎𝑛𝑑 𝐶𝑠 (1000 runs) MOGWO 

Repository size = 100 Mean Median S. D Minimum Maximum 

MOGWO 

System Reliability 
(Rs) 

0.854069 0.943724 0.176146 0.500000 0.999798 

System Cost (Cs) 5.054642 5.009944 0.062221 5.003001 5.152273 

V. Conclusion and Further Scope

MOGWO technique with its two module strategies of an archive of solutions for storing and 
retrieving the best solutions during the progress of the optimization process along with the selection 
of leader gradually lead to achieve diverse PoS. On one hand the grid mechanism improved the non-
dominated solutions in the archive the leader selection mechanism geared the best coverage and 
convergence. Thus, the exploration and exploitation balance is maintained. 

o The above Table 1 presents the numerical results. It includes the estimation of the optimum
reliabilities and costs in different run of the MATLAB.

o Total eight sets of PoS corresponding to the optimum reliabilities and cost using MOGWO
have been presented in the Table.

o Table 2 presents the average values of optimum reliabilities and costs using simple statistical
tools like mean, median and standard deviation.

o Table 2 gives the minimum and maximum values of the mean of all eight PoS. Minimum r=
0.500000 and maximum r= 0.999798 whereas costs range from minimum value 5.003001 to

𝒓𝟒 0.607285 0.962570 0.692794 0.854300 

𝒓𝟓 0.917022 0.890661 0.691226 0.745382 

Optimum 

system cost 
𝑪𝒔 5.009438 5.022695 5.004686 5.007079 

Optimum 

system 

reliability 
𝑹𝒔 0.930796 0.987236 0.786834 0.906191 
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maximum value of 5.15227. 
o By and large the results are competitive as compared to the those of MOPSO.
o Figure 2 indicates very clearly that for the reliability less than r = 0.786834 the minimum cost

is approximately same around 5 and less than 5.004686 and also that the minimum cost
constantly increases with the increase in the reliability.  The highest reliability 0.992170
corresponds to the cost of 5.009874.

o Figure 2 also shows that for reliability is almost same for the values of the minimum cost of
5.009874 approximately.

In the future, MOGWO can be instrumental in evaluating and prioritizing multiple objective 
problems for solving complex systems with redundant components, ensuring high performance, 
and achieving optimal cost and efficiency. This approach can be applied in various fields, including 
telecommunications, optimal power load transmission, artificial neural networks, space program 
reliability optimization, mutation processes, and other biological and medical areas. The Pareto 
optimal front (PoF) and multi-criteria decision-making (MCDM) techniques can be utilized to select 
the most suitable optimal solutions from the PoF, ensuring efficiency throughout the entire 
operation of complex multi-state systems. 
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Abstract

In this manuscript, we propose a new extension of the Rayleigh distribution, named as Ratio
Transformation Rayleigh Distribution (RTRD), which offers superior fits compared to the Rayleigh
distribution and several of its known generalizations. We derive various properties of the proposed
distribution, including moments, moment generating function, hazard rate, conditional moments,
Bonferroni and Lorenz curves, mean residual life, mean waiting time, Renyi entropy and order statistics.
The unknown parameters are estimated using the maximum likelihood estimation procedure. An extensive
simulation study is conducted to illustrate the behavior of the maximum likelihood estimators (MLEs)
based on Mean Square Errors. The flexibility of the new distribution is demonstrated by applying
it to two real data sets. Comparative analysis with the Rayleigh distribution, Weighted Rayleigh
distribution, Exponentiated Rayleigh distribution and Transmuted Rayleigh distribution reveals that
RTRD outperforms these competing distributions based on Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Akaike Information Criterion Corrected (AICC) and other goodness of fit
measures.

Keywords: Ratio transformation, Rayleigh distribution , Moments, Conditional moments , Renyi
entropy, Maximum Likelihood estimation

1. Introduction

Probability distributions are vital for statistical inference and data analysis, enabling meaningful
interpretations and informed decision-making. While classical distributions are widely used
across various fields, they often struggle to accurately model real-world data. Consequently,
researchers have focused on extending classical distributions to improve their fit and adaptability
in data modeling.

The Rayleigh distribution, originally introduced by Rayleigh [22] in the context of acoustics,
has been extensively studied in the statistical literature. Several extensions and applications of
the Rayleigh distribution (RD) have been proposed over time. Siddiqui [24] explored its genesis
and origin, while Howlader and Hossain [14] examined its Bayesian estimation under type-II
censored data. Lalitha and Mishra [17] discussed modified maximum likelihood estimation
for the Rayleigh distribution. Surles and Padgett [25] introduced the two-parameter Burr type
X distribution, referring to it as the exponentiated Rayleigh distribution (ERD) or generalized
Rayleigh distribution. Kundu and Raqab [16] investigated parameter estimation techniques for
the generalized Rayleigh distribution. Abd Elfattah et al. [1] studied the efficiency of maximum
likelihood estimators under different censored sampling schemes. Dey and Tanujit [13] explored
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Bayesian estimation of the scale parameter, while Ahmed et al. [4] employed the square error loss
function and Al-Bayyati’s loss function for Bayesian analysis of the Rayleigh distribution.

Ajami and Jhansi [5] focused on parameter estimation for the weighted Rayleigh distribution,
while Ahmad et al. [3] introduced the Weibull-Rayleigh distribution, characterizing and estimating
its parameters using the transformed transformer technique. Ardianti [7] applied classical
and Bayesian methods to estimate Rayleigh distribution parameters. Bhat and Ahmad [12]
proposed a novel extension of the exponentiated Rayleigh distribution, studied its properties, and
demonstrated its applicability using various datasets. The same authors [11] investigated the
mixture of Gamma and Rayleigh distributions. Kilai et al. [15] developed a versatile modification
of the Rayleigh distribution for modeling COVID-19 mortality rates. Bhat et al. [9] proposed
a new extension of the odd Lindley power Rayleigh distribution, analyzing its properties and
parameter estimation using classical and Bayesian approaches. Bhat and Ahmad [10] introduced
a generalization of the Rayleigh distribution using a power transformation technique, while Mir
and Ahmad [20] proposed the sine power Rayleigh distribution, examining its properties and
applications. Abdelall and Yassmen [2] studied the Marshall-Olkin power Rayleigh distribution
with properties and engineering applications. Anis et al. [6] reviewed the Rayleigh distribution,
discussing its properties, estimation techniques, and application to COVID-19 data.

This manuscript aims to present and analyze a new lifetime model, termed the Ratio Transfor-
mation Rayleigh Distribution (RTRD), developed using the Ratio Transformation (RT) method. A
notable advantage of the RTRD is its additional parameter, which imparts desirable properties
and enhances the flexibility of its density and hazard rate functions. Furthermore, the model
demonstrates superior performance compared to several established distributions when applied
to real-world datasets.

The structure of the paper is as follows: Section 2 introduces the RT method. Section 3 outlines
the formulation of the RTRD, while Section 4 discusses its statistical properties in detail. The
maximum likelihood approach for parameter estimation is addressed in Section 5. Sections 6
and 7 present the results of an extensive simulation study and demonstrate the model’s practical
applicability, respectively. Finally, Section 8 provides concluding remarks.

2. Ratio Transformation Method

The CDF and PDF of the Ratio Transformation (RT) Method proposed by [18] are defined by the
following equations:

FRT(x) =
F(x)

1 + α − αF(x)
; α > 0. (1)

fRT(x) = f (x)

(
1 + α − αF(x) (1 − F(x)logα)

)
(
1 + α − αF(x)

)2 ; α > 0. (2)

Where F(x) and f (x) in Eq. (1) and Eq. (2) above are the CDF and PDF of the base line distribu-
tion respectively.
Rasool and Ahmad [21] explored the Ratio Transformation Lomax distribution and its applica-
tions.

3. Ratio Transformation Rayleigh Distribution (RTRD)

The Rayleigh distribution (RD), named after Lord Rayleigh [22] is prominent lifetime probability
model concerned with describing skewed data. The probability density function (PDF) associated
with random variable x > 0 having RD with scale parameter θ is given by

f (x; θ) =
x
θ2 e−

x2

2θ2 ; x > 0, θ > 0 (3)
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and the corresponding cumulative distribution function (CDF) is given as

F(x; θ) = 1 − e−
x2

2θ2 ; x > 0, θ > 0 (4)

Here we introduce, RT method. Considering F(x; θ) be the CDF of Rayleigh distribution. Then
the CDF of RTRD can be obtained by inserting Eq. (4) in Eq.(1) and is given by

F(x; α, θ) =


1−e

− x2

2θ2

1+α−α1−e
− x2

2θ2

; α ̸= 1, α, θ > 0

1 − e−
x2

2θ2 ; α = 1, θ > 0

(5)

The corresponding PDF of RTRD is obtained as

f (x; α, θ) =



x
θ2 e

− x2

2θ2

1+α−α1−e
− x2

2θ2
(

1−
(

1−e
− x2

2θ2

)
log α

)
1+α−α1−e

− x2
2θ2

2 , α ̸= 1, α, θ > 0

x
θ2 e−

x2

2θ2 , α = 1, θ > 0

(6)

Figure 1 illustrates the probability density function (PDF) of the RTRD for various parameter
combinations of α and θ.
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Figure 1: Plots of the pdf of the RTRD
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3.1. Survival function

The survival function for the RTRD is given as

RRTRD(x; α, θ) =

α

(
1 − α−e

− x2

2θ2

)
+ e−

x2

2θ2

1 + α − α1−e
− x2

2θ2

; α, θ > 0 (7)

3.2. Hazard Rate

The hazard rate for RTRD is obtained as

hRTRD(x) ==

x
θ2 e−

x2

2θ2

(
1 + α − α1−e

− x2

2θ2
(

1 −
(

1 − e−
x2

2θ2

)
log α

))
(

1 + α − α1−e
− x2

2θ2

)(
α

(
1 − α−e

− x2
2θ2

)
+ e−

x2
2θ2

) ; α, θ > 0 (8)

Figure 2 depicts graphs of the hazard rate of the RTRD for different parameter values. Figure
2 suggests that the proposed distribution is quite flexible in nature and can exhibit variety of
shapes over the parameter space.
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Figure 2: Plots of the hazard rate of the model
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3.3. Reverse Hazard function

The reverse hazard rate for RTRD is obtained as

hr(x; α, θ) =

x
θ2 e−

x2

2θ2

(
1 + α − α1−e

− x2

2θ2
(

1 −
(

1 − e−
x2

2θ2

)
log α

))
(

1 + α − α1−e
− x2

2θ2

)(
1 − e−

x2
2θ2

) ; α, θ > 0 (9)

3.4. Cumulative Hazard function

The cumulative hazard function for the RTRD is defined as

ΛRTRD(x; α, θ) = log


1 + α − α1−e

− x2

2θ2

α

(
1 − α−e

− x2
2θ2

)
+ e−

x2
2θ2


3.5. Mills Ratio

The mills ratio for RTRD is given by

M.R =
1 − e−

x2

2θ2

α

(
1 − α−e

− x2
2θ2

)
+ e−

x2
2θ2

(10)

4. Statistical Properties of RTRD

This section focuses on deriving several key mathematical properties, such as the rth moment,
moment generating function, conditional moments and their associated measures, entropy and
order statistics.

4.1. Moments

The rth moment of X can be obtained as

E(Xr) =

∞∫
0

xr f (x; α, θ)dx

=

∞∫
0

xr x
θ2 e−

x2

2θ2

(
1 + α − α1−e

− x2

2θ2
(

1 − (1 − e−
x2

2θ2 ) log α

))(
1 + α − α1−e

− x2

2θ2

)−2

dx.

(11)

By substituting 1 − e−
x2

2θ2 = y in (11), we get

E(Xr) =
∞

∑
j=0

1
(1 + α)j+1

 1∫
0

(
−2θ2log(1 − y)

) r
2

(
αyj +

α(j+1)y(j + 1)logα

1 + α
y

)
dy

 . (12)
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Again, substituting −2θ2log(1 − y) = x in (12), we get the final expression as

E(Xr) =
∞

∑
j=0

∞

∑
m=0

(2θ2)
r
2 αj(−logα)m

(1 + α)j+1m!
Γ(

r
2
+ 1)

{
jm

(m + 1)
r
2+1

+
α logα (j + 1)m+1

1 + α

(
1

(m + 1)
r
2+1

− 1

(m + 2)
r
2+1

)}
.

(13)
setting r = 1 in Eq. (13) the mean of the model is computed as

E(X) =
∞

∑
j=0

∞

∑
m=0

(2θ2)
1
2 αj(−logα)m

(1 + α)j+1m!
Γ(

3
2
)

{
jm

(m + 1)
3
2
+

α logα (j + 1)m+1

1 + α

(
1

(m + 1)
3
2
− 1

(m + 2)
3
2

)}
(14)

Similarly for r = 2, 3 and 4 in Eq. (13) , the second, third and fourth moment about origin are
respectively.

4.2. Moment Generating function of RTRD

The following theorem provides the MGF for the RTRD .

Theorem 1. Let X follow the RTRD (α, θ) , then the moment generating function, MX(t), is

MX(t) =
∞

∑
r=0

∞

∑
j=0

∞

∑
m=0

tr

r!
(2θ2)

r
2 αj(− log α)m

(1 + α)j+1m!
Γ
( r

2
+ 1
){ jm

(m + 1)
r
2+1

+
α log α(j + 1)m+1

1 + α

(
1

(m + 1)3 − 1
(m + 2)3

)}
(15)

Proof: The moment generating function of the RTRD is defined as

MX(t) =
∫ ∞

0
etx f (x; α, θ)dx (16)

Using the series representation of etx, we have

MX(t) =
∞

∑
r=0

tr

r!
E(Xr) (17)

Substituting the value of Eq. (13) in Eq. (17) , we get

MX(t) =
∞

∑
r=0

∞

∑
j=0

∞

∑
m=0

tr

r!
(2θ2)

r
2 αj(− log α)m

(1 + α)j+1m!
Γ
( r

2
+ 1
){ jm

(m + 1)
r
2+1

+
α log α(j + 1)m+1

1 + α

(
1

(m + 1)3 − 1
(m + 2)3

)}
(18)

4.3. Conditional moments and associated measures

In this sub section, the expression for conditional moments is acquired. But first we will introduce
an important lemma which will be applied in the next sub section.
Lemma 1. Let us suppose a random variable X follows RTRD (α, θ) with PDF given in Eq. (6)
and let φr(z) =

∫ z
0 xr f (x) dx denotes the rth incomplete moment, then we have

φr(z) =
∞

∑
j=0

∞

∑
m=0

(2θ2)
r
2 αj(− log α)m

(1 + α)j+1m!

{
jm

(m + 1)
r
2+1

γ

((
m + 1

2θ2

)
z2,

r
2
+ 1
)

+
α log α(j + 1)m+1

1 + α

[
1

(m + 1)
r
2+1

γ

((
m + 1

2θ2

)
z2,

r
2
+ 1
)

− 1

(m + 2)
r
2+1

γ

((
m + 2

2θ2

)
z2,

r
2
+ 1
)]}

(19)
where γ(a, b) =

∫ b
0 za−1e−z dz denotes the lower incomplete gamma function.
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Proof. Using the PDF of RTRD given in Eq. (6), we have

φr(z) =
z∫

0

xr f (x; α, θ)dx (20)

=

z∫
0

xr x
θ2 e−

x2

2θ2

(
1 + α − α1−e

− x2

2θ2
(

1 − (1 − e−
x2

2θ2 ) log α

))(
1 + α − α1−e

− x2

2θ2

)−2

dx. (21)

By using the same procedure as in the Eq. (13) above, we get

φr(z) =
∞

∑
j=0

∞

∑
m=0

(2θ2)
r
2 αj(− log α)m

(1 + α)j+1m!

{
jm

(m + 1)
r
2+1

γ

((
m + 1

2θ2

)
z2,

r
2
+ 1
)

+
α log α(j + 1)m+1

1 + α

[
1

(m + 1)
r
2+1

γ

((
m + 1

2θ2

)
z2,

r
2
+ 1
)

− 1

(m + 2)
r
2+1

γ

((
m + 2

2θ2

)
z2,

r
2
+ 1
)]}

(22)

Setting r = 1 in Eq. (22) will yield first incomplete moment as given by

φ1(z) =
∞

∑
j=0

∞

∑
m=0

(2θ2)
1
2 αj(− log α)m

(1 + α)j+1m!

{
jm

(m + 1)
3
2

γ

((
m + 1

2θ2

)
z2,

3
2

)

+
α log α(j + 1)m+1

1 + α

[
1

(m + 1)
3
2

γ

((
m + 1

2θ2

)
z2,

3
2

)
− 1

(m + 2)
3
2

γ

((
m + 2

2θ2

)
z2,

3
2

)]}
(23)

4.3.1 Lorenz and Bonferroni inequality Curves

The Lorenz and Bonferroni inequality curves represent significant applications of the first incom-
plete moment. For a given probability distribution, they are defined as follows.

Lp =
1

E(X)

∫ t

0
x f (x; α, θ) dx =

φ1(t)
E(X)

Lp =
∑∞

j=0 ∑∞
m=0

αj(− log α)m

(1+α)j+1m!
{A2 + B2}

∑∞
j=0 ∑∞

m=0
αj(−logα)m

(1+α)j+1m!
Γ( 3

2 ) {A1 + B1}

Similarly,

BP =
1

pE(X)

∫ t

0
x f (x; α, θ) dx =

φ1(t)
pE(X)

BP =
∑∞

j=0 ∑∞
m=0

αj(− log α)m

(1+α)j+1m!
{A2 + B2}

p ∑∞
j=0 ∑∞

m=0
αj(−logα)m

(1+α)j+1m!
Γ( 3

2 ) {A1 + B1}

Where,

A1 =
jm

(m + 1)
3
2

,

and

B1 =
α logα (j + 1)m+1

1 + α

(
1

(m + 1)
3
2
− 1

(m + 2)
3
2

)
.

A2 =
jm

(m + 1)
3
2

γ

((
m + 1

2θ2

)
t2,

3
2

)
,
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and

B2 =
α log α(j + 1)m+1

1 + α

[
1

(m + 1)
3
2

γ

((
m + 1

2θ2

)
t2,

3
2

)
− 1

(m + 2)
3
2

γ

((
m + 2

2θ2

)
t2,

3
2

)]
.

4.3.2 r-th Conditional Moment and r-th Reversed Conditional Moment of RTRD

The rth conditional moment of the RTRD is calculated by

E [Xr|x > t] =
1

R(t)

∫ ∞

t
xr f (x; α, θ) dx =

1
R(t)

[E(Xr)− φr(t)]

where R(t) is the reliability of RTRD at time t. Inserting the value of Eq.s (7), (13) and (22), we
obtain

E [Xr | x > t] =
1 + α − α1−e

− x2

2θ2

α

(
1 − α−e

− x2
2θ2

)
+ e−

x2

2θ2

∞

∑
j=0

∞

∑
m=0

(2θ2)
r
2 αj(− log α)m

(1 + α)j+1m!
Γ
( r

2
+ 1
){ jm

(m + 1)
r
2 +1 +

α log α(j + 1)m+1

1 + α

(
1

(m + 1)
r
2 +1

− 1
(m + 2)

r
2 +1

)}
−
(

jm

(m + 1)
r
2 +1 γ

(
(m + 1)t2

2θ2 ,
r
2
+ 1
)
+

α log α(j + 1)m+1

1 + α

[
1

(m + 1)
r
2 +1 γ

(
(m + 1)t2

2θ2 ,
r
2
+ 1
)

− 1
(m + 2)

r
2 +1 γ

(
(m + 2)t2

2θ2 ,
r
2
+ 1
)])

.

Similarly, the rth reversed conditional moment of the RTRD is defined by

E [Xr|x ≤ t] =
1 + α − α1−e

− x2

2θ2

1 − e−
x2

2θ2

∞

∑
j=0

∞

∑
m=0

(2θ2)
r
2 αj(− log α)m

(1 + α)j+1m!

{
jm

(m + 1)
r
2 +1 γ

((
m + 1

2θ2

)
t2,

r
2
+ 1
)
+

α log α(j + 1)m+1

1 + α

[
1

(m + 1)
r
2 +1 γ

((
m + 1

2θ2

)
t2,

r
2
+ 1
)
− 1

(m + 2)
r
2 +1 γ

((
m + 2

2θ2

)
t2,

r
2
+ 1
)]}

.

4.3.3 Mean Residual Life (MRL) and Mean Waiting Time (MWT)

Mean Residual Life (MRL) is the expected remaining lifetime of an item that has already survived up to a
certain time t. It provides a measure of the average future life expectancy of an item given that it has lasted
until time t. The MRL is defined as

µ(t) =
1

R(t)

[
E(t)−

∫ t

0
x f (x; α, θ) dx

]
− t =

1
R(t)

[E(t)− φ1(t)]− t

After inserting the value of Eq. (7), Eq. (14) and Eq. (23), we obtain the required expression for MRL as

µ(t) =
1 + α − α1−e

− t2
2θ2

α

(
1 − α−e

− t2
2θ2

)
+ e−

t2
2θ2

∞

∑
j=0

∞

∑
m=0

(2θ)
1
2 αj(− log α)m

(1 + α)j+1m!

(
Γ(

3
2
) {A1 + B1} − {A2 + B2}

)
− t

The mean waiting time is crucial for analyzing the actual time of failure of an item that has already failed. It
represents the elapsed time since the failure, assuming the failure happened within the interval [0, t]. This
mean waiting time, denoted as µ(t), is defined as

µ(t) = t − 1
F(t)

∫ t

0
x f (x; α, θ) dx = t − φ1(t)

F(t)

µ(t) = t − 1 + α − α1−e
− t2

2θ2

1 − e−
t2

2θ2

∞

∑
j=0

∞

∑
m=0

αj(− log α)m

(1 + α)j+1m!
{A2 + B2}
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4.4. Renyi entropy

Theorem 2. If X ∼ RTRD(α, θ), then the Renyi entropy of the RTRD is given as

Rη =
1

1 − η
log

( 1
θ2

)η−1
 ∞

∑
j=0

∞

∑
m=0

αj(− log α)m

(1 + α)j+1m!

η (
2θ2
) η+1

2 −1
Γ
(

η + 1
2

)

×

 jηm

(η(m + 1))
η+1

2

+

(
α log α (j + 1)m+1

1 + α

)η
 1

(η(m + 1))
η+1

2

− 1

(η(m + 2))
η+1

2




Proof: The Renyi entropy, which Alfred Renyi introduced [23] and generalises Shannon’s measure of
information, is defined as

Rη =
1

1 − η
log

∫ ∞

−∞
f η(x; α, θ) dx, η > 0, η ̸= 1

By using the same procedure as in the Eq. (13) , we get the final expression for Renyi entropy as

Rη =
1

1 − η
log

( 1
θ2

)η−1
 ∞

∑
j=0

∞

∑
m=0

αj(− log α)m

(1 + α)j+1m!

η (
2θ2
) η+1

2 −1
Γ
(

η + 1
2

)

×

 jηm

(η(m + 1))
η+1

2

+

(
α log α (j + 1)m+1

1 + α

)η
 1

(η(m + 1))
η+1

2

− 1

(η(m + 2))
η+1

2




4.5. Order Statistics of RTRD

Let x(r;n) be the rth order statistics with the random sample x(1), x(2), x(3), ...x(n) derived from the RTRD
having the PDF f (x; , α, θ) and CDF F(x; α, θ). Therefore, the PDF and CDF of x(r;n) say f(r;n)(x) and F(r;n)(x)
are respectively defined as

f(r;n)(x) =
1

B(n, n − r + 1)
[F(x; α, θ)]r−1 [1 − F(x; α, θ)]n−r f (x; α, θ) (24)

F(r;n)(x) =
n

∑
j=r

(
n
j

)
[F(x; α, θ)]j [1 − F(x; α, θ)]n−j (25)

Using Eq. (6) and Eq. (5) in Eq. (24) and Eq. (25), the PDF and CDF of rth ordered statistics for the RTRD
are derived and are expressed as

fr:n(x) =

x
θ2 e−

x2

2θ2

(
1 + α − α1−e

− x2

2θ2
(

1 −
(

1 − e−
x2

2θ2

)
log α

))

B(r, n − r + 1)
(

1 + α − α1−e
− x2

2θ2

)n+1

(
1 − e−λxβ

)r−1
(

α

(
1 − α−e

− x2

2θ2

)
+ e−

x2

2θ2

)n−r

.

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function.

F(r;n)(x) =
n

∑
j=r

(
n
j

) 1 − e−
x2

2θ2

1 + α − α1−e
− x2

2θ2

j


α

(
1 − α−e

− x2

2θ2

)
+ e−

x2

2θ2

1 + α − α1−e
− x2

2θ2


n−j

5. Estimation

This section covers the maximum likelihood estimation method for determining the unknown parameters, α

and θ, of the RTRD.
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5.1. Maximum likelihood estimation

Let x1, x2, . . . , xn be a random sample from RTRD with parameters α, θ > 0. Then, the logarithm of the
likelihood function of RTRD is given by

l =
n

∑
i=1

log xi − 2n log θ − 1
2θ2

n

∑
i=1

x2
i − 2

n

∑
i=1

log

1 + α − α1−e
−

x2
i

2θ2

+
n

∑
i=1

log

1 + α − α1−e
−

x2
i

2θ2

(
1 − log α

(
1 − e−

x2
i

2θ2

))
(26)

The MLEs of α and θ are obtained by partially differentiating equation (26) with respect to the corre-
sponding parameters and equating to zero. We have:

∂l
∂α

=
n

∑
i=1

1 +

(
1 − e−

x2
i

2θ2

)2

α−e
−

x2
i

2θ2 log α

1 + α − α1−e
−

x2
i

2θ2

(
1 −

(
1 − e−

x2
i

2θ2

)
log α

) − 2
n

∑
i=1

1 −
(

1 − e−
x2

i
2θ2

)
α−e

−
x2

i
2θ2

1 + α − α1−e
−

x2
i

2θ2

(27)

∂l
∂θ

=
1
θ3

n

∑
i=1

x2
i −

2n
θ

+
α log α

θ3

n

∑
i=1

x2
i e−

x2
i

2θ2 α−e
−

x2
i

2θ2


(

1 − e−
x2

i
2θ2

)
log α

1 + α − α1−e
−

x2
i

2θ2

(
1 −

(
1 − e−

x2
i

2θ2

)
log α

) − 2

1 + α − α1−e
−

x2
i

2θ2


(28)

The expressions in equations (27) and (28) do not possess a closed-form representation, posing a
challenge for obtaining analytical solutions. Consequently, determining the parameter estimates for α and θ

becomes intricate. Despite this complexity, numerical methods using R software can be employed to derive
these estimates effectively.

6. Simulation Study

In this section, we carry out a simulation study using R software to examine the behavior of the MLEs for
various sample sizes. We generate random samples of sizes 25, 75, 150, 300, and 500 from the RTRD and
repeat the process 1000 times in R software. Various combinations of parameters are chosen as (1.8, 2.2) and
(3.0, 3.5) in relation to the standard order (α, θ). The average MLE values, biases and related empirical mean
squared errors (MSEs) were determined for each scenario. The results are presented in Tables 1 and 2. The
estimates are stable and close to the true parameter values, as shown in Tables 1 and 2. Furthermore, in all
scenarios, the MSE decreases as the sample size increases.

Table 1: MLE, Bias, and MSE for the parameters α and θ

Sample size Parameters MLE Bias MSE

n α θ α̂ θ̂ α̂ θ̂ α̂ θ̂

25 1.8 2.2 2.42229 2.07894 0.62229 -0.12106 1.67886 0.08581

75 2.03232 2.14810 0.23232 -0.05189 0.38731 0.03327

150 1.90745 2.18024 0.10745 -0.01975 0.15921 0.01795

300 1.84770 2.19133 0.04770 -0.00866 0.08808 0.01115

500 1.83268 2.19420 0.03268 -0.00579 0.05256 0.00668
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Table 2: MLE, Bias, and MSE for the parameters α and θ

Sample size Parameters MLE Bias MSE

n α θ α̂ θ̂ α̂ θ̂ α̂ θ̂

25 3.0 3.5 3.87207 3.40580 0.87207 -0.09419 4.96014 0.21477

75 3.25054 3.48193 0.25054 -0.01806 1.01548 0.08117

150 3.11418 3.50042 0.11418 0.00042 0.48716 0.04540

300 3.03796 3.50412 0.03796 0.00412 0.21861 0.02087

500 3.01584 3.50210 0.01584 0.00210 0.12086 0.01244

7. Applications to Real Life Data

This section focuses on the application of the proposed model to real-life data sets. The potential of the
proposed model is assessed by comparing its performance with several other models, namely Weighted
Rayleigh Distribution (WRD) [5], Transmuted Rayleigh Distribution (TRD) [19], Exponentiated Rayleigh
Distribution (ERD) [25] and Rayleigh Distribution (RD) [22]. Using two actual data sets, we demonstrate the
utility of the RTRD in this section.

Data Set 1: The first data set pertains to the breaking stress of carbon fibers of 50 mm length (GPa). This
data has been previously used by [10].

Data Set 2: The second data set represents the tensile strength, measured in GPa, of 69 carbon fibers
tested under tension at a gauge length of 20 mm. This data was originally reported by [8]. For illustrative
purposes, we consider the same transformed data set as used by [16].

The results presented in Tables 5 and 6 reveal that the RTRD achieves the smallest values of AIC, BIC,
and AICC compared to the other competing models. This demonstrates that the RTRD outperforms the
base Rayleigh distribution as well as the mentioned competing models. Moreover, its strong performance
across two engineering datasets underscores its practical utility and effectiveness in accurately modeling
complex data patterns. The results are further supported by Figures 3 and 4.

Table 3: MLEs of RTRD and competitive models with corresponding SE (given in parenthesis) for Data set 1

Model α̂ θ̂ β̂ η̂

RTRD 6.9048 1.2180 - -
(2.2212) (0.08174)

WRD - 1.3551 2.5727 -
(0.1234) (0.7452)

TRD - 1.6956 - -0.9587
(0.0824) (0.0929)

ERD 2.3483 0.1919 - -
(0.4311) (0.0245)

RD - 2.0491 - -
(0.1261)
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Table 4: MLEs of RTRD and competitive models with corresponding SE (given in parenthesis) for Data set 2

Model α̂ θ̂ β̂ η̂

RTRD 5.2366 0.6858 - -
(1.6048) (0.0488)

WRD - 0.7457 2.2209 -
(0.0667) (0.6696)

TRD - 0.89478 - -0.9610
(0.0443) ( 0.1193)

ERD 2.1746 0.6621 - -
(0.3875) (0.0847)

RD - 1.0833 - -
(0.0652)

Table 5: Comparison of RTRD and competitive models for Data set 1

Model −2ll AIC BIC AICC K-S p-value

RTRD 170.1694 174.1694 178.5487 174.3599 0.0635 0.9528

WRD 175.7107 179.7107 184.0900 179.9012 0.1104 0.3963

TRD 177.7488 181.7488 186.1282 181.9393 0.1410 0.1446

ERD 177.2735 181.2735 185.6528 181.4640 0.1205 0.2930

RD 196.4168 198.4168 200.6065 198.4793 0.2265 0.0022

Table 6: Comparison of RTRD and competitive models for Data set 2

Model −2ll AIC BIC AICC K-S p-value

RTRD 98.4043 102.4043 106.8725 102.5861 0.0599 0.9654

WRD 100.6399 104.6399 109.1081 104.8217 0.0664 0.9206

TRD 101.9050 105.9050 110.3732 106.0868 0.0887 0.6494

ERD 101.8098 105.8098 110.2780 105.9916 0.0752 0.8293

RD 118.8367 120.8367 123.0708 120.8964 0.1999 0.0080
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Figure 3: Fitted density plots for data set 1
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Figure 4: Fitted density plots for data set 2

8. Conclusion

In this manuscript, we introduce the Ratio Transformation Rayleigh Distribution (RTRD), a new model
that extends the Rayleigh distribution for analyzing data with real support. The motivation behind this
generalization is to enhance the flexibility of the standard distribution, thereby improving its ability to
model real-world data. We derive key statistical properties of the proposed model and examine several
reliability measures. The RTRD showcases greater flexibility, with its hazard rate function exhibiting a
variety of complex shapes. A simulation study was conducted to assess the performance of the maximum
likelihood estimate, demonstrating both its consistency and precision. Parameter estimation is performed
using maximum likelihood estimation. Furthermore, we analyze two real datasets, showing that RTRD
provides a superior fit compared to other competitive distributions.The RTRD model was applied in the
engineering field to analyze material properties such as breaking stress and tensile strength, successfully
capturing complex data patterns. We foresee the RTRD’s broad applicability across statistics and other
domains, with future research focused on extending the model to multidimensional frameworks.
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Abstract 

In this paper, we introduce the Marshall–Olkin extended Shanker distribution, as an 

extension of the Shanker distribution, using the Marshall-Olkin approach. Several 

important properties of the new distribution, such as the hazard rate function, moments, 

incomplete moments, mean deviations, Lorenz and Bonferroni curves, and Rényi entropy 

are explored. The estimation of the parameters is discussed with the help of the maximum 

likelihood method. The performance of the estimators is evaluated using a simulation study. 

Two real data applications are developed in order to assess the flexibility and power of the 

new distribution. The goodness of fit criteria reveal that the new model may provide a better 

fit than the Shanker distribution and other competing models that belong to the Marshall-

Olkin G family of distributions. 

Keywords: Shanker distribution, Hazard rate function, Moments, Mean 
deviations, Bonferroni and Lorenz curves, Rényi entropy, Estimation of parameter 

1. Introduction

Marshall and Olkin [17] introduced an interesting method of adding a new parameter to an existing 
distribution. Let 𝐹(𝑥) and �̅�(𝑥) = 1 − 𝐹(𝑥) be the CDF and survival function of the baseline 
distribution, respectively. Then, using the above-mentioned method, the survival function of the 
new distribution takes the following form 

�̅�(𝑥) =
𝛼�̅�(𝑥)

1 − �̅��̅�(𝑥)
,   − ∞ < 𝑥 < ∞, 

(1) 

where 𝛼 > 0, and , �̅� = 1 − 𝛼. The corresponding PDF of (1) is given by 

𝑔(𝑥) =
𝛼𝑓(𝑥)

[1 − �̅��̅�(𝑥)]2
, − ∞ < 𝑥 < ∞,

(2) 

We note resulting new distribution admits an additional shape parameter, which can affect the 
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behavior of the hazard rate function of the new distribution. The PDF in (2) is called the Marshall-
Olkin extended G (MOE-G for short) distribution. Note that for 𝛼 = 1, 𝐹(𝑥) = 𝐺(𝑥) and thus the new 
family includes the baseline distribution as its special case. Marshall and Olkin [17] discussed two 
special cases of (2), which are the MOE exponential and MOE Weibull distributions. Since then many 
authors implemented the above-mentioned method to obtain a new family of distributions from an 
existing baseline distribution. For example, Ghitany et al. [10] introduced the MOE Lindley 
distribution, MirMostafaee et al. [19] proposed the MOE generalized Rayleigh distribution, and 
Benkhelifa [6] defined the MOE generalized Lindley distribution. Examples of more recent studies 
include the Marshall-Olkin inverse Maxwell distribution (Yadav et al. [24]), the Marshall-Olkin 
Sujatha distribution (Ikechukwu and Eghwerido [14]), the Marshall-Olkin two-parameter Lindley 
distribution (Gillariose and Tomy [11]), the Marshall-Olkin length biased weighted generalized 
uniform distribution (Mathew [18]), the Marshall-Olkin alpha power inverse Rayleigh distribution 
(Adegbite et al. [2]). Some general results and mathematical properties of the MOE family of 
distributions have been discussed in detail by Barreto-Souza et al. [5], and Cordeiro et al. [8]. 

Shanker [22] introduced a new lifetime distribution, called the Shanker distribution, and showed 
that the new distribution can give closer fits to lifetime data sets than both exponential and Lindley 
distributions. The Shanker distribution possesses the following probability density function (PDF) 

𝑓(𝑥, 𝜃) =
𝜃2

𝜃2 + 1
(𝜃 + 𝑥)e−𝜃𝑥,     𝑥 > 0,   𝜃 > 0. 

(3) 

The corresponding cumulative distribution function (CDF) is also given by 

𝐹(𝑥, 𝜃) = 1 −
(𝜃2 + 1) + 𝜃𝑥

𝜃2 + 1
e−𝜃𝑥 ,  𝑥 > 0,   𝜃 > 0. 

(4) 

Shanker [22] showed that the PDF of the Shanker distribution is a mixture of an exponential 
distribution and a gamma distribution, and then discussed many mathematical properties of this 
distribution. Both Shanker and Lindley distributions involve increasing hazard rate functions 
(HRFs). There are several generalizations of the Shanker distribution in the literature, for example, 
Shanker and Shukla [23] presented the power Shanker distribution, Abdollahi Nanvapisheh et al. 
[1] and Jayakumar et al. [15] introduced the exponentiated Shanker distribution, Alzoubi et al. [3]
proposed the transmuted Shanker distribution, Helal et al.  [13] worked on the weighted Shanker
distribution, and Ganaei et al. [9] suggested the weighted power Shanker distribution.

In this paper, we intend to introduce a new extension of the Shanker distribution using the 
method developed by Marshall and Olkin [17]. The new model is called the Marshall-Olkin extended 
Shaker (MOE-Sh for short) distribution. The MOE-Sh distribution involves increasing, increasing-
decreasing-increasing and decreasing-increasing HRFs so that it can be a very flexible model in 
lifetime experiments. The new distribution can work better than some other lifetime distribution in 
a fitting data problem. The rest of the paper is organized as follows: The new distribution is defined 
in Section 2. The HRF of the new distribution is discussed in Section 3. Several mathematical 
properties of the new distribution are investigated in Section 4. Section 5 is devoted to the maximum 
likelihood (ML) estimation of the parameters. A Monte Carlo simulation is developed in Section 6. 
Two real data applications are given in Section 7. The paper ends with some remarks in Section 8. 

2. The New Distribution

If we let �̅�(𝑥, 𝜃) =
(𝜃2+1)+𝜃𝑥

𝜃2+1
e−𝜃𝑥, 𝑥 > 0, i.e. the survival function (SF) of the Shanker distribution, in 
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equation (1), we arrive at the following SF 

�̅�(𝑥, 𝛼, 𝜃) =
𝛼(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥
,    𝑥 > 0,   𝛼, 𝜃 > 0,   �̅� = 1 − 𝛼, 

(5) 

which is the SF of the MOE-Sh distribution. If a random variable 𝑋 possesses the SF (5) with 
parameters 𝛼 and 𝜃, then we write 𝑋 ~ MOE-Sh(𝛼, 𝜃).  The PDF of the MOE-Sh distribution with 
parameters 𝛼 and 𝜃 is given by 

𝑔(𝑥, 𝛼, 𝜃) =
𝛼𝜃2(𝜃 + 𝑥)(𝜃2 + 1)e−𝜃𝑥

(𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥)2
 , 𝑥 > 0,   𝛼, 𝜃 > 0,   �̅� = 1 − 𝛼. 

(6) 

The graphs of the PDF of the MOE-Sh distribution for selected values of 𝛼 and 𝜃 are given in Figure 
1. 

Figure 1: PDFs of MOE-Sh(𝛼, 𝜃) distribution for selected values of 𝛼 and 𝜃. 

From Figure 1, we observe that the PDF of the MOE-Sh distribution can be decreasing or unimodal 
depending on the values of parameters. 

The CDF of  𝑋 ~ MOE-Sh(𝛼, 𝜃) is also given by 

RT&A, No 1 (82) 
Volume 20, March 2025 

944



Sara Ziari, and S.M.T.K. MirMostafaee
MARSHALL-OLKIN EXTENDED SHANKER DISTRIBUTION 

𝐺(𝑥, 𝛼, 𝜃) =
𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥
,    𝑥 > 0,   𝛼, 𝜃 > 0,   �̅� = 1 − 𝛼. 

(7) 

3. Hazard Rate Function

The HRF of the MOE-Sh distribution with parameters 𝛼 and 𝜃 is given by 

ℎ(𝑥) =
𝜃3(𝜃2 + 1 + 𝜃𝑥) + 𝜃2𝑥

(𝜃2 + 1 + 𝜃𝑥)[𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥]
. 

We see that 

ℎ(0) =
𝜃3

𝛼(𝜃2 + 1)
,  and lim

𝑥→∞
ℎ(𝑥) = 𝜃. 

Therefore, the HRF of the MOE-Sh distribution is bounded. The graphs of the HRF of MOE-Sh 
distribution for selected values of 𝛼 and 𝜃 are displayed in Figure 2. From Figure 2, we observe that 
the HRF of the new distribution can be increasing, decreasing-increasing, or increasing-decreasing-
increasing depending on the values of parameters. Note that for example for the case when 𝛼 =0.5 
and 𝜃 =3, we see that the HRF decreases and then increases very slowly after it attains its minimum. 

Figure 2. HRFs of MOE-Sh(𝛼, 𝜃) distribution for selected values of 𝛼 and 𝜃.
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4. Several Mathematical Properties of the New Distribution

In this section, we discuss some mathematical properties of the new distribution such as the moment 
generating function, moments, incomplete moment, the mean deviation from the mean and the 
mean deviation from the median, Bonferroni and Lorenz curves, and Rényi entropy. First, we obtain 
an expansion for the density of the new distribution, which will be used to obtain general properties 
of this distribution in the next discussions.  

For |𝑧|  <  1 and 𝜌 >  0, we have 

(1 − 𝑧)−𝜌 = ∑
Γ(𝜌 + 𝑗)

Γ(𝜌)𝑗!
𝑧𝑗 ,

∞

𝑗=0

 (8) 

where Γ(. ) is the gamma function. Applying (8) to (6), for 0 < 𝛼 < 1, gives 

𝑔(𝑥, 𝛼, 𝜃) =
𝛼𝜃2(𝜃 + 𝑥)e−𝜃𝑥

𝜃2 + 1
∑

Γ(2 + 𝑗)

Γ(2)𝑗!
(1 − 𝛼)𝑗 [(1 +

𝜃𝑥

𝜃2 + 1
) e−𝜃𝑥]

𝑗∞

𝑗=0

. (9) 

Upon applying the binomial expansion to (9), for 𝑥, 𝜃 > 0 and 0 < 𝛼 < 1, we get 

𝑔(𝑥, 𝛼, 𝜃) = ∑ ∑ 𝛼(𝑗 + 1)(1 − 𝛼)𝑗 (
𝑗

𝑚
)

𝜃2+𝑚(𝜃 + 𝑥)

(𝜃2 + 1)𝑚+1
𝑥𝑚e−(𝑗+1)𝜃𝑥

𝑗

𝑚=0

∞

𝑗=0

. (10) 

We can rewrite (2) as follows 

𝑔(𝑥) =
𝑓(𝑥)

𝛼 (1 −
(𝛼 − 1)

𝛼
𝐹(𝑥))

2. 
(11) 

Therefore, using (8) and (11), and then using the binomial expansion for two times, we arrive at the 
following expansion for the density when 𝛼 > 1 

𝑔(𝑥, 𝛼, 𝜃) = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗

(𝑗 + 1)(−1)𝑚
𝜃2+𝑘(𝜃 + 𝑥)

(𝜃2 + 1)𝑘+1
𝑥𝑘e−𝜃(𝑚+1)𝑥

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. (12) 

4.1. Moment Generating Function 

Using (10), the moment generating function of the MOE-Sh distribution with parameters 𝛼 and 𝜃, 

denoted by  𝑀𝑋(𝑡), for 0 < 𝛼 < 1 is given by 

𝑀𝑋(𝑡) = ∑ ∑ (
𝑗

𝑚
)

𝛼(1 − 𝛼)𝑗(𝑗 + 1)𝜃2+𝑚Γ(𝑚 + 1)

(𝜃2 + 1)𝑚+1(𝜃(𝑗 + 1) − 𝑡)𝑚+2

𝑗

𝑚=0

∞

𝑗=0

(𝜃((𝑗 + 1)𝜃 − 𝑡) + 𝑚 + 1),  𝑡 < 𝜃. 

For  α > 1, using (12), we find 

𝑀𝑋(𝑡) = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗 (𝑗 + 1)(−1)𝑚𝜃2+𝑘Γ(𝑘 + 1)

(𝜃2 + 1)𝑘+1(𝜃(𝑚 + 1) − 𝑡)𝑘+2
(𝜃(𝜃(𝑚 + 1) − 𝑡) + 𝑘 + 1)

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

,  𝑡 < 𝜃. 
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4.2. Moments and Related Measures 

Some of the most important features and characteristics of a distribution can be studied through its 
moments. Using (10), the r-th moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃) for 𝛼 ∈ (0, 1) has been obtained as 

𝜇𝑟 = ∑ ∑ 𝛼(1 − 𝛼)𝑗 (
𝑗

𝑚
)

Γ(𝑟 + 𝑚 + 1)

(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑟+𝑚𝜃𝑟
(𝜃2 +

𝑟 + 𝑚 + 1

𝑗 + 1
) .

𝑗

𝑚=0

∞

𝑗=0

 

Besides, using (12), the r-th moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃) for 𝛼 > 1 is given by 

𝜇𝑟 = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗 (𝑗 + 1)(−1)𝑚Γ(𝑟 + 𝑘 + 1)

(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑟+𝑘+1𝜃𝑟
(𝜃2 +

𝑟 + 𝑘 + 1

𝑚 + 1
)

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Thus, the mean of the new distribution for 0 < 𝛼 < 1 can be expressed as 

𝜇 = 𝜇1 = 𝐸(𝑋) = ∑ ∑ 𝛼(1 − 𝛼)𝑗 (
𝑗

𝑚
)

(𝑚 + 1)!

(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1𝜃
(𝜃2 +

𝑚 + 2

𝑗 + 1
) .

𝑗

𝑚=0

∞

𝑗=0

 

Moreover, the mean of the new model for 𝛼 > 1 is given by 

𝜇 = 𝜇1 = 𝐸(𝑋) = ∑ ∑ ∑ (
𝑗

𝑚
) (

𝑚

𝑘
)

1

𝛼
(1 −

1

𝛼
)

𝑗 (𝑗 + 1)(−1)𝑚(𝑘 + 1)!

(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2𝜃
(𝜃2 +

𝑘 + 2

𝑚 + 1
)

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Now, the skewness and kurtosis of the new distribution can be obtained with the help of the 
following equations, respectively 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝐸([𝑋 − 𝐸(𝑋)]3)

(𝐸([𝑋 − 𝐸(𝑋)]2))
3/2

=
𝜇3 − 3𝜇1𝜇2 + 2𝜇1

3

[𝜇2 − 𝜇1
2]3/2

, 

and 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐸([𝑋 − 𝐸(𝑋)]4)

(𝐸([𝑋 − 𝐸(𝑋)]2))
2 =

𝜇4 − 4𝜇1𝜇3 + 6𝜇1
2𝜇2 − 3𝜇1

4

[𝜇2 − 𝜇1
2]2

, 

where 𝜇𝑟 denotes the r-th moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃). 
Next, we work on finding an expression for the incomplete moment of  𝑋 ~ MOE-Sh(𝛼, 𝜃). 

Using (10), for 0 < 𝛼 < 1, the incomplete moment of  𝑋 is given by  

∫ 𝑥𝑔(𝑥, 𝛼, 𝜃)d𝑥
𝑧

0

= ∑ ∑
( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1 (𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑧) +
Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑧)

𝑗 + 1
)

𝑗

𝑚=0

∞

𝑗=0

, (13) 

where Γ(𝑎 , 𝑧) = ∫ 𝑥𝑎−1e−𝑥d𝑥
𝑧

0
 is the incomplete gamma function. 

Besides, using (12), for 𝛼 > 1, the incomplete moment of  𝑋 is obtained to be 

∫ 𝑥𝑔(𝑥, 𝛼, 𝜃)d𝑥
𝑧

0

= ∑ ∑ ∑
(1 −

1
𝛼

)
𝑗

( 𝑗
𝑚

)(𝑚
𝑘

)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑧) +
Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑧)

𝑚 + 1
)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. (14)
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4.3. Mean Deviations and Bonferroni and Lorenz Curves 

The mean deviations from the mean and the mean deviation from the median are defined as 

𝛿1(𝑋) = ∫ |𝑥 − 𝜇|𝑓(𝑥)d𝑥,
∞

0
      and     𝛿2(𝑋) = ∫ |𝑥 − 𝑀|𝑓(𝑥)d𝑥,

∞

0
 

respectively, where 𝑓(𝑥) is the density of 𝑋, µ = 𝐸 (𝑋) and 𝑀 denotes the median of 𝑋. 
The measures 𝛿1(𝑋) and 𝛿2(𝑋) can be computed using the following expressions 

𝛿1(𝑋) = 2𝜇𝐹(𝜇) − 2 ∫ 𝑥𝑓(𝑥)d𝑥
𝜇

0

, 
(15) 

and 

𝛿2(𝑋) = 𝜇 − 2 ∫ 𝑥𝑓(𝑥)d𝑥

𝑀

0

, (16) 

respectively, where 𝐹(𝑥) is the CDF of 𝑋. 
Let of  𝑋 ~ MOE-Sh(𝛼, 𝜃). Then, for 0 < 𝛼 < 1, from (7), (13) and (15), the mean deviation from 

the mean becomes 

𝛿1(𝑋) =
2𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇)

𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇

− 2 ∑ ∑
( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1 (𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝜇) +
Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝜇)

𝑗 + 1
)

𝑗

𝑚=0

.

∞

𝑗=0

 

Besides, for 𝛼 > 1, from (7), (14) and (15), the mean deviation from the mean is given by 

𝛿1(𝑋)

=
2𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇)

𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝜇

− 2 ∑ ∑ ∑
(1 −

1
𝛼

)
𝑗

( 𝑗
𝑚

)(𝑚
𝑘

)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝜇) +
Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝜇)

𝑚 + 1
)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Moreover, for 0 < 𝛼 < 1, from (13) and (16), the mean deviation from the median becomes 

𝛿2(𝑋) = 𝜇 − 2 ∑ ∑
( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1
(𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑀) +

Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑀)

𝑗 + 1
)

𝑗

𝑚=0

.

∞

𝑗=0

 

Besides, for 𝛼 > 1, from (14) and (16), the mean deviation from the median is given by 

𝛿2(𝑋) = 𝜇 − 2 ∑ ∑ ∑
(1 −

1
𝛼

)
𝑗

( 𝑗

𝑚
)(𝑚

𝑘
)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑀) +

Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑀)
𝑚 + 1

)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

. 

Next, we focus on the formulas of the Bonferroni and Lorenz curves, which are important tools in 
various fields such as economics, reliability, medicine and insurance. The Bonferroni and Lorenz 
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curves are defined as 

𝐵𝐹(𝐹(𝑥)) =
1

𝜇𝐹(𝑥)
∫ 𝑢𝑓(𝑢)d𝑢

𝑥

0

, 
(17) 

and 

𝐿𝐹(𝐹(𝑥)) = 𝐹(𝑥)𝐵𝐹(𝐹(𝑥)) =
1

𝜇
∫ 𝑢𝑓(𝑢)d𝑢

𝑥

0

, 
(18) 

respectively, where 𝐹(𝑥) is the CDF of 𝑋, 𝑓(𝑥) is the density of 𝑋,  and µ = 𝐸 (𝑋). 
Let of  𝑋 ~ MOE-Sh(𝛼, 𝜃). Then, for 0 < 𝛼 < 1, from (7), (13), (17) and (18), the Bonferroni and 

Lorenz curves are given by 

𝐵𝐹(𝐹(𝑥)) =
𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥)
∑ ∑

( 𝑗
𝑚

)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1 (𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑥)

𝑗

𝑚=0

∞

𝑗=0

+
Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑥)

𝑗 + 1
), 

and 

𝐿𝐹(𝐹(𝑥)) =
1

𝜇
∑ ∑

( 𝑗

𝑚
)𝛼(1 − 𝛼)𝑗

𝜃(𝜃2 + 1)𝑚+1(𝑗 + 1)𝑚+1
(𝜃2Γ(𝑚 + 2 , (𝑗 + 1)𝜃𝑥) +

Γ(𝑚 + 3 , (𝑗 + 1)𝜃𝑥)

𝑗 + 1
)

𝑗

𝑚=0

∞

𝑗=0

, 

respectively. 
Besides, for 𝛼 > 1, from (7), (14), (17) and (18), the Bonferroni and Lorenz curves are given by 

𝐵𝐹(𝐹(𝑥))

=
𝜃2 + 1 − 𝛼(𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥

𝜇(𝜃2 + 1 − (𝜃2 + 1 + 𝜃𝑥)e−𝜃𝑥)
∑ ∑ ∑

(1 −
1
𝛼

)
𝑗

( 𝑗
𝑚

)(𝑚
𝑘

)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑥) +
Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑥)

𝑚 + 1
)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

,

and 

𝐿𝐹(𝐹(𝑥))

=
1

𝜇
∑ ∑ ∑

(1 −
1
𝛼

)
𝑗

( 𝑗

𝑚
)(𝑚

𝑘
)(𝑗 + 1)(−1)𝑚 (𝜃2Γ(𝑘 + 2 , 𝜃(𝑚 + 1)𝑥) +

Γ(𝑘 + 3 , 𝜃(𝑚 + 1)𝑥)
𝑚 + 1

)

𝛼𝜃(𝜃2 + 1)𝑘+1(𝑚 + 1)𝑘+2

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

, 

respectively. 

4.4. Rényi Entropy 

The entropy of a random variable 𝑋 is the measure of variation of uncertainty. If 𝑋 is a continuous 
random variable having PDF 𝑓(𝑥), then the Rényi entropy is defined as 

𝑇𝑅(𝑞) =
1

1 − 𝑞
log {∫ 𝑓𝑞(𝑥)d𝑥}, 

(19) 

where 𝑞 > 0 and 𝑞 ≠ 1. 
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Let of  𝑋 ~ MOE-Sh(𝛼, 𝜃). Then, from (6) and (8) and using the binomial expansion, for 0 < 𝛼 <

1, we have  

𝑔(𝑥, 𝛼, 𝜃)𝑞 = ∑ ∑
Γ(2𝑞 + 𝑗)

Γ(2𝑞)𝑗!
𝛼𝑞(1 − 𝛼)𝑗 (

𝑗

𝑚
)

𝜃2𝑞+𝑚(𝜃 + 𝑥)𝑞

(𝜃2 + 1)𝑚+𝑞
𝑥𝑚e−𝜃(𝑞+𝑗)𝑥

𝑗

𝑚=0

.

∞

𝑗=0

 

Therefore, the Rényi entropy is given by 

𝑇𝑅(𝑞) =
1

1 − 𝑞
log {∑ ∑ ∑

Γ(2𝑞 + 𝑗)

Γ(2𝑞)𝑗!
(

𝑗

𝑚
) (

𝑚

𝑘
)

𝛼𝑞(1 − 𝛼)𝑗(−1)𝑚−𝑘e𝜃2(𝑞+𝑗)𝛾 (𝑞 + 𝑘 + 1, 𝜃2(𝑞 + 𝑗))

𝜃2𝑘+1−𝑞−2𝑚
(𝜃2 + 1)

𝑚+𝑞
(𝑗 + 𝑞)

𝑞+𝑘+1

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

}, 

where 𝛾(𝑎 , 𝑧) = ∫ 𝑥𝑎−1e−𝑥d𝑥 = Γ(𝑎) − Γ(𝑎 , 𝑧)
∞

𝑧
. 

From (6) and (8) and using the binomial expansion for two times, for 𝛼 > 1, we have 

𝑔(𝑥, 𝛼, 𝜃)𝑞 = ∑ ∑ ∑
Γ(2𝑞 + 𝑗)

𝛼𝑞Γ(2𝑞)𝑗!
(

𝑗

𝑚
) (

𝑚

𝑘
) (1 −

1

𝛼
)

𝑗

(−1)𝑚
𝜃𝑘+2𝑞(𝜃 + 𝑥)𝑞

(𝜃2 + 1)𝑞+𝑘
𝑥𝑘e−𝜃(𝑞+𝑚)𝑥

𝑚

𝑘=0

.

𝑗

𝑚=0

∞

𝑗=0

 

Thus, the Rényi entropy becomes 

𝑇𝑅(𝑞)

=
1

1 − 𝑞
log {∑ ∑ ∑ ∑

Γ(2𝑞 + 𝑗)

𝛼𝑞Γ(2𝑞)𝑗!
(

𝑗

𝑚
) (

𝑚

𝑘
) (

𝑘

𝑖
)

(1 −
1
𝛼

)
𝑗

(−1)𝑚+𝑘−𝑖e𝜃2(𝑞+𝑚)𝛾(𝑞 + 𝑖 + 1, 𝜃2(𝑞 + 𝑚))

𝜃2𝑖+1−𝑞−2𝑘(𝜃2 + 1)𝑞+𝑘(𝑞 + 𝑚)𝑞+𝑖+1

𝑘

𝑖=0

𝑚

𝑘=0

𝑗

𝑚=0

∞

𝑗=0

}. 

5. Maximum Likelihood Estimation

Let 𝒙 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) be an observed random sample of size 𝑛 from the MOE-Sh distribution with 
parameters 𝛼 and 𝜃. Then, the likelihood function of the parameters given 𝒙 is given by 

ℒ(𝛼, 𝜃|𝒙) =
𝛼𝑛𝜃2𝑛(𝜃2 + 1)𝑛e−𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1 ∏ (𝜃 + 𝑥𝑖)

𝑛
𝑖=1

∏ (𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖)2𝑛
𝑖=1

. 

Thus, the log-likelihood function takes the following form 

ℓ(𝛼, 𝜃|𝒙) = 𝑛ln𝛼 + 2𝑛ln𝜃 + 𝑛ln(𝜃2 + 1) + ∑ ln (𝜃 + 𝑥𝑖)

𝑛

𝑖=1

− 𝜃 ∑ 𝑥𝑖

𝑛

𝑖=1

− 2 ∑ ln(𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖).

𝑛

𝑖=1

Upon taking the derivatives from the log-likelihood function with respect to (w.r.t.) the parameters, 
we obtain the following equations that might help us to find the ML estimates of the unknown 
parameters 

𝜕ln𝐿

𝜕𝛼
=

𝑛

𝛼
− 2 ∑

(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖

𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖

𝑛

𝑖=1

= 0, 

𝜕ln𝐿

𝜕𝜃
=

2𝑛

𝜃
+

2𝑛𝜃

𝜃2 + 1
+ ∑

1

𝜃 + 𝑥𝑖

𝑛

𝑖=1

− ∑ 𝑥𝑖

𝑛

𝑖=1

− 2𝜃 ∑
2 − �̅�(2 − 𝑥𝑖

2 − 𝜃𝑥𝑖)e−𝜃𝑥𝑖

𝜃2 + 1 − �̅�(𝜃2 + 1 + 𝜃𝑥𝑖)e−𝜃𝑥𝑖
= 0.

𝑛

𝑖=1

 

Numerical procedures such as the Newton-Raphson may be implemented to solve the above 
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nonlinear equations. 

6. A Simulation Study

In this section, we evaluate the performance of the ML estimators of the parameters of the MOE-Sh 
distribution by means of a simulation study. The inverse transform algorithm is used to generate 
random data from the MOE-Sh distribution. We generated 𝑁 =  10000 samples of sizes 𝑛 = 50, 150, 
300 from the MOE-Sh distribution with the parameter combinations: (𝛼, 𝜃) =  (0.5, 0.5),   (0.5, 4), (3, 
2), and (2, 0.5). The performance of the ML estimators is assessed by means of the estimated bias 
(bias for short), the estimated mean squared error (EMSE), and the estimated mean relative error 
(EMRE). Let �̂� be the ML estimator of α and 𝛼�̂� be the ML estimator of α that is obtained in the i-th 
iteration, then the estimated bias, EMSE, and EMRE of �̂� can be obtained using the following 
equations

𝑏𝑖𝑎𝑠(�̂�) =
1

𝑁
∑(𝛼�̂� − 𝛼)

𝑁

𝑖=1

,  𝐸𝑀𝑆𝐸(�̂�) =
1

𝑁
∑(𝛼�̂� − 𝛼)2

𝑁

𝑖=1

,  and  𝐸𝑀𝑅𝐸(�̂�) =
1

𝑁
∑ (

𝛼�̂�

𝛼
)

𝑁

𝑖=1

, 

respectively. We can obtain the estimated bias, MSE, and MRE of �̂� (the ML estimator of θ) similarly. 
The numerical results of the simulation are given in Table 1. It is clear from Table 1 that the estimated 
biases and estimated MSEs decrease when the sample size 𝑛 increases. Besides, the estimated MREs 
of all parameters are close to one and approach this nominal value when the sample size increases. 

7. Applications

In this section, we provide two real data applications in order to demonstrate the flexibility of the 
MOE-Sh distribution. We check how well the MOESH distribution fits the data compared to several 
other lifetime distributions which are 

1. The Shanker distribution with the following PDF

𝑓(𝑥; 𝜃) =
𝜃2

𝜃2 + 1
(𝜃 + 𝑥)e−𝜃𝑥 ,    𝑥 > 0,   𝜃 > 0. 

2. The Marshall-Olkin Sujatha (MOS) [14] distribution with the following PDF

𝑓(𝑥; 𝛼, 𝜃) =
𝛼 𝜃3e−𝜃𝑥(𝜃2 + 𝜃 + 2)(1 + 𝑥 + 𝑥2)

[(𝜃2 + 𝜃 + 2) − (1 − 𝛼)((𝜃2 + 𝜃 + 2) + 𝜃𝑥(𝜃𝑥 + 𝜃 + 2))e−𝜃𝑥]2
, 𝑥 > 0, 𝛼, 𝜃 > 0. 

3. The Marshall-Olkin extended Lindley (MOE-L) [10] distribution with the following PDF

𝑓(𝑥; 𝛼, 𝜃) =
𝛼 𝜃2(𝜃 + 1)(1 + 𝑥)e−𝜃𝑥

[𝜃 + 1 − (1 − 𝛼)(𝜃 + 1 + 𝜃𝑥)e−𝜃𝑥]2
,    𝑥 > 0,    𝛼, 𝜃 > 0. 

The fitness performance of the considered distributions is investigated using the Akaike 
information criteria (AIC), Bayesian information criteria (BIC), and Kolmogorov-Smirnov (K-S) 
along with its p-value. The distribution with the smallest K-S, AIC and BIC values and the highest 
p-value is considered to possess the best fit to the data sets.

The first real data set, denoted by D I, reported by Chinedu et al. [7] is related to the infant 
mortality rate per 1000 live births for a few selected nations in 2021, see 
https://data.worldbank.org/indicator/SP.DYN.IMRT.IN (accessed on 2021). The data are 

56,  10,  22,  3,  69,  6,  7,  11,  4,  4,  19,  13,  7,  27,  12,  3,  4,  11,  84,  27,  25,  6,  35,  14,  11,  12,  6  
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Table 1: The simulation results 

𝛼 = 0.5  and  𝜃 = 4 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.135 
0.485 

0.148 
2.449 

1.269 
1.121 

150 𝛼 
𝜃 

0.041 
0.153 

0.032 
0.664 

1.083 
1.038 

300 𝛼 
𝜃 

0.019 
0.072 

0.014 
0.311 

1.039 
1.018 

𝛼 = 3  and  𝜃 = 2 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.726 
0.079 

5.057 
0.143 

1.242 
1.039 

150 𝛼 
𝜃 

0.211 
0.025 

1.012 
0.042 

1.070 
1.012 

300 𝛼 
𝜃 

0.105 
0.012 

0.447 
0.021 

1.035 
1.006 

𝛼 = 0.5  and  𝜃 = 0.5 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.270 
0.038 

0.543 
0.040 

1.540 
1.077 

150 𝛼 
𝜃 

0.079 
0.014 

0.088 
0.011 

1.159 
1.029 

300 𝛼 
𝜃 

0.039 
0.007 

0.036 
0.005 

1.077 
1.014 

𝛼 = 2  and  𝜃 = 0.5 

𝑛 Parameters bias EMSE EMRE 

50 𝛼 
𝜃 

0.678 
0.021 

4.143 
0.012 

1.339 
1.042 

150 𝛼 
𝜃 

0.189 
0.006 

0.685 
0.004 

1.094 
1.013 

300 𝛼 
𝜃 

0.084 
0.003 

0.287 
0.002 

1.042 
1.005 

The second data set, denoted by D II, was originally taken from Aydin [4]. This data set is 
related to the average daily wind speed collected in 2015 from meteorological Turkish services, see 
also Salahuddin et al. [21]. The data are 

2.8,  1.8,  3.2,  5.0,  2.4,  4.8,  2.9,  2.9,  2.3,  3.2,  2.3,  2.0,  1.9,  3.3,  4.4,  6.7, 

4.3,  1.9,  2.2,  3.3,  2.1,  4.0,  2.0,  3.1,  3.8,  3.1,  3.2,  3.4,  2.8,  2.1,  3.1 

We compute the ML estimates of the parameters for the considered distributions. We also use 
the Kolmogorov-Smirnov (K-S) test, the Akaike information criterion (AIC), and the Bayesian 
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information criterion (BIC) for the purpose of comparing the fits of the distributions. We know that 
ties should not be present for the K-S test, when we analyze continuous data. However, ties may 
arise due to rounding numbers. Here, to avoid this problem, we added (and also subtracted when 
there are 3 equal numbers) a too small number, which is z = 10−14, to one of the equal numbers, 
when we want to calculate K-S test statistics. For example, D II has been changed to the following 
data in this regard 

2.8,  1.8,  3.2−z,  5.0,  2.4,  4.8,  2.9+z,  2.9,  2.3+z,  3.2,  2.3,  2.0+z,  1.9,  3.3,  4.4,  6.7,   

4.3,  1.9+z,  2.2,  3.3+z,  2.1+z,  4.0,  2.0,  3.1+z,  3.8,  3.1,  3.2+z,  3.4,  2.8+z,  2.1,  3.1−z 

The computed ML estimates, K-S test statistics along with their corresponding p-values, and 
the values of AIC and BIC for both data sets are given in Table 2. We note that the smaller values of 
AIC, BIC and K-S test statistics (and equivalently the larger p-values) indicate a better fit to a data 
set. Table 2 reveals that the MOE-Sh distribution possesses the best fits for both data sets among the 
considered distributions. Figures 3 and 4 include the probability-probability (P-P) plots for D I and 
D II, respectively. From Figures 3 and 4, we might conclude the superiority of the MOE-Sh 
distribution over the other considered models.   

Table 2: The ML estimates of the parameters, K-S test statistics along with their corresponding p-values, and the values 

of AIC and BIC for D I and D II

Data set Models α θ AIC BIC K-S p-value

D I 

Shanker 0.10577 217.2489 218.5447 0.22721 0.1046 

MOS 0.04691 0.06489 214.1856 216.7773 0.13897 0.6245 

MOE-L 0.08771 0.03662 211.8659 214.4576 0.09468 0.9500 

MOE-Sh 0.07497 0.03690 210.8241 213.4158 0.08978 0.9678 

D II 

Shanker 0.54730 120.4348 121.8688 0.34356 0.0009 

MOS 68.37348 2.13868 95.0517 97.9196 0.12053 0.7139 

MOE-L 100.0365 1.90636 94.4033 97.2713 0.11641 0.7518 

MOE-Sh 123.2082 1.88271 94.2711 97.1391 0.11478 0.7666 

12. Concluding Remarks

In this paper, we follow the Marshall-Olkin strategy of developing more flexible models to introduce 
a new two-parameter lifetime distribution, called the Marshall-Olkin extended Shanker (MOE-Sh) 
distribution. Several useful properties of the new distribution are discussed. A simulation study has 
been conducted to examine the performance of the ML estimators of the proposed MOE-Sh 
distribution. Two real data applications have been analyzed to illustrate the flexibility of the new 
distribution in comparison with several competitive distributions. The data analyses indicate that  

the MOE-Sh has the potential power to model real data quite well and it can be useful in the study 
of real-life phenomena. Still, there exist some other characteristics of the new distribution such as 
the reliability parameter, stochastic ordering, order statistics and so on that have not been 
investigated in this paper. Moreover, some inferential subjects for the new distribution such as the 
Bayesian estimation of the parameters, prediction of future observations and so on may be 
considered to be studied in the future.  
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Figure 3. P-P plots for D I.

Figure 4. P-P plots for D II.

All the computations of the paper were performed using the statistical software R (R Core Team 
 [20]) and the packages nleqslv (Hasselman [12]) and AdequacyModel (Marinho et al. [16]) therein. 
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Abstract 

This article examines the reliability and risks associated with technical systems involved in 

the conversion of mechanical energy to electrical energy, focusing on the thermal dynamics of 

electric machines. It explores the processes of heat generation due to energy losses, primarily heat 

dissipation, and the effects of temperature increases on the longevity and performance of the 

machine. The cooling systems essential for managing heat transfer and minimizing overheating are 

analyzed, considering factors such as heat conduction, convection, and radiation, as well as the role 

of electrohydraulic and aerodynamic systems in optimizing heat exchange. Special attention is 

given to the impact of temperature fluctuations on the insulation materials of electric machines, 

with an emphasis on how overheating accelerates insulation degradation and reduces machine 

lifespan. The paper further discusses the intricate relationship between cooling efficiency, machine 

power, and the economic implications of designing effective thermal management systems. 

Moreover, the challenges of selecting and optimizing cooling strategies in electric machine design 

are highlighted, considering both technical and economic factors. Lastly, the study delves into 

ventilation calculations necessary to ensure efficient airflow and cooling, using practical equations 

and methods for determining pressure loss and fan performance, underscoring the complexity and 

importance of achieving optimal temperature conditions for long-term, reliable machine operation. 

Key words: Thermal processes, controlled asynchronous motor, cooling systems, 
energy losses, insulation degradation, ventilation, power output 

I. Introduction

The conversion of mechanical energy into electrical energy and vice versa is accompanied by 
losses, in which part of the converted energy is converted into heat. The thermal energy of the 
losses heats the electric machine, is transferred to the surrounding environment, dissipates and is 
lost without returning. The more intensive the output of heat losses in an electric machine, the 
more power it is possible to obtain from it for a given overall dimensions of the machine.  

Electromechanical conversion of energy is based on many physical laws, the main of which 
are electromagnetism and mechanics. However, for normal operation, it is impossible to design 
engines without electrohydraulic and aerodynamic calculations, since these processes are based on 
the laws of thermo, aero and hydrodynamics.  

The transfer of heat from the place of separation to the surrounding environment, that is, heat 
exchange or heat transfer, is the temperature increase achieved by the parts of the machine relative 
to the temperature of the surrounding environment. Heat transfer is carried out mainly by three 
methods: heat conduction, convection and radiation. In electric machines, heat flows sometimes 
travel along complex paths from the heat source to the surrounding environment through 
intermediate masses - solid, gaseous or liquid. This is due to the complexity of the design of the 
electric machine, since it consists of heterogeneous elements, and is also realized by the use of 
special cooling systems to improve heat transfer. In such systems, the cooling medium or heat 
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carrier moves, carrying out convective heat transfer. The driving elements as a source of motion: 
fan, pump or compressor are taken depending on the type and pressure of the medium. 

The more heat energy the cooling system can remove from the machine at the permissible 
temperature of the heated parts, the greater the losses can be allowed and, accordingly, the greater 
the power load on the machine. Thus, the cooling system has a significant impact on the use of the 
machine in terms of power. The efficiency of the cooling of the machine is determined by the 
efficiency of heat exchange between its active parts and the surrounding environment. 

One of the main requirements for the cooling system is that it should ensure that the heating 
of important systems and parts of the machine (windings, bearings, etc.) is within the permissible 
limit: this is necessary for the long-term and reliable operation of the machine. On the other hand, 
the cooling system must be effective, so that the costs incurred for its preparation and the 
operating costs associated with its good performance should be within the acceptable range. The 
design and calculation of the cooling system, verification of its efficiency by calculating the heating 
temperature of the main parts of the machine - one of the main important parts of the design 
process of electric machines, the heating test of the test sample of the machine - is a necessary 
condition for acceptance. Hydrogasdynamics and, in particular, its engineering hydraulics and the 
theory of fans can be taken as the theoretical basis for the design of the cooling system. Hydraulic 
methods are adopted to calculate the flow of liquids and gases, so that their compression and 
thermodynamic conditions are not taken into account. 

The conditions for the transfer of heat flows, heat exchange with the surrounding 
environment and the formation of temperature fields on this basis are an element of the study of 
heat transfer theory, which forms the basis of thermal calculations of various electrical machines. 

The high temperature of heating of electric machines affects the durability of insulation of 
coils, pads, collector-brush junction and other elements. High heating temperatures cause 
temperature wear of the insulation of the windings, which leads to an irreversible decrease in 
electrical and mechanical strength. According to Montzinger's rule, an increase in temperature of 
80S - 100S reduces the life of the insulation by 2 times. This rule makes it possible to determine the 
required service life of the machine based on the permissible value of the temperature of the 
insulation. It is taken into account that the local temperature increase can also cause the insulation 
to break down in a certain place. In the process of operating the machine, accidents and 
overloading are also encountered, during which a short-term high temperature regime is observed. 
The transition process due to temperature in the working process is one of the influencing factors 
for the normal operation of the machine. For example, it is shown as an example that 5 sec. If the 
short-circuited insulation cools at a rate of 300S/min, its effect on wear is equal to the result of 3 
years of normal operation. Thermo-mechanical stresses can also have a significant effect on the 
work of insulation in circuit-insulation constructions. These are caused by heating of materials and 
especially rapid changes in temperature - heat shocks during short circuits, start-ups, etc. can be. 

II. Formulation of the problem

The indicated situations force to choose the allowable temperature of the insulation with a 
certain caution, taking into account the experience of operating the machines. In this case, different 
types of insulating materials and their combinations are divided into classes according to their heat 
resistance.  

The heat resistance classes of insulation A, E, B, F, H have allowable temperatures Vbb = 1050S, 
1200S, 1300S, 1550S, 1800S. For electrical machines, the main indicator of heating is the temperature 
increase of the machine elements relative to the temperature of the surrounding environment - ∆θ. 
For normal climatic conditions, the temperature of the surrounding environment is taken to be νe = 
400S. The allowable temperature increase ∆θbb of insulating materials is related to the allowable 
value of the outer limit, which is determined by the following expression (1): 
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rekbb    (1) 

where ∆θr is a reserve taking into account the inviscidity of the heat considered for the element of 
the machine's design. 

According to state standards, the following ∆θe values are considered for the windings of 
electric machines: ∆θbbe=600S, 750S, 800S, 1000S, 1250S and, accordingly, the change according to the 
thermometer ∆θbbT=500S, 650S, 750S, 850S, 1050S. Of course, as a rule, the values cannot be increased 
even at νe<400S. When designing, an additional constructive reserve can be taken: ∆θbb≈5%÷10% 
(due to errors in thermal calculations and technological errors that arose during the preparation of 
experimental samples) Uninsulated short-circuited windings and cores that are not in direct 
contact with insulation and are not directly connected must have a temperature that is not 
dangerous for the materials in contact with them. For oscillating bearings, the temperature should 
not exceed 1000S, and for sliding bearings - 800S. 

The wide range of rotation frequencies and power of electric machines requires a variety of 
cooling systems, changing requirements for them and operating conditions. With an increase in the 
power of the machine, the process of increasing the heat flux is inevitable. As a result, the density 
of the heat flux in the heat transfer areas and insulation layers increases, which is prevented by 
increasing the cooling efficiency as the machine power increases [1].  

A large number of micromachines operate without any special cooling system. Starting from a 
few tens of watts of power, the use of a fan is required. At a power of several tens of kilovolts and 
higher, special ventilation channels are already being used.To protect against the negative effects 
of the surrounding environment (dust, moisture, etc.), most machine designs are equipped with an 
external blowing system with internal ventilation. This system is a primary requirement of the 
designed machine, which works with a speed control program in various cases.  

In the modern design process of electric machines, the issues of choosing a cooling system, its 
calculation and optimization often arise as a complex issue. A broad knowledge base is necessary 
to overcome these issues.  

The cooling system remains one of the important issues for increasing the technical and 
economic indicators of many types of electric machines. How effective this issue is is clearly seen 
from the following analysis. The effectiveness of machines with a power of 0.5 ÷ 5 kW and a speed 
of 1500 rpm over the years is clearly visible are given in Table 1.  

Table 1. Analysis of the dependence of the efficiency of electrical machines 
 on the cooling system 

Years 1910 1935 1950 1965 1975 2000 

Mass reduction, % 120 60 42 38 33 27 

   Although the efficiency obtained was due to improvements in the characteristics of 
materials, filling coefficient, design and methods, the increase in the efficiency of cooling was of 
primary importance. 

The efficiency of heat transfer of machines can be increased by various methods, but the 
economic idea should be the main one in this matter. It should be borne in mind that the machine 
designed using optimal calculations, based on the minimum prices, will be the most efficient 
machine [2]. 

Such an electric machine will have an optimal useful work coefficient (U.W.C) and, 
accordingly, will meet the optimal loss level. The requirement for the efficiency of the cooling 
system makes it difficult to eliminate losses while ensuring the permissible value of the 
permissible temperature of the main parts. The fact that the cooling intensity exceeds the 
permissible value cannot be justified economically, since as a result it leads to an increase in 
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ventilation losses and noise generated by the fan; on the other hand, the cost of the cooling system 
also increases.  

Regardless of the requirements set for the designer: maximizing the efficiency of heat transfer 
or setting the optimal level for it - the fulfillment of the technical and economic requirements for 
the designed machine of ventilation (or hydraulic) and thermal calculations is very high. 

All the above requirements and instructions are fully accepted and effective design, 
ventilation and optimal U.W.C are created for the designed two-rotor machine. 

III. Problem solution

Temperature characteristics of the general structure and its elements. 
It is known that the thermal characteristics of electric machines have a special character. Here, 

the main thing is not only the general structure of the machine or its parts, but also the 
temperature difference between individual elements of the structure, as well as the cooling 
medium and the windings. This feature is due to the long-term operating conditions of insulating 
materials. 

When the machine is connected to the load, the temperature increase primarily affects the 
condition of the insulation and steel of the windings. Under the influence of heat and the 
mechanical forces associated with it, the properties of insulating materials deteriorate, and over 
time their quality is lost. As a result of the decrease in quality, the insulating properties are lost 
and, as a result, thermal or electrical breakdown of the insulation occurs. Thus, the service life of 
the insulation (the period of trouble-free operation at the rated load) is one of the most important 
parameters, but it does not depend on the operating temperature, but on the fact that the 
temperature increase of the active parts of the machine exceeds the temperature of the surrounding 
air [4]. 

The negative effect of the absolute temperature increase on the endurance of insulating 
materials has been relatively well studied. Numerous studies and operational experience show 
that for each class of insulation materials, a certain temperature level has been determined. A 
temperature increase of just a few degrees leads to a significant reduction in operating time. The 
duration of the temperature increase also plays a significant role here. 

For some classes of insulation materials, there is a rate law of aging. According to this law, 
with a temperature increase of ∆θ degrees during operation, the operating time of the insulation is 
reduced by half (2):  

 𝐷𝜃 =  𝐷𝑣 ∙ 2
𝑣−𝜃

∆𝜃  (3) 
where D – operating time at temperature rise; Dv – operating time determined experimentally at 
temperature θ (for example, 7 years at v=1050 S for class A insulation materials); ∆θ – constant 
temperature rise. This can also be seen from the characteristics are shown in Table 2. 

For class A insulation materials, ∆θ=8K is usually assumed. For thermosetting insulation 
(class B), ∆θ=10K. 

Table 2.  Dependence of insulation service life on temperature 

Year, Dv 0,875 1,75 3,5 7 14 28 56 

Temprerature, 0S 127 120 113 105 100 90 80 

The logarithmic nature of the dependence (3), which requires compliance with strict 
operating rules for electric machines. Of course, for the thermal conductivity of an electric machine 
to be good, it must be performed during design. Determining the local temperature value in the 
machine is an important step. The local temperature is sometimes also called the peak 
temperature.  
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It can be said that the peak temperature determines the practical duration of the machine's 
operation. Therefore, it can be noted that the lower the ratio of the peak temperature to the average 
temperature, the higher the service life of the machine, and the more useful it is to use the active 
volume of the machine. 

In the design of the presented design, attention should also be paid to the known stator 
design, and when applying a new ventilation system, the temperature issue in the stator winding 
should also be considered. Here, the effect of the difference in temperature between the insulation 
and the cooling medium should be accurately assessed. The temperature difference between the 
winding copper and the body steel causes the winding to slip in the housing, which results in 
copper expansion. The winding slippage has a greater effect on the deterioration of the insulation 
than the temperature increase of the winding copper [5-7]. 

The temperature process in the electric machine, the design of which is presented, is 
significantly complicated by the change in the season and also the speed of rotation. If the engine is 
located in the atmospheric air zone and operates in the speed regulation mode, then at low 
temperatures of the surrounding environment the local temperature values will also change. 
Therefore, the temperature should be controlled in all cases. At low speeds, the torque value 
should not be lower than the ventilation system. Therefore, when considering the operation of the 
electric machine, the maximum torque value corresponding to the specified speeds should be 
seriously considered so that the temperature limit in individual insulation elements is normal. 

Based on the above considerations, it can be concluded that the operation of the electric 
machine should be carried out at a constant temperature [3]. Temperature changes damage the 
integrity of the insulation and, in general, affect the service life of the electric machine. 
Accordingly, it is always necessary to prevent temperature changes with changes in load and 
climatic conditions. Of course, a strong connection should be established between the ventilation 
system and the above changes. The rational operating temperature of the electric machine under 
given design and power conditions can be achieved by a rational cooling system of the machine. 
This should be the main goal for the engineer designing the electric machine. In organizing the 
cooling system of the machine, such heat exchange with the cooling medium should be carried out 
so that the temperature and temperature increases of the active parts of the machine do not exceed 
the intended norm relative to the temperature of the cooling medium. 

Issues considered in ventilation calculations [8]. 
The main purpose of the ventilation calculations of the designed electric machine is to 

determine the selection of the ventilation scheme as a whole, as well as the operation of the air 
intake elements, thereby ensuring the necessary volume of the cooling medium per unit time, or in 
other words, to create the necessary air consumption.  

The volumetric air consumption (or consumption for short) is the volume of the medium 
passing through the cross section of the channel per unit time. This is the volume that, as applied 
to the entire electric machine, passes either through all parallel paths of the ventilation path or 
through the cross section of the leading (leading) gaps per unit time [14]. 

The consumption Q is expressed in meters cubed per second and is simply related to the 
average speed of air movement in the channel ω (3): 

      Q = 𝜔 S                                                                                   (3) 
where in (3) S- is the cross-sectional area of the channel. 

Thus, it is possible to compare the air consumption with the current in the electric circuit, 
while the speed, that is, the consumption per unit cross-section of the channel, can be considered 
as the density of the electric current. Since the cooling air takes into account the losses of the 
electric machine and connects it with the cold environment, the required amount of air is 
determined by the volume of the removed losses, that is, the design of the electric machine is the 
result of electromagnetic and thermal calculations. Thus, the nominal consumption Q within the 
framework of ventilation calculations is a given value. 
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The air circulating in the ventilation duct channels of the machine overcomes resistance in the 
direction of its movement. In other words, it is necessary to expend mechanical energy to ensure 
the circulation of air. This work is performed by air-turning elements, creating a pressure 
difference at the inlet and outlet cross-sections of the ventilation duct [11-13]. 

Each ventilation area has resistance, and therefore the total air pressure at the end of the area 
is always lower (relative to the initial area); the decrease is equal to the pressure loss that has 
completely disappeared; we denote the pressure loss by ∆p. Regardless of the form of air 
movement (laminar or turbulent), the pressure loss is calculated by the following expression (4): 

    ∆𝑝 = 𝑧𝑄2                                                                            (4) 
This expression should be understood as follows: 
When the pressure loss is proportional to the second power of the flow, the proportionality 

coefficient Z will be a constant value in the expression (4). If the indicated ratio is not actually 
observed, the coefficient z will be such that the expression (4) will be true. 

The coefficient z is determined for each aerodynamic resistance not only by the dimensions of 
the duct and the properties of the air, but also by the local resistance ξ. This statement shows that it 
is necessary to take only the local resistance in a suitable form (for example, from experience). 

As a result, the relative coefficient z (called aerodynamic resistance) is calculated by the 
following expression (5): 

Z = 𝜉
𝜌

2𝑆2  (5) 
The selection of the air blowing elements of the electric machine, i.e., the determination of the 

required nominal pressure Pn of the fans, taking into account the given nominal consumption Qn, 
can be calculated using the following expression (6): 

𝑃𝑛 = 𝑧𝑄𝑛
2                                                                                (6)

where z is the total aerodynamic resistance of the electric machine. 
It can be seen from this statement that the pressure loss in the machine is equal to the pressure 

created by the air-pumping elements, so equation (6) confirms the fact of equality. 
Thus, in the ventilation calculations of the electric machine, its aerodynamic resistance z and 

equation (6) should be solved. After that, the calculation of consumption distribution in separate 
branches of the scheme can be made [10]. 

Based on the known value of the aerodynamic resistance z, the pressure drop in the 
machine∆𝑃𝑛 = 𝑧𝑄𝑛

2  can be determined, but later it should be compared with the nominal pressure
of the fan due to the given consumption Qn. 

Here the complexity of the issue arises, as the pressure of the fan is a complex function of the 
consumption P=φ(Q), and this is called the aerodynamic characteristic of the fan.  

Characteristics obtained experimentally or by calculations from a model cannot always be 
subjected to simple analytical writing. For this reason, writing the equation of equality in analytical 
form creates many difficulties. 

In the practice of designing electrical machines, the graphical solution of equation (7) is 
widely used. This method is very simple and clear.  

  𝜑(𝑄) = zQ2                                                                            (7) 
In the coordinates Q and p, two consumption functions are written: P=φ(Q) and ∆p=zQ2. Their 

intersection point is the point of equality: the point is the point of mutual correspondence of the 
pressure loss and the fan pressure (figure 1). 

As a result of ventilation calculations, the working flow rate Qi is never equal to the nominal 
flow rate Qn. This happens for two reasons. On the one hand, because when selecting the air 
blowing elements, the intersection of their characteristics with the pressure curve occurred at the 
required point (Qn, Pn). On the other hand, it is taken into account that the fan characteristics and 
the pressure loss curve are determined with some error, which leads to an unpleasant air shortage, 
although the electric machine is calculated for the value of Qn. In this regard, the air blowing 
elements should be selected so that the working flow rate Qi is 10% higher than the nominal. Such 
a margin will compensate for 20% of the error made in determining the pressure loss [12]. 
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Figure 1. Schematic determination of the working flow rate 

Information on the operation of ventilation. 
Since the designed machine has a wide range of changes in the value and direction of the 

rotation frequency, the processes, parameters, torque changes, and the heating processes caused by 
the losses during operation are also quite complex. Speed regulation requires the correct design of 
the cooling system. The approximate stability of the cooling process in the design of an electric 
machine, the fact that the working rotor has a wide rotation frequency zone, and also the creation 
of variable losses, further complicate the cooling process [15-17]. 

The placement of two rotors ensures that the additional rotor performs the ventilation 
operation in the system with high efficiency, regardless of the operation of the working rotor. 
Although the rotation frequency of the working rotor varies within wide limits, the additional 
rotor continues to operate in asynchronous mode. At minimum rotation frequencies of the 
working rotor, the speed of the additional rotor may decrease by several percent of the slip, which 
will not significantly affect the operation of the cooling system. 

The designed two-rotor asynchronous motor can be manufactured for various operating 
modes and in the program of changing the direction of rotation of the working rotor. For machines 
designed with the same and changing directions of rotation, a high-quality and high-capacity 
ventilation system with high air delivery capacity should be designed. If the operating mode of the 
designed machine is two-directional, both internal and external fans should blow air in only one 
direction. This direction should be from the auxiliary rotor to the working rotor. The point is that 
the power of the heat source in the high-resistance short-circuit loop of the copper winding of the 
working rotor placed in the opposite direction of the auxiliary rotor is high, and from there there is 
a large amount of heat flow relative to the ventilation system. For this purpose, the designed 
centrifugal fans (both internal and external) blow the cooling ambient air into the cooling channels 
in one direction in both directions of rotation. If the designed engine is created for the same 
direction of rotation, the ventilation system must be provided with fan devices with a high useful 
operating mode. In the considered design, the internal and external fans are driven by a certain 
rotating (auxiliary rotor) element, which indicates that both fans have a maximum operating 
coefficient. For this, the design of centrifugal fans is possible by selecting a design with a high air 
blowing capacity. The air blowing elements of such fans can be made forward or backward 
inclined [11]. 
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IV. Conclusions

1. In conclusion, the thermal management of electric machines plays a crucial role in ensuring their long-
term reliability, efficiency, and optimal performance. The conversion of mechanical energy to electrical energy 
inevitably leads to heat losses, which must be effectively managed to prevent overheating and deterioration of 
key components like insulation. The design of the cooling system is integral to this process, as it directly 
influences the machine’s power output, operational lifespan, and safety. Efficient heat transfer, achieved 
through methods such as conduction, convection, and radiation, alongside well-calculated ventilation and 
hydraulic systems, helps maintain the permissible temperature limits for critical machine parts. 

2. As the power and complexity of electric machines increase, so too does the need for advanced cooling
solutions. Insufficient cooling can accelerate the aging of insulating materials and lead to electrical and 
mechanical failures. The optimization of cooling systems not only improves the thermal efficiency of the 
machine but also reduces the associated costs and energy losses. Furthermore, understanding the relationship 
between temperature increases, insulation life, and cooling system efficiency is essential for designing 
machines that meet both technical and economic objectives. 

3. Ultimately, the integration of reliable cooling systems is vital for maximizing the lifespan and
performance of electric machines, making it a key focus in modern machine design. By ensuring that thermal 
management is prioritized throughout the design process, engineers can enhance the durability, safety, and 
operational effectiveness of electric machines across a wide range of applications. 
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Abstract 

The article analyzes methods for improving the reliability of energy systems considering the SAIDI 

and SAIFI indicators, which reflect the duration and frequency of power outages. Approaches are 

discussed, including the implementation of intelligent monitoring systems, Automated 

Distribution Management Systems (ADMS), as well as distributed generation and redundancy. 

The study confirms that the integrated use of these technologies significantly enhances network 

reliability, reducing SAIDI and SAIFI indices, and evaluates the economic efficiency of these 

solutions, demonstrating their long-term profitability. 

Keywords: energy system reliability, SAIDI, SAIFI, Automated Distribution 
Management Systems (ADMS), redundancy, economic efficiency. 

I. Introduction

The reliability of energy systems plays a key role in ensuring the sustainable operation of both 
industrial enterprises and the residential sector. Modern energy systems face numerous challenges, 
including equipment wear, the impact of climatic factors, rising energy consumption, and the need 
to integrate renewable energy sources. As society becomes increasingly dependent on 
uninterrupted power supply, reliability issues take on strategic importance, as power outages can 
lead to significant economic losses, decreased productivity, and reduced quality of life [1-3]. 

To quantitatively assess the reliability of energy systems, key performance indicators are used, 
with the most common being SAIDI (System Average Interruption Duration Index) and SAIFI 
(System Average Interruption Frequency Index). The first indicator reflects the average duration of 
outages per consumer over the course of a year, while the second measures the average number of 
outages per consumer during the same period. These metrics allow for the evaluation of the 
performance of energy grids and the development of strategies for their modernization. 

The consequences of unreliable power supply extend beyond technical aspects and have a 
significant impact on the economy. Emergency shutdowns and energy supply instability result in 
decreased production capacity, losses in industry, worsened business conditions, and increased 
operational costs. In the residential sector, power outages can lead to social discontent, disrupt 
critical systems, and raise the costs of alternative power sources. Thus, improving energy system 
reliability is not only a technical but also a socio-economic challenge. 

This study focuses on analyzing methods for improving the reliability of energy systems, taking 
into account SAIDI and SAIFI indicators [4-6]. Modern approaches to optimizing network 
infrastructure, implementing intelligent monitoring systems, automated solutions for managing 
distribution networks, and reservation strategies are considered. Special attention is given to 
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finding balanced solutions that minimize the frequency and duration of outages while keeping the 
costs of energy system modernization reasonable. 

II. Formulation of the problem

The reliability of energy systems is determined by a variety of factors, with key roles played by 
the technical condition of equipment, operating conditions, and the influence of external factors. In 
modern energy systems, one of the main issues remains the wear and obsolescence of equipment, 
which leads to an increase in failure frequency and a reduction in overall power supply efficiency. 
A large portion of electrical grids was built decades ago and is operating at the limits of its 
capabilities, making them particularly vulnerable to overloads and emergency situations. 

In addition to internal wear, significant influence is also exerted by external factors, including 
climatic conditions [7]. Extreme temperatures, hurricanes, floods, and other natural phenomena 
contribute to the destruction of infrastructure and increase the time needed to restore power 
supply. Such events can significantly degrade the reliability indicators of energy systems, raising 
the values of SAIDI (System Average Interruption Duration Index) and SAIFI (System Average 
Interruption Frequency Index). These indices reflect both the frequency and duration of power 
outages, allowing for an evaluation of the performance of energy systems in different regions [8, 
9]. 

To analyze the current state of electrical network reliability, the SAIDI and SAIFI indicators for 
various energy systems can be compared. Below is Table 1, illustrating the average values of these 
indices in several countries. 

Table 1.: Average values of SAIDI and SAIFI indicators in some countries 

Country SAIDI (minutes/year) SAIFI (outages/year) 
Germany 12 0.3 

USA 240 1.5 
France 50 0.8 
Brazil 600 7.2 
India 900 12.5 

As seen from the data, significant differences in the reliability of power supply are due not only 
to the state of infrastructure but also to the approaches used in managing energy systems. For 
instance, Germany’s energy system demonstrates a high level of reliability due to regular network 
modernization, the implementation of intelligent monitoring systems, and the use of automated 
distribution management systems [10]. On the other hand, countries with less developed 
infrastructure exhibit high values of SAIDI and SAIFI, indicating the need for network 
modernization and increased resilience. 

To visually represent the differences in energy system reliability, we will perform a graphical 
comparison of SAIDI and SAIFI values across countries (figure 1.). 

Despite the development of technologies, current methods for ensuring the reliability of energy 
systems have certain limitations. The implementation of intelligent power management systems 
and automated solutions can reduce the frequency of outages, but it requires significant 
investments. Many countries face a shortage of financial resources for modernizing network 
infrastructure, which leads to the need to choose between the costs of improving reliability and the 
economic efficiency of energy system operations. 

Furthermore, existing strategies are often focused on reactive measures, such as addressing the 
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consequences of emergency outages, rather than preventing them. It is crucial to shift towards 
predictive management models that use big data analysis and machine learning to forecast 
potential failures. 

Figure 1.: Comparison of SAIDI and SAIFI values in different countries 

One of the main challenges remains balancing the costs of upgrading energy systems with 
improving their reliability. Investing substantial funds in equipment modernization and the 
implementation of digital technologies must be economically justified. In developed countries, 
Automated Distribution Management Systems (ADMS) and Smart Grids are widely used; 
however, their deployment requires a comprehensive approach and long-term planning. 

Thus, the issue of enhancing the reliability of energy systems demands a thorough analysis and 
a well-balanced approach that considers economic, technical, and climatic factors [11]. Addressing 
this challenge is only possible through a set of comprehensive measures, including infrastructure 
modernization, the integration of intelligent management systems, and strategic investment 
planning. 

III. Problem solution

One of the main challenges remains balancing the costs of upgrading energy systems with 
improving their reliability. Investing significant funds in equipment modernization and the 
implementation of digital technologies must be economically justified. In developed countries, 
Advanced Distribution Management Systems (ADMS) and Smart Grids are widely used; however, 
their implementation requires a comprehensive approach and long-term planning. 

Thus, the issue of improving the reliability of energy systems requires a thorough analysis and 
a well-balanced approach that considers economic, technical, and climatic factors [12]. Addressing 
this challenge is only possible through comprehensive measures, including infrastructure 
modernization, the deployment of intelligent management systems, and strategic investment 
planning (figure 2). 

The obtained results help identify the load ranges in which the energy system is most 
vulnerable to failures. Such an analysis enables energy system operators to develop failure 
prevention strategies, optimize load management, and implement predictive maintenance of 
equipment. The visualization confirms that intelligent analysis methods can effectively assess the 
reliability of energy systems and predict potential failures, contributing to the reduction of SAIDI 
and SAIFI indices. 
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Figure 2: Failure rate prediction in power systems 

Modern energy systems require efficient management of electricity flows to minimize 
emergency situations. One of the key solutions is the implementation of Advanced Distribution 
Management Systems (ADMS). These systems enable automatic network topology adjustments, 
isolation of damaged sections, and load redistribution, thereby reducing the impact of failures on 
consumers. 

The effectiveness of ADMS can be evaluated by comparing SAIDI and SAIFI indicators before 
and after system implementation: 

Table 2.: Comparison of SAIDI and SAIFI indicators before and after the implementation of the system 

Parameter Before ADMS 

Implementation 
After ADMS 

Implementation 
Average SAIDI 
(minutes/year) 

300 120 

Average SAIFI 
(outages/year) 

3.5 1.2 

As shown in the table, the application of ADMS significantly reduces both the duration and 
frequency of outages, improving the overall reliability of energy systems. 

Another crucial aspect of enhancing power supply reliability is the implementation of 
redundancy mechanisms, dynamic network reconfiguration, and distributed generation: 

• Redundancy ensures the availability of backup power sources that automatically activate
in case of a failure. This can include transformer substation-level redundancy or the integration of 
local battery storage systems. 

• Network reconfiguration allows for automatic changes in power supply routes, which is
particularly effective in local outage scenarios. 

• Distributed Generation (DG), including local solar and wind power stations, reduces
dependence on centralized energy sources and decreases the load on power grids. 

To evaluate the impact of distributed generation, a graph can be plotted showing the 
dependence of SAIDI on the share of renewable energy sources in the power system (figure 2). 
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Figure 2: Impact of distributed generation on grid reliability

This graph demonstrates that an increase in the share of distributed generation reduces SAIDI, 
as local energy sources enhance the resilience of the grid against failures. 

Developed countries are actively implementing comprehensive strategies to improve the 
reliability of energy systems. For example: 
• Germany utilizes Smart Grids and decentralized energy sources, minimizing power outages.
• The United States is deploying ADMS and active network management to ensure rapid

emergency response.
• France is modernizing its power grids to reduce the impact of weather-related disruptions.

A comparative analysis indicates that a combined approach, integrating predictive analytics,
automated management, and local generation, is the most effective solution. 

Despite the high initial costs associated with the deployment of intelligent management 
systems and grid modernization, the long-term benefits significantly outweigh the investments. 
For instance, the economic efficiency of ADMS implementation can be estimated as follows (table 
3). 

Table 3.: Example of calculating the economic efficiency of implementation 

Indicator Before Implementation After Implementation 
Annual losses due to outages ($ million) 50 15 
Investment in modernization ($ million) 100 - 
Savings over 10 years ($ million) - 350 

As shown, the adoption of advanced technologies enhances the reliability of power systems 
and reduces economic losses, making them cost-effective in the long run. 

A comprehensive approach to improving power system reliability includes predictive analytics, 
automated management systems, redundancy mechanisms, and distributed generation. These 
measures contribute to reducing SAIDI and SAIFI, increasing grid resilience against failures, and 
ensuring economic efficiency in power supply management. 
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IV. Conclusions

The conclusion summarizes the key findings of the analysis on methods to improve power 
system reliability, focusing on SAIDI and SAIFI indicators. The study confirmed that the 
implementation of intelligent monitoring systems, automated distribution management systems 
(ADMS), and distributed generation plays a crucial role in reducing the frequency and duration of 
power supply interruptions. Modern strategies not only minimize outages but also enhance the 
overall resilience of power systems to external factors, including climate conditions and grid 
overloads. 

Optimization of operational processes, the use of predictive analytics, and equipment 
modernization significantly reduce downtime for fault recovery. Improved coordination between 
power system elements enables a rapid response to emergencies and shortens restoration times. 
Hybrid approaches, combining redundancy, network reconfiguration, and local generation, 
contribute to enhanced reliability for all categories of consumers. 

Future research in this field should focus on developing advanced failure prediction 
algorithms, integrating machine learning for automated grid management, and refining 
distributed energy technologies. The future of power systems lies in the comprehensive 
application of digital solutions and innovative technical advancements, ensuring a balance 
between reliability and economic efficiency. 
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Abstract

Most of the pharmaceutical firms have worked hard to maintain quality in their manufacturing
products like medicines and biological instruments using the principles of statistical quality control to
optimize the fault model. In this field, one of the pioneering statistical methods is acceptance sampling
by attributes. A sampling plan is used to assess the quality of goods, keep an eye on the quality of the
materials, and confirm whether or not the yields are defect-free or not. When posterior knowledge about
the parameter is known, the Bayesian strategy provides a more robust statistical method for reaching a
suitable conclusion. In this article a new Bayesian double sampling plan under stochastic modeling was
established. This is achieved by various characteristics of sampling plan explicit by its random variable
and its probability function. This plan is studied through the Gamma- Poisson model to safeguard both
the producer and consumer by minimizing the Average Sample Number and Total Cost. Necessary tables
and figures are constructed for the selection of optimal plan parameters and suitable illustrations are
provided that are applicable under pharmaceutical industries.

Keywords: Acceptance Sampling, Bayesian double sampling plan, Gamma-Poisson, Pharmaceuti-
cal Industry, Stochastic Process, Transition Probability Matrix.

1. Introduction

The pharmaceutical industry directly deals with human’s health by its medical needs and drug
development towards human safety. All countries formulates policies to safeguard public health
and implements regulations for monitoring the production of pharmaceutical products. Develop-
ing countries puts significant effort to deliver quality goods to their citizens. The book "Quality
management in the medicines industry: philosophy and essential elements"[21] describes the
fundamental principles of quality assurance (QA) and the core elements of Good Manufacturing
Practices (GMP), which are integral to both production and quality control management. These
include of persons, premises, materials, documentation, validation, self-inspection, hygiene, and
equipment. "Good practices in production and quality control" offers instructions on specific
steps that quality control and production staff should independently undertake to implement
core principles of Quality Assurance. Commonly, World Health Organization (WHO) suggests
three types of sampling plans: n, p and r. The primary objective of the n-plan is the determination
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of the sample size, whereas the p-plan emphasizes the maximum number of defects and the
r-plan focuses on the rejection number.

Many industries commonly use acceptance sampling plan to meet the inspection quality
requirements for ever increasing global demand. The nature of inspection may be destructive
or non-destructive depends on its characteristics of its products to fulfil the inspections is often
impractical that resulting the lot is accepted/rejected, therefore move on to acceptance sampling
plan is more efficient. Acceptance sampling is divided into two primary categories: (1) attribute
sampling plan and (2) variable sampling plan. Lot-by-lot acceptance sampling for attributes was
studied by many authors under a variety of sampling designing methods, such as single, double,
sequential, continuous, chain, skip-lot and other related sampling plans each having its own
advantage and its limitations. Hald [7] and Schilling [17] developed the sampling plan parameters
based on the unity value approach. Several authors have contributed to the foundational principles
of quality control, including Calvin T.M [1], Cameron [2], Dodge H.F. and Roming H.G. [3], Edwin
B wilson et. al.[4], Golub [5], Peach P.[16], Gunether [20]. The theory behind traditional sampling
plans by attributes is based on the basic assumption that the nonconforming process fraction
or lot is a constant, implying that the manufacturing process is steady. Conventional sampling
strategies cannot be used in these situations since the judgement about the submitted lots must
take into account and it’s not consider between lots variations and within lots variations. Bayesian
sampling plans are a sophisticated technique to statistical sampling that uses Bayesian probability
theory to make conclusions and judgments about observed data. Choosing a prior distribution
for the lot fraction nonconforming has been discussed by Vijayaraghavan et al. [19], selecting a
prior distribution for a metric quality characteristic of the production process has been studied
by Loganathan et al. [11]. When sampling from a Poisson distribution, the gamma distribution
is a conjugate prior, according to Bayesian theory. The gamma distribution is the conjugate
prior to the average number of nonconformities per unit. When sample units are randomly
selected from a process, the number of nonconformities in the sample is distributed based on the
Poisson equation. Under these circumstances, the operating characteristic (OC) function of SSP
by characteristics labelled as gamma-Poisson SSP has been mathematically expressed by Hald [7].
Implication of production and monitoring techniques in Bayesian Single sampling plan using
Gamma- Zero Inflated Poisson distribution studied by Kaviyarasu and Sivakumar [9]. Bayesian
single sampling plan using gamma prior were provided by Suresh K.K and Latha [18]. The
fundamental concepts of quality control have been explored by several researchers, including
Guptha S.K. et. al.[6], Kaviyarau et. al.[8] [10], Lord et. al.[12], Moskowitz et. al.[15]. A novel control
strategy was presented by Fallahnezhad and Nasab [13] addressing the acceptance sampling
problem. Fallahnezhad [14] provided a minimal angle method-based Markov chain acceptance
sampling plan. In this work gives tables to determine the c1, c2, c3, c4, n (minimum sample size)
and minimum cost of the Bayesian Acceptance Sampling Plan under the circumstances of using
the Gamma-Poisson distribution.

2. Transition Probability Matrix for Acceptance Sampling

A stochastic process can have several branches. A markov chain is a type of stochastic process
that is used to determine the best threshold value to accept or reject a lot. This concept actually
gave rise to the idea of modelling the acceptance sampling using a markovin method. Let P=
pij represent the transition probability matrix for the finite state space S with discrete-time. A
transition probability matrix depicts the single-step process of moving from one state to another.
It includes all of the information required to understand how the process moves across the states.

2.1. Assumptions

• The entries of matrixes are all non-negative.

• In the matrix each row equals to one.
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p11 + p12 + p13 + ..... + p1n = 1 (1)

The three states of the problem are designed as follows:

• Accept the lot when the batch is in good state.

• Reject the lot when the batch is in bad state.

• Continue the inspection when it is in between the upper and lower thresholds.

Every phase is viewed as a state of the transition matrix P, which comprises the probabilities
of accepting the batch p12, rejecting the batchp13, and continues the processp11. The matrix P is
an absorbing Markov chain where the states are known to be transient (continue inspection) and
absorbing (reject or accept the lot). Finding the optimal threshold values for the sampling plan is
the aim of this Markovian technique. Wilson and Burgess [19], Specified the block form for the
transition probability matrix is arranged as follows

P =

[
A O
R Q

]
(2)

Here

A = An identity matrix representing the probability of remains in a state.

O = The matrix representing the probabilities of escaping an absorbing state (always zero).

R = The matrix containing all probabilities of going from a non-absorbing state to an absorbing
state. (i.e., finished or scrapped product).

Q = The square matrix contacting the transition probability of going from a non-absorbing state
to another non-absorbing state.

2.2. Total Cost

The expected total cost associated with the inspection policy can be expressed using the equation3,
which is employed to calculate the total cost. The acceptance cost multiplied by the probability of
accepting the batch at stage 1. The rejection cost is calculated by multiplying the rejection cost by
the probability of rejecting the batch at stage 2.
The average total cost for double sampling plan is given as

E(TC) = Acceptancecost + Rejectioncost + Inspectioncost (3)

where,
Acceptance cost = cost of defective item × lot size × probability of accepting the lot
Rejection cost = cost of batch rejection × probability of rejecting lot
Inspection cost = ((Number of times the lot inspected with n1 items × Number of samples in
stage 1) + (Number of times the lot inspected with n2 items × Number of samples in stage 2 ×
probability that the second sample is taken during the first sample inspected)) × the cost of the
defective items.

3. Construction of a Bayesian Double Sampling Plan using the Markov

Chain Method

Using a Markov chain in a Bayesian double sampling enables the modelling of sequential decision-
making, allowing for the integration of prior knowledge and the updating of beliefs as new
data becomes available. This dynamic approach enhances decision-making under uncertainty,
reducing risks in the sampling process. Additionally, Markov chains help to accurately compute
the posterior probabilities of accepting or rejecting a lot by considering previous sample outcomes,
leading to more efficient.
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3.1. Markov Chain Procedure for Bayesian Double Sampling Plan

• Initially, inspect n1 items from the lot, this items collected through random sampling

• Set the threshold values (lower threshold r1, upper threshold r2) for the n1 samples

• If the defective items (d1) items from the sample are below or equal to the lower threshold
(r1) value, the lot will be accepted

• If the defective items (d1) items from the sample are above the upper threshold (r2) value,
the lot will be rejected

• If defective items (d1) in between the two threshold values, then take a second sample of
size n2

• Set the threshold values (lower threshold r3, upper threshold r4) for the n2 samples

• If defective items (d2) of the sample are below the lower threshold (r3) value, the lot will be
accepted

• If defective items (d2) of the sample are above the upper threshold (r4) value, the lot will be
rejected

• If defective items (d2) in between threshold values, return to first sample size of n1 items are
to be inspected, such a continuous process is called as a double sampling decision-making
process under markov decision

Each stages of the plan is defined as a states.

Step 1: For the lot, the first stage acceptance policy ought to be implemented.

Step 2: For the lot, the Second stage acceptance policy ought to be implemented.

Step 3: The lot should be accepted.

Step 4: The lot should be rejected.

3.2. Transition Probability Matrix

The lot’s transition probability matrix is given as follows,
0 P12 P13 P14

P21 0 P23 P24
0 0 1 0
0 0 0 1


Rearranging the matrix gives the fundamental matrix.

Nij =

[
1

1−P12P21

P21
1−P12P21

P12
1−P12P21

1
1−P12P21

]
= mij

The probability of long-term absorption ζ is

ζ =

[
1+P12P23
1−P12P21

P21P13+P23
1−P12P21

P14+P12P24
1−P12P21

P21P14+P24
1−P12P21

]
The elements of ζ matrix, ζ13 is probability of accepting the batch at stage 1 and ζ14 is probability
of rejecting the batch at stage 1.
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3.3. Transition Probability Matrix for Gamma – Poisson

The Poisson distribution with parameter np = λ, where λ is the average number of nonconformities
per unit, is used to distribute the random variable, when it is taken at random from a production
process that generates from a continuous stream of lots.

The Poisson distribution is a suitable model for the number of nonconforming units in the
sample, as noted by Hald [7] for p < 0.10 and by Schilling [17] when n is large and P is small such
that np < 5.

P(n,p)(d) =
e−np(np)d

d!
for d = 0, 1, 2, . . .

A random variable, say L, must be introduced to represent the randomly varying distribution
parameter when the distribution parameter λ is not constant but rather varies at random from lot
to lot.

This random variable is distributed according to a gamma distribution, which is the Poisson
distribution’s conjugate distribution.
The prior distribution of L’s density function can be found as follows:

f(a,m)(λ) =
e−aλamλm−1

Γ(m)
for 0 ≤ λ < ∞, a, m > 0

Where a = m
λ , with E[L] = λ̄ and m is the shape

When production is not stable, L is independently distributed, and according to Hald [7] the
Gamma-Poisson probability distribution can be determine by the following

p =
n

∑
d=0

(m + d + 1)!
d!(m − 1)!

(
np

np + m

)d ( m
np + m

)m

Where

n = number of observations

p = proportion defectives

m = shape parameter for gamma prior

d = number of defectives

To determine the probability of reaching each state, the cumulative Gamma-Poisson distribu-
tion is used as

p(r1 < d < r2) = p11 =
n1

∑
d=0

(m + d + 1)!
d!(m − 1)!

(
np

np + m

)d ( m
np + m

)m
− p12 (4)

p(d > r2) = p13 =
r2

∑
d=0

(m + d + 1)!
d!(m − 1)!

(
np

np + m

)d ( m
np + m

)m
= 1 − p12 (5)

p(d ≤ r1) = p12 =
r1

∑
d=0

(m + d + 1)!
d!(m − 1)!

(
np

np + m

)d ( m
np + m

)m
; x = 0, 1, ...r1 (6)

p(r3 < d < r4) = p21 =
n2

∑
d=0

(m + d + 1)!
d!(m − 1)!

(
np

np + m

)d ( m
np + m

)m
− p23 (7)

p(d > r4) = p24 =
r4

∑
d=0

(m + d + 1)!
d!(m − 1)!

(
np

np + m

)d ( m
np + m

)m
= 1 − p23 (8)

p(d ≤ r3) = p23 =
r3

∑
d=0

(m + d + 1)!
d!(m − 1)!

(
np

np + m

)d ( m
np + m

)m
; x = 0, 1, ...r3 (9)
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Where

p12 = The probability that the second sample from the lot will be taken while the first sample is
being inspected.

p13 = Probability that a lot will be accepted after the initial sample inspection.

p14 = Probability that a lot will be rejected after the initial sample inspection.

p21= Probability that the first sample is taken during second sample inspection.

p23= Probability that a lot will be accepted after the second sample inspection.

p24 = Probability that a lot will be rejected after the second sample inspection.

The following expression represents the average total cost associated with the lot acceptance
policy of the double sampling plan:

E(Total cost) = (cs × N × p × ζ13) + (rc × ζ14) + (m11 × n1 + m22 × n2 × p12)I

Where

ζ13 = p13+p12 p23
1−p12 p21

ζ14= 1-ζ13

cs= Cost of defective item

N= Lot Size

p = Incoming quality

m11 = Number of times the lot inspected with n1 items

m22 = Number of times the lot inspected with n2 items

4. Different Prior Values for Different Threshold Values

This analysis is carried out to showcase the implementation of the proposed methodology in the
formulation of an acceptance sample design. Consider the following problem: AQL = 0.05, LQL =
0.1. The alternate values of m among the present ones provide various combinations.

In the case N = 1500, cs = 1, p = 0.05, I = 2, rc = 100, n1 = 75, n2 = 65.

Table 1: The feasible values of r1, r2, r3, r4, E(n) and average cost values for m = 1

When p1 = 0.02 Probability
of accepting the lot

When p2 = 0.10 Probability
of rejecting the lot

r1 r2 r3 r4 E(n) Average Cost

0.66 0.85 0 2 0 2 92 266.56

0.74 0.84 0 3 0 2 99 279.16

0.84 0.73 1 3 1 3 89 257.23

0.90 0.70 1 4 1 4 97 271.65

0.91 0.62 2 4 2 4 87 251.31

0.91 0.62 2 4 2 5 88 253.09

0.95 0.54 3 5 3 5 85 256.89

0.95 0.54 3 5 3 6 86 248.22
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Table 2: The feasible values of r1, r2, r3, r4, E(n) and average cost values for m = 3

When p1 = 0.02 Probability
of accepting the lot

When p2 = 0.10 Probability
of rejecting the lot

r1 r2 r3 r4 E(n) Average Cost

0.61 0.97 0 2 0 2 85 253.67

0.71 0.97 0 3 0 2 91 264.85

0.87 0.91 1 3 1 3 88 253.77

0.94 0.90 1 4 1 4 98 272.58

0.95 0.82 2 4 2 4 90 255.58

0.95 0.81 2 4 2 5 91 258.81

0.98 0.71 3 5 3 5 90 255.82

0.98 0.70 3 5 3 6 91 257.57

Table 3: The feasible values of r1, r2, r3, r4, E(n) and average cost values for m = 5

When p1 = 0.02 Probability
of accepting the lot

When p2 = 0.10 Probability
of rejecting the lot

r1 r2 r3 r4 E(n) Average Cost

0.60 0.99 0 2 0 2 81 247.84

0.72 0.99 0 3 0 2 87 256.62

0.88 0.95 1 3 1 3 86 249.16

0.95 0.95 1 4 1 4 96 267.82

0.95 0.88 2 4 2 4 89 254.48

0.96 0.88 2 4 2 5 91 258.11

0.90 0.77 3 5 3 5 92 258.28

0.99 0.77 3 5 3 6 94 262.30

The odds of accepting and rejecting the lot probability values are shown in Table 1 as m
= 1. The least sample size obtained in this table is 85, with the minimum total cost is 248.22.
However, the probability of acceptance and rejection the lot fails to satisfy the said conditions to
align with the requirements. Further, Table 2 displays m = 3 for both the lot’s acceptance and
rejection probabilities are studied and obtained the smallest sample size in this table 2 is 85, and
the minimum total cost is 253.67.

However, the probability of accepting and rejecting the lot fails again to satisfy the basic
conditions to align with the requirements. In Table 3, threshold values shows a significant
improvement in the said conditions 1, 4, 1 and 4 and meets its basic conditions, so the feasible
sample is 96 and the total cost is 267.82. Thus the sample size is fixed as 96 with its corresponding
probability values.

5. Numerical Illustration

In a pharmaceutical company with continuous production, a Quality Engineer (QE) plan to check
the solubility of capsules, in the lot, there are 1500 capsules, and the capsules dissolve within
three seconds.

QE fixed the AQL = 0.05, LQL = 0.1, the cost of a defective item (cs) = 1, the proportion of the
defective items in a batch is (p) = 0.05, the cost of inspecting an item in the batch (I) = 2, the cost
of batch rejection (rc) = 100, and the first and second samples are n1 = 75, n2 = 65.
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Table 4: Capsules dissolving time for first sample

Time 0 1 1 0 2 3 1 0 1 1 0 0 2 1 0 0 1 1 1 2 0 1 3 2 0
P/F P P P P P P P P P P P P P P P P P P P P P P P P P
Time 1 2 1 0 0 1 1 0 5 1 3 0 2 1 2 0 1 3 1 2 2 1 2 2 1
P/F P P P P P P P P F P P P P P P P P P P P P P P P P
Time 0 1 0 0 1 1 1 3 0 1 0 2 3 1 0 4 1 1 1 2 0 2 2 1 2
P/F P P P P P P P P P P P P P P P F P P P P P P P P P

Table 5: Capsules dissolving time for second sample

Time 2 3 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 3 0 1
P/F P P P P P P P P P P P P P P P P P P P P P P
Time 0 1 1 1 4 0 1 0 0 1 3 1 2 2 1 0 1 3 1 2 2 1
P/F P P P P F P P P P P P P P P P P P P P P P P
Time 0 0 1 1 1 3 1 3 0 1 0 2 3 0 1 0 2 3 1 2 0
P/F P P P P P P P P P P P P P P P P P P P P P

Where
P/F = Pass or Fail
R software is utilized to generate the Gamma-Poisson data (mean = 0.405 < Standard deviation
= 0.667) and to draw samples through random sampling. The samples are presented in Table 4
and Table 5. In this table, dissolving seconds ranging from 0 to 3 seconds are deemed acceptable,
whereas times exceeding 3 seconds are considered to have failed the inspection.

Proceed to the second sample if the previous one has two defects. The lot gets accepted
because the second sample only contains one defect. For the first sample, the lower threshold
value is 1, and the upper threshold value is 4. The lower threshold value is 1 for the second
sample, and the upper threshold value is 4 for the second sample, where m = 5.

6. Conclusion

In this article, a new sampling plan methodology is developed under Markovian matrix method
as an improved method of inspection under attribute quality characteristics of Gamma-Poisson
distribution. Bayesian double sampling plan incorporates more benefits through sample size
and its acceptance number which are determined with prior knowledge towards improving
decision-making under uncertainty. Transition probability matrix allows for a probabilistic view
of decision routes by calculating the likelihood of changing from one state to another state.
By using this matrix, the inspection cost is optimized, leading to a better comprehension of
potential results. Suitable tables are developed with numerical examples are given to demonstrate
Pharmaceutical industry application for the drug discovery of this study.
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Abstract

This paper analyzes an unreliable multi-server queueing system incorporating working vacations,
Bernoulli interruptions, breakdowns with a threshold recovery policy, balking, abandonment, and
retention. During the break period, if there are customers in the queue, the servers may either resume
normal service or continue their vacation. Customers arriving while the system is saturated are rejected.
Failures occur unexpectedly but only when at least one customer is present in the system. Recovery
procedures remain in effect until the total number of customers surpasses a predefined threshold. Using
matrix-analytic methods, we derive steady-state solutions and explicit formulas for various performance
indicators. Further, we explore cost parameter optimization.

Keywords: unreliable queueing systems, threshold-based recovery policy, working vacation,
impatience

1. Introduction

With growth of communication systems and networks, manufacturing systems, transportation
systems, etc, queueing systems with breakdowns have received growing significance [14, 17, 18].

Queueing models incorporating threshold policies, specifically the N-policy and F-policy,
have garnered significant attention in recent years. The former policy dictates that a server
activates only when N (where N ≥ 1) or more customers accumulate in the system [11, 19, 5, 25].
Conversely, the latter policy restricts customer entry into the system once it reaches its capacity.
When the queue length decreases to a threshold parameter value F, the server then permits
customers to enter [9, 4, 12].

The literature on N and F policies is extensive. However, research on queueing models with
breakdowns, repairs, and a threshold-based recovery policy, where the server remains unrepaired
until the number of customers in the system reaches a predetermined threshold value, is limited.
Notable works include [22, 10, 15].
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Vacation queueing models have attracted substantial interest from researchers over the past
decades, owing to their ubiquitous applications across diverse fields. These applications span
production/manufacturing systems, telecommunication systems and computer networks. Notably,
comprehensive surveys on this subject have been conducted by [6, 7, 20, 21].

The concept of working vacations was introduced by [16], proposing a model where the server
processes jobs with varying intensities based on the incoming traffic. The primary objective is
twofold: better control of queue lengths and reduction of customer loss. Additionally, working
vacations enable servers to be strategically redirected for maintenance purposes. As a result,
these models have gained significant popularity, leading to a wealth of analytical results in the
literature, such as [26, 8, 24, 23].

In recent times, queueing systems that account for customer impatience have garnered
significant attention. These models find realistic applications in various service systems and
e-commerce domains. For a comprehensive overview of the literature on this theme, readers can
refer to studies by [13, 2, 3, 1].

In this paper, we delve into the analysis of a multi-server Markovian queue that integrates
several crucial practical features including breakdowns, threshold-based recovery policy, work-
ing vacations, Bernoulli interruption schedule, impatient customers, and retention of reneged
customers. The contributions and advantages of this paper are as follows:

1. The model. Unlike existing literature that predominantly focuses on single-server queueing
models, our study embraces a multi-server queue. By incorporating the diverse features
mentioned above, our proposed model offers greater flexibility in characterizing complex
stochastic phenomena within multi-server machining systems.

2. Methodology and results. Leveraging the Q-matrix method, we provide a detailed theoretical
analysis. We derive steady-state probabilities and various performance measures. Our
chosen method is well-suited for analyzing quasi-birth-and-death (QBD) processes in
steady-state.

3. Numerical illustrations. We develop a cost function to optimize service rates during both
working vacation and normal busy periods. Additionally, we determine the optimal number
of servers and explore threshold-based recovery policies. These insights empower system
managers and decision-makers to regulate the system economically.

The manuscript is structured concisely in the following manner: Section 2 presents the main
motivation and practical applications of the current research work. Section 3 briefly describes
the model under consideration. Section 4 comprises the analysis of the model in the stationary
state. Section 5 enlists important performance measures. Section 6 develops a cost model for the
proposed system and introduces cost optimization methods, namely, the direct search method
and the quasi-Newton method. Section 7 deals with a cost optimization problem and provides
numerical examples to illustrate the effects of different system parameters on performance
measures, total expected cost, and total expected profit. Section 8 presents the conclusions of the
study.

2. Main motivation and practical application

The motivating context for our model is analysis of automated teller machine (ATM) manufac-
turing systems. Such facilities commonly face machine failures and repairs, congestion issues,
operator unavailability, impatient customers, and more that can significantly hamper production
efficiency.

Specifically, we consider a production system with c parallel machines and finite finished
goods capacity. Upon arrival of failed parts/subassemblies for repair, they immediately occupy
any available operator. Otherwise failed units wait in queue for a random duration. Once all
repairs are completed, operators take group vacations, relying on substitutes with slower service
rates, and may have their breaks interrupted if failures resume.
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Moreover, operators undergo their own failures following a breakdown process. Repairs only
initiate after M failed machines have accumulated via a threshold policy. Newly arriving failures
may balk from the repair queue or later renege after prolonged waits.

All such issues–breakdowns, vacations, congestion, balking and reneging–are commonly
faced by real ATM manufacturers. By mathematically capturing these dynamics in a closed-form
queueing model, we aim to evaluate the complex tradeoffs between maintainability, throughput,
and customer impatience. The model can help optimize the number of machines, the threshold-
based recovery policy, and service rates, to control costs in ATM production systems through
resilience to inevitable disruptions.

3. Model description

Consider an Automated Manufacturing System modeled as an unreliable M/M/c/L queue-
ing system. The model formulation necessitates several distinct assumptions, which can be
summarized as follows:

(i) Arrival process: Customers arrive following Poisson process with parameter α.

(ii) Service and working vacation processes:

(a) Upon arrival, customers are served if any servers are available.

(b) After serving all existing customers, servers synchronously switch to a vacation period.

(c) Upon returning from vacation, if the system remains empty, servers immediately begin
another synchronous vacation.

(d) The vacation duration follows an exponential distribution with parameter τ.

(e) During vacation, substitute servers take over from the main servers to serve new
customers.

(f) Service times during regular busy periods (RBP) and vacations follow exponential
distributions with parameters µ and ν, respectively. We assume that ν < µ.

(g) If a customer arrives and finds any of the c servers free (during busy or working
vacation), they immediately occupy that server. If all servers are busy, the customer
joins the end of the queue in the buffer and is served later according to the First-Come-
First-Served (FCFS) discipline.

(iii) Bernoulli interruption scheme:

(a) During the working vacation period (WVP), the server operates under the Bernoulli
rule. Specifically, at the instant of service completion during this period, if there are
customers in the system:

• With probability β, the server interrupts the vacation and switches to the regular
working period.

• With probability β′ = 1 − β, the server continues the vacation.

(b) Notably, the service during WVP is applied only to the first customer who arrives
during this period.

Then, we can write
δn = nβν12≤n≤c−1 + cβν1c≤L.

(iv) Breakdown process: The system is susceptible to unreliability at any given time. During
regular busy periods, servers are vulnerable to breakdowns. Specifically, a server break
down only if there is at least one customer in the system. The occurrence of breakdowns
follows a stationary Poisson process with parameter φ. Importantly, during repair periods
(RP), customers cannot be served.
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(v) The threshold-based recovery policy and repair process: The recovery can be performed
when M (1 ≤ M ≤ c − 1) or more customers are present. The repair period has exponential
distribution with parameter γ. Customers arriving during the repair time are ignored by
the system.

(vi) Balking: When a customer arrives, their actions depend on server availability:

• - If some servers are working and others are free, the customer is directly served.
• - Otherwise, during working vacation, regular busy, or repair periods:

(a) The customer may join the queue with probability θn.
(b) Customers faced with joining a queue have an alternative: they may balk, choosing

not to enter. The balking probability is denoted as: θ′n = 1 − θn, where in the case
of working vacation/regular busy period, we have : 0 ≤ θn+1 ≤ θn ≤ 1. Consider
the following scenarios:

i. For working vacation/regular busy period case, we have:
– 0 ≤ θn+1 ≤ θn ≤ 1 for c ≤ n ≤ L − 1;
– θ0 = 1, . . . , θc−1 = 1.

ii. For repair period, we observe:
– 0 ≤ θn+1 ≤ θn ≤ 1 for 1 ≤ n ≤ L − 1.
– θ0 = 1 (no balking when the system is empty).

iii. In both cases, we have: θL = 0 (no entering when the system is at full capacity).

Shortly, we have for working vacation and regular normal busy:

αn = α1n<c + θnα1c≤n≤L,

and for breakdown period: αn = θnα, 1 ≤ n ≤ L.

(vii) Reneging and retention:

(a) Upon arrival, customers exhibit different behaviors based on the server status:
- If servers are in regular working mode or working vacation period:

– The customer activates an impatience timer T1 (for regular working) or T0 (for
working vacation). If the customer’s service is not completed before the timer
expires, they may abandon the system.

- During the reparation period:
– A new arrival activates its own timer T2. If service is unavailable before the

expiration of the impatience timer, the customer may give up.
(b) The impatience time Tj follows an exponentially distributed random variable with

rates ς j > 0 (where j = 0, 1, 2).
(c) Impatient customers have two options:

• They may quit the system without receiving service with probability κ.
• Alternatively, they may be kept in the system with probability κ′ = 1 − κ.

Then, we can put:
ϵn,j = nκς01j=0 + nκς11j=1 + nκς21j=2,

υn = (nµ + ϵn,1)11≤n≤c−1 + (cµ + ϵn,1)1c≤n≤L

and
ζn = (ν + ϵ1,0)1n=1 + (nβ′ν + ϵn,0)12≤n≤c−1 + (cβ′ν + ϵn,0)1c≤n≤L.

The customers timers are independent and identically distributed (i.i.d.) random variables
and independent of the number of customers currently waiting.

(viii) The various stochastic processes within the system are assumed to be mutually independent.
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4. Equilibrium probability analysis

We employ the Markov process approach, utilizing the Q-matrix, to establish the steady-state
distribution for our proposed queueing model. Our primary focus lies in deriving the steady-state
probabilities of the system, specifically as a function of the probability π1,1, rather than relying on
π0,j or πL,j for j = 0, 1, 2.

The system under consideration can be modeled as a continuous-time Markov process,
denoted by {X(t),Y(t); t ≥ 0}, where X(t) represents the number of customers present in the
system at time t, and Y(t) characterizes the operational state of the servers at time t. The possible
states for Y(t) are as follows:

Y(t) =


0, Servers are in a WVP
1, Servers are in a RBP
2, Servers are in a RP

Let πn,j denote the steady-state probability that the system has n customers and the servers are in
state j, such that: πn,j = lim

t→∞
P{X(t) = n,Y(t) = j}, where

(n, j) ∈ {{(n, 0) : n = 0, 1, ..., L} ∪ {(n, 1) : n = 1, 2, ..., L} ∪ {(n, 2) : n = 1, 2, ..., L}}.The state tran-
sition rate diagram is depicted in Figure 1.
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Figure 1: State transition diagram for the proposed model
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4.1. Governing equations

The steady-state balance equations that govern our system are expressed as follows:

απ0,0 = (µ + κς1)π1,1 + (ν + κς0)π1,0, n = 0,

(α + n(ν + κς0) + τ)πn,0 = απn−1,0 + (n + 1)(β′ν + κς0)πn+1,0,

1 ≤ n ≤ c − 1,

(αθn + cν + nκς0 + τ)πn,0 = απn−1,0 + (cβ′ν + (n + 1)κς0)πn+1,0,

n = c,

(αθn + cν + nκς0 + τ)πn,0 = αθn−1πn−1,0 + (cβ′ν + (n + 1)κς0)πn+1,0,

c + 1 ≤ n ≤ L − 1,

(τ + cν + Lκς0)πL,0 = αθL−1πn−1,0, n = L,

(α + µ + κς1 + φ)π1,1 = τπ1,0 + 2βνπ2,0 + 2(µ + κς1)π2,1, n = 1,

(α + n(µ + κς1) + φ)πn,1 = απn−1,1 + (n + 1)βνπn+1,0 + (n + 1)(µ + κς1)πn+1,1

+τπn,0, 2 ≤ n ≤ M − 1,

(α + n(µ + κς1) + φ)πn,1 = απn−1,1 + (n + 1)βνπn+1,0 + (n + 1)(µ + κς1)πn+1,1

+τπn,0 + γπn,2, M ≤ n ≤ c − 1,

(θnα + n(µ + κς1) + φ)πn,1 = απn−1,1 + cβνπn+1,0 + (cµ + (n + 1)κς1)πn+1,1

+τπn,0 + γπn,2, n = c,

(αθn + n(µ + κς1) + φ)πn,1 = αθn−1πn−1,1 + cβνπn+1,0 + (cµ + (n + 1)κς1)πn+1,1

+τπn,0 + γπn,2, c + 1 ≤ n ≤ L − 1,

(cµ + Lκς1 + φ)πL,1 = αθL−1πL−1,1 + τπL,0 + γπL,2, n = L,

θ1απ1,2 = φπ1,1 + 2κς2π2,2, n = 1,

(αθn + nκς2)πn,2 = αθn−1πn−1,2 + (n + 1)κς2πn+1,2 + φπn,1,

2 ≤ n ≤ M − 1,

(αθn + nκς2 + γ)πn,2 = αθn−1πn−1,2 + (n + 1)κς2πn+1,2 + φπn,1,

M ≤ n ≤ L − 1,

(Lκς2 + γ)πL,2 = αθL−1πL−1,2 + φπL,1, n = L.

The normalizing condition is expressed as:

L

∑
n=0

πn,0 +
L

∑
n=1

πn,1 +
L

∑
n=1

πn,2 = 1. (1)

Let’s introduce the necessary notations for the subsequent sections of the paper:

ζ̇n =

{
nν + ϵn,0, 1 ≤ n ≤ c − 1,
cν + ϵn,0, c ≤ n ≤ L,

ϱn =


−(α + υn + φ), 1 ≤ n ≤ c − 1,
−(αc + υn + φ), n = c,
−(αn + υn + φ), c + 1 ≤ n ≤ L − 1,
−(υL + φ), n = L,

ϑn =


−(α + ζ̇n + τ), 1 ≤ n ≤ c − 1,
−(αc + ζ̇n + τ), n = c,
−(αn + ζ̇n + τ), c + 1 ≤ n ≤ L − 1,
−(ζ̇L + τ), n = L,
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σn =


−α1, n = 1,
−(αn + ϵn,2), 2 ≤ n ≤ M − 1,
−(αn + ϵn,2 + γ), M ≤ n ≤ L − 1,
−(ϵL,2 + γ), n = L.

4.2. Matrix solution

To obtain the steady-state solution, let the steady-state probability vector of the infinitesimal gen-
erator Q be denoted as P = (π0, π1, π2), where π0 = (π0,0, π1,0, ..., πL,0), π1 = (π1,1, π2,1, ..., πL,1),
and π2 = (π1,2, π2,2, ..., πL,2). The steady-state equations PQ = 0 must be satisfied by P along
with the normalization condition Pe = 1, where 0 is a zero row vector, and e = (e0, e1, e2) is a
(3L + 1) column vector of ones, with e0 being an (L + 1) column vector and e1 and e2 being L
column vectors. The block structure of the infinitesimal generator Q is as follows:

Q =

 A1 A2 A3
E1 E2 E3
D1 D2 D3

 ,

where

A1 =



−α α
ζ1 ϑ1 α

ζ2 ϑ2 α
. . . . . . . . .

ζc−1 ϑc−1 α
ζc ϑc αc

. . . . . . . . .
ζL−1 ϑL−1 αL−1

0 ζL ϑL


,

A2 =


0 0 ... ... 0
τ 0 ... ... 0
0 τ ... ... 0
...

...
...

0 0 ... ... τ

 ,

E2 =



ϱ1 α
υ2 ϱ2 α

υ3 ϱ3 α
. . . . . . . . .

υc−1 ϱc−1 α
υc ϱc αc

. . . . . . . . .
υL−1 ϱL−1 αL−1

0 υL ϱL


,

D3 =



σ1 α1
ϵ2,2 σ2 α2

ϵ3,2 σ3 α3
. . . . . . . . .

ϵL−1,2 σL−1 αL−1
0 ϵL,2 σL


,
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E1 =


υ1

0
. . .

0

 , E3 =

φ
. . .

φ

 , and D2 =



0
. . .

0
γ

. . .
γ


.

Note that A1 and A2 are matrices of dimensions (L + 1)× (L + 1) and (L + 1)× L, respectively.
A3 is a zero matrix with dimensions (L + 1)× L. E1 is an L × (L + 1) matrix. E2, E3, D2, and D3
are square matrices of order L × L. Additionally, D1 is a zero matrix with dimensions L × (L + 1).

4.3. System state probabilities

We present the steady state equations PQ = 0 and the normalization condition Pe = 1, as
π0A1 + π1E1 + π2D1 = 0,
π0A2 + π1E2 + π2D2 = 0,
π0A3 + π1E3 + π2D3 = 0,
π0e1 + π1e2 + π2e3 = 1.

(2)

As A3 and D1 are null matrices, then Equation (2) can be rewritten as

π0A1 + π1E1 = 0, (3)

π0A2 + π1E2 + π2D2 = 0, (4)

π1E3 + π2D3 = 0, (5)

π0e1 + π1e2 + π2e3 = 1. (6)

Next, put A2 =

(
O1
τ IL

)
, E1 =

(
υ1 O1
O2 O3

)
, E3 = (φIn) , D2 =

(
O4
Ȯ4 γIL−M+1

)
,

with IL denotes the identity matrix. Further, O1 is a 1 × L matrix. O2 and O3 are both of
order (L − 1)× 1 and (L − 1)× L, respectively. O4 has dimensions (M − 1)× L. Ȯ4 is of order
(L − M + 1)× (M − 1). IL−M+1 represents the identity matrix of order L − M + 1.

Let A1−1 and D3−1 denote the inverse matrices of A1 and D3, respectively. By referring to
Eq. (3), we obtain the following result:

π0 = −π1E1A−1
1

= −π1

(
υ1o
O5

)
= −π1,1υ1o,

(7)

where o = (o0, õ), such that õ = (o1, ..., oL) be an L row vector of the matrix A−1
1 , and O5 is

(L − 1)× (L + 1). From Eq. (5), we have

π2 = −π1E3D−1
3 = −π1 φD−1

3 . (8)

Substituting Eqs. (7) and (8) into Eq. (4), obtain

−π1,1υ1õτ + π1(E2 − φD−1
3 D2) = 0. (9)

As E2 and D−1
3 are both square matrices of order L, we can affirm the existence of the matrix:

Ẽ = (E2 − φD−1
3 D2)

−1.

Thus
π1 = (υ1õτẼ)π1,1. (10)
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Consequently, we can deduce easily

π2 = −(υ1õτẼφD−1
3 )π1,1. (11)

Then, using Eqs. (7)–(11), we get:

πn,0 = −υ1onπ1,1,

πn,1 = (υ1τ
L

∑
i=1

oi+1ψ̃in)π1,1,

πn,2 = −
(

υ1τφ
L

∑
j=1

L

∑
i=1

oi+1ψ̃ijω̃jn

)
π1,1,

where ω̃ij are the elements of matrix D̃ = D−1
3 , and ψ̃ij are the elements of the matrix Ẽ =

(E2 − φD−1
3 D2)

−1. Finally, to determine π1,1, we apply the normalizing condition (as described
in Equation (1)):

π1,1 =

(
−υ1

L

∑
n=0

on + υ1τ
L

∑
n=1

L

∑
i=1

oi+1ψ̃in − υ1τφ
L

∑
n=1

L

∑
j=1

L

∑
i=1

oi+1ψ̃ijω̃jn

)−1

.

5. Performance measures

In this section, we delve into the derivation of crucial system indices, leveraging the probabilities
associated with the system distribution.

Result 1: The servers are in busy period with probability

Pbusy =
L

∑
n=1

πn,1 = υ1τ
L

∑
n=1

L

∑
i=1

oi+1ψ̃inπ1,1. (12)

Result 2: The servers are in working vacation period with probability

Pwv =
L

∑
n=1

πn,0 = −
(

υ1

L

∑
n=0

on

)
π1,1. (13)

Result 3: The servers are in breakdown period with probability

Pbp =
L

∑
n=1

πn,2 = −υ1τφ

(
L

∑
n=1

L

∑
j=1

L

∑
i=1

oi+1ψ̃ijω̃jn

)
π1,1. (14)

Result 3: The probability of system reliability

Pre = 1 − πpb.

Result 4: The mean system size is

Es =
L

∑
n=1

n(πn,0 + πn,1 + πn,2) (15)

= υ1

(
−

L

∑
n=1

non + τ
L

∑
n=1

L

∑
i=1

noi+1ψ̃in − τφ
L

∑
n=1

L

∑
j=1

L

∑
i=1

noi+1ψ̃ijω̃jn

)
π1,1.

Result 5: The effective arrival rate

α′ = απ0,0 +
L

∑
n=1

αnπn,0 +
L

∑
n=1

αnπn,1 +
L

∑
n=1

αnπn,2.
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Result 6: The mean waiting time of customers in the system

Ws = Es/α
′
.

Result 7: The average balking rate

Rbalk = α − α
′
. (16)

Result 8: The average reneging rate

Rren = κς0

L

∑
n=1

nπn,0 + κς1

L

∑
n=1

nπn,1 + κς2

L

∑
n=2

nπn,2 (17)

= υ1κ

(
−ς0

L

∑
n=1

non + τς1

L

∑
n=1

L

∑
i=1

noi+1ψ̃in − τφς2

L

∑
n=2

L

∑
j=1

L

∑
i=1

noi+1ψ̃ijω̃jn

)
π1,1.

Result 9: The average retention rate

Rret = κ
′
ς0

L

∑
n=1

nπn,0 + κ
′
ς1

L

∑
n=1

nπn,1 + κ
′
ς2

L

∑
n=2

nπn,2 (18)

= υ1κ
′
(
−ς0

L

∑
n=1

non + τς1

L

∑
n=1

L

∑
i=1

noi+1ψ̃in − τφς2

L

∑
n=2

L

∑
j=1

L

∑
i=1

noi+1ψ̃ijω̃jn

)
π1,1.

Result 10: The mean number of customers served per unit time

Cs = ν
L

∑
n=1

nπn,0 + µ
L

∑
n=1

nπn,1.

6. Cost model and optimization

For our queueing model, we consider he cost components as outlined below:

1. Cbusy: unit time cost for system being in busy period.

2. Cwv: unit time cost for system being is in working vacation.

3. Cbreak: unit time cost for system being in breakdown period.

4. Csq: Holding unit time cost when a customer enters the queue.

5. Cs1 : Cost per service per unit time in regular working period.

6. Cs2 : Cost per service per unit time in working vacation period.

7. Cl : unit time cost when a customer is lost.

8. Ct: unit time cost when the system retains a customer.

9. C f : Fixed purchase cost of the server per unit.

The formulation of the cost per unit time function for the queueing system is as follows:

Tc = CbusyPbusy + CwvPwv + CbreakPpb + CsqEs + Cl(Rren + Rbalk) (19)

+CtRret + c(µCs1 + νCs2) + cC f .

Expressing the expected cost function Tc explicitly by substituting Equations (12)-(18) into
(19) would result in an extremely complex formulation. Consequently, studying the analytical
behavior of Tc becomes a big challenge. Furthermore, due to the nonlinearity and intricacy of the
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expected cost function, deriving the optimal solution (c∗, M∗, µ∗, ν∗) in closed form would be an
arduous task.

To circumvent these difficulties and perform the optimization analysis, we employ direct
search and Newton’s methods as numerical optimization techniques to search for the optimal
solution (c∗, M∗, µ∗, ν∗). Initially, the direct search method is utilized to determine the optimal
values of the variables (c∗, M∗). Subsequently, with these variables fixed, Newton’s method is
applied to find the optimal values of the variables (µ∗, ν∗).

6.1. Numerical cost optimum parameter

We consider a practical problem concerning the automated teller machine (ATM) production
facility mentioned in Section 2. In the context of the considered practical example, the system
parameters are delineated as follows: failed machines arrive according to a Poisson process
with α = 7. The system capacity is considered finite with L = 20. If the system is in operation,
the failure occurs in which the breakdown times are exponential distribution with φ = 0.1.
The service and repair times of the machines obey exponential distributions with parameters
µ = 3.0, ν = 0.9, and γ = 0.3, respectively. Once the system gets empty, it goes on vacation
period, the vacation period follows exceptional distribution with parameter τ = 0.4. The failed
machines during both period may get impatient and leave the system with being served. The
impatience timers follow exponential distribution with ς0 = 0.5, ς1 = 0.3, ς2 = 0.9. Further,
during working vacation period, the failed machines service may be continue their service during
working vacation period with probability β′ = 0.6, and they can leave the system with probability
κ = 0.7. The joining probability is taken as θn = 1 − n

L .
An efficient algorithm based on the direct search method is employed to determine the

optimal discrete values (c∗, M∗) that optimize the expected cost function. The effectiveness
of this approach hinges on the convexity (or unimodality) of the cost function. Throughout
the numerical analysis, the following cost elements are considered: Cbusy = $20, Cwv = $20,
Cbp = $50, Csq = $10, Cs1 = $5, Cs2 = $5, Cl = $30, Ct = $25, C f = $1 and R = 50.

Figure 2 illustrates the behavior of the expected cost function Tc(c∗, M∗) for varying values of
c and M. The plotted curve exhibits a convex shape, indicating the existence of a single relative
minimum. Consulting Table 1, it is evident that the minimum expected cost per unit time, which
amounts to 182.5710, is attained when c∗ = 6 and M∗ = 1.
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Figure 2: The expected cost Tc for different values of c and M.
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Table 1: c and M vs. Tc(c, M)

c / M 1 2 3 4 5 6 7 8

2 271.9823 - - - - - - -
3 216.2269 216.2388 - - - - - -
4 193.3445 193.3762 193.3707 - - - - -
5 184.5919 184.6346 184.6462 184.7100 - - - -
6 182.5710 182.6202 182.6410 182.7123 182.8470 - - -
7 183.9711 184.0241 184.0501 184.1262 184.2599 184.4512 - -
8 187.1491 187.2043 187.2331 187.3123 187.4466 187.6304 187.8610 -
9 191.2406 191.2970 191.3274 191.4083 191.5437 191.7250 191.9432 192.1971

Once the optimal values (c∗, M∗) are determined, Newton’s method is employed to locate
the minimum value of Tc(c∗, M∗, µ∗, ν∗) by iteratively optimizing the continuous variables µ and
ν. Newton’s method is an efficient iterative technique for finding the optimum of a nonlinear
function by computing the search direction at each iteration.

The Quasi-Newton method, a variant of Newton’s method, is utilized to numerically determine
µ∗ and ν∗. Numerical results obtained through this optimization process are presented in Tables
2-7 for various system parameter settings.

Table 2: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting τ and α (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9,
L = 20, κ = 0.7, β′ = 0.6, φ = 0.1, γ = 0.3)

( τ , α ) (2,5) (2,8) (2.5,5) (2.5,8) (3.0,5) (3.0,8)

(M∗ ,c∗) (1,2) (4,7) (1,2) (4,7) (1,2) (4,7)
µ∗ 3.3953 1.4294 3.5066 1.4697 3.5893 1.4991
ν∗ 1.7352 0.4679 1.3760 0.3242 1.0157 0.1853
Tc(M∗, c∗, µ∗, ν∗) 125.1117 182.8660 124.4980 180.6144 123.3919 177.7679

Table 3: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting β′ (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9 ,L = 20 ,
κ = 0.7, α = 7, φ = 0.1, τ = 0.4, γ = 0.3)

β′ 0.75 0.8 0.85 0.9 0.95

(M∗ , c∗) (3,4) (4,5) (4,6) (5,7) (6,8)
µ∗ 1.6362 1.3007 1.0810 0.9233 0.8065
ν∗ 1.5967 1.2149 0.9672 0.7970 0.6748
Tc(M∗, c∗, µ∗, ν∗) 147.4804 150.3079 153.4443 156.8410 160.5053

Table 4: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting L and κ (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9,
α = 7, τ = 0.4 , β′ = 0.6, φ = 0.1 γ = 0.3)

(L,κ) (10,0.6) (40,0.6) (10,0.7) ((40,0.7) (10,0.9) (40,0.9)

(c∗ ,M∗) (7,1) (7,4) (7,1) (7,4) (7,1) (7,4)
µ∗ 0.9190 1.0397 0.8876 0.9821 0.8333 0.8757
ν∗ 0.9180 0.8733 0.8866 0.8594 0.8323 0.8333
Tc(M∗, c∗, µ∗, ν∗) 167.7709 167.6681 165.5115 165.0619 161.7871 160.6461

RT&A, No 1 (82) 
Volume 20, March 2025 

992



Hayat Ramdani, Amina Angelika Bouchentouf and Lahcene Yahiaoui
MULTI-SERVER REPAIR SYSTEM.....

Table 5: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting φ and γ (ς0 = 0.5, ς1 = 0.3, ς2 = 0.9,
κ = 0.7,β′ = 0.6, τ = 0.4, α = 7 ,L = 20)

(φ , γ) (0.4 1) (0.4 5) (0.6 1) (0.6 5) (0.8 1) (0.8 5)

(7,3)
µ∗ 0.9571 0.9275 0.9299 0.8955 0.9691 0.9342
ν∗ 0.8955 0.8907 0.9178 0.8945 0.9075 0.9030
Tc(M∗, c∗, µ∗, ν∗) 170.3847 162.9654 172.9348 163.4767 177.8815 165.2887

Table 6: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting ς0 , ς1 and ς2 = 1.9 (κ = 0.7,L = 20 ,
α = 7, τ = 0.4,φ = 0.1, β′ = 0.6,γ = 0.3)

(ς1 ς0) (0.2,0.6) (0.4,0.6) (0.2,0.8) (0.4,0.8) (0.2,1.0) (0.4,1.0)

(c∗ ,M∗) (8,2) (8,4) (8,2) (8,3) (8,5) (8,7)
µ∗ 0.8287 0.7616 0.8079 0.7640 0.8041 0.7644
ν∗ 0.7697 0.7606 0.8056 0.7630 0.8031 0.7634
Tc(M∗, c∗, µ∗, ν∗) 171.4859 172.4115 179.1606 180.3308 186.5172 188.2080

Table 7: Tc(M∗, c∗, µ∗, ν∗) and (M∗, c∗, µ∗, ν∗) while adjusting ς0 , ς1 and ς2 = 3.1 (κ = 0.7,L = 20 ,
α = 7, τ = 0.4,φ = 0.1, β′ = 0.6,γ = 0.3)

(ς1 ς0) (0.2,0.6) (0.4,0.6) (0.2,0.8) (0.4,0.8) (0.2,1.0) (0.4,1.0)

(c∗ ,M∗) (8,2) (8,4) (8,2) (8,3) (8,5) (8,7)
µ∗ 0.8211 0.7583 0.8032 0.7607 0.8006 0.7621
ν∗ 0.7712 0.7573 0.8022 0.7597 0.7996 0.7611
Tc(M∗, c∗, µ∗, ν∗) 170.7178 171.7406 178.4237 179.6992 185.8408 187.5095

Tables 2-7 illustrate the relationships between various system parameters and the optimal
service rates (µ∗, ν∗) that minimize the expected cost Tc(M∗, c∗, µ∗, ν∗) :

• As the arrival rate of failed machines (α) increases, the expected cost Tc(M∗, c∗, µ∗, ν∗)
rises substantially. Similarity for β′. This is understandable, as a higher influx of failures
naturally strains the service system, leading to longer queues, more congestion, and
ultimately increased costs.

• Conversely, higher operator vacation rate (τ) and greater customer non-retention proba-
bility (κ) decrease the expected cost. Obviously, more frequent vacations provide more
opportunities to serve customers during vacation periods, alleviating congestion. Likewise,
allowing more customers to renege without service reduces the queue length and wait
times.

• The positive effect of operator breakdown rate (φ) on expected cost is expected, since more
breakdowns directly degrade service capability and capacity. In contrast and as anticipated,
faster operator repair rate (γ) significantly improves system performance and reduces costs
by restoring capacity quicker after failures.

• Larger system capacity (L) and impatience rates (ς j, j = 0, 1, 2) increase service aban-
donments, lowering congestion and Tc(M∗, c∗, µ∗, ν∗). However, excessive abandonments
negatively impact customer service. An optimal balance is required.
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7. Conclusion

In this paper, based on the characteristics of the repair machine, we presented a M/M/c/L
queue with breakdowns, repairs, threshold-based recovery policy, working vacation, Bernoulli
interruption, balking, reneging, and retention. We established the steady-state solution of the
system using Q-matrix. Then, we studied important system characteristics based on the steady-
state probabilities. Finally, we presented the sensitivity and cost optimization analysis; we
discussed an economic analysis as well as the optimal threshold, the optimal number of servers
as well as the service rates µ and ν under a given cost assumption because determining these
parameters to achieve the minimum cost is very important in queueing theory. As further
potential future study, we can generalize this queueing model with to some different cases, as
follows:

• (i) Considering the feedback phenomenon within the queueing systems, it is pertinent to
examine the scenario involving feedback customers in the proposed queueing model.

• (ii) It will be interesting to incorporate retrial policy and preemptive resume priority,
this makes the system closer to real-life congestion scenarios and the study can provide
potentially practical application in flexible manufacturing systems, transportation system,
telecommunication systems, and so on.

• (iii) One could also extend the present study by considering multi-optional services.
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Abstract

In this article explores two approaches for estimating the parameters of the exponentiated inverse
Rayleigh distribution (EIRD) using record values: Classical estimation and Bayesian estimation. In
classical estimation, maximum likelihood estimators (MLE’s) and the asymptotic confidence intervals
are derived based on the observed Fisher information matrix of the parameters. In Bayesian estimation,
estimators of the parameters are obtained under the square error loss function. This involves using
Tierney-Kadane’s approximation (TK) and Markov chain Monte Carlo (MCMC) methods for Bayesian
computation. Additionally, the article constructs the highest posterior credible intervals of the parameters
using the MCMC method. To evaluate the performance of these estimators, a Monte Carlo simulation
study is conducted to compare their behavior. Finally, a real data analysis is presented to illustrate the
application of the methods discussed in the article.

Keywords: :Exponentiated inverse Rayleigh distribution, Maximum likelihood estimators, Bayes
estimators, Square error loss function, MCMC, TK, Record values, and Real data.

1. Introduction

The Rayleigh distribution was introduced by Lord Rayleigh (1880) and is used in the field of
acoustics. This distribution possesses the properties of some well-known distributions, such as
Weibull, chi-square, and extreme value distribution, which makes it even more useful for different
areas of science and technology. There are several authors who have studied the application of
the Rayleigh distribution, such as Beckmann[1] study the generalization of rayleigh distribution,
Hoffman and Karst[2] mentioned that theroy and application of Rayleigh Distribution, Lee et al.[3]
estimated the scale parameters of the Rayleigh distribution. Based on censored data, Soliman et
al.[4] study the inference and application of the Rayleigh model. Let us suppose that a random
variable Z follows the Rayleigh distribution, then X = 1

Z follows the Inverse Rayleigh distribution.
The inverse Rayleigh distribution (IRD) is widely applied in reliability studies and other related
fields. For more information about Inverse Rayleigh distribution studies, see more papers such as
Voda[5],El-Helbawy and Abd-El-Monem[6],Shawky and Majdah M[7],Sindhu et al.[8],C. Tans[9].

Let us suppose X is a random variable for the Inverse Rayleigh distribution with scale param-
eters σ. Then its probability density function (pdf) and cumulative distribution function (cdf) are
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respectively given as

q(x; σ) =

{
2σ2

x3 e−( σ
x )

2
, if x > 0, σ > 0.

0, otherwise.
(1)

Q(x; σ) =

{
e−( σ

x )
2
, if x > 0, σ > 0.

0, otherwise.
(2)

There are many researchers who have suggested that the exponentiated inverse Rayleigh
distribution is a generalized case of the inverse Rayleigh distribution, such as Nadarajah and
Kotz [10] and Srinivasa et al. [11], who studied the estimation of multicomponent stress-strength
reliability from the exponentiated inverse Rayleigh distribution. The cumulative distribution
function (cdf) of the exponentiated inverse Rayleigh distribution is

F(x; α, σ) = 1 − (1 − e−( σ
x )

2
)α, x ≥ 0, α, σ > 0 (3)

and the corresponding probability density function (pdf) is

f (x, α, σ) =

{
2ασ2

x3 e−( σ
x )

2
(1 − e−( σ

x )
2
)α−1, if x ≥ 0, α, σ > 0.

0, otherwise.
(4)

In numerous real-life applications, particularly within industries and reliability studies, prod-
ucts frequently fail under stress. For instance, a wooden beam may fracture when subjected to
sufficient perpendicular force, an electronic component might cease functioning at excessively
high temperatures, or a battery could expire over time. However, the precise threshold of failure
can vary, even among identical items. Therefore, in such experiments, measurements are often
taken sequentially, with only the record values-either the lowest or highest-being observed. These
record values naturally emerge across various domains, including weather tracking, sports ana-
lytics, economic data analysis, and life-test assessments.

Let (Xn, n ≥ 1) be a series of independent and identically distributed (i.i.d.) random variables
with distribution function F(x) and probability function f (x). An observation Xj is called an
upper record value if Xj > Xi for every j > i. Let us suppose X1, X2, ..., Xn be upper record values
and x1, x2, ..., xn be observed values of upper record values. Then the joint density function of
upper record values is given by

fX(x) = f (xn)
n−1

∏
i=1

f (xi)

1 − F(xi)
, x1 < x2 < ..., xn (5)

In recent times, utilizing record values for parameter estimation across various lifetime models has
garnered significant attention among researchers. A multitude of studies have explored employing
the MCMC and TK procedures to derive Bayes estimates in this context, such as Janss and Gerben
[12], Andrieu et al. [13], Solimanet.al[14], Hassan et al. [15], Singh et al. [16], Sana and Faizan [17].

The paper are arrange in following order: In Section 2, the maximum likelihood estimation
and asymptotic confidence intervals is presented. In Section 3, Bayesian estimation and MCMC
algorithm are presented. In section 4, TK approximation is presented. In Section 5, simulation
study is presented . In Section 6, application of real data sets. Finally, the conclusion of this paper
is discussed in section 7.

2. Maximum likelihood estimation

Let us suppose that we have m upper record values XL(1), XL(2), . . . , XL(m) from the exponentiated
inverse Rayleigh distribution with (cd f ) (3) and (pd f ) (4). The maximum likelihood function for
record values is given by Ahsanullah [18]
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f1,2,3,...,m(XL(1), XL(2), XL(3), ..., XL(m)) = f (xL(m))
m−1

∏
i=1

f (xL(i))

1 − F(xL(i))
(6)

The likelihood function based on the upper records observed from the exponentiated inverse
Rayleigh distribution is given by

L(σ, α; x) =
2ασ2

x3
m

e−( σ
xm )2

(1 − e−( σ
xm )2

)α−1
m−1

∏
i=1

2ασ2e−( σ
xi
)2
(1 − e−( σ

xi
)2
)α−1

x3
i (1 − e−( σ

xi
)2
)α

= 2mαmσ2m(1 − e−( σ
xm )2

)α
m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)

= 2mαmσ2meαln(1−e−( σ
xm )2 )

m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)

L(σ, α; x) = 2mαmσ2meαln(1−e−( σ
xm )2 )

m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)

(7)

Now, taking the log on both sides, we get

l = ln L(σ, α; x) = m ln 2 + m ln α + 2m ln σ + α ln
(

1 − e−(
σ

xm )
2
)
−

σ2
m

∑
i=1

(
1
xi

)2
−

m

∑
i=1

ln

(
1 − e−

(
σ
xi

)2
)
+

1
∑m

i=1 ln(xi)3

(8)

Differentiating Eq. (8) with respect to α and σ and equating to zero, we get

∂

∂α
ln L(α, σ; x) =

m
α
+ ln(1 − e−( σ

xm )2
) = 0 (9)

∂

∂σ
ln L(α, σ; x) =

2m
σ

+
2ασe−( σ

xm )2

x2
m(1 − e−( σ

xm )2
)
− 2σ

m

∑
i=1

1
x2

i
−

m

∑
i=1

2σ

x2
i (1 − e−( σ

xi
)2
)
= 0. (10)

Here, equations (9) and (10) are not in exact form, so we cannot obtain the maximum likelihood
estimation easily. So the Newton-Ramphson method is used to find the maximum likelihood
estimation of α̂ and σ̂. To solve these non-linear equations, an R-package is used to find the mle
of α̂ and σ̂.

2.1. Asymptotic confidence intervals

The MLE’s of unknown parameter cannot be obtained in closed from, it is not easy to derive the
exact distribution of the MLE’s. Therefore, we obtain the asymptotic confidence intervalof the
parameter based on observed Fisher information matrix. Let (α̂,σ̂) be the MLE’s of (α,σ). The
observed Fisher information matrix is given by

I(α̂, σ̂) = −
[

∂2l
∂α2

∂2l
∂α∂σ

∂2l
∂σ∂α

∂2l
∂σ2

]
(α̂,σ̂)

where,

∂2l
∂α2 = − m

α2 , ∂2l
∂ασ = ∂2l

∂σα =
e−( σ

xm )2 ·2
(

σ

x2
m

)
(1−e−( σ

xm )2 )2
,
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∂2l
∂σ2 = α

 e−(
σ

xm )
2
(

2
x2

m
−e−(

σ
xm )

2
2σ

x2
m

2σ

x2
m

)

1−e−(
σ

xm )
2 −

e−(
σ

xm )
2

2σ

x2
m

e−(
σ

xm )
2

2σ

x2
m

(1−e−(
σ

xm )
2
)2

− 2 ∑m
i=1

1
x2

i

− ∑m
i=1

 e
−
(

σ
xi

)2(
2

x2
i
−e

−
(

σ
xi

)2
2σ

x2
i

2σ

x2
i

)

1−e
−
(

σ
xi

)2 −
e
−
(

σ
xi

)2
2σ

x2
i

e
−
(

σ
xi

)2
2σ

x2
i

(1−e
−
(

σ
xi

)2

)2


Thus, the observed variance-covariance matrix becomes I−1(α̂, σ̂). To obtain the asymptotic

confidence interval of the unknown parameters the MLE’s estimate follow a bivariate normal
distribution with mean (α, σ) and variance- covariance matrix is I−1(α̂, σ̂). The asymptotic
normality of the MLE’s can be used to compute approximate 100(1 − η)% confidence intervals
for the parameters α and σ, as follows:
α̂ ± zη/2

√
var(α̂) and σ̂ ± zη/2

√
var(σ̂) ; where zη/2 is the upper (η/2) point of standard normal

distribution.

3. Bayes estimation

In this portion, we explore the Bayesian estimation to derive parameter estimates for the
EIRD based on upper record values. In the Bayesian estimation framework, decisions regarding
the prior distribution and the loss function are of the utmost importance. In the existing literature,
various prior distributions have been proposed for the unknown parameters of a particular
distribution of interest. For example,Kizilaslan and Nadar[19] consider the gamma prior for
generalized exponential distribution,Doostparast et al. [20] consider the normal prior, Fan[21]
consider non informative prior, Singh and Tripathi [22] considered the conditional prior for the
lognormal distribution. Hu and Ren[23] considered conditional prior for the Inverse Weibull
distribution. However, Arnold and Press [24] stated that it’s evident that no definitive method
exists to determine the superiority of one prior over another. In the context of the preceding
discussions, we consider non informative prior g1(α) =

1
α and gamma priors of the EIRD such

that

g2(σ|a, b) =
baσa−1e−bσ

Γa
, α, σ > 0; a, b > 0.

Now the joint prior distribution of α and σ is,

g(α, σ) = g1(α)× g2(σ|a, b) =
baσa−1e−bσ

αΓa
. (11)

Here a,b show the hyperparameter, and Γ is the gamma function.

To demonstrate the versatility of our findings and to encompass a wide spectrum of real-world
scenarios, we introduce both symmetric and asymmetric loss functions. The inclusion of a
symmetric loss function is motivated by its equitable penalization of both underestimation and
overestimation, proving advantageous in many instances. However, practical situations often
involve scenarios where positive loss holds greater severity than negative loss, and vice versa.
In such cases, the need for asymmetric loss functions arises. In our study, we encompass one
symmetric option, namely the squared error loss function (SELF).
The mathematical expressions for these loss functions and their corresponding Bayes estimators
are given as:
The square error loss function is defined as

L1(α̂, α) = (α̂ − α)2, α > 0.

where α̂ is the estimate of parameter α.The Bayes estimator under sqare error loss function is
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posterior mean (α̂SEL).
Now, the joint posterior distribution, obtained using equations (7) and (11), is given as

π(α, σ|x) ∝ αm−1σ2m+a−1e−bσeαln(1−e−( σ
xm )2 )

m

∏
i=1

e−( σ
xi
)2

x3
i (1 − e−( σ

xi
)2
)2

(12)

We observe that the joint posterior distribution given in equation (12) cannot be simplified
into a closed form expression. So by making use of some approximation methods, we can
derive explicit expressions for these estimators. To tackle this situation, two widely applicable
approximation methods, i.e., the Tierney-Kadane approximation and the Markov chain Monte
Carlo method, are applied. In the existing literature, Lindley’s method [25] has been extensively
taken into account for such situations. However, this method requires third derivatives of the
log-likelihood function. Instead, we consider another approximation method proposed by Tierney
and Kadane (TK) [26], in which derivatives only up to second order are required to compute the
desired Bayes estimates.

3.1. MCMC Algorithm.

In this specific section, we employ the Markov Chain Monte Carlo (MCMC) methodology to
obtain an estimated Bayesian approximation for the parameters α and σ under the square error
loss function. With the help of posterior densities, the MCMC method can be used to generate a
random sample of unknown quantities.The generated sample is used to obtain the Bayes estimator
for the loss functions. The marginal densities of α and σ are given as

π(α|σ, x) ∝ Gamma
(

m, 1

ln(1−e−( σ
xm )2 )

)
π(σ|α, x) ∝ σ2m+a−1e−bσeαln(1−e−( σ

xm )2 ) ∏m
i=1

e
−( σ

xi
)2

x3
i (1−e

−( σ
xi

)2
)2

The marginal posterior density of α, a closed form of which follows the Gamma distribution,
So,the Gibbs sampling [27] method is used to generate the sample of α. The marginal posterior
density of σ is not an exact form of any distribution, so we used the M-H algorithm to generate a
sample of σ. For more information on the algorithm, methods and steps are given in [28]. This
algorithm combines the Metropolis-Hastings scheme with the Gibbs sampling scheme under the
Gaussian proposal distribution.
The steps in which the M-H approach performs to simulate the posterior sample are as follows:
Step 1: Take some initial guess values for the parameters α and σ be (α0,σ0).
Step 2: Set t=1.
Step 3: Generate σ(t) from π(σ|α(t), a, b) using the M-H algorithm with the proposal that the
distribution is normal distribution.
Step 4: Generate α(t) from π(α|σ(t−1), a, b).
Step 5: Set t=t+1.
Step 6: Repeat steps 2–5 up to N times and obtain the posterior sample (αt,σt) for t=1,2,. . . ,N.
Using the posterior sample, we obtain the Bayesian estimates for the parameters α and σ under
the squared error function, given by,

α̂SELF =
1

N − M

N

∑
t=M+1

αt

σ̂SELF =
1

N − M

N

∑
t=M+1

σt

where M is the burn period of MCMC.
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4. Tierney-Kadane Approximation

The TK approximation method was first proposed by Tierney and Kadane in 1986 [26] as a way
to estimate the posterior expectation that involves the ratio of two integrals. The process of
applying the TK technique is simple and straight-forward. This section deals with the use of TK’s
method to approximate the Bayes estimates. Suppose our objective is to estimate the expression
E(u(α, σ)|x) using the TK method. Then,we first consider the following functions:

I(x) = E[u(α, σ|x)] =
∫ ∞

0

∫ ∞
0 u(α, σ)e[L(α,σ|x)+ρ(α,σ|x)]dαdσ∫ ∞
0

∫ ∞
0 e[L(α,σ|x)+ρ(α,σ|x)]dαdσ

.

where u(α,σ) is a function of α and σ, L(α,σ) can defined in equation (8).
ρ(α, σ) is logarithm of joint prior distribution which is given in equation (11) and defined as :
ρ(α, σ) = ln(g(α, σ)) = aln(b) + (a − 1)ln(σ)− bσ − ln(Γa)− ln(α).

We can approximate the function I(x) into an explicit expression by applying the TK approxi-
mation method. We first consider the following function:

δ(α, σ) =
L(α, σ|x) + ρ(α, σ|x)

n
,

and

δθ
∗(α, σ) = δ(α, σ) +

lnu(α, σ)

n
,

Now, we assume that (α̂δ, σ̂δ) and ( ˆαδ∗ , σ̂δ∗ ) maximize the function δ(α, σ) and δθ
∗(α, σ) ,respec-

tively.
We then approximate I(x) as

I(x) =

√
|Σθ

∗|
|Σ| e[n(δθ

∗( ˆαδ∗ , ˆσδ∗ ))−δ(α̂δ ,σ̂δ)],

Here,|Σθ | and |Σ∗
θ | are the negative Inverse of Hessian matrices of δ(α, σ)and δθ

∗(α, σ)respectively.

|Σ| = [ ∂2δ
∂α2

∂2δ
∂σ2 − ∂2δ

∂α∂σ
∂2δ

∂σ∂α ]
−1 and |Σθ

∗| = [ ∂2δθ
∗

∂α2
∂2δθ

∗

∂σ2 − ∂2δθ
∗

∂α∂σ
∂2δθ

∗

∂σ∂α ]
−1 Now,

The prior information is

ρ(α, σ|x) = alnb + (a − 1)lnσ − bσ − lnΓa − lnα.

The likelihood function is
lnL(σ, α; x) = mln2 + mlnα + 2mlnσ + αln(1 − e−( σ

xm )2
) − σ2 ∑m

i=1(
1
xi
)2 − ∑m

i=1 ln(1 − e−( σ
xi
)2
)+

1
∑m

i=1 ln(xi)3 .

Now,

δ(α, σ) =
L(α, σ|x) + ρ(α, σ|x)

n

= 1
n [mln2+ mlnα + 2mlnσ + αln(1− e−( σ

xm )2
)− σ2 ∑m

i=1(
1
xi
)2 − ∑m

i=1 ln(1− e−( σ
xi
)2
) + 1

∑m
i=1 ln(xi)3 +

alnb + (a − 1)lnσ − bσ − lnΓa − lnα].
It’s important to observe that

∂δ

∂α
=

1
n
[m

α
+ ln(1 − e−( σ

xm )2
)− 1

α

]
and

∂2δ

∂α2 =
1
n
[
− m

α2 +
1
α2

]
,
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∂δ2

δαδσ
=

∂δ2

δσδα
=

2e−( σ
xm ) σ

xm

n(1 − e−( σ
xm )2

)
,

∂δ

∂σ
=

2m
σ

+
2σαe−( σ

xm )2

xm(1 − e−( σ
xm )2

)
− 2σ

m

∑
i=1

1
x2

i
−

m

∑
i=1

2σe−(σ/xi)

xi(1 − e−(σ/xi)2
)
+

(a − 1)
σ

− b.

Further, we use the derived quantities to obtain the Bayes estimators under the square error loss
functions. It is evident that quantities except δ(α, σ) and its derivatives are common in each form
of Bayes estimators. The δ∗θ (α, σ) quantity is given as the square error loss function:

(i) If u(α, σ) = α, then

α̂SEL =

√
|Σ∗

αSEL |
|Σ| e[n(δ

∗
αSEL

( ˆαδ∗ , ˆσδ∗ ))−δ(α̂δ ,σ̂δ)],

In order to compute |Σ∗
αSEL|, we first obtain the following expression:

δ∗αSEL
= δ(α, σ) +

1
n

ln(α)

∂δ∗

∂α
=

∂δ

∂α
+

1
nα

,

∂δ∗

∂α2 =
∂2δ

∂α2 − 1
nα2 ,

∂2δ∗

∂σ2 =
∂2δ

∂σ2 ,

∂2δ∗

∂α∂σ
=

∂2δ

∂α∂σ
.

(ii) If u(α, σ) = σ then

σ̂SEL =

√
|Σ∗

σSEL|
|Σ| e[n(δ

∗
σSEL( ˆαδ∗ , ˆσδ∗ ))−δ(α̂δ ,σ̂δ)],

In order to compute |Σ∗
σSEL

|, we first obtain the following expression.

δ∗σSEL
= δ(α, σ) +

1
n

ln(σ),

∂δ∗

∂α
=

∂δ

∂α
,

∂δ∗

∂α2 =
∂2δ

∂α2 ,

∂2δ∗

∂σ2 =
∂2δ

∂σ2 − 1
nσ2 ,

∂2δ∗

∂α∂σ
=

∂2δ

∂α∂σ
.
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5. Simulation

In this section, we present the simulation result comparing the performance of the MLE’s estima-
tor and Bayes estimator for the parameters of the EIRD using upper record values. We consider
the two sets of parameter values (2, 1) and (1,1) of the EIRD , generate the random sample using
the inverse CDF method, and select the record values (6,7,8,9) from the generated sample for each
parameter value.

The Monte Carlo simulation study compares various estimators using different sample sizes
and true parameter values. Here are the key points summarized from the result:

1: Two sets of parameter values are used as (2,1), (1,1) and two pairs of hyperparameter values
(0.2,0.2),(0.5,0.5).
2: There are four different sample sizes (6,7,8,9) considered in the simulation.
3: There are two methods of estimation: one is the classical method, such as MLE’s, and the other
is the Bayesian estimation (MCMC,TK) method.
4: Here we consider the square error loss function, which is used to compute the Bayes estimate.
5: We generate 10000 posterior samples with a burn period of 2000 sample are used.
6: Confidence interval based on observed Fisher information matrix and Highest Posterior Density
(HPD) credible interval are computed for 95 %.

Table 1: Estimate of MLE’s and MSE (in parenthesis) for α ,σ along with confidence interval when α = 2, σ=1

m α̂MLE σ̂MLE CIα̂ LCIα̂ CIσ̂ LCIσ̂

6 2.3136(7.3692) 0.8780 (0.8532) (0.3515,7.1391) 6.7875 (0.4649,2.4442) 1.9793
7 1.9778 (5.0171) 0.7579 (0.7859) (0.1058,6.0209) 5.9151 (0.4580,2.3812) 1.9232
8 1.8063 (3.4510) 0.7925 (0.7225) (0.3828,5.2598 ) 4.8770 (0.4475,2.3299) 1.8824
9 1.7981 (2.4550) 0.7931(0.6868) (0.5546,4.7534) 4.1988 (0.4396,2.2933) 1.8537

Table 2: Estimate of MLE and MSE (in parenthesis) for α, σ along with confidence interval when α = 1 and σ = 1

m α̂MLE σ̂MLE CIα̂ LCIα̂ CIσ̂ LCIσ̂

6 1.2427(1.9978) 0.9327 (4.3135) (0.0464,3.1658) 3.1194 (0.1935,3.7162) 3.5227
7 0.8527 (1.1597) 0.7835 (4.0323) (0.2089,2.6796) 2.4707 (0.1698,3.6325) 3.4627
8 0.9565 (0.7039) 0.8269 (3.8289) (0.3002,2.3759 ) 2.0757 (0.1467,3.5706) 3.4239
9 0.9590(0.4689) 0.8293(3.6965) (0.3552,2.1821) 1.8269 (0.1303,3.5289) 3.3986

Table 3: MSE’s(in parentheses) of TK and MCMC Bayes estimates of parameter values based on record values for
prior (0.2,0.2) at (1,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 1.1039(5.6130) 0.7300(1.5430) 1.7841(1.0749) 1.1316(0.1894) (0.5900,3.1165) 2.5265 (0.3773,1.9681) 1.5908
7 0.7510(1.9584) 0.5738(1.4414) 1.1619(0.1904) 0.9902(0.1598) (0.4396,2.9633) 2.5237 (0.2812,1.7995) 1.5183
8 0.8711(0.6620) 0.6420(1.3094) 1.2595(0.2350) 0.9966(0.1554) (0.5422,2.0560) 1.5138 (0.2486,1.7505) 1.5019
9 0.8762(0.3964) 0.6482(1.2667) 1.2064(0.1860) 0.9843(0.1860) (0.4841,1.9342) 1.4501 (0.2622,1.6971) 1.4349
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Table 4: MSE’s(in parentheses) of TK and MCMC Bayes estimates of paramter values based on record values for prior
(0.5,0.5) at (1,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 1.1430(3.9937) 0.7701(0.8875) 1.7934(1.0677) 1.1166(0.1723) (0.6164,3.0766) 2.4602 (0.3224,1.8573) 1.5349
7 0.7953(1.4146) 0.6489(0.8168) 1.1442(0.1622) 0.9646(0.1494) (0.4872,2.8896) 2.4024 (0.2576,1.7041) 1.4465
8 0.8985(0.5799) 0.6943(0.7549) 1.2675(0.2363) 1.0064(0.1492) (0.5259,2.0663) 1.5404 (0.2751,1.7057) 1.4306
9 0.8984(0.3504) 0.6963(0.7253) 1.2220(0.1992) 1.0021(0.1420) (0.5107,1.9473) 1.4366 (0.2617,1.6775) 1.4158

Table 5: MSE’s(in parentheses) of TK and MCMC Bayes estimates of paramter values based on record values for prior
(0.2,0.2) at (2,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 2.1127(6.8287) 0.7480(0.4823) 2.5948(0.7996) 1.0486(0.0960) (1.2007,6.6411) 5.4404 (0.4850,1.6617) 1.1767
7 1.9563(4.4619) 0.6261(0.4425) 2.1602(0.6114) 0.8843(0.09384) (0.8237,4.6751) 3.8514 (0.3691,1.4662) 1.0971
8 1.6683(3.0084) 0.6797(0.4030) 2.4131(0.8801) 0.9173(0.0931) (0.8816,4.0792) 3.1976 (0.3311,1.4743) 1.1432
9 1.6834(2.0903) 0.6862(0.3803) 2.2680(0.6123) 0.9261(0.0916) (0.9144,3.7480) 2.8336 (0.3390,1.320) 0.9810

Table 6: MSEs(in parentheses) of TK and MCMC Bayes estimates of paramter values based on record values for prior
(0.5,0.5) at (2,1).

TK MCMC HPD Interval HPD Interval
m α̂ σ̂ α̂ σ̂ α̂ Length σ̂ Length
6 2.1524(6.5179) 0.7685(0.4027) 2.1645(5.1493) 1.0567(0.0959) (0.9770,6.7309) 5.7539 (0.4583,1.6389) 1.1806
7 1.4706(4.2555) 0.6536(0.3725) 2.1839(0.9530) 0.8829(0.0951) (0.8348,3.7032) 2.8684 (0.3062,1.4533) 1.1471
8 1.6937(2.8772) 0.7007(0.3397) 2.1308(0.8968) 0.9114(0.0949) (0.8590,3.0922) 2.2332 (0.3320,1.4685) 1.1365
9 1.7044(1.9899) 0.7054(0.3215) 2.1052(0.8002) 0.9261(0.0674) (0.9150,2.8668) 1.9518 (0.3858,1.4851) 1.0993

From Tables 1, 2, 3, 4, 5 , and 6 the following conclusions are given as:
In cases where the sample size increases, the mean square error of the maximum likelihood
decreases, and the length of the asymptotic confidence interval also decreases in all cases. Bayes
estimates are better than the maximum likelihood function as compared to MSEs. In the case of
Bayesian estimation, MCMC methods are better than T-K approximation methods. The length of
HPD intervals also decreases as the sample size increases.

Therefore, in situations where prior knowledge about parameters is known or where non-
informative priors are being used, we advise utilizing the Bayes estimators. In other circumstances,
ML estimators could be utilized to get an immediate outcome.

6. Application

ALAF Industry, a part of the Safal Group, is a leading producer of steel roofing in Tanzania. The
Safal Group is renowned for its trusted steel roofing brand and operates in 11 countries across
Eastern and Southern Africa. The group has introduced advanced coating technology to Africa,
with four coating mills located in Kenya, Uganda, Tanzania, and South Africa. ALAF Industry, as
one of Safal Group’s coating mills, focuses on enhancing the quality of steel roofing.

One crucial process in improving steel roofing quality is the coating process, where ALAF
Industry utilizes aluminum-zinc galvanization technology. Two datasets were analyzed to demon-
strate the effectiveness of the coating process. The first dataset comprises 72 observations on
coating weight using chemical methods on the top center side (Tcs), while the second dataset
consists of 72 observations on coating weight using chemical methods on the bottom center side
(Bcs), the two Data sets are given as:
Data set1(Tcs):36.8 47.2 35.6 36.7 55.8 58.7 42.3 37.8 55.4 45.2 31.8 48.3 45.3 48.5 52.8 45.4 49.8 48.2
54.5 50.1 48.4 44.2 41.2 47.2 39.1 40.7 40.3 41.2 30.4 42.8 38.9 34.0 33.2 56.8 52.6 40.5 40.6 45.8 58.9
28.7 37.3 36.8 40.2 58.2 59.2 42.8 46.3 61.2 58.4 38.5 34.2 41.3 42.6 43.1 42.3 54.2 44.9 42.8 47.1 38.9
42.8 29.4 32.7 40.1 33.2 31.6 36.2 33.6 32.9 34.5 33.7 39.9.
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Data Set2(Bcs):45.5 37.5 44.3 43.6 47.1 52.9 53.6 42.9 40.6 34.1 42.6 38.9 35.2 40.8 41.8 49.3 38.2 48.2
44.0 30.4 62.3 39.5 39.6 32.8 48.1 56.0 47.9 39.6 44.0 30.9 36.6 40.2 50.3 34.3 54.6 52.7 44.2 38.9 31.5
39.6 43.9 41.8 42.8 33.8 40.2 41.8 39.6 24.8 28.9 54.1 44.1 52.7 51.5 54.2 53.1 43.9 40.8 55.9 57.2 58.9
40.8 44.7 52.4 43.8 44.2 40.7 44.0 46.3 41.9 43.6 44.9 53.6
To check whether the data set follows the EIRD, the K-S test, emperical cdf, and P-P plot are
applied to the test. Data set I supports the EIRD for alpha and beta, with a K-S distance of 0.0523
and p values of 0.8325. Similarly, data set II also supports the EIRD determination with a K-S
distance of 0.0731 and p-value of 0.7602. Furthermore, the empirical and theoretical CDFs, as
well as the P-P plot (probability-probability plot) displayed in Figure 1, confirm that the EIRD
provides a good fit for both the data sets.
Overall, based on the statistical analysis and visual inspection of the data, it can be concluded
that the EIRD is suitable for analyzing the both the Data sets. Now the upper record values
generated from the data sets I and II are (36.8,47.2,55.8,58.7,58.9,59.2,61.2) and (45.5,52.9,53.6,62.3),
respectively.
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Figure 1. The emperical and theoratical CDF plot and P-P plot for the real data set.
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The article describes obtaining maximum likelihood (ML) estimates and Bayesian estimates
using a square error loss function, following the procedure outlined earlier. The results are
presented in Table 7. Additionally, trace plots and posterior density plots for the parameters α
and σ are depicted in Figures 2 .
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Figure 2. The iteration plot and posterior sample plot of Data set I and Data set II.

Table 7: MLE’s, MCMC and TK approximation methods to estimates of parameters for real data set.

MLE MCMC TK
Data α̂ σ̂ α̂ σ̂ α̂ σ̂

Data set I 64.5901 92.3745 52.8539 81.9270 58.3177, 83.6670
Data set II 42.7885 97.2838 49.3734 84.84805 52.4409 93.4215

From these Figure 2, it’s concluded that the Markov Chain Monte Carlo (MCMC) samples
exhibit good mixing, indicating effective exploration of the parameter space. Moreover, the
skewed posterior density suggests a preference for higher parameter values. This observation
supports the conclusion that the MCMC chain is stationary, meaning that it has reached a stable
distribution.

7. Conclusions

In this study, we have examined the EIRD in a situation where the data are available as upper
record values. We follow on the task of estimating the unknown parameter of the EIRD distribu-
tion and obtain the maximum likelihood estimators and corresponding confidence intervals for
the distribution parameters. In the simulation study, we noticed that the behaviour of estimations
in terms of mean square error improved with an increase in the sample size of record values.
Additionally, the true value and estimate values are contained in the asymptotic confidence
interval. Next, we discussed the problems of computing Bayes estimates under the square error
loss function using the TK and MCMC methods in Bayesian estimation. We discovered that the
MCMC approach performs better than TK in our simulation study. Still, HPD interval estimates
were computed with the help of the MCMC approach.We have used real data sets to demonstrate
each of the suggested estimation techniques.
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Abstract 

 

The Poisson-Suja distribution which is a Poisson mixture of Suja distribution has been proposed. The 

descriptive statistics based on moments including coefficient of variation, skewness, kurtosis and 

index of dispersion has been derived and studied. Over-dispersion, unimodality and increasing 

hazard rate properties of the distribution have been studied. The method of moment and the method 

of maximum likelihood have been discussed for estimating parameters. Applications and the goodness 

of fit the distribution and its comparison with other one-parameter discrete distributions have also 

been presented. It was found more closer fit than other compared distributions. So, it can be considered 

as good discrete distribution for count datasets. 

 

Keywords: Suja distribution, compounding, descriptive statistics, statistical 

properties, estimation of parameter, goodness of fit. 

 

 

I. Introduction 
 

The statistical analysis and modeling of count data are essential in almost all fields of knowledge 

including biological science, insurance, medical science, and finance, are some among others. Count 

data are generated from different discrete phenomena such as the number of insurance claimants in 

insurance, the number of yeast cells in biological science, the number of chromosomes in genetics, 

etc.  It has been observed that, in general, count data follows under-dispersion (variance greater than 

mean), equi-dispersion (variance equal to mean), or over-dispersion (variance less than mean). The 

over-dispersion of count data has been well addressed and discussed using mixed Poisson 

distributions by different researchers including Raghavachari et al [1], Karlis and Xekalaki [2], 

Panjeer [3], are some among others. Mixed Poisson distributions arise when the parameter of the 

Poisson distribution is a random variable having some specified distribution and the distribution of 

the parameter of the Poisson distribution is known as mixing distribution. It has been observed that 

the general characteristics of the mixed Poisson distribution follow some characteristics of its mixing 

distributions also. The field of distribution theory is flooded with mixed Poisson distributions based 

on some proper mixing distributions.  
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The classical negative binomial distribution (NBD) derived by Greenwood and Yule [4]is the 

mixed Poisson distribution where the parameter of the Poisson random variable is distributed as a 

gamma random variable. The NBD has been used to model over-dispersed count data. However, 

the NBD may not be appropriate for some over-dispersed count data due to its theoretical or applied 

point of view. Other mixed Poisson distributions arise from a choice of alternative mixing 

distributions. For example, the Poisson-Lindley distribution, introduced by Sankaran [5], is a 

Poisson mixture of Lindley [6] distribution. The Poisson-Akash distribution, introduced by Shanker 

[7], is a Poisson mixture of Akash distribution proposed by Shanker [8]. The discrete Poisson-Ishita 

distribution (PID) introduced by Shukla and Shanker [9] is a Poisson mixture of Ishita distribution 

proposed by Shanker and Shukla [10].  The generalized Poisson-Lindley distribution, introduced by 

Mahmoudi and Zakerzadeh [11], is a mixed Poisson distribution where the mixing distribution is 

the generalized Lindley distribution proposed by Zakerzadeh and Dolati [12]. Other mixed 

distributions are the Poisson-weighted exponential distribution (P-WED) introduced by Zamani et 

al [13]and the negative binomial-Lindley distribution (NB-LD) introduced by Zamani and Ismail 

[14]where the mixing distributions were weighted exponential distribution and Lindley [6] 

distribution, respectively. The Poisson-weighted Lindley distribution (P-WLD) introduced by Abd 

EL-Monsef and Sohsah [15] is a Poisson mixture of weighted Lindley distribution proposed by 

Ghitany et al [16]. 

It has been observed by Karlis and Xekalaki [2] that there are some natural situations where a 

good fit is not obtainable with a particular mixed Poisson distribution in case of over-dispersed 

count data. This shows that there is a requirement for new mixed Poisson distribution which gives 

better fit as compared with the existing mixed Poisson distributions. In the recent decade, there were 

some one parameter lifetime distributions whose Poisson mixture has not been derived and studied. 

For example, Shanker [17] suggested a one parameter lifetime distribution named Suja distribution 

for modeling lifetime data from engineering and biomedical sciences.  The Suja distribution is 

defined by its probability density function (pdf)  

   𝑓(𝑥, 𝜃)   =  
𝜃5

𝜃4+24
(1 + 𝑥4)𝑒−𝜃𝑥 ; 𝑥 > 0, 𝜃 > 0                                                                                  (1)                                                                                                                                                  

The Suja distribution is a two-component mixture of exponential distribution having scale 

parameter 𝜃 and a gamma distribution having shape parameter 5 and scale parameter𝜃 with their 

mixing proportions 
𝜃4

𝜃4+24
 and 

24

𝜃4+24
 respectively. Various statistical properties of the Suja distribution 

including its shape, moments, skewness , kurtosis, hazard rate function, mean residual life function, 

stochastic ordering, mean deviations, distribution of order statistics, Bonferroni and Lorenz curves, 

Renyi entropy measure and stress-strength reliability have been  discussed by Shanker [17].  

In the present paper, a Poisson mixture of Suja distribution named, “Poisson-Suja distribution 

(PSD) has been proposed. Its various mathematical and statistical properties including its shape, 

moments, coefficient of variation, skewness, kurtosis and index of dispersion have been discussed. 

The estimation of its parameter has been discussed using maximum likelihood estimation and 

method of moments. The goodness of fit of PSD along with equi-dispersed Poisson distribution (PD), 

and over-dispersed PLD and PID have been studied and presented with some count datasets.  

 

II. Poisson-Suja distribution  

 
Suppose the parameter 𝜆 of Poisson distribution follows Suja distribution (1). Then the Poisson 

mixture of Suja distribution (1) can be obtained as  

 𝑃(𝑋 = 𝑥) = ∫
𝑒−𝜆𝜆𝑥

𝑥!

∞

0

𝜃5

𝜃4+24
(1 + 𝜆4)𝑒−𝜃𝜆𝑑𝜆                                                 (2) 

                  =
𝜃5

(𝜃4+24)𝑥!
[∫ 𝑒−(1+𝜃)𝜆𝜆𝑥𝑑𝜆 + ∫ 𝑒−(1+𝜃)𝜆𝜆𝑥+4𝑑𝜆

∞

0

∞

0
]  
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                  =
𝜃5

(𝜃4+24)𝑥!
[

𝛤(𝑥+1)

(𝜃+1)𝑥+1 +
𝛤(𝑥+5)

(𝜃+1)𝑥+5] 

                 

                  =
𝜃5

(𝜃4+24)(𝜃+1)𝑥+5
[(𝜃 + 1)4 + (𝑥 + 1)(𝑥 + 2)(𝑥 + 3)(𝑥 + 4)] ; 𝜃 > 0, 𝑥 = 0,1,2, . ..          

                        

                  =
𝜃5

𝜃24+24
⋅

𝑥4+10𝑥3+35𝑥2+50𝑥+(𝜃4+4𝜃3+6𝜃2+4𝜃+25)

(𝜃+1)𝑥+5 ; 𝑥 = 0,1,2, . . . , 𝜃 > 0.                             (3) 

As this is the Poisson mixture of Suja distribution, we name this distribution “Poisson-Suja 

distribution (PSD)”.  

The graphs of the pmf of PSD for different parameter values are shown in figure 1. It is obvious 

that as the parameter value increases, the PSD shapes change from negatively skewed to positively 

skewed.  

  

  

  
                        Figure1: Graphs of probability mass function of PSD for different values of the parameter 𝜃. 
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III. Moments and associated measures 

 
The 𝑟th factorial moment about origin of PSD (2.2) can be obtained as  

                   𝜇(𝑟)
′ = 𝐸[𝐸(𝑋(𝑟)|𝜆)], where 𝑋(𝑟) = 𝑋(𝑋 − 1)(𝑋 − 2) … (𝑋 − 𝑟 + 1). 

 

Using (2.1), the 𝑟th factorial moment about origin of PSD (2.2) can be obtained as 

       𝜇(𝑟)
′ = 𝐸[𝐸(𝑋(𝑟)|𝜆)] =

𝜃5

𝜃4+24
∫ [∑ 𝑥(𝑟) 𝑒−𝜆𝜆𝑥

𝑥!

∞
𝑥=0 ]

∞

0
(1 + 𝜆4)𝑒−𝜃𝜆𝑑𝜆     

                                             =
𝜃5

𝜃4+24
∫ 𝜆𝑟 [∑

𝑒−𝜆𝜆𝑥−𝑟

(𝑥−𝑟)!

∞
𝑥=𝑟 ]

∞

0
(1 + 𝜆4)𝑒−𝜃𝜆𝑑𝜆 

Taking 𝑥 + 𝑟in place of 𝑥within the bracket, we get  

               𝜇(𝑟)
′ =

𝜃5

𝜃4+24
∫ 𝜆𝑟 [∑

𝑒−𝜆𝜆𝑦

𝑦!

∞
𝑥=0 ]

∞

0
(1 + 𝜆4)𝑒−𝜃𝜆𝑑𝜆 

The expression within the bracket is clearly unity and hence we have  

                  𝜇(𝑟)
′ =

𝜃5

𝜃4+24
∫ 𝜆𝑟∞

0
(1 + 𝜆4)𝑒−𝜃𝜆𝑑𝜆  

Using gamma integral and a little algebraic simplification, we get finally, a general expression for 

the 𝑟th factorial moment of PSD (2.2) as 

                  𝜇(𝑟)
′ =

𝑟!{𝜃4+(𝑟+1)(𝑟+2)(𝑟+3)(𝑟+4)}

𝜃𝑟(𝜃4+24)
; 𝑟 = 1,2,3,4, . ..                                                                  (4)                                             

Substituting 𝑟 = 1,2,3,and4 in (4), the first four factorial moments about origin can be obtained and 

using the relationship between factorial moments about origin and moments about origin, the first 

four moment about origin of the PSD (3) are obtained as  

                       𝜇′
1 = 𝜇′

(1) =
𝜃4+120

𝜃(𝜃4+24)
                      (5) 

                      𝜇′
2

=
𝜃5+2𝜃4+120𝜃+720

𝜃2(𝜃4+24)
                                                                                                                (6) 

                     𝜇′
3 =

𝜃6+6𝜃5+6𝜃4+120𝜃2+2160𝜃+5040

𝜃3(𝜃4+24)
                                                                                            (7) 

                    𝜇′
4 =

𝜃7+14𝜃6+36𝜃5+24𝜃4+120𝜃3+5040𝜃2+30240𝜃+40320

𝜃4(𝜃4+24)
                                                                  (8) 

 

Using the relationship between moments about mean and the moments about origin, the moments 

about mean of the PSD (3) are obtained as 

            𝜇2 = 𝜎2 =
𝜃9+𝜃8+144𝜃5+528𝜃4+2880𝜃+2880

𝜃2(𝜃24+24)2                                                                                            (9)      

                                                     

       𝜇3 =
(𝜃14+3𝜃13+2𝜃12+168𝜃10+1656𝜃9+3024𝜃8+6336𝜃6+46656𝜃5

+3456𝜃4+132𝜃3+69120𝜃2+207360𝜃+138240
)

𝜃3(𝜃4+24)3                                                            (10)    

                        

             𝜇4 =

(
𝜃19+10𝜃18+18𝜃17+9𝜃16+192𝜃15+4896𝜃14+22464𝜃13+23904𝜃12+10368𝜃11

+281088𝜃10+946944𝜃9+528768𝜃8+221184𝜃7+5584896𝜃6+12939264𝜃5

+11114496𝜃4+1658880𝜃3+36495360𝜃2+69672960𝜃+34836480

)

𝜃4(𝜃4+24)
4                                        (11)       

 

The coefficient of variation(𝐶. 𝑉), coefficient of Skewness(√𝛽1), coefficient of Kurtosis(𝛽2), and 

index of dispersion (𝛾) of the PSD (3) are thus given by       

          

    𝐶. 𝑉 =
𝜎

𝜇′
1

=
√𝜃9+𝜃8+144𝜃5+528𝜃4+2880𝜃+2880

𝜃4+120
                                                                                   (12)     

                                            

√𝛽1 =
𝜇3

𝜇2

3
2

=
(𝜃14+3𝜃13+2𝜃12+168𝜃10+1656𝜃9+3024𝜃8+6336𝜃6+46656𝜃5

+3456𝜃4+132𝜃3+69120𝜃2+207360𝜃+138240
)

(𝜃9+𝜃8+144𝜃5+528𝜃4+2880𝜃+2880)
3
2

                                               (13) 
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   𝛽2 =
𝜇4

𝜇2
2 =

(
𝜃19+10𝜃18+18𝜃17+9𝜃16+192𝜃15+4896𝜃14+22464𝜃13+23904𝜃12+10368𝜃11

+281088𝜃10+946944𝜃9+528768𝜃8+221184𝜃7+5584896𝜃6+12939264𝜃5

+11114496𝜃4+1658880𝜃3+36495360𝜃2+69672960𝜃+34836480

)

(𝜃9+𝜃8+144𝜃5+528𝜃4+2880𝜃+2880)2                           (14) 

 

    𝛾 =
𝜎2

𝜇′
1

=
𝜃9+𝜃8+144𝜃5+528𝜃4+2880𝜃+2880

𝜃(𝜃4+24)(𝜃4+120)
.              (15) 

 

The shapes of coefficient of variation (CV), skewness, kurtosis and index of dispersion (ID) of PSD 

are presented in figure 2 with varying values of parameter.  

 

  

  
Figure2:  Graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis and Index of dispersion of PSD 

for different values of the parameter 𝜃 

 

  

  



 
Rama Shanker, Joyshree Saharia and Kamlesh Kumar Shukla  
THE POISSON-SUJA DISTRIBUTION AND ITS APPLICATIONS … 

RT&A, No 1 (82) 
Volume 20, March 2025  

1014 

IV. Statistical properties 

 
The PSD has two important properties namely increasing hazard rate with unimodality and over-

dispersion which has been discussed below 

 

I. Increasing Hazard Rate and Unimodality 
  

The PSD has an increasing hazard rate (IHR) and unimodal.  Since 

 

                        
𝑃(𝑥+1 ; 𝜃)

𝑃(𝑥 ; 𝜃)
=

1

𝜃+1
[1 +

4𝑥3+36𝑥2+104𝑥+116

𝑥4+10𝑥3+35𝑥2+50𝑥+(𝜃4+4𝜃3+6𝜃2+4𝜃+25)
]                                                  (16) 

 

 is decreasing function in 𝑥, 𝑃(𝑥 ; 𝜃)is log-concave. Therefore, the PSD has an increasing hazard rate 

and unimodal. The interrelationship among log-concavity, unimodality and increasing hazard rate 

(IHR) of discrete distributions has been discussed in Grandell [18]. 

 

II. Over-dispersion 

 
 The PSD is always over-dispersed(𝜎2 > 𝜇) . We have 

 

          𝜎2 =
𝜃9+𝜃8+144𝜃5+528𝜃4+2880𝜃+2880

𝜃2(𝜃4+24)2  

                 =
𝜃4+120

𝜃(𝜃4+24)
[

𝜃9+𝜃8+144𝜃5+528𝜃4+2880𝜃+2880

𝜃(𝜃4+24)(𝜃4+120)
] 

                 =
𝜃4+120

𝜃(𝜃4+24)
[1 +

𝜃8+528𝜃4+2880

𝜃(𝜃4+24)(𝜃4+120)
] 

                  = 𝜇 [1 +
𝜃8+528𝜃4+2880

𝜃(𝜃4+24)(𝜃4+120)
] > 𝜇. 

This shows that PSD is always over-dispersed. 

 

V. Estimation of the parameter 

 

I. Method of Moment Estimate (MOME): Let (𝑥1, 𝑥2, . . . , 𝑥𝑛)be a random sample of size 𝑛from 

the PSD (3). Equating the first population moment about origin to the corresponding sample 

moment, the MOME �̃�of 𝜃 of PSD (3) is the solution of the following fifth degree polynomial 

equation in   

                               �̄�𝜃5 − 𝜃4 + 24�̄�𝜃 − 120 = 0 ,                                                         

 where x is the sample mean. This can easily be solved using Newton-Raphson method.  

 

II. Maximum Likelihood Estimate (MLE): Let (𝑥1, 𝑥2, . . . , 𝑥𝑛)be a random sample of size 

𝑛 from the PSD (3) and let 𝑓𝑥be the observed frequency in the sample corresponding to 𝑋 = 𝑥(𝑥 =

1,2,3, . . . , 𝑘) such that ∑ 𝑓𝑥
𝑘
𝑥=1 = 𝑛, where 𝑘 is the largest observed value having non-zero frequency. 

The likelihood function 𝐿  of the PSD (3) is given by 

 

 

               𝐿 = (
𝜃5

𝜃24+24
)

𝑛
1

(𝜃+1)∑ (𝑥+5)𝑓𝑥
𝑘
𝑥=1

∏ [𝑥4 + 10𝑥3 + 35𝑥2 + 50𝑥 + (𝜃4 + 4𝜃3 + 6𝜃2 + 4𝜃 + 25)]𝑓𝑥𝑘
𝑥=1  

 

The log likelihood function is thus obtained as 
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𝑙𝑜𝑔 𝐿 = 𝑛 𝑙𝑜𝑔 (
𝜃5

𝜃24 + 24
) − ∑(𝑥 + 5)

𝑘

𝑥=1

𝑓𝑥 𝑙𝑜𝑔(𝜃 + 1) + ∑ 𝑓𝑥 𝑙𝑜𝑔 [
𝑥4 + 10𝑥3 + 35𝑥2 + 50𝑥

+(𝜃4 + 4𝜃3 + 6𝜃2 + 4𝜃 + 25)
]

𝑘

𝑥=1

 

 

The first derivative of the log likelihood function is given by  

            
𝑑 𝑙𝑜𝑔 𝐿

𝑑𝜃
=

5𝑛

𝜃
−

4𝑛𝜃3

𝜃4+24
− ∑

(𝑥+5)𝑓

𝜃+1

𝑘
𝑥=1  + ∑

(4𝜃3+12𝜃2+12𝜃+4)𝑓𝑥

[𝑥4+10𝑥3+35𝑥2+50𝑥+(𝜃4+4𝜃3+6𝜃2+4𝜃+25)]
𝑘
𝑥=1  

where �̄� is the sample mean. 

 

The maximum likelihood estimate (MLE), �̂� of 𝜃 of PSD is the solution of the equation  
𝑑 𝑙𝑜𝑔 𝐿

𝑑𝜃
=

0 and is given by the solution of the following non-linear equation 

 

   
5𝑛

𝜃
−

4𝑛𝜃3

𝜃4+24
− ∑

(𝑥+5)𝑓

𝜃+1

𝑘
𝑥=1 + ∑

(4𝜃3+12𝜃2+12𝜃+4)𝑓𝑥

[𝑥4+10𝑥3+35𝑥2+50𝑥+(𝜃4+4𝜃3+6𝜃2+4𝜃+25)]
𝑘
𝑥=1 = 0            

             

This non-linear equation can be solved by any numerical iteration methods such as Newton- 

Raphson, Bisection method, Regula –Falsi method etc. 

 

VI. Goodness of fit of PSD 

 
As we know that the count data arising in real life, in general, are over-dispersed or under-dispersed. 

We have seen that PSD is over-dispersed.  In this section, an attempt has been made to test the 

goodness of fit of PSD with some over-dispersed count data and the goodness of fit has been 

compared with other available over-dispersed distributions. The goodness of fit of PSD has been 

compared with the goodness of fit of PLD, PAD, PID and PSD. The goodness of fit is based on the 

maximum likelihood estimates of a parameter of the considered distributions.  

 

In this section, four examples of observed count datasets, for which the PLD, PAD, PID, and 

PSD have been fitted, are presented. The first data-set is due to Kemp and kemp [19] regarding the 

distribution of mistakes in copying groups of random digits, the second dataset is due to Beall 

[20]regarding the distribution of Pyrausta nublilalis, the third dataset is the distribution of red mites 

per leaf on apple leaves, available in Fisher et al [21], and the fourth dataset is the distribution of 

number of Chromatid aberrations, available in Loeschke and Kohler [22] and Janardan and Schaeffer 

[23].  
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Table 1: Distribution of mistakes in copying groups of random digits 

 

No. of errors per 

group 

Observed 

Frequency 

Expected Frequency 

PD PLD PAD PID PSD 

0 

1 

2 

3 

4 

35 

11 

8 

4 

2 

27.4 

21.5 

8.4

2.2

0.5





  

33.0 

15.3 

6.8

2.9

2.0





  

33.5 

14.7 

6.6 

2.9

2.3



  

33.7 

14.5 

6.5 

2.9 

2.4 

34.6 

13.3 

6.3 

3.1 

2.7 

Total 60 60.0 60.0 60.0 60.0 60.0 

ML estimate (�̂�)  0.7833 1.7434 2.0779 1.8643 2.7379 

2   7.98 2.20 1.40 1.33 0.86 

d.f.  1 1 2 2 2 

p-value  0.0047 0.1380 0.4966 0.5140 0.6472 

 

 

 

 

Table 2: Distribution of Pyrausta nublilalis 

 

No. of insects Observed 

Frequency 

Expected Frequency 

PD PLD PAD PID PSD 

0 

1 

2 

3 

4 

5 

33 

12 

6 

3 

1 

1 

26.4 

19.8 

7.4

1.8

0.3

0.3






  

31.5 

14.2 

6.1

2.5

1.0

0.7






  

32.0 

13.6 

5.9

2.6

1.1

0.8






  

32.2 

13.4 

5.8 

2.6 

1.1 

0.9 

33.1 

12.3 

5.6 

2.7 

1.3 

1.0 

Total 56 56.0 56.0 56.0 56.0 56.0 

ML estimate (�̂�)  0.7500 1.8081 2.1446 1.9186 2.8014 

2   4.87 0.53 0.24 0.20 0.03 

d.f.  1 1 1 1 2 

p-value  0.0273 0.4666 0.6242 0.6547 0.9821 
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Table 3: Distribution of number of red mites on Apple leaves, Fisher et al (1943) 

 

Number of red 

mites per leaf 

Observed 

Frequency 

Expected Frequency 

PD PLD PAD PSD 

0 

1 

2 

3 

4 

5 

6 

7+ 

38 

17 

10 

9 

3 

2 

1 

0 

25.3 

29.1 

16.7 

6.4

1.8

0.4

0.2

0.1







  

35.8 

20.7 

11.4 

6.0 

3.1

1.6

0.8

0.6






  

36.3 

20.1 

11.2 

6.1 

3.2

1.6

0.8

0.7






  

37.6 

18.3 

10.7 

6.3 

3.5 

1.8 

0.9 

0.9 

Total 80 80.0 80.0 80.0 80.0 

ML estimate (�̂�)  1.1500 1.2559 1.6206 2.3602 

2   18.27 2.47 2.07 1.47 

d.f.  2 3 3 3 

p-value  0.0001 0.4807 0.5580 0.6894 

 

 

 

Table 4: Distribution of number of Chromatid aberrations (0.2 g chinon 1, 24 hours) 

 

No. of chromatid 

aberrations 

Observed 

Frequency 

Expected Frequency 

PD PLD PAD PID PSD 

0 

1 

2 

3 

4 

5 

6 

7+ 

268 

87 

26 

9 

4 

2 

1 

3 

231.3 

126.7 

34.7 

6.3

0.8

0.1

0.1

0.1







  

257.0 

93.4 

32.8 

11.2 

3.8

1.2

0.4

0.2






  

260.4 

89.7 

32.1 

11.5 

4.1

1.4

0.5

0.3






  

260.8 

89.3 

31.8 

11.5 

4.2 

1.5 

0.6 

0.3 

268.3 

81.5 

29.9 

12.1 

4.9 

1.9 

0.7 

0.7 

Total 400 400.0 400.0 400.0 400.0 400 

ML estimate (�̂�)  0.5475 2.3804 2.6594 2.3362 3.2184 

2   38.21 6.21 4.17 3.61 2.07 

d.f.  2 3 3 3 3 

p-value  0.0000 0.1018 0.2437 0.3067 0.5582 

 

 

  



 
Rama Shanker, Joyshree Saharia and Kamlesh Kumar Shukla  
THE POISSON-SUJA DISTRIBUTION AND ITS APPLICATIONS … 

RT&A, No 1 (82) 
Volume 20, March 2025  

1018 

 

 VII. Concluding Remarks  
 

In this paper, Poisson-Suja distribution (PSD) has been proposed. The PSD has been obtained by 

compounding the Poisson distribution with the Suja distribution. The expression for the r th 

factorial moment has been derived and hence the first four moments about the origin and the 

moments about the mean have been given. The descriptive measures including coefficient of 

variation, skewness, kurtosis, and index of dispersion have been obtained. Both the method of 

moments and the method of maximum likelihood have been discussed for estimating a parameter 

of the proposed distribution.  The goodness of fit of the PSD has been discussed with four examples 

of count data sets that are over-dispersed and the goodness of fit of the PSD has been compared with 

the goodness of fit given by PLD, PAD, and PID. In these datasets, the PSD shows a much closer fit 

than other considered distributions.   
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Abstract 

In this article, we introduced a new three parameter continuous probability model by extending a 
two parameter log-logistic distribution using the quadratic rank transmutation map technique. We 
provide a comprehensive description of the statistical properties of the newly introduced model. 
Robust measures of skewness and kurtosis of the proposed model have also been derived along with 
the moment generating function, characteristic function, reliability function and hazard rate 
function of the proposed model. The estimation of the model parameters is performed by maximum 
likelihood method followed by a Monte Carlo simulation procedure. The applicability of this 
distribution to modeling real life data is illustrated by two real life examples and the results of 
comparison to base distribution in modeling the data are also exhibited. 

Keywords: Transmuted Probability Model, Survival Analysis, Reliability Measures, Monte 
Carlo Simulation. 

1. Introduction

The quality of procedures that are put to use in a statistical analysis relies greatly upon the 
assumed probability model or distribution. As a consequence of this, significant effort has been 
directed over the course of history towards the development of large classes of standard 
distributions along with relevant statistical methodologies. These happen to be designed for 
serving as models for a wide variety of real-world phenomena. However, many important 
situations exist where real data does not follow any of the classical or standard models. In the work 
that follows, we have obtained a three-parameter Generalized Log-Logistic Distribution (GLLD) by 
utilizing the Quadratic Rank Transmutation Map (QRTM) technique proposed by Shaw and 
Buckley [1]. The field of transmutation has seen a lot of research recently. Ashour and Eltehiwy [2] 
introduced a new generalized distribution of the exponentiated modified Weibull distribution 
using the transmutation technique. Aryal et al. [3] introduced the transmuted extreme value 
distribution. Merovci et al. [4, 5] studied the transmuted Lindley and Rayleigh distributions. Now 
we will study the three-parameter Generalized Log-Logistic Distribution (GLLD) and obtain and 
understand its different characteristics as well as its structural properties. 

According to the Quadratic Rank Transmutation Map (QRTM) technique for 
generalization, the cumulative distribution function (CDF) must satisfy the relationship: 

𝐹௧(𝑥) = (1 + 𝜆)𝐹(𝑥) − 𝜆[𝐹(𝑥)]ଶ (1) 
which upon differentiation yields, 

𝑓௧(𝑥) = 𝑓(𝑥)[1 + 𝜆 − 2𝜆𝐹(𝑥)] (2) 
where 𝑓(𝑥)and 𝑓௧(𝑥) are the probability density functions corresponding to 𝐹(𝑥) and 
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𝐹௧(𝑥)respectively and|𝜆| ≤ 1. 𝐹(𝑥)is the CDF of the base distribution. If we put 𝜆 = 0, we get the 
base distribution. 

The log-logistic distribution is a continuous probability distribution particularly useful in 
dealing with survival data. It is specifically used as a parametric model for events whose rate 
increases initially and later diminishes. For example, mortality rate from a certain cancer post 
diagnosis or treatment. The probability density function (pdf) of the two-parameter log-logistic 
distribution is given as: 

𝑓(𝑥; 𝛼, 𝛽) =
𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ
(3) 

The corresponding cumulative distribution function (CDF) is given as: 

𝐹(𝑥) = Pr(𝑋 ≤ 𝑥) =
(𝛼𝑥)ఉ

1 + (𝛼𝑥)ఉ
(4) 

where 𝛼 is a scale parameter while 𝛽 is a shape parameter. 
The remaining paper is organized as follows. In subSection 1, the three-parameter 

Generalized Log-Logistic Distribution is demonstrated. The various statistical properties of the 
generalized distribution such as the moments, moment generating function, characteristic function, 
order statistics, quantile function, etc. are summarized in Section 2. The MLE of the distribution 
parameters are illustrated in Section 3 of this paper and contains an exhibition of the Monte Carlo 
simulation procedure. Robust measures of skewness and Kurtosis along with graphical 
illustrations are presented in Section 4. Section 5 deals with the applicability of this generalized 
distribution in modeling real life data which is illustrated by two real-life data sets. 

1.1 Three-Parameter Generalized Log-Logistic Distribution (GLLD) 

This section deals with the study of the three-parameter Generalized Log-Logistic Distribution. 
Using (1) and (4), the CDF of GLLD is obtained as follows: 

𝐹௧(𝑥) = (1 + 𝜆)𝐹(𝑥) − 𝜆[𝐹(𝑥)]ଶ 

⇒ 𝐹௧(𝑥) = (1 + 𝜆) ቈ
(𝛼𝑥)ఉ

1 + (𝛼𝑥)ఉ
 − 𝜆 ቈ

(𝛼𝑥)ఉ

1 + (𝛼𝑥)ఉ


ଶ

After simplifying, we obtain the CDF of three-parameter Generalized Log-Logistic Distribution as 

∴ 𝐹(𝑥; 𝛼, 𝛽, 𝜆) =
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
, 𝑥, 𝛼, 𝛽 > 0 & − 1 ≤ 𝜆 ≤ 1 (5) 

Hence, the pdf of GLLD with parameters 𝛼, 𝛽 and 𝜆 is obtained using (5) as follows: 

𝑓(𝑥; 𝛼, 𝛽, 𝜆) =
𝑑

𝑑𝑥

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ

∴ 𝑓(𝑥; 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
,      𝑥, 𝛼, 𝛽 > 0 & − 1 ≤ 𝜆 ≤ 1  (6)

The CDF and pdf plots for (5) and (6) respectively for different values of the parameters involved 
is illustrated through figure 1 and 2 respectively. The plots reveal quite evidently that the 
distribution of the three-parameter generalized log-logistic random variable 𝑋 is right skewed. 

2. Statistical Properties of GLLD

This section deals with the various structural properties of the three-parameter GLLD such as 
moments (non-central and central), moment generating function, characteristic function, order 
statistics, quantile function as well as the survival measures. All these have been obtained and 
discussed in the sub-sections that follow. 
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2.1 Moments 

Moments refer to a set of statistical parameters that are useful in measuring a distribution. They 
are the crucial measures to calculate mean, variance, skewness and kurtosis of the data. Skewness 
deals with symmetry of a distribution, or in more precise terms, the lack of symmetry of a 
distribution. Kurtosis enables us to measure the peakedness or flatness of a distribution. Another 
interpretation of kurtosis is concerned with the heavy or light-tailed nature of the data relative to a 
normal distribution.  

Fig 1: CDF plots of three parameter GLLD 

Fig 1: pdf plots of three parameter GLLD 

The theorem 1.1 is used to arrive at the 𝑟𝑡ℎnon-central moment of the three parameter GLLD. 
Theorem 1.1: If a random variable 𝑋 follows GLLD with parameters 𝛼, 𝛽 and 𝜆 such that 𝛼, 𝛽 >

0and |𝜆| ≤ 1, then the 𝑟𝑡ℎ non-central moment is given by 

𝜇
ᇱ =

(1 + 𝜆)

𝛼
𝛽 ൬1 +

𝑟

𝛽
, 1 −

𝑟

𝛽
൰ −  

2𝜆

𝛼
𝛽 ൬2 +

𝑟

𝛽
 , 1 −

𝑟

𝛽
൰ (7) 

Proof: 
We know by the definition of the 𝑟𝑡ℎ raw moment that 

𝜇
ᇱ = 𝔼(𝑋) 

⇒ 𝜇
ᇱ = න 𝑥𝑓(𝑥; 𝛼, 𝛽, 𝜆)𝑑𝑥

ஶ



⇒ 𝜇
ᇱ = න 𝑥

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
𝑑𝑥

ஶ
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⇒ 𝜇
ᇱ = න 𝑥

(1 + 𝜆)𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ
𝑑𝑥 − න 𝑥

ஶ



2𝜆(𝛼𝑥)ఉ𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଷ

ஶ



𝑑𝑥

Put (𝛼𝑥)ఉ = 𝑡, we obtain 𝑥 =
௧

భ
ഁ

ఈ
 and 𝛼𝛽(𝛼𝑥)ఉିଵ𝑑𝑥 = 𝑑𝑡 

Also, as 𝑥 → 0, 𝑡 → 0 and as 𝑥 → ∞, 𝑡 → ∞ 

∴ 𝜇
ᇱ = (1 + 𝜆) න

൭
௧

భ
ഁ

ఈ
൱



(1 + 𝑡)ଶ
𝑑𝑡 − 2𝜆 න

൭
௧

భ
ഁ

ఈ
൱



𝑡

(1 + 𝑡)ଷ
𝑑𝑡

ஶ



ஶ



⇒ 𝜇
ᇱ =

(1 + 𝜆)

𝛼
න

𝑡
ቀ

ೝ

ഁ
ାଵቁିଵ

(1 + 𝑡)
ቀ

ೝ

ഁ
ାଵቁାቀଵି

ೝ

ഁ
ቁ

𝑑𝑡 −
2𝜆

𝛼
න

𝑡
ቀ

ೝ

ഁ
ାଶቁିଵ

(1 + 𝑡)
ቀ

ೝ

ഁ
ାଶቁାቀଵି

ೝ

ഁ
ቁ

ஶ



ஶ



𝑑𝑡

=
(1 + 𝜆)

𝛼
𝛽 ൬1 +

𝑟

𝛽
 ,1 −

𝑟

𝛽
൰ −

2𝜆

𝛼
𝛽 ൬2 +

𝑟

𝛽
 ,1 −

𝑟

𝛽
൰

where 

𝛽(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)

∴ 𝜇
ᇱ =

(1 + 𝜆)

𝛼

Γ ቀ1 +


ఉ
ቁ Γ ቀ1 −



ఉ
ቁ

Γ(2)
−

2𝜆

𝛼

Γ ቀ2 +


ఉ
ቁ Γ ቀ1 −



ఉ
ቁ

Γ(3)

⇒ 𝜇
ᇱ =

(1 + 𝜆)

𝛼
Γ ൬

𝛽 + 𝑟

𝛽
൰ Γ ൬

𝛽 − 𝑟

𝛽
൰ −

𝜆

𝛼
Γ ൬

2𝛽 + 𝑟

𝛽
൰ Γ ൬

𝛽 − 𝑟

𝛽
൰

Thus, the 𝑟𝑡ℎ non-central moment is given by the expression 

𝜇
ᇱ =

1

𝛼
 Γ ൬

𝛽 − 𝑟

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 𝑟

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑟

𝛽
൰൨ (8) 

Using expression (8), the first two raw moments for three-parameter GLLD can be easily obtained. 
These are given by: 

𝜇ଵ
ᇱ =

1

𝛼
 Γ ൬

𝛽 − 1

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 1

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 1

𝛽
൰൨ (9) 

𝜇ଶ
ᇱ =

1

𝛼ଶ
 Γ ൬

𝛽 − 2

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 2

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 2

𝛽
൰൨ (10) 

Besides, we know that variance is given by 
𝜇ଶ = 𝜇ଶ

ᇱ − (𝜇ଵ
ᇱ )ଶ 

Thus, the variance of the three-parameter GLLD is given by: 

𝜇ଶ =
1

𝛼ଶ
 Γ ൬

𝛽 − 2

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 2

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 2

𝛽
൰൨

− 
1

𝛼
 Γ ൬

𝛽 − 1

𝛽
൰ ൜(1 + 𝜆)Γ ൬

𝛽 + 1

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 1

𝛽
൰ൠ൨

ଶ (11) 

It is important note that for the convergence of the 𝑟𝑡ℎ moment, ቀ1 −


ఉ
ቁ in (8) must be greater than

zero. In other words, convergence of 𝑟𝑡ℎ moment is possible only if  𝛽 > 𝑟. Thus, existence of mean 
of the proposed distribution requires that 𝛽 is greater than 1. For variance, 𝛽  must be greater than 
2. Similarly, for skewness and kurtosis, 𝛽 must be greater than 3 and 4 respectively. Any situation
of divergence of the statistical measures is dealt with by employing robust measures.

2.2 Moment generating function (mgf) and characteristic function (cf) 

This sub-section contains the derivation of the mgf and cf of the three-parameter GLLD. The 
following theorem gives the mgf and cf of the distribution under study. 
Theorem 3.2:If a random variable 𝑋 follows GLLD with parameters 𝛼, 𝛽 and 𝜆 such that 𝛼, 𝛽 > 0and |𝜆| ≤

1, then the mgf denoted by 𝑀(𝑡) and the cf denoted by 𝜓(𝑡) has the following form: 
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𝑀(𝑡) = 
𝑡

𝑗!

ஶ

ୀ

1

𝛼
 Γ ൬

𝛽 − 𝑗

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨

and 

𝜓(𝑡) = 
(𝜄𝑡)

𝑗!

ஶ

ୀ

1

𝛼
 Γ ൬

𝛽 − 𝑗

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨

Proof:  
We know from the definition of mgf that 

𝑀(𝑡) = 𝔼(𝑒௧௫) 

= න 
(𝑡𝑥)

𝑗!
𝑓(𝑥; 𝛼, 𝛽, 𝜆)𝑑𝑥

ஶ

ୀ

ஶ



= න 
𝑡

𝑗!
𝑥𝑓(𝑥; 𝛼, 𝛽, 𝜆)𝑑𝑥

ஶ

ୀ

ஶ



= 
𝑡

𝑗!

ஶ

ୀ

𝜇
ᇱ

From (8), we know 

𝜇
ᇱ =

1

𝛼
 Γ ൬

𝛽 − 𝑗

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨

∴ 𝑀(𝑡) = 
𝑡

𝑗!

ஶ

ୀ

1

𝛼
 Γ ൬

𝛽 − 𝑗

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨ (12) 

which is the required mgf of the three-parameter GLLD. 
Also, we know that  

𝜓(𝑡) = 𝔼(𝑒ఐ௧௫) 
⇒ 𝜓(𝑡) = 𝔼(𝑒(ఐ௧)௫)

⇒ 𝜓(𝑡) = 
(𝜄𝑡)

𝑗!

ஶ

ୀ

1

𝛼
 Γ ൬

𝛽 − 𝑗

𝛽
൰ (1 + 𝜆)Γ ൬

𝛽 + 𝑗

𝛽
൰ − 𝜆 Γ ൬

2𝛽 + 𝑗

𝛽
൰൨ (13) 

which is the required cf of the three-parameter GLLD. 

2.3 Order Statistics 

Stated in the simplest of terms, order statistics refer to sampling values arranged in an ascending 
order. If 𝑋(ଵ), 𝑋(ଶ), 𝑋(ଷ), … , 𝑋() denote the order statistics of a random sample 𝑋ଵ, 𝑋ଶ, 𝑋ଷ , … , 𝑋drawn 
from a continuous population having CDF 𝐹(𝑥) and pdf 𝑓(𝑥), then the pdf of the 𝑟𝑡ℎ order 
statistics 𝑋() is given by:  

𝑓(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓(𝑥)[𝐹(𝑥)]ିଵ[1 − 𝐹(𝑥)]ି , ∀ 𝑟 = 1,2, … , 𝑛

Using (5) and (6), the formula for the pdf of the 𝑟𝑡ℎ order statistic 𝑋() for the three-parameter 
GLLD is obtained and is given as under: 

𝑓(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

× ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ିଵ

ቈ1 −
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ି (14) 

For 𝑟 = 𝑛, we get the pdf of the 𝑛𝑡ℎ or the largest order statistic 𝑋() for the three-parameter GLLD 
which is obtained as follows: 

𝑓(𝑥) =
𝑛!

(𝑛 − 1)! (𝑛 − 𝑛)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

× ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ିଵ

ቈ1 −
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ି
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=
𝑛!

(𝑛 − 1)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
× ቈ

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ିଵ

∴ 𝑓(𝑥) =
𝑛𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ିଵ

(15) 

Also, for 𝑟 = 1, we get the pdf of the first or the smallest order statistic 𝑋(ଵ) for the three-parameter 
GLLD which is obtained as follows: 

𝑓ଵ(𝑥) =
𝑛!

(1 − 1)! (𝑛 − 1)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

× ቈ
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ଵିଵ

ቈ1 −
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ିଵ

=
𝑛!

(𝑛 − 1)!

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ
× ቈ1 −

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ିଵ

∴ 𝑓ଵ(𝑥) =
𝑛𝛼𝛽(𝛼𝑥)ఉିଵ൛(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉൟ

(1 + (𝛼𝑥)ఉ)ଷ
× ቈ1 −

(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ


ିଵ

(16) 

Quite evidently, for 𝜆 = 0, the order statistics of the base distribution i.e., the Log-Logistic 
Distribution, are yielded.  

2.4. Quantile function and random number generation 

A prominent method that is put to use for the sake of generating random numbers from a specified 
distribution is the inverse CDF method. This method generates random numbers from a particular 
distribution by equating the CDF of the distribution to a number 𝑢 where 𝑢 itself follows 
continuous uniform distribution, 𝑈(0,1). Solving the equation yields the quantile function of the 
distribution. Employing this inverse CDF method, we proceed to obtain the quantile function of 
the three-parameter GLLD as follows: 

𝐹(𝑥; 𝛼, 𝛽, 𝜆) = 𝑢

⇒
(𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
= 𝑢

⇒ (𝛼𝑥)ଶఉ + (1 + 𝜆)(𝛼𝑥)ఉ = 𝑢൫1 + (𝛼𝑥)ఉ൯
ଶ

After simplifying, we obtain 

𝑥ఉ =
−𝛼ఉ(1 + 𝜆 − 2𝑢) ± ඥ𝛼ଶఉ(1 + 𝜆)ଶ − 4𝑢𝜆𝛼ଶఉ

2𝛼ଶఉ(1 − 𝑢)

 =
−𝛼ఉ(1 + 𝜆 − 2𝑢) ± ඥ(𝛼ఉ)ଶඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ଶఉ(1 − 𝑢)

= 𝛼ఉ ൝
−(1 + 𝜆 − 2𝑢) ± ඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ఉ𝛼ఉ(1 − 𝑢)
ൡ

=
−(1 + 𝜆 − 2𝑢) ± ඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ఉ(1 − 𝑢)

∴ 𝑥 = 
−(1 + 𝜆 − 2𝑢) + ඥ(1 + 𝜆)ଶ − 4𝑢𝜆

2𝛼ఉ(1 − 𝑢)
൩

భ

ഁ

, (17) 

Equation (17) is the required quantile function of three-parameter GLLD. Note that the negative 
root of (17) has been discarded since 𝑥 only takes values greater than 0. Equation (17) yields 
random numbers from three-parameter GLLD. For 𝑢 = 0.25, 0.50 and 0.75, the values of 𝑥 obtained 
represent the first, second and third quartiles of the distribution, respectively. In a similar fashion, 
deciles and percentiles of different orders are obtained by assigning different values to 𝑢. 

RT&A, No 1 (82) 
Volume 20, March 2025 

1025



Khawar Javaid, Bilal Ahmad Para 
A NEW TRANSMUTED PROBABILITYMODEL: PROPERTIES …

2.5. Survival measures of three-parameter GLLD 

This sub-section deals with the survival measures of three-parameter GLLD such as the survival 
function and the hazard function. The survival function, also known as the survivorship function, 
refers to the probability that a life, system or a component will survive beyond a specified time. In 
mathematical terms, it happens to be the complement of the CDF and is given by: 

𝑆(𝑥) = Pr(𝑋 > 𝑥) = 1 − 𝐹(𝑥) (18) 
Using (5) in (18), we obtain the survival function of three-parameter GLLD as follows: 

𝑆(𝑥; 𝛼, 𝛽, 𝜆) =
൫1 + (𝛼𝑥)ఉ൯

ଶ
− (𝛼𝑥)ଶఉ − (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ

𝑆(𝑥; 𝛼, 𝛽, 𝜆) =
൫1 + 2(𝛼𝑥)ఉ + (𝛼𝑥)ଶఉ൯ − (𝛼𝑥)ଶఉ − (1 + 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ

∴ 𝑆(𝑥; 𝛼, 𝛽, 𝜆) =
1 + (1 − 𝜆)(𝛼𝑥)ఉ

(1 + (𝛼𝑥)ఉ)ଶ
, 𝑥, 𝛼, 𝛽 > 0 & − 1 ≤ 𝜆 ≤ 1 (19) 

The hazard function, also known as the hazard rate or failure rate or force of mortality, happens to 
be an important quantity used for the characterization of life phenomenon. Hazard function is 
defined as the conditional probability that a life, system or a component that survives up to a 
specified time, will undergo failure or succumb in the immediate, infinitesimally small interval of 
time that follows. In mathematical terms, the hazard rate or the hazard function is given by: 

ℎ(𝑥) = lim
௧→

Pr[𝑡 ≤ 𝑋 < 𝑡 + Δ𝑡 | 𝑋 ≥ 𝑡]

Δ𝑡
which upon simplification yields 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
(20) 

Using (6) and (19) in (20), we obtain the hazard function of three-parameter GLLD as follows: 

ℎ(𝑥; 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ){1 + (1 − 𝜆)(𝛼𝑥)ఉ}
,      𝑥, 𝛼, 𝛽 > 0 &|𝜆| ≤ 1

 (21) 
The survival function and the hazard function plots for (19) and (21) respectively for different 
values of the parameters involved is illustrated through figure 3 and 4 respectively. 

3. Maximum Likelihood Estimation

One of the most useful frameworks in parameter estimation is the Maximum Likelihood 
estimation (MLE). This method obtains the unknown population parameters by the virtue of 
likelihood maximization.  

In this section, the parameters 𝛼, 𝛽 and 𝜆of the three-parameter GLLD are estimated using 
the method of maximum likelihood estimation (MLE). The procedure is given as follows: Consider 
a random sample 𝑋ଵ, 𝑋ଶ, . . . , 𝑋of size 𝑛 taken from the three-parameter GLLD. The likelihood 
function based on this sample is therefore given as: 

𝐿(𝑥|𝛼, 𝛽, 𝜆) = ෑ
𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)
ఉ)ଷ



ୀଵ

(22) 

⇒ 𝐿 = ൫𝛼ఉ𝛽൯
 ∏ 𝑥

ఉିଵ ∏ {(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}
ୀଵ


ୀଵ

∏ (1 + (𝛼𝑥)ఉ)ଷ
ୀଵ

 (23) 

Taking logarithm on both sides of (23), we obtain the log likelihood function as follows: 

⇒ log 𝐿 = log ൫𝛼ఉ𝛽൯
 ∏ 𝑥

ఉିଵ ∏ {(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)
ఉ}

ୀଵ

ୀଵ

∏ (1 + (𝛼𝑥)
ఉ)ଷ

ୀଵ

൩
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Fig. 3: Survival function plot for three parameter GLLD 

Fig. 4: Hazard rate function plot for three parameter GLLD 

⇒ log 𝐿 log 𝐿 = 𝑛𝛽 log 𝛼 + 𝑛 log 𝛽 + (𝛽 − 1)  log 𝑥



ୀଵ

+  log{(1 + 𝜆)൫1 + (𝛼𝑥)
ఉ൯ − 2𝜆(𝛼𝑥)ఉ}



ୀଵ

− 3  log(1 + (𝛼𝑥)ఉ)



(ୀଵ)

which is the required log-likelihood function. 

(24) 

The MLEs of the parameters 𝛼, 𝛽 and 𝜆 of GLLD are obtained by differentiation of the log-
likelihood function (24) w.r.t 𝛼, 𝛽 and 𝜆.The partial derivatives used for estimating the parameters 
are obtained as follows: 

𝜕

𝜕𝛼
log 𝐿 =

𝑛𝛽

𝛼
+  

ቄ(1 + 𝜆)൫𝛽𝛼ఉିଵ𝑥
ఉ

൯ − 2𝜆𝛽𝛼ఉିଵ𝑥
ఉ

ቅ

{(1 + 𝜆)(1 + (𝛼𝑥)
ఉ) − 2𝜆(𝛼𝑥)ఉ}





ୀଵ

− 3  
𝛽𝛼ఉିଵ𝑥

ఉ

(1 + (𝛼𝑥)ఉ)
൩



ୀଵ

(25) 

𝜕

𝜕𝛽
log 𝐿 = 𝑛 log 𝛼 +

𝑛

𝛽
+  log 𝑥



ୀଵ

+  ቈ
{(1 + 𝜆)(𝛼𝑥)

ఉ log(𝛼𝑥) − 2𝜆(𝛼𝑥)ఉ log(𝛼𝑥)}

{(1 + 𝜆)(1 + (𝛼𝑥)
ఉ) − 2𝜆(𝛼𝑥)ఉ}

 − 3  ቈ
(𝛼𝑥)ఉ log(𝛼𝑥)

(1 + (𝛼𝑥)ఉ)




ୀଵ



ୀଵ

(26) 

𝜕

𝜕𝜆
log 𝐿 =  ቈ

1 − (𝛼𝑥)
ఉ

{(1 + 𝜆)(1 + (𝛼𝑥)ఉ) − 2𝜆(𝛼𝑥)ఉ}




ୀଵ

(27) 

The derivative equations (25), (26) and (27) cannot be analytically solved and thereby estimates of 
the parameters 𝛼, 𝛽 and 𝜆 denoted by 𝛼ො, 𝛽መ  and 𝜆መ are obtained by maximization of log-likelihood 
function through the employment of powerful iterative numerical methods such as the Newton-
Raphson method. The second order partial derivatives are computed which are helpful in 
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obtaining the Fisher’s Information Matrix in the following manner: 

𝐼௫(𝛼, 𝛽, 𝜆) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼ଶ
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼𝜕𝛽
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼𝜕𝜆
ቇ

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽𝜕𝛼
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛽ଶ
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛽𝜕𝜆
ቇ

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛼
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛽
ቇ −𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝜆ଶ
ቇ

⎦
⎥
⎥
⎥
⎥
⎥
⎤

(28) 

It can be shown that the three-parameter GLLD satisfies the regularity conditions and thereby the 
MLE vector Θ = ൫𝛼ො, 𝛽መ, 𝜆መ൯

்
 is consistent as well as asymptotically normal, i.e., √𝑛 ቂ൫𝛼ො, 𝛽መ, 𝜆መ൯

்
−

(𝛼, 𝛽, 𝜆)்ቃ converges to a normal distribution with mean vector 0 and the identity covariance 
matrix. Fisher’s Information matrix in (28) is calculated by virtue of the following approximation: 

𝐼௫൫𝛼ො, 𝛽መ, 𝜆መ൯ ≈

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝐸 ቆ

𝜕ଶ log 𝐿

𝜕𝛼ଶ
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛼𝜕𝛽
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛼𝜕𝜆
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽𝜕𝛼
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽ଶ
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝛽𝜕𝜆
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛼
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆𝜕𝛽
ቇቤ

൫ఈෝ,ఉ,ఒ൯

−𝐸 ቆ
𝜕ଶ log 𝐿

𝜕𝜆ଶ
ቇቤ

൫ఈෝ,ఉ,ఒ൯⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(29) 

Where 𝛼ො, 𝛽መ and 𝜆መ are the MLEs of 𝛼, 𝛽 and 𝜆መ respectively. This approximation is useful in the 
construction of the confidence intervals for the parameters of three-parameter GLLD. The 
approximate 100(1 − 𝛼)% confidence intervals for 𝛼, 𝛽 and 𝜆 are respectively given by: 

𝛼ො ± 𝑧ഀ

మ
ට𝐼ଵଵ

ିଵ൫Θ൯, 𝛽መ ± 𝑧ഀ

మ
ට𝐼ଶଶ

ିଵ൫Θ൯ 𝑎𝑛𝑑 𝜆መ ± 𝑧ഀ

మ
ට𝐼ଷଷ

ିଵ൫Θ൯ (30) 

3.1. Monte Carlo Simulation Study of ML Estimates 

Monte Carlo simulation refers to a wide range of computational algorithms aimed at obtaining 
numerical results by using repeated random sampling. This sub-section contains a behavioral 
analysis of the maximum likelihood estimates of three-parameter GLLD for a finite sample of size 
𝑛. A MC simulation study for different values of parameters 𝛼, 𝛽 and 𝛾 is employed for this 
purpose with random numbers being generated using the quantile function (17) obtained earlier. 
The procedure undertaken involves a simulation study for each triplet (𝛼, 𝛽, 𝜆) for the parameter 
combinations (𝛼 = 0.7, 𝛽 = 0.5, 𝜆 = 0.4) and (𝛼 = 1.2, 𝛽 = 0.8, 𝜆 = 0.5).The iterative process is 
carried out 100 times for samples of size 𝑛, where 𝑛 = 25,75,150,200 and 500, generating 100 
samples of the mentioned sample sizes. ML estimates for each sample generated are then obtained 
and their average bias, variance and MSE is calculated. The results have been tabulated in Table 1 
and clearly indicate that with the increase in the sample size 𝑛, agreement between theory and 
practice improves significantly. MSE and variance of estimates of 𝛼, 𝛽 and 𝜆 indicate consistency 
and that the ML method performs well for estimation of parameters of the three-parameter GLLD. 

Table 1: Average Bias, Variance and MSE for simulated results of MLEs 
Sample 
size 𝑛 

Parameters 
(𝛼 = 0.7, 𝛽 = 0.5, 𝜆 = 0.4) (𝛼 = 1.2, 𝛽 = 0.8, 𝜆 = 0.5) 

Bias Variance MSE Bias Variance MSE 

25 
𝛼 0.026299 2.645356 2.646048 -0.15184 0.633681 0.656737 
𝛽 0.008205 0.009891 0.009958 0.012896 0.052401 0.052567 
𝜆 0.284835 0.18187 0.263 0.160373 0.173618 0.199338 

75 
𝛼 -0.184323 0.841443 0.875418 -0.16281 0.495852 0.522358 
𝛽 -0.009204 0.003322 0.003407 -0.04699 0.026425 0.028633 
𝜆 0.237382 0.142089 0.198439 0.156228 0.153889 0.178296 
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150 
𝛼 -0.357382 0.54484 0.672562 -0.05974 0.366872 0.370441 
𝛽 -0.020729 0.001617 0.002047 -0.03842 0.012117 0.013593 
𝜆 0.271836 0.148146 0.22204 0.067127 0.140693 0.145199 

200 
𝛼 -0.276202 0.540957 0.617245 0.037218 0.422209 0.423594
𝛽 -0.018463 0.001689 0.00203 -0.00735 0.012184 0.012238 
𝜆 0.241823 0.135421 0.193899 0.03889 0.128701 0.130213 

500 
𝛼 -0.377683 0.375987 0.518631 0.095593 0.332553 0.341691
𝛽 -0.01319 0.000977 0.001151 -0.02082 0.006032 0.006466 
𝜆 0.252524 0.10096 0.164728 -0.01595 0.102887 0.103141 

4. Robust Skewness and Kurtosis Measures for three-parameter GLLD

This section deals with the study of skewness and kurtosis measures for the proposed distribution. 
Skewness and kurtosis both deal with the shape of the distribution with the former concerned with 
symmetry while latter with the tailedness and peakedness of the distribution. The effect of 
parameters on the skewness and kurtosis of the distribution is studied in this section by 
considering measures based on quantiles.  

Bowley[6] proposed a coefficient of skewness based on quantiles which is well known in 
statistical literature and is one of the earliest measures of skewness. It is defined as the average of 
the first and third quartiles minus the median divided by half the interquartile range. It is given by: 

𝛣 =
𝑄ଷ + 𝑄ଵ − 2𝑄ଶ

𝑄ଷ − 𝑄ଵ

=
𝑄 ቀ

ଷ

ସ
ቁ − 𝑄 ቀ

ଵ

ସ
ቁ − 2𝑄 ቀ

ଵ

ଶ
ቁ

𝑄 ቀ
ଷ

ସ
ቁ − 𝑄 ቀ

ଵ

ସ
ቁ

(31) 

Bowley’s coefficient of skewness lies between +1 and −1. 
Moors[7] proposed a robust alternative to the conventional measure of kurtosis in order to 
overcome the shortcomings of the latter. For many heavy tailed distributions, the conventional 
measure is infinite and uninformative as such. The new measure of kurtosis based on quantiles, 
however, is less sensitive to outliers and even exists for distributions for which there are not any 
defined moments. The Moors’ kurtosis based on octiles is given by: 

𝑀 =
(𝐸ଷ − 𝐸ଵ) + (𝐸 − 𝐸ହ)

𝐸 − 𝐸ଶ

=
𝑄 ቀ

ଷ

଼
ቁ − 𝑄 ቀ

ଵ

଼
ቁ + 𝑄 ቀ



଼
ቁ − 𝑄 ቀ

ହ

଼
ቁ

𝑄 ቀ


଼
ቁ − 𝑄 ቀ

ଶ

଼
ቁ

(32) 

For distributions that are symmetrical to 0, the Moors’ kurtosis reduces to: 

𝑀 =
𝑄 ቀ



଼
ቁ − 𝑄 ቀ

ହ

଼
ቁ

𝑄 ቀ


଼
ቁ

(33) 

Table 2: Bowley’sskewness for GLLD (𝑥; 𝛼, 𝛽, 𝜆) for different parameter combinations 

Parameters 
𝛼 = 1.3 

𝛽 
0.7 1.4 1.9 2.6 3.3 4.4 5.6 

𝝀

-0.9 0.62570 0.36985 0.28923 0.22568 0.18823 0.15298 0.13014 
-0.7 0.63217 0.36683 0.28241 0.21574 0.17642 0.13942 0.11543 
-0.6 0.63601 0.36633 0.28009 0.21192 0.17169 0.13383 0.10929 
-0.3 0.64848 0.36931 0.27877 0.20697 0.16455 0.12460 0.09870 
0.3 0.64453 0.36414 0.27336 0.20143 0.15894 0.11895 0.09303 
0.6 0.60956 0.33252 0.24491 0.17596 0.13538 0.09727 0.07260 
0.7 0.59349 0.31787 0.23156 0.16380 0.12400 0.08664 0.06248 
0.9 0.55777 0.28555 0.20196 0.13671 0.09850 0.06271 0.03959 
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Table 3: Moors’ kurtosis for GLLD (𝑥; 𝛼, 𝛽, 𝜆) for different parameter combinations 

Parameters 
𝛼 = 2.6 

𝛽 
0.7 1.4 1.9 2.6 3.3 4.4 5.6 

𝝀

-0.9 3.02678 1.75277 1.56318 1.45452 1.40469 1.36648 1.34594 
-0.7 3.05154 1.74699 1.55687 1.45018 1.40247 1.36694 1.34849 
-0.6 3.06594 1.74405 1.55301 1.44675 1.39978 1.36525 1.34763 
-0.3 3.11493 1.73857 1.54241 1.43495 1.38840 1.35504 1.33856 
0.3 3.07158 1.72426 1.53261 1.42809 1.38310 1.35111 1.33550 
0.6 2.76317 1.64151 1.48248 1.39720 1.36142 1.33684 1.32545 
0.7 2.60943 1.59528 1.45225 1.37657 1.34545 1.32469 1.31549 
0.9 2.27908 1.48840 1.37979 1.32506 1.30423 1.29197 1.28772 

For standard normal distribution, it is easy to compute that 
𝐸ଵ = −𝐸 = −1.15, 𝐸ଶ = −𝐸 = −0.67 𝑎𝑛𝑑 𝐸ଷ = −𝐸ହ = −0.32 

Therefore, 𝑀 = 1.23. The centered Moors’ coefficient is thus given by: 

𝑀 =
𝑄 ቀ

ଷ
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ቁ + 𝑄 ቀ



଼
ቁ − 𝑄 ቀ

ହ

଼
ቁ

𝑄 ቀ


଼
ቁ − 𝑄 ቀ

ଶ
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− 1.23 (34) 

Using R software, the values of Bowley’sskewness and Moors’ kurtosis for the three-parameter 
GLLD for different parameter values have been numerically calculated and tabulated in Tables 2 
and 3 respectively. Clearly, Bowley’sskewness as well as Moors’ kurtosis are decreasing function 
of 𝛽 for a fixed value of the transmuted parameter 𝜆. However, for a fixed value of the scale 
parameter 𝛽, both Bowley’s skewness and Moors’ kurtosis reflect both increasing and decreasing 
behavior for different values of the transmuted parameter 𝜆. 

5. Applications of three-parameter GLLD

In this particular section, the performance of the proposed generalized log-logistic model is put to 
test by comparing it with base model. Two real life data sets, one based on survival times and the 
other on strength data, that are already available in the literature have been used to carry out the 
comparisons. The procedure involves the computation of MLEs of the transmuted model as well 
the base model based on both data sets using R software. The various goodness of fit statistics for 
the two models are then calculated and comparisons carried out. These statistics include AIC 
(Akaike’s Information Criterion) provided by Akaike[8], AICC (AIC Corrected) and BIC (Bayesian 
Information Criterion) given by Schwarz[9]. AIC, AICC and BIC for a model with 𝑘 parameters are 
calculated using the following generic functions: 

𝐴𝐼𝐶 = 2𝑘 − 2 log 𝐿

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
𝐵𝐼𝐶 = 𝑘 log 𝑛 − 2 log 𝐿

Kolmogorov-Smirnov test is also carried out for testing model significance based on the two 
mentioned real-life data sets. 

Data Set I: The data set reported by Efron[10] is analyzed for carrying out comparisons between 
three-parameter GLLD and LLD. Efron [10] reported the data set in which observations represent 
the survival times of a group of patients suffering from head and neck cancer disease and are 
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treated using radiotherapy. The data set is given in Table 4. 
Table 4: Survival times of 58 patients suffering from head and neck cancer disease 

The MLEs, model functions alongside the standard errors based on the above data set are 
tabulated in Table 5. 

The Table 6 contains various goodness of fit measures for models fitted to data given in 
Table 4. From the table, it is evident that the AIC, AICC and BIC values for the transmuted model 
(GLLD) are better as compared to the base model (LLD), thereby suggesting that the new model is 
a better performer. Furthermore, the KS 𝑝-value is also greater than 0.05 for GLLD as such 
reiterating the statistical significance of the new transmuted model over the base model. 

Table 5: MLEs with standard errors of parameters for GLLD and LLD for data set I 
Model Model function MLEs Standard Error 

Transmuted 
Model 

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

𝛼ො = 0.01

𝛽መ = 1.55

𝜆መ = −0.47

𝑆𝐸(𝛼ො) = 0.002 
𝑆𝐸൫𝛽መ൯ = 0.203

𝑆𝐸(𝜆) = 0.344 

Base Model 
𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ

𝛼ො = 0.01

𝛽መ = 1.52

𝑆𝐸(𝛼ො) = 0.002

𝑆𝐸൫𝛽መ൯ = 0.196

Table 6: Goodness of fit measures for models fitted to data set I 

Model − 𝐥𝐨𝐠 𝑳 AIC AICC BIC 
KS 

Distance 
KS 

𝒑-value 
LR 

Statistic 
GLLD 371.1943 748.3887 748.8331 754.5700 0.15548 0.1211 

5.01905 
LLD 373.7039 751.4077 751.6259 755.5286 0.26802 0.0004 

The GLLD and LLD plots fitted to the survival times of the 58 patients suffering from head and 
neck cancer disease are illustrated through Figure 5. The graphical overview of the empirical and 
theoretical (GLLD) CDFs and survival functions for data set I is illustrated through Figures 6 and 7 
respectively. 

Fig. 5: Curve fitting GLLD vz LLD for data set I 

6.53 7 10.42 14.48 16.10 22.70 34 41.55 42 45.28 49.40 53.62 
63 64 83 84 91 108 112 129 133 133 139 140 
140 146 149 154 157 160 160 165 146 149 154 157 
160 160 165 173 176 218 225 241 248 273 277 297 
405 417 420 440 523 583 594 1101 1146 1417 
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Data Set II: The data set reported by Lawless [11] is analyzed for carrying out comparisons 
between three-parameter GLLD and LLD. Lawlessreported the data set in which the observations 
represent the number of cycles to failure for 25-100 cm specimens of yarn tested at a particular 
strain level. The data set is given in Table 7. 

Table 7: Cycles to failure for 25-100 cm specimens of yarn at a specific strain level 
15 20 38 42 61 76 86 98 121 146 
149 157 175 176 180 180 198 220 224 251 
175 176 180 180 198 653 

Fig. 6: Empirical and Theoritical CDF 
for data set I 

Fig. 7:Empirical and Theoretical Survival 
Function for data set I 

The MLEs, model functions alongside the standard errors based on the above data set are 
tabulated in Table 8 below: 

Table 8: MLEs with standard errors of parameters for GLLD and LLD for data set II 

From the table 9, it is evident that the AIC, AICC and BIC values for the transmuted model (GLLD) 
are better as compared to the base model (LLD), thereby suggesting that the new model is a better 
performer. Furthermore, the KS 𝑝-value>0.05 for GLLD as such reiterating the statistical 
significance of the new transmuted model over the base model. In other words, GLLD is a better fit 
for data given in Table 7 as compared to LLD. 

Model Model function MLEs Standard Error 

Transmuted 
Model 

𝛼𝛽(𝛼𝑥)ఉିଵ{(1 + 𝜆)൫1 + (𝛼𝑥)ఉ൯ − 2𝜆(𝛼𝑥)ఉ}

(1 + (𝛼𝑥)ఉ)ଷ

𝛼ො = 0.01

𝛽መ = 1.89

𝜆መ = −0.56

𝑆𝐸(𝛼ො) = 0.004

𝑆𝐸൫𝛽መ൯ = 0.450

𝑆𝐸(𝜆መ) = 0.491

Base Model 
𝛼𝛽(𝛼𝑥)ఉିଵ

(1 + (𝛼𝑥)ఉ)ଶ

𝛼ො = 0.01

𝛽መ = 1.85

𝑆𝐸(𝛼ො) = 0.003

𝑆𝐸൫𝛽መ൯ = 0.423
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Table 9: Goodness of fit measures for models fitted to data set II 

Model − 𝐥𝐨𝐠 𝑳 AIC AICC BIC 
KS 

Distance 
KS 

𝒑-value 
LR 

Statistic 
GLLD 154.2395 314.4790 315.6219 318.1356 0.18704 0.346 

3.440033 
LLD 155.9595 315.9191 316.4645 318.3568 0.30815 0.01734 

The GLLD and LLD plots fitted to the number of cycles to failure for 25 100-cm specimens of yarn 
tested at a particular strain level are illustrated through Figure 8.The graphical overview of the 
empirical and theoretical (GLLD) CDFs and survival functions for data set II is illustrated through 
Figures 9 and 10 respectively. 

Fig. 8: Curve fitting GLLD vz LLD for data set I 

Fig. 9: Empirical and Theoritical CDF 
for data set II 

Fig. 10:Empirical and Theoretical Survival Function 
for data set II 
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6. Concluding Remarks

A new three parameter transmuted probability model namely is introduced by using the quadratic 
rank transmutation map technique. Comprehensive description of the statistical properties of the 
newly introduced model are introduced. Robust measures of skewness and kurtosis of the 
proposed model have also been derived along with the moment generating function, characteristic 
function, reliability function and hazard rate function of the said model. The estimation of the 
model parameters is performed by maximum likelihood method followed by a Monte Carlo 
simulation procedure. The applicability of this distribution to modeling real life data is illustrated 
by two real life examples and the results of comparison to base distribution in modeling the data 
are also exhibited. 
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Abstract 

The assignment problem is a key challenge in optimization and operations research, finding applications 

in diverse real-world scenarios. The Hungarian method is a widely employed algorithm for solving this 

problem, especially in its balanced form. However, for unbalanced assignment problems, where tasks 

outnumber resources (or vice versa), an extension is necessary. One common approach introduces a 

dummy resource, but this may leave tasks unassigned. The Modified Hungarian method improves upon 

the standard algorithm for unbalanced problems, ensuring that all tasks are assigned to real resources. 

This is achieved by modifying the cost matrix and algorithm steps to accommodate additional tasks and 

resources. Triangular fuzzy numbers are discussed when exact parameter information is undefined, and 

fuzzy programming is applied to determine a compromise result. Incorporating cost and profit per 

resource, the Modified Hungarian algorithm addresses the problem of unspecified job allocations to a 

single machine by introducing a cost parameter for each machine. The methodology is demonstrated on a 

numerical example for better comprehension. 

Keywords: Triangular Fuzzy Number, Unbalanced Assignment Problem, 
Modified Hungarian Technique, Fuzzy Programming Approach 

I. Introduction

In the contemporary landscape of industrial and operational management, the allocation 
of tasks to machines stands as a pivotal challenge, especially when confronted with the intricacies 
of handling multiple objectives concurrently. This challenge becomes particularly nuanced when 
multiple jobs must be assigned to a single machine, governed by predefined cost limitations, and 
set against the backdrop of an environment characterized by uncertainties. The fusion of these 
elements gives rise to a multifaceted problem, demanding sophisticated optimization techniques 
to strike an equilibrium among conflicting goals while ensuring resource efficiency. The 
optimization of job allocation on a single machine is a critical concern across various industries, 
spanning manufacturing, services, and beyond. The efficient utilization of resources in the face of 
dynamic and uncertain conditions is essential for organizations striving to enhance productivity, 
reduce costs, and maintain adaptability in an ever-evolving business environment. This intricate 
dance of optimization unfolds against the backdrop of challenges such as varying processing 
times, resource availability fluctuations, and external environmental factors, all of which 
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contribute to the complexity of the multi-objective problem at hand. 
A foundational element in the exploration of the multi-objective problem is the extensive body of 
research on multi-objective optimization in job scheduling. Studies [1] and [2] have pioneered 
methodologies for handling conflicting objectives, including cost reduction, and resource 
utilization. These works have laid the groundwork for understanding the trade-offs involved in 
optimizing multiple objectives simultaneously, providing essential concepts for application in the 
context of job allocation on a single machine. The integration of uncertainty into optimization 
models is a crucial aspect of addressing real-world operational challenges. Researchers, including 
[3, 4], have explored various approaches for modeling uncertainty in scheduling and optimization 
problems. Techniques such as stochastic programming, fuzzy logic, and robust optimization have 
been employed to account for uncertainties in processing times, resource availability, and external 
factors. Understanding these methodologies is vital for adapting optimization models to the 
uncertain environment inherent in the multi-objective problem under consideration. The interplay 
between cost constraints and optimization objectives has been a focal point in operations research. 
Works such as the study by [5] have investigated cost-sensitive optimization models, aiming to 
strike a balance between achieving objectives and adhering to budget limitations. These insights 
are particularly relevant in the context of allocating multiple jobs to a single machine, where cost 
constraints play a pivotal role in decision-making. Recent advancements have seen the emergence 
of hybrid and metaheuristic approaches in solving complex optimization problems. Research by 
[6, 7] exemplifies the application of genetic algorithms, simulated annealing, and other 
metaheuristic techniques to address combinatorial optimization problems. These approaches offer 
promise in handling the intricate nature of the multi-objective problem, providing effective means 
to navigate the solution space efficiently. To bridge the gap between theoretical models and 
practical implementation, several studies have presented real-world applications and case studies. 
Works by authors like [8, 9] have demonstrated the applicability of optimization models in 
industries such as manufacturing, healthcare, and logistics. Examining these cases provides 
valuable insights into the challenges faced by practitioners and the effectiveness of proposed 
methodologies in diverse operational contexts. 
Our ultimate goal is to contribute to the evolving landscape of operations research and 
optimization by presenting novel insights and frameworks that not only tackle the complexities of 
the multi-objective problem but also address the uncertainties inherent in real-world industrial 
settings. By doing so, we aspire to furnish decision-makers and practitioners with a 
comprehensive toolkit that enables them to navigate the labyrinth of multi-objective optimization 
within the constraints of cost and uncertainty, fostering resilience and agility in their operational 
strategies. Through this exploration, we aim to illuminate pathways towards a more efficient, 
adaptive, and sustainable operational paradigm. 
The assignment problem and the transportation problem [10] are both types of optimization 
problems in operations research and linear programming, but they are not exactly the same. The 
assignment problem is indeed a special case of the transportation problem, with certain 
constraints and characteristics that make it more specific. There are various methods to solve the 
assignment problem, including enumeration methods, the simplex method, and the Hungarian 
method [11]. In a balanced assignment problem, the number of jobs equals the number of 
machines, and the Hungarian method is generally very convenient and capable of finding the 
optimal assignment. In an unbalanced assignment problem, where the number of jobs and 
machines is not equal, it may not be possible to assign all jobs to machines. In such cases, some 
jobs may remain unassigned. It's important to note that real-world scenarios may indeed involve 
unbalanced assignment problems. In such situations, it might be necessary to address the 
unassigned jobs differently, perhaps by revising the problem formulation or considering 
additional constraints to handle the unbalance. Suppose, in a production factory there are five 
machines and eight numbers of jobs. If one machine can do only one job than remaining jobs not 
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executed, that’s create problem in manufacturing process. The Hungarian approach is improved 
by [12]. Kumar [13] provided a strategy for overcoming the imbalanced assignment problem that 
involves executing all jobs. Rabbani et al. [14] changed the formulation of the Hungarian approach 
by allowing the user to allocate several jobs to a single machine while without limiting any 
machine to a maximum number of jobs. The focus of this exploration lies in dissecting the 
intricacies of the "Multi-Objective Problem with Multiple Jobs Assigned to a Single Machine 
within Available Cost under Uncertain Environment." As we embark on this journey, our aim is to 
delve deep into the complexities of this operational puzzle, surveying existing methodologies, 
pinpointing gaps in current approaches, and proposing innovative frameworks that offer robust 
solutions to the multifaceted challenges faced by industries today. 
In this paper, we will navigate through the theoretical foundations of multi-objective optimization, 
exploring its applications in the context of job allocation on a single machine. We will scrutinize 
the influence of uncertain variables on this optimization process, emphasizing the dynamic nature 
of real-world operational scenarios. Additionally, we will investigate the existing tools and 
methodologies employed in addressing similar challenges, critically evaluating their strengths and 
limitations. This work focuses on cost and profit management for jobs performed by machines, 
using the concept of [14] and providing cost parameters for constraints on each machine. Jobs are 
assigned to each machine based on the cost of each machine. For better comprehension, a step-by-
step approach is provided and solved using a numerical example. 
The motivation for studying the assignment problem originates from its importance in 
optimization and operations research, with numerous applications in real-life situations. While the 
Hungarian approach works well for balanced assignments, it struggles with imbalanced problems 
in which one job or resource exceeds another. The Modified Hungarian technique is unique in that 
it improves on the normal algorithm's ability to manage unbalanced assignments. By adjusting the 
cost matrix and algorithm stages, it assures that all jobs find actual resource allocations, 
eliminating the problem of tasks remaining unassigned while applying dummy resources. 
The Modified Hungarian algorithm introduces a novel solution to the problem of unspecified job 
allocations to a single machine. By assigning a cost parameter to each machine and considering 
both cost and profit per resource, it provides a more comprehensive and realistic model for solving 
assignment problems. The methodology's practicality is demonstrated through a numerical 
example, enhancing understanding and showcasing the applicability of the Modified Hungarian 
algorithm in real-world scenarios. Furthermore, the use of triangular fuzzy numbers addresses 
cases where accurate parameter information is unavailable, resulting in a more flexible method. In 
such cases, the use of fuzzy programming might help identify a compromise solution. 

II. Assumption of unbalanced assignment problem

• Here we consider the numbers of machines are always less than the numbers of jobs.
• Each machine is capable of performing multiple jobs.
• Each job can assign to only one machine, and no job can be assigned to multiple machines

simultaneously.
• Every machine is assigned at least one task, and there are no tasks that remain unallocated

to a machine.
• If a machine has multiple tasks to complete, it can perform them sequentially or in

succession.
• The sum of the costs associated with the tasks assigned to each machine does not exceed

the machine's available budget or cost limit.
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III. Formulation

In a scenario with 'm' machines and 'n' jobs (where 'n' is greater than 'm'), each machine has a 
specific effectiveness or cost associated with it. The challenge here is to efficiently assign each job 
to one machine, ensuring that if there are more jobs than machines, the excess jobs are queued and 
processed subsequently. 
Let's denote  𝑐𝑖𝑗  as the cost of assigning the thi machine to the 𝑗𝑡ℎ job, where 𝑖 = 1,2,⋯ ,𝑚 and 𝑗 =
1,2,⋯ , 𝑛. Our aim to find an optimal assignment for the problem, determining the job that will be 
allocated to each machine, in a way to minimize the overall cost and maximize the profit incurred 
while performing all the tasks. It's important to note that the sum of jobs exceeds the sum of 
available machines, and each machine can handle multiple jobs, but a single job cannot be 
assigned on two machines. Additionally, each machine has a specified budget or cost that is 
utilized for executing the assigned jobs. This problem can be represented using a 𝑚 × 𝑛 cost matrix 
[𝑐𝑖𝑗] (Table 1) and a profit matrix [𝑝𝑖𝑗] (Table 2). 

Table 1: The cost matrix 𝑐𝑖𝑗  in the form of 𝑚 × 𝑛 
J1 J2 … Jn Cost 

M1 c11 c12 … c1n C1 
M2 c21 c22 … c2n C2 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
Mm cm1 cm2 … cmn Cm 

Table 2: The profit matrix 𝑝𝑖𝑗 in the form of 𝑚× 𝑛 
𝐽1 𝐽2 … 𝐽𝑛 

𝑀1 𝑝 𝑝12 … 𝑝1𝑛 
𝑀2 𝑝21 𝑝22 … 𝑝2𝑛 
⋮ ⋮ ⋮ ⋮ ⋮ 
𝑀𝑚 𝑝𝑚1 𝑝𝑚2 … 𝑝𝑚𝑛 

Let 𝑥𝑖𝑗  denote the 𝑖𝑡ℎ machine is assigned for 𝑗𝑡ℎ job such that

𝑥𝑖𝑗 = {
1 ,  𝑖𝑓 𝑖𝑡ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ𝑗𝑜𝑏

0, 𝑖𝑓 𝑖𝑡ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑡ℎ𝑗𝑜𝑏
} 

The Mathematical model is stated as 
Minimize 𝑍1 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1  (1) 

Maximize 𝑍2 = ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1  (2) 

subject to constraints 
∑ 𝑥𝑖𝑗 ≥ 1;𝑛
𝑗=1 𝑓𝑜𝑟 𝑖 = 1,2, … . ,𝑚 (3) 

∑ 𝑥𝑖𝑗 = 1;
𝑚
𝑖=1 𝑓𝑜𝑟 𝑗 = 1,2… . , 𝑛 (4) 

∑ 𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝐶𝑖;
𝑛
𝑗=1  𝑓𝑜𝑟 𝑖 = 1,2, … . ,𝑚 (5) 

𝑥𝑖𝑗 = 0 𝑜𝑟 1 (6) 
Eq [1-2] represents the objective functions, while Eq [3] specifies that a machine has the capability 
to handle multiple jobs. Eq [4] enforces the constraint that no identical job can be assigned to 
multiple machines, and Eq [5] signifies that the total assignment cost for any machine must not 
exceed its available budget. Lastly, Eq [6] indicates that only binary values are permissible in this 
context. 
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IV. Method

Solve multiple goal optimization problems by focusing on one objective at a time and disregarding 
the others with the restrictions provided. The following are the step-by-step procedures: 

1. Examine the problem, Is the problem certain? If so, skip the defuzzification approach.
Otherwise, change the problem into a neat model.

2. To reduce fuzzy problems into crisp equivalent forms, the defuzzification approach of the
ranking function is applied.
Using the defuzzification approach, we turn it into the corresponding crisp form. To get a
similar crisp form, the ranking function [15, 16] was applied.

Let�̃�𝑗 = (𝑃𝑗
(1)
,P𝑗
(2)
,P𝑗
(3)
)be a triangular fuzzy number, then the following equation must be

used to compute its magnitude:

𝑀(�̃�𝑗) =
𝑃𝑗
(1)
+4𝑃𝑗

(2)
+𝑃𝑗

(3)

6
(7) 

3. Input 𝑚, 𝑛
4. Find the lowest cost in each row and deduct it from the relevant row, resulting in at least

one zero in each row.
5. Check all columns; if any column remains without producing a zero, choose the lowest

cost of that column and subtract it from all of the values for that column to produce a zero
in that column.

6. Draw the fewest lines possible to cover the zeros in order to get the optimum matrix.
7. If the number of lines does not match the number of machines, choose the least uncovered

cost and deduct it from each uncovered cost before adding the intersection of lines.
8. Repeat steps 6 and 7 until the number of lines equals the number of rows.
9. To assign the job, identify the smallest number of zeros in each row or column, assign that

zero to the appropriate machine, and remove the actual cost of the assigned job from the
available cost for that machine.

10. We cross the remaining zeros in the relevant column after allocation, and if there will be
availability of cost for that machine is completed, also cross the remaining zeros in that
row (the total cost of allotted jobs to a single machine cannot exceed the availability cost of
that machine).

11. In the event of a tie, i.e., two rows or columns with the same number of zeros; assign the
zero with the lowest cost in the original problem. There will be no duplicate jobs assigned
two separate machines, and no machine will be left without assigning a job.

12. Repeat steps 9–11 until each job have been allocated.
13. End of algorithm.

The resulting solution is the idle solution. Using the idle solution, we constructed the payoff 
matrix. The payoff matrix will help in the development of the desired level for each objective 
function. 

Fuzzy Goal Programming 
The Fuzzy Goal Programming is a strong and adaptable approach that may be used to a wide 
range of decision-making issues with multiple objectives [17]. As a result, we can take advantage 
of this method to get the most effective solution for the specified models. The following are the 
step-by-step procedure: 

• The resulting solution is the idle solution. The idle solution will help in constructing the
payoff matrix. Finally, the payoff matrix helps in the development of the desired level for
each objective function.
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• The target value is established as the objective function's goals level (𝑔𝑘, 𝑘 = 1,2).
• We constructed the fuzzy linear membership function for the fuzzy goal of 𝑍(𝑋) ≺ 𝑔 (i.e.,

fuzzy-min) is as follows:

𝜇(𝑍(𝑋)) =

{

1,   𝑖𝑓 𝑍(𝑋) ≤ 𝑔
𝑈 − 𝑍(𝑋)

𝑈 − 𝑔
, 𝑖𝑓 𝑔 ≤ 𝑍(𝑋) ≤ 𝑈

0,   𝑖𝑓 𝑍(𝑋) ≥ 𝑈

 

where, 𝑈is the fuzzy goal's the highest tolerance limit of 𝑍(𝑋). 

Moreover, if the fuzzy goal 𝑍(𝑋) ≻ 𝑔 (i.e., fuzzy-max), then, the membership function is as 
follows: 

𝜇(𝑍(𝑋)) =

{

1,  𝑖𝑓  𝑍(𝑋) ≥ 𝑔

𝑍(𝑋) − 𝐿

𝑔 − 𝐿
,  𝑖𝑓  𝐿 ≤ 𝑍(𝑋) ≤ 𝑔

0,  𝑖𝑓  𝑍(𝑋) ≤ 𝐿

 

Where 𝐿 is the fuzzy goal's lower tolerance limit of  𝑍(𝑋). 

• Finally, we use the linear membership function to convert multi-objective problem into
single objective problem which can be solved by using a suitable traditional optimization
method. The fuzzy achievement function 𝜇 is maximized.

V. Numerical Illustration

We consider a numerical example to illustrate in which five machines are offered to complete 
eight jobs with related cost (in USD). 
The input parameters are in the form of Triangular fuzzy number for transportation cost (Table 3) 
and profit (Table 4). 

Table 3: The transportation cost in the form of triangular fuzzy number 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1
26, 30, 

34 
24, 25, 

26 
38, 40, 

42 
45, 50, 

55 
33, 35, 

37 
24, 25, 

26 
39, 40, 

41 
24, 25, 

26 
26, 30, 34 

M2
38, 40, 

42 
26, 30, 

34 
22, 20, 

24 
22, 20, 

24 
22, 20, 

24 
41, 45, 

49 
22, 20, 

24 
24, 25, 

26 
38, 40, 42 

M3
22, 20, 

24 
38, 40, 

42 
26, 30, 

34 
38, 40, 

42 
26, 30, 

34 
45, 50, 

55 
26, 30, 

34 
38, 40, 

42 
45, 50, 55 

M4
24, 25, 

26 
22, 20, 

24 
33, 35, 

37 
26, 30, 

34 
24, 25, 

26 
26, 30, 

34 
33, 35, 

37 
26, 30, 

34 
57, 60, 63 

M5
33, 35, 

37 
33, 35, 

37 
45, 50, 

55 
38, 40, 

42 
38, 40, 

42 
57, 60, 

63 
45, 50, 

55 
38, 40, 

42 
74, 80, 86 

Table 4: The transportation profit in the form of triangular fuzzy number 

J1 J2 J3 J4 J5 J6 J7 J8 
M1 8, 10, 12 11, 12, 13 14, 15, 16 21, 23, 25 15, 17, 19 10, 11, 12 15, 19, 23 8, 9, 10 
M2 13, 14, 15 6, 8, 10 5, 7, 9 4, 5, 6 2, 4, 6 20, 22, 24 1, 3, 5 5, 6, 7 
M3 5, 7, 9 15, 16, 17 11, 13, 15 15, 17, 19 11, 13, 15 25, 27, 29 10, 11, 12 14, 15, 16 
M4 6, 8, 10 1, 3, 5 12, 14, 16 11, 12, 13 8, 9, 10 6, 8, 10 20, 21, 22 8, 10, 12 
M5 11, 13, 15 10, 11, 12 21, 23, 25 12, 14, 16 20, 21, 22 27, 29, 31 15, 19, 23 14, 15, 16 
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The defuzzication approache ranking function (Equation [7]) is used to convert it into a crisp 
equivalent form for Table 3 & 4 will be shown in table 5 (Transportation cost) & Table 6 
(Transportation profit). 

Table 5: Crisp equivalent form of transportation cost 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 
M1 30 25 40 50 35 25 40 25 30 
M2 40 30 20 20 20 45 20 25 40 
M3 20 40 30 40 30 50 30 40 50 
M4 25 20 35 30 25 30 35 30 60 
M5 35 35 50 40 40 60 50 40 80 

Table 6: Crisp equivalent form of transportation profit 

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6 𝐽7 𝐽8 
M1 10 12 15 23 17 11 19 9 
M2 14 8 7 5 4 22 3 6 
M3 7 16 13 17 13 27 11 15 
M4 8 3 14 12 9 8 21 10 
M5 13 11 23 14 21 29 19 15 

The cost associated with machines for jobs will be represented in crisp form as shown in Table 7. 

Table 7: The cost associated with machines for jobs (in USD) 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 30 25 40 50 35 25 40 25 30 
M2 40 30 20 20 20 45 20 25 40 
M3 20 40 30 40 30 50  30 40 50 
M4 25 20 35 30 25 30 35 30 60 
M5 35 35 50 40 40 60 50 40 80 

Find the simplest cost in each row and subtract it from the row that results in at least one zero in 
each row. 
If any column remains without a zero, choose the lowest cost in that column and subtract it from 
all of the items in that column to obtain zero (Table 8). 

Table 8: Zeros row and column 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 
M1 5 0 15 25 10 0 15 0 30 
M2 20 10 0 0 0 25 0 5 40 
M3 0 20 10 20 10 30 10 20 50 
M4 5 0 15 5 5 10 15 10 60 
M5 0 0 15 5 5 25 15 5 80 

Draw the number of lines required covering all zeros; in this case, four lines are required to cover 
all zeros, and the number of lines is not equal to the number of machines (Table 9). Go to step 7. 
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Table 9: Line covered to all zeros 

J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 
M1 5 0 15 25 10 0 15 0 30 
M2 20 10 0 0 0 25 0 5 40 
M3 0 20 10 20 10 30 10 20 50 
M4 5 0 15 5 5 10 15 10 60 
M5 0 0 15 5 5 25 15 5 80 

Select the least uncovered cost, i.e. 5, and subtract it from each uncovered cost and add it to the 
intersection point (Table 10). Also, check that there are zeros in each row and column. Draw lines 
to cover all of the zeros. In this case, five lines are drawn that are equal to the number of rows to 
generate the needed matrix. 

Table 10: New line on updated values that covering all zeros 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 10 5 15 25 10 0 15 0 30 
M2 25 15 0 0 0 25 0 5 40 
M3 0 20 5 15 5 25 5 15 50 
M4 5 0 10 0 0 5 10 5 60 
M5 0 0 10 0 0 20 10 0 80 

Begin by assigning jobs to the rows. Find a row with only one zero, assign that zero, then cross the 
other zeros in that column i.e. 𝐽1 assign to 𝑀3 and subtract the cost of the allocated job from the 
available cost. Here, the available cost for machine 𝑀3 is 50 USD, and after assigning the work, the 
remaining cost is 30 USD. Now, verify the columns that have one zero allocated to the relevant 
machine i.e.,𝐽3,𝐽7 assign to 𝑀2 and 𝐽6 assign to 𝑀1 and subtract the cost from the corresponding 
machine's available cost (Table 11). 

Table 11: Available cost of corresponding machine 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 10 5 15 25 10 0 15 0 5 
M2 25 15 0 0 0 25 0 5 0 
M3 0 20 5 15 5 25 5 15 30 
M4 5 0 10 0 0 5 10 5 40 
M5 0 0 10 0 0 20 10 0 0 

In the event of a tie, i.e., two rows or columns with the same number of zeros, we allocate the zero 
with the lowest cost in the problem. There will be no duplicate jobs assigned two separate 
machines, and no machine will be left without assigning at least one job. 
If the cost is not accessible to do any more jobs for that machine after it has been assigned, and 
there are still any position related to that machine, then cross it for not assigning any other job. 
Continue step 8 to 10 until all jobs are assigned. 

Table 12: Jobs assigned to all machine 
J1 J2 J3 J4 J5 J6 J7 J8 Cost (USD) 

M1 15 5 15 25 10 0 15 0 5 
M2 30 15 0 0 0 25 0 5 0 
M3 0 15 0 10 0 20 0 10 0 
M4 10 0 10 0 0 5 10 5 15 
M5 5 0 10 0 0 20 10 0 40 
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Table 13 shows the task assignment that minimizes overall cost, and Figure 1 shows a graph of job 
allocation to the respective machine. 

Table 13: Jobs assigned to respected machines with the associated cost 

Machine Jobs Cost (USD) 

𝑀1 𝐽6 25 

𝑀2 𝐽3, 𝐽4 20+20=40 
𝑀3 𝐽1, 𝐽7 20+30=50 
𝑀4 𝐽2, 𝐽5 20+25=45 

𝑀5 𝐽8 40 

Total Cost 200 

Figure 1: Allocation of Jobs to the Machines for cost 

The second objective is maximizing type, so we select the maximum value from the Table 6 and 
subtract each element of the Table 6 from the selected value. Similarly, Table 14 shows the 
assignment of work that maximizes profit, and Figure 2 shows a graph of job allocation to the 
respective machine. 

Table 14: Jobs assigned to respected machines with the associated profit 
Machine Jobs Profit (USD) 
M1 J2 12 
M2 J3, J4 7+5=12 
M3 J6 27 
M4 J5, J7 9+21=30 
M5 J1, J8 13+15=28 

Total Profit 109 
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Figure 2: Allocation of Jobs to the Machines for the profit 

After solving each objective, we have lower and upper bound of each objective such as: 200 ≤
𝑍1(𝑥) ≤ 250,68 ≤ 𝑍2(𝑥) ≤ 109. Then, we construct the membership function of each objective are 
as follows: 

𝜇1(𝑍1(𝑥)) =

{

1,       𝑍1(𝑥) ≤ 200

250 − 𝑍1(𝑥)

250 − 200
 200 < 𝑍1(𝑥) < 250

0  𝑍1(𝑥) ≥ 250

 

and 

𝜇2(𝑍2(𝑥)) =

{

0,        𝑍2(𝑥) ≤ 68

𝑍2(𝑥) − 68

109 − 68
,  68 < 𝑍2(𝑥) < 109

1,  𝑍2(𝑥) ≥ 109

 

Use the fuzzy programming approach with these memberships, we get a compromise solution for 
the assignment of jobs as shown in Table 15 and graphical illustrating work allocation to the 
relevant machines in terms of cost and profit are shown in Figure 3 and 4 respectively. 

Table 15: Jobs assigned to respected machines with the associated profit 
Machine Jobs Cost (USD) Profit (USD) 
M1 J6 25 11 
M2 J3, J4 20+20=40 7+5=12 
M3 J1, J5 20+30=50 7+13=20 
M4 J2, J7 20+35=55 3+21=24 
M5 J8 40 15 

Total Profit 210 82 
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Figure 3: Compromise allocation of Jobs to the Machines for the cost 

Figure 4: Compromise allocation of Jobs to the Machines for profit 

VI. Discussion

Acknowledgment of the assignment problem's critical role in optimization and operations 
research, with broad applicability in real-world scenarios. Recognition of the Hungarian method's 
effectiveness in addressing the assignment problem in its balanced form. Expansion of the 
exploration to encompass unbalanced scenarios where tasks or resources outnumber each other. 
Introduction of a new and straightforward strategy for assigning multiple activities within given 
resources to achieve specific goals. Addition of two parameters, cost and profit for each resource, 
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in the formulation to meet the demand of allocating more jobs to one resource within a specified 
time frame. Utilization of fuzzy programming to find compromise solutions for multi-objective 
problems, offering adaptability in scenarios with undefined parameter information. In-depth 
exploration of triangular fuzzy numbers when the exact information of parameters is not defined, 
showcasing a flexible approach in problem-solving. Recognition of the Modified Hungarian 
method as a significant advancement in rectifying the shortcomings of leaving tasks unassigned. 
Explanation of how modifications to the cost matrix and algorithm steps ensure the comprehensive 
allocation of tasks to real resources. 

The role of triangular fuzzy numbers in providing adaptability in scenarios with 
undefined parameters. Discussion on the contribution of fuzzy programming to compromise result 
determination, enhancing the methodology's effectiveness. Emphasis on the incorporation of cost 
and profit considerations per resource, adding a practical and comprehensive dimension to the 
algorithm. Explanation of how the Modified Hungarian algorithm adeptly handles unspecified job 
allocations by introducing a cost parameter for each machine. Recognition of the methodology's 
practical demonstration on a numerical example as a key element for enhancing comprehension. 
Emphasis on how the envisioned future scope aims to ensure the continued evolution and broader 
applicability of the Modified Hungarian algorithm in effectively addressing intricate assignment 
problems across diverse and dynamic contexts. 

I. Needs
❖ Address the fundamental need for optimization in various real-life applications.
❖ Fulfill the need for effective solutions in scenarios where tasks significantly outnumber

resources or vice versa.
❖ Cater to the need for flexibility when dealing with scenarios lacking exact parameter

information through the discussion of triangular fuzzy numbers.
❖ Meet the need for a comprehensive approach by incorporating both cost and profit

considerations for each resource in the formulation.

II. Limitations
➢ Acknowledge the limitation of dependency on the Hungarian method, particularly in its

balanced form.
➢ Recognize the potential limitation of leaving tasks unassigned when utilizing the common

approach of introducing a dummy resource.
➢ Understand that the Modified Hungarian method, while addressing unbalanced problems,

may introduce complexity in modifying cost matrices and algorithm steps.
➢ Acknowledge the subjective nature of fuzzy programming in finding a compromise result,

as it relies on fuzzy logic and human judgment.

VII. Conclusion

The assignment problem, crucial in optimization and operations research, spans diverse real-
world applications. While the Hungarian method adeptly tackles the problem in its balanced 
form, the exploration extends to address unbalanced scenarios where tasks or resources 
outnumber each other. In this work, a new and easy strategy for assigning multiple activities 
within the given resources for a particular goal is proposed. Two more parameters as cost and 
profit for each resource is included in the formulation. This strategy meets the demand of 
allocating more jobs to one resource within a certain time frame while producing the most 
effective results. The fuzzy programming approach is used to find the compromise solution to a 
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multi-objective problem. We also discussed triangular fuzzy number if the exact information of 
the parameter is not defined. In future, researcher can used different fuzzy number for the 
allocation of the jobs to the machine and also used different techniques under the different 
circumstances. 
The Modified Hungarian method, a significant advancement, rectifies the shortcomings of leaving 
tasks unassigned. By modifying the cost matrix and algorithm steps, it ensures all tasks find 
allocation to real resources. The discussion on triangular fuzzy numbers provides adaptability in 
scenarios with undefined parameters, and fuzzy programming contributes to compromise result 
determination. Incorporating cost and profit considerations per resource, the Modified Hungarian 
algorithm adeptly handles unspecified job allocations by introducing a cost parameter for each 
machine. The methodology's practical demonstration on a numerical example enhances 
comprehension. Looking forward, the future scope involves algorithmic refinements, dynamic 
resource models, integration with machine learning, validation across industries, and robustness 
to noisy data, ensuring the continued evolution and applicability of the Modified Hungarian 
algorithm in solving complex assignment problems across diverse and dynamic contexts. 
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Abstract

This paper investigates the application of Leimkuhler curve and doubly truncated distributions in infor-
metrics. Leimkuhler curve, ranking sources in descending order, emerges as a key tool for identifying
efficient information sources. The study introduces a random variable representing the age of cited ar-
ticles, influencing the probability distribution in retrospective citation analysis. Reliability measures,
including mean residual life function and mean past residual life function are employed to analyze
engineering and reliability aspects in informometric data. Truncation in probability distributions, par-
ticularly the doubly truncated distribution, is explored, revealing its broad applicability. The relationship
between the Leimkuhler curve and truncated distributions will also be examined.

Keywords: leimkuhler curve, mean residual life function, mean past life function, double trun-
cated random variable, risk measures

1. Introduction

The Leimkuhler curve and Lorenz curve serve as valuable tools in both information process-
ing and economics. In economics, they are utilized to graphically represent the cumulative
distribution of productivity versus resources. Moreover, they find application in analyzing the
concentration of bibliometric distributions within the field of information sciences. The key dis-
tinction between the Lorenz [23] curve and the Leimkuhler curve lies in their ranking order: the
Lorenz curve ranks sources (or individuals) in ascending order of productivity (income), while
the Leimkuhler curve ranks them in descending order. In informetrics, where the focus often
lies on identifying the most efficient sources of information, the Leimkuhler curve (LKC) serves
as the equivalent graphical representation ( see Burrell [9, 10, 13]). Its general definition can be
found in Sarabia’s work [28], and Balakrishnan et al. [3] have highlighted the relationships be-
tween the reliability function and the Leimkuhler curve. In retrospective citation studies within
informetrics, interest is drawn to the age at which an article is cited, referring to the elapsed time
from its publication to inclusion in the examined collection.

To conduct such studies, a single random variable X indicating article age determines the
probability distribution of X. Burrell’s research [12] has linked the data types reported in ret-
rospective citation analysis with reliability models. Hazard rate, mean residual life function,
reversed hazard rate, mean past life function, and vitality function are commonly employed
tools for analyzing engineering and reliability aspects (Barlow and Proschan [4]). Truncation in
probability distributions often arises in studies like reliability analysis, where unit failure may
only be observed within specific time frames.(Abdul Sathar and Nair [1]) The broader utility of
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truncated distributions has been explored in many references such as Bernardic and Candel [8],
Belzunce et al. [6], Kupka and Loo [21] , Ato and Bernardic [2], Coffey and Muller [14] and Nair
et al. [25] were analyze truncated data in various disciplines, necessitating the examination of
truncated versions of the standard distribution, particularly in relation to reliability issues and
economic inequality.

The doubly truncated distribution encompasses right truncated, left truncated, and non-
truncated distributions as special cases. Notably, Belzunce et al. [6] have identified properties of
concentration truncated distribution curves, while Behdani et al. [5] have explored the properties
and applications of doubly truncated distributions in income inequality.

The subsequent sections of the paper are organized as follows: preliminary information is
presented in section 2. Section 3 covers measures of reliability and risk related to the Leimkuhler
curve, section 4 specifies the relationship between the mean past life function and the Leimkuh-
ler curve, section 5 explores the Leimkuhler curve of doubly truncated distributions, section 6
discusses the relation between the geometric vitality function and the Leimkuhler curve, and
finally, section 7 presents some conclusions.

2. Preliminaries

Let X be a non-negative random variable with finite and positive mean E(X) = µ. The distribu-
tion function and survival function of X are symbolized by F and F̄ = 1 − F, respectively. The
quantile function is defined as F−1(t) = inf{x : F(x) ≥ t, t ∈ (0, 1)}. The Lorenz curve, intro-
duced by Lorenz, is a widely used graphical tool for illustrating and examining size distribution
and wealth. For a random income variable X, the Lorenz curve is defined as:

L(p) =

∫ p
0 F−1(t)dt∫ 1
0 F−1(t)dt

, 0 ≤ p ≤ 1. (1)

Here, the function L(p) represents the cumulative percentage of total income earned by the
lowest 100p% earners. This paper presents the main result in the form of the Leimkuhler curve
K(p), as proposed by Sarabia [28] . The Leimkuhler curve is defined as:

K(p) =

∫ 1
1−p F−1(t)dt∫ 1

0 F−1(t)dt
=

∫ ∞
F−1(1−p) t f (t)dt∫ 1

0 F−1(t)dt
, 0 ≤ p ≤ 1. (2)

This curve indicates the share of total productivity returning to sources with productivity
100p% greater. The Leimkuhler curve is essentially an inverted image of the Lorenz curve re-
flected along the diagonal line at 45 degrees.

The definitions of the Lorenz and Leimkuhler curves, L(p) and K(p) respectively, imply that
these curves are linked by the relationship:

K(p) + L(1 − p) = 1. (3)

It is evident that the Leimkuhler curve acts as a distribution function, exhibiting continuity
on [0, 1] , with a second derivative K

′′
(p) ≤ 0, K(0) = 0, K(1) = 1, K

′
(1−) ≥ 0 and K(p) ≥ p,

among other trivial properties. The Gini index G, representing the area between the Leimkuhler
and Lorenz curves, serves as a measure of income inequality. The Gini coefficient theoretically
ranges from 0 (complete equality) to 1 (complete inequality), expressed as:

G =
∫ 1

0
[K(p)− L(p)]dp = 1 −

∫ ∞
0 F̄(x)2dx

E(x)
. (4)

A low Gini index suggests a more equitable distribution of productivity, whereas a high index
indicates a more unequal distribution. To illustrate, let’s consider a classical Pareto distribution
with a distribution function.

F(x) = 1 − (
x
σ
)
−α

, x ≥ σ (5)
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where σ > 0 is a scale parameter and α > 0 is a shape parameter. The Lorenz and the Leimkuhler
curves of the classical Pareto distribution are each given by

L(p; α) = 1 − (1 − p)1− 1
α , 0 ≤ p ≤ 1,

K(p; α) = p1− 1
α , 0 ≤ p ≤ 1. (6)

Using relation (4), the Gini index of the classical Pareto distribution is

G(α) =
1

2α − 1
.

Figure 1 illustrates how the Lorenz curve, Leimkuhler curve, and Gini index are visualized
for a Pareto distribution. The Gini coefficient is represented by the ratio of the area between the
Lorenz curve and the line of equality to the total area under the line of equality. In this plot, the
Gini coefficient is indicated by the relative size of the yellow-shaded area, demonstrating that
the classical Pareto distribution for α = 2 has significant inequality.
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Figure 1: Plot of the Lorenz and Leimkuhler curves and Gini index of the classical Pareto distribution for α = 2.

In prospective studies, there exists a time span until the initial citation occurs, as discussed
by Burrell [11]. Assuming X represents a continuous random variable denoting the age of an
object, the random variable X(t, ∞) = {X − t | X > t} signifies the remaining lifespan of an
entity aged t. The anticipated additional lifespan of an item, provided it has endured until time
t, forms a function dependent on t, referred to as the mean residual life (MRL) function. This
function, introduced by Knight [19], represents the average remaining life of a component that
has survived until time t, and is given by:

m(t) = E(X − t | X > t) =
1

F̄(t)

∫ ∞

t
(x − t)dF(x). (7)

In retrospective studies, we define the random variable X(., t) = {t − X | X < t}, termed the
inactivity time or elapsed lifetime of X. This variable signifies the duration since the expiration
of a unit with a lifetime of at most t. We express this as the mean past life (MPL) function:

m∗(t) = E(t − X | X < t) =
1

F(t)

∫ t

0
(t − x)dF(x). (8)

In many practical situations, lifespan information is only available between two points in
time, which necessitates the examination of reliability measures under the condition of truncated
random variables. In reliability theory and survival analysis, often only individuals whose event
time falls within a certain time interval are observed, and we have information on the lifetime
between two points in time. Doubly truncated variables are the most general case, as they
include right-truncated, left-truncated and non-truncated variables.
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If X denotes the lifetime of a unit, then the random variable is X(t1, t2) = {X − t1|t1 < X <
t2} means remaining lifetime truncated twice. Note that the random variable, X(t1, ∞) is the
special case of X(t1, t2) when t2 tends to ∞. Also, doubly truncated past lifetime is the random
variable X∗(t1, t2) = (t2 − X|t1 < X < t2) ), which is special case t1 = 0, it is the past lifetime
random variable X(., t).

The mean residual life function for a doubly truncated variable is defined as:

m(t1, t2) = E(X − t1|t1 < X < t2) =
1

F(t2)− F(t1)

∫ t2

t1

(x − t1)dF(x). (9)

Similarly, the mean past life function for a doubly truncated variable can be written as:

m∗(t1, t2) = E(t2 − X|t1 < X < t2) =
1

F(t2)− F(t1)

∫ t2

t1

(t2 − x)dF(x). (10)

In engineering and other branches related to reliability, ν(t) = E(X|X > t) is referred to as
the vitality function and ν∗(t) = E(X|X < t)) is termed the past vitality function. Additionally,
the vitality function for a doubly truncated variable is defined as:

ν(t1, t2) = E(X | t1 < X < t2) =
1

F(t2)− F(t1)

∫ t2

t1

xdF(x) (11)

which is related to MRL and MPL functions via

ν(t1, t2) = m(t1, t2) + t1, (12)

= t2 − m∗(t1, t2). (13)

3. Leimkuhler curve and reliability measures

As is commonly understood, the hazard rate function r(t) =
f (t)
F̄(x)

of F indicates whether the

random variable X exhibits an increasing failure rate (IFR) or a decreasing failure rate (DFR) if
r(x) is respectively an increasing or decreasing function on the interval (0, ∞).

Barlow and Proschan [4] demonstrated that if F is IFR(DFR), then under certain conditions:{
F̄(t) ≥ (≤)e−at, t ≤ F−1(p)
F̄(t) ≤ (≥)e−at, t ≥ F−1(p)

where a = − ln(1 − p)
F−1(p)

.

Proposition 1. Let X be a non-negative random variable with distribution function F. If X is
IFR(DFR), then

K(p) ≤ (≥)µ−1[pF−1(1 − p)(1 − (ln p)−1)]. (14)

Proof. By using (2), we obtain:

K(p) =
1
µ

∫ ∞

F−1(1−p)
t f (t)dt

=
1
µ
[pF−1(1 − p) +

∫ ∞

F−1(1−p)
F̄(t)dt]

≤ (≥)
1
µ
[pF−1(1 − p) +

∫ ∞

F−1(1−p)
e

t ln p
F−1(1 − p) dt]

= µ−1[pF−1(1 − p)(1 − (ln p)−1)].

This result is thus derived. ■
The following assertions are also noticeable:
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• The stop loss transformation

π(t) = E(X − t)+ =
∫ ∞

t
F̄(x)dx

= −tF̄(t) +
∫ ∞

t
x f (x)dx

= −tF̄(t) +
∫ ∞

F−1(F(t))
x f (x)dx

= −tF̄(t) + µK(F̄(t)),

where (X − t)+ means X ≥ t. On taking t = F−1(p) then

K(p) =
1
µ
(πX(F−1(p)) + pF−1(1 − p)).

• The total time on test transformation (TTT)

T(p) =
∫ F−1(p)

0
F̄(t)dt

= (1 − p)F−1(p) + µ − µK(1 − p),

leading to

K(p) =
1
µ
[pF−1(1 − p)− T(1 − p)] + 1.

• e(t) = E(X
t | X > t) ), representing the expected proportion of income up to t for incomes

greater than t, can be expressed in terms of LKC

e(t) =
1

tF̄(t)

∫ ∞

t
x f (x)dx

=
µK(F̄(t))

tF̄(t)
.

• The vertical diameter inequality index introduced in Eliazar [15] is given by

εVdiam = E(
X
µ

| X ≤ median)

=

∫ median
0

x
µ f (x)dx

F(median)

=
2
µ
[µ −

∫ ∞

median
x f (x)dx]

= 2[1 − K(
1
2
)].

In insurance and risk, the value at risk (VaR) for risk of X with distribution F is defined as
VaR(x; p) = F−1(p) = inf{x ∈ R | F(x) ≥ p}; p ∈ (0, 1). Some of the measures related to risks
based onVaR as mentioned in Belzunce et al. [7] arranged in table 1.

Example 1. Let X have a classical Pareto distribution (5) with Leimkuhler curve (6), F−1(x) =
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Table 1: Some risk measures

Name of measure formula LKC reliability function

Tail value at risk TVaR(X; p) =
1

1 − p
∫ 1

p F−1(u)du
µ

1 − p
K(1 − p) ν(F−1(p))

Conditional tail expectation CTE(X; p) = E(X | X > F−1(p))
µ

1 − p
K(1 − p) ν(F−1(p))

Conditional value at risk CVaR(X; p) = E(X − F−1(p) | X > F−1(p))
µ

1 − p
K(1 − p)− F−1(p) m(F−1(p))

Expected shortfall ES(X; p) = E(X − F−1(p))+1 µK(1 − p)− (1 − p)F−1(p) π(F−1(p))

Expected proportional shortfall EPS(X; p) = E[(
X − F−1(p)

F−1(p)
)+]

µK(1 − p)− (1 − p)F−1(p)
F−1(p)

π(F−1(p))
F−1(p)

1 (x)+ =

{
0 x < 0
x x ≥ 0

σ(1 − x)
−1
α and µ =

ασ

1 − α
, α > 1, based on Table 1 we have

TVaR(X; p) =
ασ

α − 1
(1 − p)

−1
α ,

CTE(X; p) =
ασ

α − 1
(1 − p)

−1
α ,

CVaR(X; p) = σ(1 − p)
−1
α ,

ES(X; p) = σ(1 − p)1− 1
α ,

EPS(X; p) = 1 − p.

4. Mean past life function and Leimkuhler curve

This section commences by delineating the connection between the Leimkuhler curve and the
mean residual life function through a theorem:

Theorem 1. (Balakrishnan et al. [3]) Let X be a random variable with cumulative distribution
function F , F̄(x) = 1 − F(x) = P(X > x), Leimkuhler curve K(p) and expectation µ. There
exists a relationship between the Leimkuhler curve and the MRL function expressed as follows:

m(t) =
µ

F̄(t)
K[F̄(t)]− t, t > 0. (15)

The MPL function and LKC can also be connected similarly to the theorem:

Theorem 2. Let X be a random variable with cumulative distribution function F, survival func-
tion F̄(x) = 1 − F(x), Leimkuhler curve K(p) and expectation µ. The relationship between the
Leimkuhler curve and the mean past life function is described as follows:

m∗(t) = t − µ

F(t)
[1 − K(F̄(t)], t > 0. (16)

Proof. Beginning with the definition of the MPL function as (8), we express:

m∗(t) = t − 1
F(t)

[µ −
∫ ∞

t
x f (x)dx]

= t − 1
F(t)

[µ − µK(F̄(t))]

= t − µ

F(t)
[1 − K(F̄(t))].

■
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5. Double Truncated Distributions and Leimkuhler Curve

Truncated data holds significant importance in statistical analysis, representing variables that
have been limited or constrained due to specific selection criteria. When observations falling
outside certain ranges or conditions are disregarded in analysis, truncated variables emerge.
Examples of this include distributions like doubly truncated exponential, normal, and Cauchy
distributions. A truncated variable undergoes restriction to a defined range or set of conditions,
leading to alterations in its probability density function (PDF) and cumulative distribution func-
tion (CDF) compared to the untruncated variable.

Let’s consider a random variable X with PDF f (x) and CDF F(x). We want to find the PDF
and CDF of the truncated variable

X(t1,t2)
= {X|t1 < X < t2}.

The PDF and CDF of the truncated variable can be expressed as:

f (x|t1, t2) =
f (x)

F(t2)− F(t1)
, x > 0, t1, t2 > 0. (17)

F(x|t1, t2) =


0 x < t1
F(x)− F(t1)

F(t2)− F(t1)
t1 ≤ x ≤ t2

1 x > t2.

(18)

The quantile and the survival function of X(t1,t2)
is

F−1(p|t1, t2) = F−1(pF(t2) + (1 − p)F(t1)),

F̄(x|t1, t2) =
F̄(x)− F̄(t2)

F̄(t1)− F̄(t2)
.

The LKC of X(t1,t2)
has the following form:

K(p|t1, t2) =
K[p(F(t2)− F(t1)) + F̄(t2)]− K(F̄(t2))

K(F̄(t1))− K(F̄(t2))
, 0 ≤ p ≤ 1.

The Gini index for the double truncation is given by:

2
∫ 1

0
K(p|t1, t2)dp − 1.

Truncation to the right is a special case of double truncation when t1 → 0. This is evident
from the following:

F−1(p|t2) = F−1(pF(t2)),

and its Leimkuhler curve is:

K(p|t2) =
K[pF(t2) + F̄(t2)]− K(F̄(t2))

1 − K(F̄(t2))
, 0 ≤ p ≤ 1.

When t2 → ∞ in the doubly truncated distribution, we have a left truncated distribution:

F−1(p|t1) = F−1(pF̄(t1) + F(t1)),

and is the Leimkuhler curve

K(p|t1) =
K(pF̄(t1))

K(F̄(t1))
, 0 ≤ p ≤ 1.

RT&A, No 1 (82) 
Volume 20, March 2025 

1055



Vahideh Asghari, Gholamreza Mohtashami Borzadaran and Hadi Jabbari
RELATIONSHIP BETWEEN THE LEIMKUHLER CURVE AND RELIABILITY

2 4 6 8 10

0
2

4
6

8

D
en

si
ty

 fu
nc

tio
n

α = 2

3

4

5

6

7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Le
im

ku
hl

er
 c

ur
ve

α = 2

3

4

5

6

7

Figure 2: The density function and Leimkuhler curve for Pareto (2, α)

The density function and the Leimkuhler curve of the Pareto distribution with various pa-
rameters (α = 2, 3, . . . , 7 ) are depicted in Figure 2. It is evident that the density function of
the Pareto distribution consistently decreases. Therefore, it proves advantageous in modeling
distributions of high or moderate productivity. Pareto Leimkuhler curves never intersect, for
Xi ∼ Pareto(σ, α), i = 1, 2

X1 ≤LKC X2 ⇐⇒ α1 ≤ α2.

Figure 3 illustrates the density function and Leimkuhler curves for the original Pareto dis-
tribution (O), left-truncated (L), right-truncated (R), and double-truncated (D) for Pareto (1, 3),
t1 = 3, t2 = 6. It’s noteworthy that the Leimkuhler curve of the left-truncated distribution
remains unaffected by the truncation point.
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Figure 3: Density function and Leimkuhler curve for the truncated and original Pareto distribution for Pareto (2,3),
t1 = 3, t2 = 6

The following theorem, an extended version by Balakrishnan et al. [3], pertains to the doubly
truncated case:

Theorem 3. Let X be a non-negative random variable with cumulative distribution function
F(x), survival function F̄(x) = 1 − F(x), Leimkuhler curve K(p) and expectation µ. Then, the
relations between the Leimkuhler curve and the mean residual (past) lifetime of a doubly trun-
cated random variable are given by:

m(t1, t2) =
µ(K[F̄(t1)]− K[F̄(t2)])

F̄(t1)− F̄(t2)
− t1, (19)
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m∗(t1, t2) = t2 −
µ(K[F̄(t1)]− K[F̄(t2)])

F̄(t1)− F̄(t2)
, (20)

ν(t1, t2) =
µ(K[F̄(t1)]− K[F̄(t2)])

F̄(t1)− F̄(t2)
, (21)

which holds for all 0 < t1 < t2.

Proof. Via (9)

m(t1, t2) = E(X − t1 | t1 < X < t2) =
∫ t2

t1

(x − t1) f (x)
F(t2)− F(t1)

dx

=
1

F(t2)− F(t1)
(
∫ ∞

t1

x f (x)dx −
∫ ∞

t2

x f (x)dx)− t1.

Taking t1 = F−1(1 − p1) and t2 = F−1(1 − p2) we can express

m(t1, t2) =
1

p1 − p2
[
∫ ∞

F−1(1−p1)
x f (x)dx −

∫ ∞
F−1(1−p2)

x f (x)dx]− F−1(1 − p1),

By changing variables to z1 = F−1(1 − p1) and z2 = F−1(1 − p2) ), we derive the relation in (19).
Similarly, utilizing (10) m∗(t1, t2) can be expressed as:

m∗(t1, t2) = E(t2 − X | t1 < X < t2) =
∫ t2

t1

(t2 − x) f (x)
F(t2)− F(t1)

dx

= t2 −
1

F(t2)− F(t1)
(
∫ ∞

t1

x f (x)dx −
∫ ∞

t2

x f (x)dx).

By performing a similar change of variables, we arrive at the relation in (20) Finally, using
relation (12) we establish the relationship in (21). ■

Theorem 22 is a special case of Theorem 3 when t2 → ∞. Additionally, when t1 = 0 in
Theorem 3, we obtain m∗(t) as presented in Theorem 2.

Example 2. Let X be random variable with classical Pareto distribution (5) and Leimkuhler curve
(6), the density function and cumulative distribution function for the right-truncated and doubly
truncated variable (with t1 = σ and t2 = t) are given by:

f (x | σ < X < t) =
ασx−(1+α)

1 −
( t

σ

)−α ,

F(x | σ ≤ X ≤ t) =
1 −

( x
σ

)−α

1 −
( t

σ

)−α , α > 0.

Now, if we assume σ = 1, t = β + 1, and α = 1, the cumulative distribution function of
the right-truncated and doubly truncated Pareto variable is the same as that of the Bradford
distribution (see Leimkuhler [22]):

f (x | 1 < X < 1 + β) =
1 + β

βx2 , 1 < x < 1 + β,

F(x | 1 < X < 1 + β) =
1 + β

β

(
1 − 1

x

)
.

The mean of the truncated Pareto random variable is equal to the survival function of this
variable:

µ =
1 + β

β
ln(1 + β).

Using equation (21), we have:

ν(1, (1 + β)) =
1

F(1 + β)− F(1)

∫ 1+β

1

1
x

dx =
1 + β

β
ln(1 + β) = µ.
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6. Geometric Vitality Functions and their Links with Leimkuhler

Curve

In recent years, special attention has been given to various forms of conditional distribution
functions. The function

ϕ(t1, t2) = E(h(x)|t1 < X < t2), (22)

is called the geometric vitality function. This function is similar to the survival function and
is used in the analysis of lifetime data. The goal is to establish the relationship between this
function and the Limkohler curve, which we derive in the following theorem. If {h(X)|t1 < X <
t2} is an increasing (decreasing) function, then
{h(X)|t1 < X < t2} = {Y|h−1(t1) < Y < h−1(t2)} ({Y|h−1(t2) < Y < h−1(t1)}).

Theorem 4. Assume that the random variable X has a distribution F, and the function {h(X)|t1 <
X < t2} is a continuous and increasing function with respect to X. Then

ϕ(t1, t2) =
µg(y)[K(F̄(t1))− K(F̄(t2))]

F(t2)− F(t1)

where µg(z) =
∫ h(b)

h(a) h(z) f (z)dz, z ∈ (a, b).

Proof. Assuming Y = h(X), the proof is as follows: Y = h(X) implies
G(y) = F(h−1(y)), and

ϕ(t1, t2) = E(h(X)|t1 < X < t2)

= E(Y|t1 < h−1(y) < t2)

= E(Y|h(t1) < Y < h(t2))

=

∫ h(t2)
h(t1)

yg(y)dy

G(h(t2))− G(h(t1))

=
µg(y)[K(Ḡ(h(t1)))− K(Ḡ(h(t2)))]

G(h(t2))− G(h(t1))

=
µg(y)[K(F̄(t1))− K(F̄(t2))]

F(t2)− F(t1)
.

■
Various special cases of Theorem 4 are noteworthy:

(i) When h is decreasing, then

ϕ(t1, t2) =
µ∗

g(y)[K(F̄(t2))− K(F̄(t1))]

F(t1)− F(t2)
, (23)

where µ∗
g(z) =

∫ h(a)
h(b) h(z) f (z)dz, z ∈ (a, b).

(ii) When h(x) = x − t1, it results in a doubly truncated residual life denoted as X(t1, t2) =
{X − t1|t1 < X < t2} as discussed in Sankaran and Sunoj [29], indicating its association
with the Leimkuhler curve. As t2 → ∞, , the connection between the Mean Residual Life
(MRL) function and Leimkuhler curve becomes evident.

(iii) The MPL function for doubly truncated variables, as outlined in Khorashadizadeh et al.
[18] and Ruiz and Navarro [26, 27] for h(x) = t2 − x in Theorem 4 , reveals a specific case
where t = 0 leads to the MPL function. This relationship becomes apparent when put into
relation (9) , demonstrating their connection to the Leimkuhler curve.

(iv) The doubly truncated geometric vitality is defined as

ϕ(t1, t2) = E(ln X|t1 < X < t2), (24)
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while a special case of Theorem 4, through h(x) = ln x is also the link with LKC specified.
When t2 → ∞, tends to infinity, it leads to (10) in Nair and Rajesh [24] illustrating the
relationship between geometric vitality and the Leimkuhler curve.

(v) When h(x) = − log
f (x)

F̄(t1)− F̄(t2)
, then Theorem 4 leads to doubly truncated dynamic

entropy, as discussed in Khorashadizadeh et al. [17].

7. Conclusions

This paper has demonstrated the versatility and significance of the Leimkuhler curve across
various domains, including information processing, economics, and reliability analysis. The
integration of reliability measures, such as the mean past life function, with the Leimkuhler
curve, adds depth to the analysis by connecting informetric data with engineering principles,
providing a novel approach to understanding data longevity and efficiency. The exploration
of doubly truncated distributions further expands the applicability of the Leimkuhler curve,
showing its relevance in contexts where data is naturally bounded or limited. Additionally, the
study of geometric vitality functions and their relationship with the Leimkuhler curve highlights
the broader implications of these mathematical tools, especially in areas related to resource
distribution and productivity analysis. By bridging concepts from different fields, this paper
underscores the Leimkuhler curve’s potential as a comprehensive tool for both theoretical and
applied research.
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Abstract 

The paper analyzes the mechanical part of the design scheme of the electric drive of a hybrid electric 

machine, which is a key stage in the design and research of automatic control systems. The main 

elements of a mechanical system, a model of a real mechanical system connected to an electric drive, 

including all moving elements, transmission mechanisms, and actuators that convert electrical 

energy into mechanical work, are considered. The presented calculation scheme allows you to analyze 

dynamic processes, i.e. to study the system's behavior over time, to determine stability, fluctuations, 

and other characteristics. Calculations of various mass systems are performed using the capabilities 

of the MATLAB/Simulink software package for a three-mass and two-mass system. These models can 

be used for different systems with different parameters. To draw up a structural diagram, the elements 

of the mechanical part and the connections between the elements, the types of these connections (rigid, 

elastic) and the directions of motion transmission are determined. Structural diagrams are used to 

analyze the dynamic characteristics of the system, determine transients, stability, and vibrations. 

Key words: hybrid electric machine, mechanical system, electric drive, inertial 

element, moment of inertia, elastic element, transfer function, mathematical model, 

disturbing effect. 

I. Introduction

The mathematical analysis of the mechanical part of the design scheme of the electric drive of a 

hybrid electric machine (HEM) includes various methods of theoretical mechanics, dynamics, 

control, and electronics to evaluate and optimize the operation of the electric drive. In the context of 

a hybrid electric machine, where both a traditional internal combustion engine (ICE) and an electric 

motor are used, it is important to carry out complex calculations for all system elements to interact 

correctly [2, 4, 10]. The main steps for the mathematical analysis of the mechanical part of the electric 

drive are: 

1. Modeling of a mechanical system - the mechanical part of the electric drive of a hybrid electric

machine consists of various elements such as engines (internal combustion engine and electric), 

transmission, wheels, etc. For each of these elements, a mathematical model is created describing 

their movement, interaction, and reactions to external forces. 

The main elements of the mechanical system include: 

 Models of drive motors (for both electric and internal combustion engines).

 Transmission models (if the hybrid system uses a manual transmission).
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 Wheel and suspension models to account for their inertial characteristics and impact on the

road surface. 

Mathematically, this can be represented using differential equations describing the motion and 

interaction of these elements. 

2. System dynamics - mathematical analysis of the dynamics of the mechanical part of an electric

drive includes the study of the system's response to various external influences, such as: acceleration; 

load change; transitions between different operating modes (for example, from working on an 

electric motor to working on an internal combustion engine). 

To describe these processes, a system of second-order differential equations is usually used, 

which simulate the movement of a body under the influence of forces. An important element here is 

to take into account inertia, friction and other factors that affect the operation of the system. 

3. Energy analysis - energy analysis allows you to evaluate the efficiency of the system. For a

hybrid car, it is important to switch between the operating modes of the electric motor and the 

internal combustion engine, which is associated with energy consumption management. 

For the purpose of mathematical analysis, the following are required: power calculation: an 

estimate of the power transferred from the engine to the wheels; transmission efficiency: calculation 

of energy losses in transmission from the motor to the wheels; energy consumption optimization: a 

system operation strategy that uses the optimal balance between the internal combustion engine and 

the electric motor to minimize fuel consumption and maximize efficiency [1, 3, 7]. 

4. Control models - for the efficient operation of the electric drive of a hybrid machine, a control

system is required that will optimize the use of an electric and mechanical drive, for example, torque 

control on wheels depending on the operating modes of the machine, a system that optimizes the 

transition between an electric motor and an internal combustion engine depending on the load and 

battery condition. 

5. Transient modeling - for a HEM, it is also important to take into account transients such as:

switching between the electric motor and the internal combustion engine; changes in the speed of 

rotation of the motor when the load changes; the effect of accelerations and decelerations. 

For this purpose, methods of numerical solution of differential equations and modeling using 

specialized software packages can be used. 

8. Vibration and noise calculation - The hybrid electric machine must operate with minimal

vibrations and noises, which is also part of the analysis. This includes modeling vibrations arising 

from the operation of the engine and other transmission elements, as well as noise characteristics, 

which are important to take into account when designing. As a result of mathematical analysis of 

the mechanical part of the electric drive of a hybrid electric machine, it is possible to obtain optimal 

system operation parameters, evaluate its dynamic characteristics, energy efficiency, and make 

predictions about the durability and wear of key system components. 

To perform calculations of various mass systems, it is advisable to use the capabilities of the 

MATLAB/Simulink software package [2, 4, 6, 12]. For three- and two-mass systems. These models 

can be used for different systems with different parameters. To draw up a structural diagram, it is 

necessary to determine all the elements of the mechanical part, establish connections between the 

elements, types of connections and directions of motion transmission. With the help of structural 

diagrams, it is possible to analyze the dynamic characteristics of the system, determine transients, 

stability, and vibrations. At the same time, it is necessary to take into account the factors influencing 

the choice of a block diagram: the type of engine, the nature of the load. Drawing up and analyzing 

structural diagrams is an important stage in the design and operation of electric drives. A properly 

selected and constructed scheme allows you to ensure the effective operation of the system and 

avoid undesirable phenomena.  
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II. Formulation of the problem

The mechanical part of the design scheme of the electric drive is a model of a real mechanical system 

connected to an electric drive. It includes all moving elements, transmission mechanisms and 

actuators that convert electrical energy into mechanical work. The main elements of the mechanical 

part consist of the following [9, 13]: 

 Inertial elements with mass and moment of inertia, such as engine rotors, working bodies of

machines and mechanisms. 

 Elastic elements that can deform under the influence of external forces and restore their

shape after removing the load (for example, shafts, springs). 

 Damping elements that convert mechanical energy into thermal energy, reducing system

vibrations (e.g. friction). 

The calculation scheme allows you to analyze dynamic processes, that is, to study the behavior 

of the system over time, to determine stability, fluctuations and other characteristics. In addition, it 

is possible to determine the parameters of the electric drive, select an engine, calculate its power, 

select a control system, optimize the operation of the system, minimize energy losses, improve 

positioning accuracy, reduce vibrations [8, 11]. To build a calculation scheme, it is necessary to pay 

attention to the following factors: 

1. Identification of elements, i.e. determination of all elements of a mechanical system and their

characteristics (masses, moments of inertia, stiffness, coefficients of friction). 

2. Connecting the elements according to their physical connection, forming a chain.

3. Simplifying calculations, for example, neglecting some masses or friction.

There are various types of calculation schemes: kinematic schemes reflecting only the geometric

connections between the elements of the system and dynamic circuits that take into account not only 

geometric connections, but also inertial, elastic and damping properties of the elements. 

Various mathematical methods are used to analyze computational circuits, such as: the method 

of differential equations, in which the differential equations of motion of the system are compiled 

and solved analytically or numerically, the method of transfer functions, the method of state 

matrices, which is described by a system of first-order differential equations in matrix form. 

III. Problem solution

Simplification methods can be used when constructing the design scheme of an electric drive. The 

system of equations for a three-mass system is described as follows [7, 9, 12]: 

1
m 1 12 1

2
12 2 23 2

3
23 3 d 3

d
M M M J

dt

d
M M M J

dt

d
M M M J

dt








    




    



    


 (1) 

In these equations, Mm - moment of the engine; J1, J2, J3 - moments of inertia; 1, 2, 3 -rotational 

velocities; M12 and M23 - elastic moments acting between masses; M1, M2, Md, - disturbing effects. 

For the first mass, the moment M12 is used as the moment of resistance. This moment of motion for 

the second mass is used as a torque: 
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 12 12 1 2M C     (2) 

 23 23 2 3M C    (3) 

Here, 1, 2, 3 – rotation angles during rotation of the mass; C12, C23 – stiffness of elastic bonds. 

The stiffness of elastic bond is determined as follows: 

 sh
h

i

M
C





, (4) 

where Msh - torque of the motor shaft, i - difference in the angles of rotation at the ends of the 

elastic elements, and the deformation of the part. Similarly, we can write a system of equations for a 

two-mass system: 

 

1
m 1 12 1

2
12 2 23 2

12 12 1 2

d
M M M J

dt

d
M M M J

dt

M C





 


    




    

 



(5) 

For a single-mass system, the equation is represented as follows: 

m d

d
M M J

dt


  (6) 

To perform calculations of various mass systems, it is advisable to use the capabilities of the 

MATLAB/Simulink software package. Figure 1 shows a Simulink model of the equation system for 

a three-mass system, and Figure 2 for a two-mass system. These models can be used for different 

systems with different parameters. 

Figure 1. Simulink model of the equation system for a three-mass system 
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Figure 2. Simulink model of the equation system for a two-mass system 

The block diagram of the mechanical part of an electric drive of the HEM is a graphical 

representation of the relationships between the elements of a mechanical system that converts the 

electrical energy of the engine into mechanical work. It allows you to visualize and analyze the 

processes taking place in the system, evaluate its dynamic characteristics and select the optimal 

parameters [6, 9, 10]. To draw up a structural diagram, it is necessary to determine all the elements 

of the mechanical part, the establishment of connections between the elements, types of connections 

(rigid, elastic) and directions of motion transmission. With the help of structural diagrams, it is 

possible to analyze the dynamic characteristics of the system, determine transients, stability, and 

vibrations. At the same time, it is necessary to take into account the factors influencing the choice of 

a block diagram: the type of engine, and the nature of the load (constant, variable, shock). 

Drawing up and analyzing structural diagrams is an important stage in the design and 

operation of electric drives. A properly selected and constructed scheme allows you to ensure the 

effective operation of the system and avoid undesirable phenomena. 

Figure 3 shows a block diagram of the mechanical part of a two-mass electric drive of the HEM. 

Figure 3. Block diagram of the mechanical part of a two-mass electric drive 

Equivalent transfer functions for the mechanical part of the drive, depending on the adjustable 

parameters, can be expressed in various forms [3, 12, 14]. For example, the output value of the 

transfer function 1(s) for control is expressed in this way: 
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where, 12 - specific oscillation frequency of a two - mass mechanical system: 

 12 1 2
12

1 2

C J J

J J


  (8) 

Similarly, for 2(s) we get: 
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The transfer function for a two-mass electric drive of the HEM is determined by solving the 

ratio of the polynomials of the system of equations of motion written in operator form. Similarly, the 

transfer functions of the perturbation can be expressed as follows: 
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It should be noted that the transfer function of the system does not depend on either the shape 

or the amplitude of the input signal. This function depends only on the internal structure of the 

system and the circuit parameters. 

These steps will help you create and configure a three-mass electric drive model in Simulink 

and visualize its behavior. If the system has more complex interactions or additional elements, you 

may need to adapt the model depending on specific requirements [4, 10]. 

Consider the standard model of a two-mass electric drive. It is usually described by the 

following equation: 

1

2
1 2 1 2 2

m

m t

K( s )

U( s ) s(( J J s J J )B s K K )




  
(12) 

Where, 1( s ) - angle of rotation at the output (in radians); U(s) - control voltage; Km - torque constant 

of the electric motor; Kt - constant of the torque of the load; J1 and J2 - moments of inertia of the electric 

motor and the load, respectively; B2 - coefficient of friction of the load. 

Next, the following algorithm (code) of equation (12) is written in the MATLAB program 

indicated below. This code will create a transfer function, plot its frequency and transient response 

(Figure 4). Substituting the real values of the parameters into the code, depending on the required 

task, you can create a transfer function, plot its frequency and transient response. To construct the 

amplitude-phase characteristic of the system, it is necessary to replace the symbol of the operator s 

with the symbol j in the expression (9) of the transfer function of the system. 
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Figure 4. Algorithm (code) of equation (12) 

1 2
12 1 2 12 12
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1

j
W ( j )

( J J ) ( / )( ( ) )
 

   
 

 
(13) 

1
W ( j ) Re( ) jIm( )    

here,  Re() – real number; Im() – imaginary number. 

Using expression (13), we obtain the amplitude-phase (Figure 5,a) and phase-frequency (Figure 

5,b) characteristics of a two-mass system. 

a)      b) 

Figure 5. Amplitude-phase and phase-frequency characteristics of a two-mass system 

When the frequency value changes in the range 0÷12, the amplitude of the output signal has a 

U-shaped appearance [2, 9]. But in the range of 0÷, the amplitude of the variable value will tend to

infinity. In subsequent increases, the amplitude of the variable always decreases. When changing

the phase variable in the range 0÷12 this value abruptly changes from –/2 to 3/2, and will be a

constant in phase 3/2: >12.
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Suppose that the excitation of the electric drive under study affects the formation of the 

amplitude of the electromagnetic moment, which varies according to the harmonic law of time, and 

the amplitude value of this electromagnetic moment is slightly more than the value of the static 

torque. When the frequency of the electromagnetic torque is close to zero, the difference between 

static and dynamic torques, that is, the dynamic torque will be positive. As a result, after a certain 

time you will return the value of the angular velocity, which is the output value, will be equal to 

infinity. 

With an increase in the frequency of change in the angle of rotation of the electromagnetic 

torque, its speed decreases due to the action of moments of inertia on the mechanical parts of the 

electric drive of the HEM. Here, the inertia of the mechanical parts plays the role of a damper. When 

the amplitude of the forced frequency fluctuations approaches a certain frequency of the system, this 

value begins to increase again. In this case, a mechanical resonance is detected, and at a value of 

=12, the amplitude of the oscillations again takes on an infinite value [7, 9, 13]. 

With a subsequent increase in the amplitude of the forced frequency, the inertia of the 

mechanical parts leads to a decrease in the amplitude of the output value, which plays the role of a 

damper that prevents movement.  Under the condition >>12, the inertia of the parts of the 

mechanism completely disables the oscillatory motion. Vibrations during movement, along with 

dynamic influences, dissipating forces arise (for example, friction against the lining), the speed also 

increases as the resistance force increases, as a result of which the dynamic torque decreases to zero, 

and the speed naturally reaches a large value. 

IV. Conclusions

1. The article presents a mathematical analysis of the mechanical part of the design circuit of an

electric drive, which is a key stage in the design and research of automatic control systems, which 

allows to obtain an accurate description of the dynamic processes occurring in the system and 

evaluate its characteristics.  

2. The presented calculation scheme allows analyzing dynamic processes, i.e. studying the

behavior of the system over time, determining stability, fluctuations and other characteristics. At the 

same time, it is possible to determine the parameters of the electric drive, select an engine, calculate 

its power, select a control system, optimize the operation of the system, minimize energy losses, 

improve positioning accuracy, reduce vibrations. 

3. To draw up a structural diagram, the elements of the mechanical part and the connections

between the elements, the types of these connections (rigid, elastic) and the directions of motion 

transmission are determined. The analysis of the dynamic characteristics of the system, the 

determination of transients, stability, and vibrations was performed using structural diagrams.  

4. With an increase in the frequency of change in the angle of rotation of the electromagnetic

torque, its speed decreases due to the action of moments of inertia on the mechanical parts of the 

electric drive. When the amplitude of the forced frequency fluctuations approaches a certain 

frequency of the system, this value begins to increase again. With a subsequent increase in the 

amplitude of the forced frequency, the inertia of the mechanical parts leads to a decrease in the 

amplitude of the output value, which plays the role of a damper that prevents movement.   

5. Vibrations during movement, along with dynamic influences, dissipating forces occur (for

example, friction against the lining), the speed also increases as the resistance force increases, as a 

result of which the dynamic torque decreases to zero, and the speed naturally reaches a large value. 
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Abstract 

The number of children ever born is an important measure for understanding fertility patterns, 

which impact demographic structures and population growth. The problem relates to the modeling 

of count data that includes the truncation of zero values, specifically focusing on women who have 

experienced childbirth at least once. This study analyzes the factors that influence the number of 

children ever born (CEB) among women aged 15 to 50 in Andhra Pradesh, utilizing data from the 

National Family Health Survey (NFHS-5) conducted from 2019 to 2021. The study used Zero-

Truncated Poisson (ZTP) and Zero-Truncated Generalized Poisson (ZTGP) models to identify 

major determinants, including religion, kind of cooking fuel used, place of delivery, wealth, age, and 

fertility choices. The ZTP regression model was found to be the best model and identifies significant 

determinants such as religion, wealth, age, and fertility preferences. The results show that rural 

residence, Muslim faith, and older age groups are associated with higher CEB, while wealthier 

women tend to have fewer children. The study shows the importance of implementing focused 

reproductive health activities, specifically in rural regions, to manage population growth and 

enhance the health outcomes of both mothers and children. 

Keywords: Number of children ever born, Fertility Patterns, Zero-Truncated 
Poisson Model, NFHS, Reproductive Health, Under-dispersion 

I. Introduction

The number of children ever born (CEB) quantifies the total count of live births among women 
aged 15 to 50 [19]. CEB, a summary of birth histories, is a quantitative measure of all women’s live 
births during their lifetime. The CEB is a significant factor in shaping global population trends 
[5,23]. Population growth is not only influenced by it, but it also plays a crucial role in shaping the 
demographic age distribution. Fertility is a major component of Demography, which has three 
primary categories and refers to the natural ability for reproduction. Evaluating fertility trends [6] 
and prospective opportunities is vital to economic and social planning, workforce accessibility, and 
advancement [2]. Examining variations in reproduction rates among Indian states based on 
socioeconomic and demographic factors indicates significant variety [7]. The fertility rate in India 
has had a gradual decrease over the years, reaching 2.47 in 2012, 2.41 in 2013, 2.31 in 2014, 2.29 in 
2015, 2.27 in 2016, 2.2 in 2017, 2.18 in 2018, 2.11 in 2019, 2.05 in 2020, and 2.03 in 2021 children per 
woman. The National Family Health Survey 2019-2021 (NFHS-5) offers comprehensive data on 
India's population, health, and nutrition [18]. This study aims to evaluate the prevalence of CEB 
(Children Ever Born) and its determining factors among women of reproductive age in Andhra 
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Pradesh. 

Counting data with an excess of zeros is common in various fields, including engineering, 
biomedical research, public health, demography [1], economics, and social science. The basic 
Poisson regression model is the best strategy for analyzing a random variable Y expressing counts 
with equal sample mean and variance [8,21]. Count data displays significant variability when the 
sample variance is either smaller or bigger than the sample mean and is categorized as under-
dispersion or over-dispersion [4,11]. Several models [27] have been suggested to address these 
variations, such as the negative binomial model [13], extended Poisson model [8], hurdle Poisson 
model [3,22], and truncated models [10]. The Generalized Poisson model was designed to analyze 
family fertility [15,27] and injury data [31]. However, it is frequently seen that count data exhibits a 
low frequency of zeros and is under-dispersed, indicating the absence of zero inflation in fertility 
[25]. This study examines the impact of several socioeconomic and demographic characteristics, 
such as site of residence, kind of cooking fuel used, place of delivery, wealth index, marital status 
[26], and caste, on the outcomes of women not experiencing infertility. To obtain the fertility rate of 
women aged 15–50, truncate the zero values in the count variable of the dataset [20,30]. The model-
building procedure employs data from the NFHS-5 survey, specifically focusing on 8087 women 
from Andhra Pradesh who had given birth at least once. This paper examines the zero-truncated 
Poisson (ZTP) model [12], which accounts for both over and under-dispersion, as well as the zero-
truncated generalized Poisson (ZTGP) model [28], which accounts for under-dispersion.  

This study used secondary data as its basis. The data for this investigation was gathered from 
the fifth round of the NFHS, the most extensive sample survey representing the entire nation [17]. 
The NFHS is an Indian dataset derived from the seventh phase of the Demographic and Health 
Surveys (DHS) Program, carried out under the supervision of the National Institute for Population 
Research and Training of the Ministry of Health and Family Welfare. The NFHS Subject Reports 
are concise summaries of secondary data analysis from the 1992–93 National Family Health Survey 
(NFHS) conducted in India [16]. The National Family Health Survey (NFHS) collected information 
from around 90,000 women in India, covering all aspects of demographics and health. The Indian 
Ministry of Health and Family Welfare conducted this survey, which provides in-depth 
information on maternal and child health, family planning practices, infant and child mortality, 
and the use of mothers' and children's services at the national and state levels [14]. IIPS performed 
the survey in collaboration with consultancy organizations and 18 population research centres 
across India. The East-West Center and Macro International, a U.S.-based consulting firm, offered 
technical help, while the United States Agency for International Development (USAID) provided 
financial support. 

II. Methodology
2.1 Regression Models 

The Poisson regression model is a widely used non-linear regression model for counting data [8]. 
Let Y represent the number of children ever born (CEB) to a woman of reproductive age in Andhra 
Pradesh. This variable follows a Poisson distribution, determined by the independent variables X1, 
X2, ..., X10. 

𝑃(𝑌 = 𝑦) =  
𝑒−𝜇𝜇𝑦

𝑦!
 ; 𝑓𝑜𝑟 𝜇 > 0, 𝑦 = 0,1,2, …  (1) 

It implies that µ is the exponential function of independent variables, 

𝜇 =  𝑒𝛼+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽10𝑋10 =  𝑒𝑥′𝛽  (2) 

Here, α is the intercept, and β’s are the Poisson regression coefficients. 
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For subject i, 

𝑙𝑛(𝜇𝑖) = 𝛼 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯ + 𝛽10𝑋10𝑖 = 𝑥𝑖
′𝛽  (3) 

where,            x′ =  [1 X1 X2 … X10]   (4) 

Since the variable CEB represents a count and all observations are greater than zero, this 
study aimed to develop a regression model using the zero-truncated Poisson and zero-truncated 
generalized Poisson models [12].  

2.1.1 Zero Truncated Poisson (ZTP) Model 

For the Poisson distribution with the probability mass function (pmf) (1), the pmf for ZTP 
distribution is given by  

  𝑃(𝑌 = 𝑦|𝑌 > 0) =  
𝜇𝑦

𝑦![𝑒𝜇−1]
 ; 𝑓𝑜𝑟 𝜇 > 0, 𝑦 = 1,2, ….               (5) 

The mean and variance of the ZTP random variable are as follows: 

𝐸(𝑌𝑖) =  
𝜇𝑒𝜇𝑖

𝑒𝜇𝑖−1
 ,          (6) 

𝑉(𝑌𝑖) =
𝜇𝑒𝜇𝑖

𝑒𝜇𝑖−1
[1 − (

𝜇𝑒𝜇𝑖

𝑒𝜇𝑖−1
)]      (7) 

2.1.2 Zero Truncated Generalized Poisson (ZTGP) Model 

Let a count response Yi ~ GP(,α); i =1, 2, …, n, then Yi has a probability function [29]: 

𝑓(𝑦𝑖 ; 𝜇𝑖, 𝛼|𝑌 > 0) =  
1

[𝑒𝑥𝑝(−
𝜇𝑖

1+𝛼𝜇𝑖
)−1]

[
𝜇𝑖

1+𝛼𝜇𝑖
]

𝑦𝑖 (1+𝛼𝑦𝑖)𝑦𝑖−1

𝑦𝑖!
𝑒𝑥𝑝 (−

𝛼𝜇𝑖𝑦𝑖

1+𝛼𝜇𝑖
)        (8) 

2.2 Accessing model adequacy and model comparisons 

Subsequently, the loglikelihood, Akaike Information Criterion (AIC) [9], and Bayesian Information 
Criterion (BIC) were compared across all models to assess and choose the most appropriate model. 
The statistical tests were conducted using the professional statistical program R [32] and SPSS. The 
final model for the analysis was selected based on the greater loglikelihood and the minimum 
information criteria value [24]. 

III. Results

Table 1: Descriptive statistics of the number of CEB 

Variable N Mean Variance Minimum Maximum 

CEB 8087 2.203 0.601 1 4 
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Figure 1: Histogram of the Number of CEB

Table 1 displays the descriptive statistics for the count of CEB, which is used as the response 
variable. The quantity of CEBs varies between 1 and 4. The dataset consisted of 8087 observations. 
The mean and variance of the number of CEB were calculated to be 2.203 and 0.601, respectively. 
These values indicate the data set exhibits under-dispersion. Figure 1 shows that the smallest 
number of children was 1, whereas the maximum number was 4. 

Table 2: Frequency distribution of CEB 

CEB 1 2 3 4 
Frequency 1200 4627 1682 578 
Percent 11.4 44.0 16.0 5.5 

Table 2 displays the number of CEBs, their frequencies, and corresponding percentages. According 
to the table, 44% of women had two children, the most common number. In addition, 16% of 
women had three children, the second-highest percentage. Moreover, it is evident that in AP, the 
population of women with 2-3 children exceeded those with only one child and more than four 
children. 
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Figure 2: Distribution of Number of CEB by Religion 

Figure 2 shows the distribution of the number of CEB among various religious groups. Most 
women had two children, corresponding to the maximum width of each violin plot, emphasizing 
the disparities in fertility rates among different religious groups. 

Figure 3: Distribution of Number of CEB by Wealth Index 

Figure 3 demonstrates the relationship between the number of CEB and the wealth index. The 
median number of children decreases as we move from poorer to wealthier households.  
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Figure 4: Distribution of Number of CEB by Women’s Age 

Figure 4 shows the distribution of the number of CEB across different age groups of women. It 
provides a clear visual representation of how fertility patterns differ by age, with older women 
generally having more children than younger women. 

Figure 5: Distribution of Number of CEB by Current Marital Status 

Figure 5 depicts the distribution of the number of children by current marital status. It shows the 
differences in fertility rates among single, married, divorced, and widowed women. 
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Figure 6: Distribution of Number of CEB by Caste 

Figure 6 shows the violin plot of the distribution of the number of CEB within each caste group. 
Most women had two children in various caste groups, providing a clear picture. 

Figure 7: Violin Plot of Number of CEB by Wealth Index and Fertility Preference 
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Figure 7 visualizes the flow of the number of children across different wealth index categories and 
fertility preferences. It helps to understand how different wealth categories and fertility attitudes 
influence family size, with the flow's thickness indicating the transition’s magnitude. 

Table 3: Overall model comparison by model fit characteristics 

Test Statistics ZTP ZTGP 
Log Likelihood -10191.22 -11520.35
AIC 20462.45 23122.7 
BIC 20742.37 23409.61 

Table 3 clearly shows that the loglikelihood of the ZTP model (-10191.22) is greater than that of the 
ZTGP model (-11520.35). According to this study, the ZTP model provides a more accurate fit for 
the data. The Akaike Information Criterion (AIC) of the Zero-Truncated Poisson (ZTP) model 
(20462.45) is lower than that of the Zero-Truncated Generalized Poisson (ZTGP) model (23122.7), 
indicating that the ZTP model is a better fit and has less complexity. The BIC value for the ZTP 
model (20742.37) is lower than the BIC value for the ZTGP model (23409.61), indicating that the 
ZTP model outperforms the ZTGP model in terms of BIC. BIC is known for imposing greater 
penalties on model complexity than AIC. Thus, compared to the ZTGP model, the ZTP model 
outperforms it on these criteria. 

Figure 8: Linear Predictor of ZTP model 

Table 4: Sociodemographic, socioeconomic, and environmental factors affecting the number of children born among 

reproductive-aged women in AP; data from NFHS-5

Variables Category N Percentage 

Place of residence 
Urban 2235 27.6 
Rural 5852 72.4 

Religion 
Hindu 6780 83.8 
Muslim 615 7.6 
Christian 692 8.6 
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Type of cooking fuel 

Electricity 57 0.7 
LPG 6692 82.8 
Biogas 7 0.1 
Kerosene 11 0.1 
Coal, lignite 16 0.2 
Charcoal 102 1.3 
Wood 1104 13.7 
Straw/shrubs/grass 35 0.4 
Agricultural crop 59 0.7 
Animal dung 2 0 
Other 2 0 

Wealth index combined 

Poorest 336 4.2 
Poorer 1556 19.2 
Middle 2633 32.6 
Richer 2380 29.4 
Richest 1182 14.6 

Place of delivery 
Home 3551 43.9 
Public 3925 48.5 
Private 611 7.6 

Women age 

15-19 93 1.1 
20-24 703 8.7 
25-29 1438 17.8 
30-34 1417 17.5 
35-39 1583 19.6 
40-44 1310 16.2 
45-50 1543 19.1 

Current marital status 

Single 42 0.5 
Married 7340 90.8 
Widowed 637 7.9 
Divorced 68 0.8 

Fertility preference 

Have another 859 10.6 
Undecided 182 2.3 
No more 651 8.0 
Sterilized 6146 76.0 
Declared infecund 228 2.8 
Never had sex 21 0.3 

Caste 
Schedule caste 2579 31.9 
Schedule tribe 801 9.9 
OBC 4707 58.2 

Husband age 

18-27 1667 20.6 
28-37 1513 18.7 
38-47 1684 20.8 
48-57 1699 21.0 
58 & above 1524 18.8 
Total 10522 100 
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Table 4 shows the percentage distribution of women in AP and provides an overview of the 
demographic and socioeconomic parameters that affect the number of CEBs. 72.4% of women live 
in rural areas, while 27.6% stay in urban areas. Most women, specifically 83.8%, belong to the 
Hinduism religion. The majority of respondents, approximately 82.8%, utilized LPG as their 
cooking fuel. However, 13.7% of respondents used wood, and 1.3% used charcoal. According to 
the wealth index, 29.4% of respondents belong to the wealthier category, while only 4.2% fall into 
the poorest category. Public facilities account for most deliveries, with 48.5%, followed by house 
deliveries at 43.9%. 19.6% of the participants fell within the age range of 35-39 years, while a close 
second was the group of respondents aged between 45-50 years, accounting for 19.1%.  

Almost 90.8% of the marital status occurred by women who were married. 
Approximately 76% of the women have undergone sterilization, reflecting their lack of 
desire to have any more children. The percentage of respondents from Other Backward 
Classes (OBC) was 58.2%, while the percentage of respondents from Scheduled Tribes 
was 9.9%. The age distribution of husbands exhibits distinct age categories, with the 
largest proportion (21%) lying within the range of 48-57 years, followed by 20.8% coming 
within the range of 38-47 years. 

Table 5: Cross-tabulation of predictor factors with AP's (n=8087) children ever born count among women in their 

reproductive years 

Variables Response 1 2 3 4 

Place of residence 
Urban 

371 
(30.9) 

1353 
(29.2) 

367 
(21.8) 

144 
(24.9) 

Rural 
829 

(69.1) 
3274 

(70.8) 
1315 

(78.2) 
434 

(75.1) 

Religion 

Hindu 
1026 

(85.5) 
3962 

(85.6) 
1350 

(80.3) 
442 

(76.5) 

Muslim 
80 

(6.7) 
313 

(6.8) 
154 

(9.2) 
68 

(11.8) 

Christian 
94 

(7.8) 
352 

(7.6) 
178 

(10.6) 
68 

(11.8) 

Type of cooking fuel 

Electricity 
7 

(0.6) 
33 

(0.7) 
12 

(0.7) 
5 

(0.9) 

LPG 
1005 

(83.8) 
3913 

(84.6) 
1341 

(79.7) 
433 

(74.9) 

Biogas 
4 

(0.3) 
2 

(0.0) 
1 

(0.1) 
0 

(0.0) 

Kerosene 
3 

(0.3) 
3 

(0.1) 
3 

(0.2) 
2 

(0.3) 

Coal, lignite 
2 

(0.2) 
11 

(0.2) 
2 

(0.1) 
1 

(0.2) 

Charcoal 
14 

(1.2) 
45 

(1.0) 
28 

(1.7) 
15 

(2.6) 

Wood 
156 

(13.0) 
561 

(12.1) 
272 

(16.2) 
115 

(19.9) 

Straw/shrubs/grass 
2 

(0.2) 
21 

(0.5) 
8 

(0.5) 
4 

(0.7) 

Agricultural crop 
7 

(0.6) 
34 

(0.7) 
15 

(0.9) 
3 

(0.5) 
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Animal dung 
0 

(0.0) 
2 

(0.0) 
0 

(0.0) 
0 

(0.0) 

Other 
0 

(0.0) 
2 

(0.0) 
0 

(0.0) 
0 

(0.0) 

Wealth index 
combined 

Poorest 
53 

(4.4) 
150 

(3.2) 
85 

(5.1) 
48 

(8.3) 

Poorer 
217 

(18.1) 
804 

(17.4) 
379 

(22.5) 
156 

(27.0) 

Middle 
344 

(28.7) 
1500 

(32.4) 
590 

(35.1) 
199 

(34.4) 

Richer 
358 

(29.8) 
1405 

(30.4) 
476 

(28.3) 
141 

(24.4) 

Richest 
228 

(19.0) 
768 

(16.6) 
152 

(9.0) 
34 

(5.9) 

Place of delivery 

Home 
523 

(43.6) 
2051 

(44.3) 
712 

(42.3) 
265 

(45.8) 

Public 
589 

(49.1) 
2227 

(48.1) 
838 

(49.8) 
271 

(46.9) 

Private 
88 

(7.3) 
349 

(7.5) 
132 

(7.8) 
42 

(7.3) 

Women age 

15-19
70 

(5.8) 
22 

(0.5) 
1 

(0.1) 
0 

(0.0) 

20-24
275 

(22.9) 
362 

(7.8) 
62 

(3.7) 
4 

(0.7) 

25-29
262 

(21.8) 
907 

(19.6) 
222 

(13.2) 
47 

(8.1) 

30-34
172 

(14.3) 
916 

(19.8) 
265 

(15.8) 
64 

(11.1) 

35-39
153 

(12.8) 
1031 

(22.3) 
310 

(18.4) 
89 

(15.4) 

40-44
122 

(10.2) 
717 

(15.5) 
338 

(20.1) 
133 

(23.0) 

45-50
146 

(12.2) 
672 

(14.5) 
484 

(28.8) 
241 

(41.7) 

Current marital 
status 

Single 
13 

(1.1) 
19 

(0.4) 
6 

(0.4) 
4 

(0.7) 

Married 
1053 

(87.8) 
4262 

(92.1) 
1528 

(90.8) 
497 

(86.0) 

Widowed 
102 

(8.5) 
321 

(6.9) 
141 

(8.4) 
73 

(12.6) 

Divorced 
32 

(2.7) 
25 

(0.5) 
7 

(0.4) 
4 

(0.7) 

Fertility preference 

Have another 
602 

(50.2) 
196 

(4.2) 
46 

(2.7) 
15 

(2.6) 

Undecided 
55 

(4.6) 
98 

(2.1) 
23 

(1.4) 
6 

(1.0) 

No more 
226 

(18.8) 
291 

(6.3) 
94 

(5.6) 
40 

(6.9) 
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According to the data in Table 5, rural women have a greater percentage of larger families. 
Specifically, 78.2% of rural women have three children, while 75.1% have four or more children. 
Meanwhile, only 21.8% of urban women have three children, and 24.9% have four or more 
children. According to this study, living in rural areas is linked to greater fertility rates. Among all 
religious groups, Hindu women have the greatest percentage in all categories of childbearing age. 
Muslim women exhibit a greater proportion in the higher CEB categories, specifically 9.2% (154) 
for three children and 11.8% (68) for four or more children, in comparison to Christian women who 
had 10.6% (178) for three children and 11.8% (68) for four or more children.  

Among women, 84.6% use LPG as their main cooking fuel, which affects all CEB groups. 
Those who use wood as fuel have greater percentages in bigger family sizes, with 16.2% having 
three children and 19.9% having four or more children. Women with two children have a greater 
proportion (22.3%) in the CEB categories for the age group of 35-39 years. Among all CEB 
categories, married women had the greatest percentage, specifically 92.1% (4262). The majority of 
women who undergo sterilization belong to the higher CEB groups, with 87.2% having three 
children and 87.9% having four or more children. Most women in the Other Backward Classes 
(OBC) in all Central Employment Bureau (CEB) categories have higher percentages. The spouses of 
these women are between the ages of 38-47 and 48-57. Additionally, more women with two 
children (954, 20.6%) and (959, 20.7%) fall into this category. 

Sterilized 
242 

(20.2) 
3930 

(84.9) 
1466 

(87.2) 
508 

(87.9) 

Declared infecund 
71 

(5.9) 
102 

(2.2) 
46 

(2.7) 
9 

(1.6) 

Never had sex 
4 

(0.3) 
10 

(0.2) 
7 

(0.4) 
0 

(0.0) 

Caste 

Schedule caste 
391 

(32.6) 
1436 

(31.0) 
535 

(31.8) 
217 

(37.5) 

Schedule tribe 
135 

(11.3) 
440 

(9.5) 
159 

(9.5) 
67 

(11.6) 

OBC 
674 

(56.2) 
2751 

(59.5) 
988 

(58.7) 
294 

(50.9) 

Husband age 

18-27
251 

(20.9) 
966 

(20.9) 
337 

(20.0) 
113 

(19.6) 

28-37
202 

(16.8) 
875 

(18.9) 
333 

(19.8) 
103 

(17.8) 

38-47
265 

(22.1) 
954 

(20.6) 
345 

(20.5) 
120 

(20.8) 

48-57
262 

(21.8) 
959 

(20.7) 
353 

(21.0) 
125 

(21.6) 

58 & above 
220 

(18.3) 
873 

(18.9) 
314 

(18.7) 
117 

(20.2) 
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Table 6: Results from the ZTP Model 

Variables Category Estimate 
Std. 
Error 

z-value P-value IRR 
95% Wald 

Confidence 
Interval IRR 

Intercept -1.088 0.271 -4.012 0.000*** 0.337 0.198 0.573 
Place of 
residence 
(Ref: Urban)  

Rural 0.003 0.023 0.117 0.907@ 1.003 0.958 1.050 

Religion 
(Ref: Hindu) 

Muslim 0.149 0.034 4.410 0.000*** 1.161 1.087 1.241 
Christian 0.064 0.034 1.892 0.059* 1.066 0.998 1.139 

Type of 
cooking fuel 
(Ref: 
Electricity) 

LPG -0.039 0.108 -0.364 0.716@ 0.961 0.778 1.188 
Biogas -0.619 0.481 -1.287 0.198@ 0.539 0.210 1.382 
Kerosene 0.169 0.258 0.654 0.513@ 1.184 0.714 1.963 
Coal, lignite -0.134 0.241 -0.557 0.578@ 0.874 0.545 1.402 
Charcoal 0.048 0.132 0.366 0.714@ 1.049 0.811 1.359 
Wood -0.001 0.111 -0.010 0.992@ 0.999 0.804 1.241 
Straw/shrub
s/grass 

0.042 0.169 0.248 0.804@ 1.043 0.749 1.452 

Agricultural 
crop 

-0.036 0.152 -0.240 0.811@ 0.964 0.716 1.298 

Animal 
dung 

-0.140 0.658 -0.213 0.831@ 0.869 0.239 3.159 

Other -0.360 0.659 -0.546 0.585@ 0.698 0.192 2.538 

Wealth index 
combined 
(Ref: Poorest)  

Poorer -0.071 0.048 -1.477 0.140@ 0.931 0.848 1.024 
Middle -0.120 0.049 -2.461 0.014** 0.887 0.806 0.976 
Richer -0.180 0.051 -3.517 0.000*** 0.835 0.756 0.923 
Richest -0.319 0.057 -5.628 0.000*** 0.727 0.650 0.812 

Place of 
delivery 
(Ref: Home)  

Public -0.014 0.019 -0.751 0.453@ 0.986 0.949 1.024 

Private 0.003 0.036 0.072 0.943@ 1.003 0.934 1.077 

Women age 
(Ref: 15-19) 

20-24 0.603 0.202 2.990 0.003*** 1.827 1.231 2.711 
25-29 0.755 0.199 3.787 0.000*** 2.128 1.440 3.146 

30-34 0.776 0.200 3.886 0.000*** 2.173 1.469 3.214 

35-39 0.809 0.200 4.053 0.000*** 2.246 1.519 3.321 

40-44 0.905 0.200 4.531 0.000*** 2.472 1.671 3.657 

45-50 1.001 0.200 5.016 0.000*** 2.721 1.840 4.023 

Current 
marital status 
(Ref: Single)  

Married 0.215 0.140 1.531 0.126@ 1.240 0.942 1.633 

Widowed 0.142 0.143 0.989 0.323@ 1.152 0.870 1.527 

Divorced -0.208 0.191 -1.090 0.276@ 0.812 0.559 1.181 

Fertility 
preference 
(Ref: Have 
another) 

Undecided 0.625 0.091 6.898 0.000*** 1.868 1.564 2.230 

No more 0.654 0.066 9.971 0.000*** 1.923 1.691 2.186 
Sterilized 0.934 0.056 16.809 0.000*** 2.544 2.282 2.837 
Declared 
infecund 

0.609 0.083 7.337 0.000*** 1.838 1.562 2.163 

Never had 
sex 

0.763 0.195 3.912 0.000*** 2.144 1.463 3.141 

Caste 
(Ref: 

Schedule 
tribe 

-0.042 0.035 -1.194 0.232@ 0.959 0.896 1.027 
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Schedule 
caste)  

OBC -0.030 0.022 -1.405 0.160@ 0.970 0.930 1.012 

Husband age 
(Ref: 18-27) 

28-37 0.021 0.030 0.713 0.476@ 1.021 0.964 1.082 
38-47 0.017 0.029 0.575 0.565@ 1.017 0.961 1.076 
48-57 0.018 0.029 0.641 0.522@ 1.019 0.963 1.078 
58 & above 0.023 0.030 0.781 0.435@ 1.023 0.966 1.084 

      ***1% Level of Significant (p-value<0.01) 
      ** 5% Level of Significant (p-value<0.05) 

* 10% Level of Significant (p-value<0.1)
@ Not Significant

Table 6 displays the Zero Truncated Poisson (ZTP) model, which analyzes the factors that 
influence the number of Children Ever Born (CEB) among women of reproductive age. The results 
indicate that the Muslim faith has a favourable effect, whereas income index categories (excluding 
poorer women) have a negative effect. A positive relationship exists between women's age (from 
20-24 to 45-50) and fertility preference. Women who used Biogas as a cooking fuel observed a 46%
lower risk (IRR = 0.539, 95% CI: 0.210-1.382), whereas those who used kerosene had an 18% greater
risk (IRR = 1.184, 95% CI: 0.714-1.963), in comparison to women who depended on electricity.
Women from lower socioeconomic backgrounds had a 6.9% lower risk (IRR = 1.02, 95% CI: 0.97-
1.024) compared to women who give birth at home.

Women aged 20-24, 25-29, 30-34, 35-39, 40-44, and 45-50 had significantly higher incidences 
compared to women aged 15-19, with incidence rate ratios (IRR) of 1.827 (95% CI: 1.231-2.711), 
2.128 (95% CI: 1.440-3.146), 2.173 (95% CI: 1.469-3.214), 2.246 (95% CI: 1.519-3.321), 2.472 (95% CI: 
1.671-3.657), and 2.721 (95% CI: 1.840-4.023), respectively. Married women had a 24% decrease in 
risk (IRR = 1.240, 95% CI: 0.942-1.633) compared to single women. Divorced women had an 18.8% 
decrease in risk (IRR = 0.812, 95% CI: 0.559-1.181) compared to single women. 

Women who have had sterilization have a 1.544 times greater risk (IRR = 2.544, 95% CI: 2.282-
2.837) compared to women who have given birth to another child. Women belonging to the 
Scheduled Caste had a 4.1% reduced risk of fertility compared to women belonging to the 
Scheduled Tribe caste, with an incidence rate ratio (IRR = 0.959, 95% CI: 0.896-1.027). Respondents 
whose husbands were aged 58 and above and 28-37 had a 2.3% (IRR = 1.023, 95% CI: 0.966-1.084) 
and 2.1% (IRR = 1.021, 95% CI: 0.964-1.082) higher risk of fertility compared to respondents whose 
husbands were aged 18-27. 

Table 7: Results from the ZTGP Model 

Variables Category Estimate 
Std. 
Error 

z-value P-value IRR 
95% Wald 

Confidence 
Interval IRR 

Intercept1 0.089  0.175 0.507 0.612@ 1.093 0.776 1.538 
Intercept2 -30.490  8.245 -0.004 0.997@ 0.000 0.000    Inf 
Place of 
residence 
(Ref: Urban)  

Rural 0.002 0.019 0.088 0.930@ 1.002 0.965 1.040 

Religion 
(Ref: Hindu) 

Muslim 0.099 0.028 3.531 0.000*** 1.104 1.045 1.167 
Christian 0.044 0.028 1.578 0.115@ 1.045 0.989 1.104 

Type of 
cooking fuel 
(Ref: 
Electricity) 

LPG -0.026 0.089 -0.288 0.773@ 0.975 0.819 1.160 
Biogas -0.330 0.315 -1.047 0.295@ 0.719 0.388 1.333 
Kerosene 0.114 0.216 0.531 0.596@ 1.121 0.735 1.710 
Coal, lignite -0.088 0.193 -0.456 0.649@ 0.916 0.627 1.337 
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Charcoal 0.036 0.109 0.331 0.741@ 1.037 0.837 1.285 
Wood 0.000 0.091 0.000 1.000@ 1.000 0.836 1.196 
Straw/shrub
s/grass 

0.028 0.141 0.202 0.840@ 1.029 0.781 1.356 

Agricultural 
crop 

-0.024 0.124 -0.196 0.845@ 0.976 0.765 1.245 

Animal 
dung 

-0.088 0.508 -0.174 0.862@ 0.915 0.338 2.480 

Other -0.233 0.509 -0.459 0.647@ 0.792 0.292 2.146 

Wealth index 
combined 
(Ref: Poorest)  

Poorer -0.048 0.040 -1.199 0.231@ 0.953 0.881 1.031 
Middle -0.080 0.041 -1.970 0.049** 0.923 0.852 1.000 
Richer -0.120 0.043 -2.822 0.005*** 0.887 0.816 0.964 
Richest -0.207 0.047 -4.450 0.000*** 0.813 0.742 0.891 

Place of 
delivery 
(Ref: Home)  

Public -0.010 0.016 -0.639 0.523@ 0.990 0.960 1.021 

Private 0.001 0.030 0.032 0.975@ 1.001 0.945 1.061 

Women age 
(Ref: 15-19) 

20-24 0.169 0.098 1.735 0.083* 1.184 0.978 1.434 
25-29 0.250 0.096 2.605 0.009** 1.284 1.064 1.550 

30-34 0.263 0.096 2.730 0.006** 1.301 1.077 1.572 

35-39 0.286 0.096 2.961 0.003*** 1.330 1.101 1.607 

40-44 0.352 0.097 3.633 0.000*** 1.421 1.176 1.718 

45-50 0.420 0.097 4.355 0.000*** 1.523 1.260 1.840 

Current 
marital status 
(Ref: Single)  

Married 0.137 0.109 1.256 0.209@ 1.147 0.926 1.420 

Widowed 0.088 0.112 0.784 0.433@ 1.092 0.877 1.359 

Divorced -0.107 0.142 -0.750 0.453@ 0.899 0.680 1.188 

Fertility 
preference 
(Ref: Have 
another) 

Undecided 0.251 0.062 4.019 0.000*** 1.285 1.137 1.452 

No more 0.268 0.042 6.420 0.000*** 1.307 1.204 1.418 
Sterilized 0.446 0.033 13.607 0.000*** 1.561 1.464 1.665 
Declared 
infecund 

0.236 0.057 4.112 0.000*** 1.266 1.131 1.416 

Never had 
sex 

0.330 0.153 2.154 0.031** 1.390 1.030 1.877 

Caste 
(Ref: 
Schedule 
caste)  

Schedule 
tribe 

-0.028 0.028 -0.982 0.326@ 0.973 0.920 1.028 

OBC -0.020 0.018 -1.116 0.264@ 0.981 0.947 1.015 

Husband age 
(Ref: 18-27) 

28-37 0.014 0.024 0.574 0.566@ 1.014 0.967 1.063 
38-47 0.011 0.023 0.462 0.644@ 1.011 0.966 1.058 
48-57 0.012 0.023 0.517 0.605@ 1.012 0.967 1.060 
58 & above 0.015 0.024 0.612 0.541@ 1.015 0.968 1.064 

      ***1% Level of Significant (p-value<0.01) 
      ** 5% Level of Significant (p-value<0.05) 

* 10% Level of Significant (p-value<0.1)
@ Not Significant

The analysis of the ZTGP model in Table 7 provides the impact of various determinants on fertility 
count, specifically focusing on the number of CEB. The results indicate that factors such as the 
positive influence of the Muslim faith, the negative impact of being richer or richest women, the 
positive influence of women's age ranging from 25-29 to 45-50, and the positive influence of 

B. Muniswamy, M. V. Lavanya
ZTPR MODELFOR REPRODUCTIVE PATTERNS ON COUNT DATA

RT&A, No 1 (82) 
Volume 20, March 2025 

1084



fertility preference categories are all significant. 
The occurrence rates of CEB (Childbearing Ever) increased by 10.4% (IRR = 1.104, 95% 

CI:1.045-1.167) and 4.5% (IRR = 1.045, 95% CI:0.989-1.104) for women who held Muslim and 
Christian beliefs, respectively, compared to those who practis loglikelihooded Hinduism. Women 
who use biogas and other fuel sources observe a 28% decrease in the occurrence of CEB (IRR = 
0.719, 95% CI:0.388-1.333) and a 21% reduction (IRR = 0.792, 95% CI:0.292-2.146) compared to 
women who depend on electricity. The wealthiest women exhibited a reduced rate of childbearing 
(IRR = 0.813, 95% CI: 0.742-0.891) compared to the poorest women.  

In comparison to women aged 15-19 years, the rates of the number of CEB among women 
aged 20-24, 25-29, 30-34, 35-39, 40-44, and 45-50 increased by 18%, 28%, 30%, 33%, 42%, and 52% 
respectively. Compared to single women, divorced women had a 10% reduced incidence risk of 
CEB (IRR = 0.899, 95% CI: 0.680-1.188). Similarly, the incidence rates of CEB among sterilized 
women increased by 56% (IRR = 1.561, 95% CI:1.464-1.665) in comparison to women with different 
fertility preferences. The incidence rate of CEB among women who belong to the Scheduled Tribe 
was reduced by 3% (IRR = 0.973, 95% CI: 0.920-1.028) compared to women from the Scheduled 
Caste. Similarly, women from the Other Backward Classes (OBC) had a 2% decrease in the 
incidence rate of CEB (IRR = 0.981, 95% CI: 0.947-1.015) compared to women from the Scheduled 
Caste. 

IV. Discussion

This study included 8087 women between the ages of 15 and 50. The majority of these women, 
representing 44%, had given birth to two children. This study utilized the ZTP and ZTGP 
regression models to examine reproductive patterns in Andhra Pradesh. The analysis focused on 
the number of CEBs, which was influenced by several variables, including various 
sociodemographic, socioeconomic, and environmental factors.  

The study found that a significant proportion of women (72.4%) live in rural areas, while a 
smaller proportion (27.6%) live in urban areas. The generality of the rural regions is associated 
with higher fertility rates, as women living in rural areas tend to have bigger families due to the 
limited availability of family planning services and distinct socio-cultural norms. Hinduism is the 
most prevalent religion, with 83.8% of women identifying as Hindus. There is variation in fertility 
rates among different religious groups, with Muslim women having greater fertility rates in higher 
CEB categories compared to Hindu and Christian women. The majority of women (82.8%) utilize 
LPG as their primary cooking fuel, although traditional fuels such as wood (13.7%) and charcoal 
(1.3%) are less prevalent. The utilization of traditional fuels has been associated with higher 
household sizes, most likely due to socioeconomic limitations and lifestyle aspects in lower-income 
households.  

According to the wealth index, 29.4% of respondents are classified as rich, while only 4.2% are 
categorized as the poorest. Women with higher wealth tend to have fewer children, indicating the 
negative correlation between economic status and fertility rates. Public facilities are the most 
common places for delivery (48.5%), followed by home deliveries (43.9%). The selection of the 
birth location is impacted by factors such as ease of access, cost-effectiveness, and cultural 
inclinations, which subsequently affect the health results of both mothers and children. The age 
distribution reveals that 19.6% of participants fall within the age range of 35-39 years, while 19.1% 
fall within the age range of 45-50 years. A majority (90.8%) of women are married, and this is 
strongly correlated with reproductive patterns since married women tend to have greater rates of 
fertility. The prevalence of sterilization is high, with 76% of women undergoing the procedure, 
which indicates a clear and final decision to cease childbearing. The caste division reveals that 
58.2% of the participants belong to the Other Backward Classes (OBC), while 9.9% are from 
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scheduled tribes, thus highlighting the socio-cultural diversity within the community. 
Rural women exhibit higher fertility rates, with 78.2% having three children and 75.1% having 

four or more children, compared to 21.8% and 24.9% for urban women. This study highlights the 
impact of living in rural areas on increased fertility rates. Hindu women make up the largest 
proportion of all categories of CEB. In contrast, Muslim women have a greater proportion in the 
upper CEB categories (9.2% for three children and 11.8% for four or more children) compared to 
Christian women. Women who use LPG have a significant presence in all CEB categories. 
However, those that depend on traditional fuels such as wood tend to have higher proportions of 
bigger family sizes, indicating that economic and social factors affect fertility. Women between the 
ages of 35 and 39 have more children in the CEB categories, while married women make up the 
majority of all CEB categories with a percentage of 92.1%. Women who have had sterilization tend 
to have a larger number of CEB, which indicates their previous high fertility before treatment. 
Women in the Other Backward Classes (OBC) exhibit greater proportions in all CEB categories, 
suggesting higher fertility rates within this demographic.  

The ZTP regression model study identifies significant factors, including the Muslim faith, 
wealth index, women's age, and fertility preference. Muslim women, women with higher wealth, 
women in older age groups (20-50), and those who prefer sterilization have higher rates of CEB. 
This analysis, like the ZTP model, additionally highlights the beneficial impact of the Muslim faith 
and women's age on CEB. However, the data reveals a more prominent adverse effect of money, as 
wealthier and wealthiest women have far lower rates of childbearing. The ZTP model indicates 
that the Muslim faith is positively associated with higher CEB, whereas wealth index categories, 
except for poorer women, show a negative association. Age is an important variable, as women 
between 20 and 50 have significantly higher CEB than those in the 15-19 age group. Fertility desire, 
namely sterilization, is an additional influential factor since sterilized women tend to have a larger 
number of CEB.  

To manage population growth to improve mother and child health outcomes, rural areas with 
higher fertility rates require focused family planning and reproductive health care. The significant 
impact of religion on reproductive patterns highlights the necessity for culturally sensitive 
interventions that respond to the distinct requirements and opinions of various religious 
communities. The negative relationship between wealth and fertility underscores the significance 
of economic advancement and education in lowering childbearing rates. There is a relationship 
between the financial status of women and the number of children they have, indicating that 
enhancing economic status may result in decreased fertility rates. The strong relationship between 
age, marital status, and fertility suggests that reproductive health programs must focus on specific 
age groups and marital statuses to manage fertility rates effectively. 

V. Conclusion

This study aimed to examine reproductive patterns and the determinants that influence the 
number of children ever born (CEB) among women aged 15 to 50 in Andhra Pradesh using count 
data regression models based on NFHS conducted between 2019-2021. The ZTP regression model 
most effectively identified the key factors influencing CEB. These factors include the Muslim 
religion, the wealth index of the richest individuals, women aged between 20 and 50, and fertility 
preferences based on sterilization. Furthermore, reproductive health programs should be 
customized to the specific needs of different demographic groups, particularly in rural regions, 
such as religion, wealth, age, and marital status, to effectively manage population growth and 
improve the health outcomes of mothers and children. By addressing the specific determinants of 
fertility identified, policymakers can develop more effective strategies to encourage sustainable 
population growth and improve the overall health of women and children in the region. 
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Abstract

An M/G/1 retrial queue with working vacation, non persistent customers and a waiting server is taken
into consideration in this study. Both retrial times and service times are assumed to follow general
distribution and the waiting server follows an exponential distribution. Before switching over to a
vacation the server waits for some arbitrary amount of time and so is called a waiting server. During
the working vacation period customers are served at a lesser rate of service. We obtain the PGF for the
number of customers and the mean number of customers in the invisible waiting area which is acquired
by utilizing the supplementary variable technique. We compute the waiting time distribution. Out of
interest a few special cases are conferred. Numerical outcomes are exhibited.

Keywords: Retrial queue, working vacation, supplementary variable technique, non persistent
customers, waiting server

1. Introduction

In order to work with queues, we will need some basis on stochastic processes for a detailed
deliberated about stochastic models in queueing theory by Medhi [1]. Retrial queues are expressed
by the fact that if a customer observes that the server is occupied, then they are entered into
the invisible waiting area called an orbit. In recent years, numerous researchers have examined
the retrial queue. For a more in-depth analysis of the retrial queues, refer to[2, 3, 4, 5, 6]. In
queueing theory, queueing models with server vacation have the most impactful application.
Whenever the system becomes empty, the server leaves from the regular service period (RS) and
goes on vacation, but in a waiting server model, the server will wait for an arbitrary amount of
time before going on vacation. For a detailed study on waiting servers with vacation, debated in
[7, 8, 9, 10, 11]. In addition to the vacation strategy, we developed the newest vacation strategy,
called Working Vacation (WV). In the WV period, the server provides a lesser rate of service to
the customers than during the regular service period. A survey on working vacation in queueing
models by Chandrasekaran et al. [12]. The M/M/1 queue with single and multiple working
vacations was discussed by [13, 14]. Similarly, the same discussion for M/G/1 queue was done
by Wu and Gao [15, 16].

Kalyanaraman and Pazhani Bala Murugan [17] discussed retrial queue with vacation and
presented operating characteristics results. Further the same retrial queue with single and multiple
working vacations by Pazhani Bala Murugan and Santhi [18, 19]. Murugan and Keerthana [20]
conducted a study on the M/G/1 retrial queue, which included both multiple working vacation
and waiting server. Additionally, the same authors studied a similar problem with feedback in
[21].
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When a primary customer finds a server busy, the customer becomes unsatisfied and may
quit the system without service permanently. For a more in-depth analysis of the non-persistent
customers discussed in M|G|1 retrial queue with non persistent customers and orbital search
by Krishnamoorthy et al. [22], Murugan and Vijaykrishnaraj [23] discussed a bulk arrival retrial
queue with nonpersistent customers and exponentially distributed multiple working vacations
and presented the results about probability generating function(PGF) for the number of customers
in the orbit. Based on the above studies, M|G|1 retrial queue with nonpersistent customers
and waiting server in working vacation were not discussed. In this article it is assumed that
the waiting server has an exponential distribution and that the retrial and service times follow
a general distribution. The server is referred to as a waiting server as it waits for a random
amount of time before going into a vacation state. Based on that, the waiting time distribution,
the performance measures, and some numerical results are discussed.

2. Model Description

We examine an M/G/1 retrial queue with WV, non persistent customers and a waiting server
where the primary customers arrival follows a Poison process with arrival rate λ. If an approaching
customer discovers that the server is occupied then they exit the service area because we assume
that there is no waiting area and they joins the orbit. At a service completion instant, if the
number of customer is one at the extreme front end of the orbit, is permitted to approach the
server with a distribution function G(x) and the retrial time follows a general distribution. For
the normal service period, let g(x) and G∗(θ) signify the distribution function, pdf and LST
respectively, and for WV period, let L(x), l(x), L∗(θ) signify the pdf and LST respectively. On the
service completion epoch of each customer, if there is a contest between primary customer and
an orbit customer, then it will be determined with Rs(x), rs(x), R∗s (θ) as its distribution function,
pdf, LST with general distribution. The service delivered among the WV period follows general
distribution with Wv(x), wv(x), W∗v (θ) as its distribution function, pdf, LST. The arriving (or
primary) customer receives service instantly if the server is idle. If not, he will choose whether to
leave the system without service with probability (1− ν) or returning again later with probability
ν.

The server waits for a arbitrary period of time once the orbit turns empty which follows an
(exp.) distribution with rate α. After completion of waiting time the server goes for WV which
follows an (exp.) distribution with rate β and Inter-arrival times, retrial periods, RS periods, and
WV periods are all presumed to be independent of one another.
Let’s use the subsequent random variables
O(t)- Size of the orbit at “t”,
R0

s (t), G0(t)- the RST and RRT in RS period,
W0

v (t), L0(t)- the RST and RRT in WV period.
At time “t” the four distinct states of the server are

E(t) =


0 if the server is not occupied in WV
1 if the server is not occupied in RS period
2 if the server is occupied in WV
3 if the server is occupied in RS period

To generate bivariate Markov Processs, further variables are introduced that {(O(t), B(t)); t ≥ 0},
where
B(t) = L0(t), if E(t) = 0; G0(t), if E(t) = 1; W0

v (t), if E(t) = 2; R0
s (t), if E(t) = 3.

W0,0 = lim
t→∞

P[O(t) = 0, E(t) = 0]

R0,0 = lim
t→∞

P[O(t) = 0, E(t) = 1]

W0,h = lim
t→∞

P[O(t) = h, E(t) = 0, x < L0(t) ≤ x + dx]; h ≥ 1
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R0,h = lim
t→∞

P[O(t) = h, E(t) = 1, x < G0(t) ≤ x + dx]; h ≥ 1

W1,h = lim
t→∞

P[O(t) = h, E(t) = 2, x < W0
v (t) ≤ x + dx]; h ≥ 0

R1,h = lim
t→∞

P[O(t) = h, E(t) = 3, x < R0
s (t) ≤ x + dx]; h ≥ 0

The above mentioned are the limiting probabilities which we have defined. Let us define common

LST and PGF’s are F∗(s) =
∞∫
0

e−stdF(t) and F∗(z, x) =
∞
∑

h=0
F∗h (x)zh.

In steady state the system was illustrated by the subsequent differential difference equations:

λW0,0 = W1,0(0) + αR0,0 (1)

− d
dx

W0,h(x) = −(β + λ)W0,h(x) + W1,h(0)l(x); h ≥ 1 (2)

− d
dx

W1,0(x) = −(β + λν)W1,0(x) + W0,1(0)wv(x) + λW0,0wv(x) (3)

− d
dx

W1,h(x) = −(β + λν)W1,h(x) + λνW1,h−1(x) + W0,h+1(0)wv(x)

+λ

∞∫
0

W0,h(x)dx wv(x); h ≥ 1 (4)

(λ + α)R0,0 = R1,0(0) (5)

− d
dx

R0,h(x) = −λR0,h(x) + R1,h(0)g(x) + β

∞∫
0

W0,h(x)dx g(x); h ≥ 1 (6)

− d
dx

R1,0(x) = −λνR1,0(x) + R0,1(0)rs(x) + β

∞∫
0

W1,0(x)rs(x)dx (7)

− d
dx

R1,h(x) = −λνR1,h(x) + λνR1,h−1(x) + βrs(x)
∞∫

0

W1,h(x)dx

+R0,h+1(0)rs(x) + λrs(x)
∞∫

0

R0,h(x)dx; h ≥ 1 (8)

Taking the LST from (2) to (8) on both sides results

θW∗0,h(θ)−W0,h(0) = (β + λ)W∗0,h(θ)−W1,h(0)L∗(θ); h ≥ 1 (9)

θW∗1,0(θ)−W1,0(0) = (β + λν)W∗1,0(θ)−W0,1(0)W∗v (θ)− λW0,0W∗v (θ) (10)

θW∗1,h(θ)−W1,h(0) = (β + λν)W∗1,h(θ)− λνW∗1,h−1(θ)

−W0,h+1(0)W∗v (θ)− λW∗0,h(0)W
∗
v (θ); h ≥ 1 (11)

θR∗0,h(θ)− R0,h(0) = λR∗0,h(θ)− R1,h(0)G∗(θ)− βG∗(θ)W∗0,h(0); h ≥ 1 (12)

θR∗1,0(θ)− R1,0(0) = λνR∗1,0(θ)− R0,1(0)R∗s (θ)− βR∗s (θ)W
∗
1,0(0)

−λR0,0R∗s (θ) (13)

θR∗1,h(θ)− R1,h(0) = λνR∗1,h(θ)− λνR∗1,h−1(θ)− R∗s (θ)R0,h+1(0)

−βR∗s (θ)W
∗
1,h(0)− λR∗s (θ)R∗0,h(0); h ≥ 1 (14)

Summing over h from 1 to infinity × (9) with zh and results

W∗0 (z, θ)[θ − (β + λ)] = W0(z, 0)− L∗(θ)[W1(z, 0)−W1,0(0)] (15)
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Summing over h from 1 to infinity × (11) with zh and comprise with (10) results

W∗1 (z, θ)[θ − (β + λν− λνz)] = W1(z, 0)− W∗v (θ)
z

W0(z, 0)− λW0,0W∗v (θ)

− λW∗v (θ)W
∗
0 (z, 0)

(16)

Placing θ = β + λ in (15), results

W0(z, 0) = L∗(β + λ)[W1(z, 0)−W1,0(0)] (17)

Placing θ = 0 and (Sub.) (17) in (15), results

W∗0 (z, 0) =
(1− L∗(β + λ))(W1(z, 0)−W1,0(0))

β + λ
(18)

Placing θ = β + λν− λνz and (Sub.) (17) and (18) in (16), results

W1(z, 0) =
W∗v (β + λν− λνz)[λz(β + λ)W0,0 − [L∗(β + λ)(β + λ− λz) + λz]W1,0(0)]

z(β + λ)−W∗v (β + λν− λνz)[L∗(β + λ)(β + λ− λz) + λz]
(19)

(Sub.)(19) in (17), results

W0(z, 0) =
zL∗(β + λ)(β + λ)[λW∗v (β + λν− λνz)W0,0 −W1,0(0)]

z(β + λ)−W∗v (β + λν− λνz)[L∗(β + λ)(β + λ− λz) + λz]
(20)

Let f (z) = (β + λ)z−W∗v (β + λν− λνz)[L∗(β + λ)(β + λ− λz) + λz], for f (z) = 0 we obtain
f (0) < 0 and f (1) > 0 which⇒ that ∃ a real root z1 ∈ (0, 1).
At z = z1(20) seems

W1,0(0) = λW∗v (λν− λνz1 + β)W0,0 (21)

(Sub.) (21) in (19), results

W1(z, 0) =
λW∗v (β + λν− λνz)UP(z)

z(β + λ)−W∗v (β + λν− λνz)[L∗(β + λ)(β + λ− λz) + λz]
W0,0 (22)

where,
UP(z) = z(β + λ)−W∗v (β + λν− λνz1)[λz + L∗(β + λ)(β− λz + λ)]

(Sub.) (21) in (20), results

W0(z, 0) =
λνz(β + λ)L∗(β + λ)[W∗v (β + λν− λνz)−W∗v (β + λν− λνz1)]

z(β + λ)−W∗v (β + λν− λνz)[L∗(β + λ)(β + λ− λz) + λz]
W0,0 (23)

(Sub.) (21) and (22) in (18), results

W∗0 (z, 0) =
(1− L∗(β + λ))λz[W∗v (β + λν− λνz)−W∗v (β + λν− λνz1)]

z(β + λ)−W∗v (β + λν− λνz)[L∗(β + λ)(β + λ− λz) + λz]
W0,0 (24)

Placing θ = 0 and (Sub.) (22), (23) and (24) in (16), results

W∗1 (z, 0) =
λ(1−W∗v (β + λν− λνz))UP(z)

(β + λν− λνz)Dr1(z)
W0,0 (25)

We define Wv(z) = W∗0 (z, 0) +W∗1 (z, 0) +W0,0; it represents the PGF for the number of customers
in the orbit during WV period.

Wv(z) =
W0,0

(β + λν− λνz)D1(z)

{
(β + λν− λνz)(W∗v (β + λν− λνz)−W∗v (β + λν− λνz1))

×λz(1− L∗(β + λ)) + λ(1−W∗v (β + λν− λνz))[z(β + λ)−W∗v (β + λν− λνz1)

×(λz + L∗(β + λ)(β + λ− λz))] + (β + λν− λνz)[z(β + λ)−W∗v (β + λν− λνz)

×(λz + L∗(β + λ)(β + λ− λz))]
}

(26)
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Dr1(z) = z(β + λ)−W∗v (β + λν− λνz)(λz + L∗(β + λ)(β + λ− λz))

Summing over h from 1 to infinity × (12) with zh and results

R∗0(z, θ)(θ − λ) = R0(z, 0)− G∗(θ)[R1(z, 0)− R1,0(0)]−W∗0 (z, 0)βG∗(θ) (27)

(Sub.) W1,0(0) = λW∗v (β + λν− λνz1)W0,0 in (1), we get αR0,0 = λ(1−W∗v (β + λν− λνz1))W0,0.

Placing θ = λ and (Sub.) R1,0(0) = λ(1−W∗v (β + λν− λνz1))W0,0 − λR0,0 in (27), results

R0(z, 0) = G∗(λ)[R1(z, 0)− λ(1−W∗v (β + λν− λνz1))W0,0 − λR0,0 + βW∗0 (z, 0)] (28)

Summing over h from 1 to infinity × (14) with zh and comprise with (13) results

R∗1(z, θ)[θ − λν + λνz)] = R1(z, 0)−
{

R0(z, 0)
z

+ βW∗1 (z, 0) + λR∗0(z, 0) + λR0,0

}
R∗s (θ) (29)

Placing θ = 0 and (Sub.) (28) and R1,0(0) = (1−W∗v (β + λν− λνz1))λW0,0 − λR0,0 in (27),
results

R∗0(z, 0) =
(1− G∗(λ))

λ
[R1(z, 0)− (1−W∗v (β + λν− λνz1))λW0,0 − λR0,0 + βW∗0 (z, 0)] (30)

Placing θ = λν− λνz and (Sub.) (28) and (30) in (29), results

R1(z, 0) =
1

Dr2(z)

{
R∗s (λν− λνz)

[
βzW∗1 (z, 0) + λzR0,0 + β[(1− z)G∗(λ) + z]W∗0 (z, 0)

− [(1− z)G∗(λ) + z][(1−W∗v (β + λν− λνz1))λW0,0 + λR0,0]
]} (31)

(Sub.) (31) in (28), results

R0(z, 0) =
1

Dr2(z)

{
[zG∗(λ)

[
βR∗s (λν− λνz)W∗1 (z, 0)− λ(1−W∗v (β + λν− λνz1))W0,0

+ βW∗0 (z, 0)− λ(1− R∗s (λν− λνz))R0,0
]} (32)

(Sub.) (31) in (30), results

R∗0(z, 0) =
1

λDr2(z)

{
[βW∗1 (z, 0)R∗s (λν− λνz)− λ(1−W∗v (β + λν− λνz1))W0,0

+ βW∗0 (z, 0)− λ(1− R∗s (λν− λνz))R0,0](1− G∗(λ))z
} (33)

Placing θ = 0 and (Sub.) (31), (32) and (33) in (29), results

R∗1(z, 0) =
1

λν(1− z)Dr2(z)

{
(1− R∗s (λν− λνz))

{
λzR0,0 + βW∗0 (z, 0)[(1− z)G∗(λ) + z]

+ βW∗1 (z, 0)z− [λ(1−W∗v (β + λν− λνz1))W0,0 + λR0,0][G∗(λ)(1− z) + z]
}} (34)

(Sub.) (24) and (25) in (33), results

R∗0(z, 0) =
z(1− G∗(λ))W0,0

(β + λν− λνz)Dr1(z)Dr2(z)

{
βR∗s (λν− λνz)(1−W∗v (β + λν− λνz))

{
(β + λ)z

−W∗v (β + λν− λνz1)[λz + (β + λ− λz)G∗(β + λ)]
}
+ βz(W∗v (β + λν− λνz)

−W∗v (β + λν− λνz1))(β + λν− λνz)(1− L∗(β + λ))− (1−W∗v (β + λν− λνz1))

×(β + λν− λνz)
{
(β + λ)z−W∗v (β + λν− λνz)[λz + (β + λ− λz)L∗(β + λ)]

}
−(β + λν− λνz)(1−W∗v (β + λν− λνz1))(1− R∗s (λν− λνz))

{
(β + λ)z

−W∗v (β + λν− λνz)[λz + (β + λ− λz)L∗(β + λ)]
}λ

α

}
(35)

RT&A, No 1 (82) 
Volume 20, March 2025 

1093



Keerthana
AN M/G/1 RETRIAL QUEUE

(Sub.) (24), (25) in (34), results

R∗1(z, 0) =
(1− R∗s (λ− λz))W0,0

νDr2(z)(β + λν− λνz)Dr1(z)

{
βz[λνz + G∗(λ)(β + λν− λνz)][1− L∗(β + λ)]

×[W∗v (β + λν− λνz)−W∗v (β + λν− λνz1)]− [λνz + G∗(λ)(β + λν− λνz)]

×
{
(β + λ)z−W∗v (β + λν− λνz)[λz + (β + λ− λz)L∗(β + λ)]

}
×(1−W∗v (β + λν− λνz1)) + βz(β + λ)(W∗v (β + λν− λνz)−W∗v (β + λν− λνz1))

×L∗(β + λ)− λ

α
(1−W∗v (β + λν− λνz1))[(β + λ− λz)G∗(λ)]

{
(β + λ)z

−W∗v (β + λν− λνz)[λz + (β + λ− λz)L∗(β + λ)
}}

(36)

We define RS(z) = R∗0(z, 0) + R∗1(z, 0) + R0,0; it represents the PGF for the number of customers
in the orbit during RS period.

Dr1(z) = z(β + λ)−W∗v (β + λν− λνz)(λz + L∗(β + λ)(β + λ− λz)) (37)

Dr2(z) = z− R∗s (λν− λνz)[G∗(λ)(1− z) + z] (38)

where Dr1(z) and Dr2(z) are given in (37) and (38). Again, we define R(z) = RS(z) + Wv(z)
as the PGF for the number of customers in the orbit. Make use of the normalising condition
R(1) = 1 to find out that W0,0 is raised in (39). Using L’Hospitals rule and (sub.) z = 1 in R(z)
results,

W0,0 =
1− ρs[

Mr1

βKr
− Mr2

Kr
+

Mr3

Kr
+

(1− ν)Np

βKr
+

λMr4

αG∗(λ)

] (39)

R0,0 =
λ

α
(1−W∗v (β + λν− λνz1))W0,0 (40)

where,

Mr1 = (λ− λW∗v (β + λ− λz1) + β)[β + λνG∗(λ)−W∗v (β)(β + λνL∗(β + λ))]

Mr2 = λνE(Rs)W∗v (β)[β + λ−W∗v (β + λν− λνz1)(β + λL∗(β + λ))]

Mr3 = βW∗v (β + λν− λνz1)L∗(β + λ)(1− G∗(λ))

Mr4 = (1−W∗v (β + λν− λνz1))[λG∗(λ)E(Rs)(1− ν) + G∗(λ)]

Kr = G∗(λ)[β + λ−W∗v (β)(β + λL∗(β + λ))]

Np = λG∗(λ)(1−W∗v (β)) + λβE(Rs)[L∗(β + λ)W∗v (β + λν− λνz1) + G∗(λ)(1−W∗v (β))]

×(β + λ)− (1−W∗v (β))λβG∗(λ)E(Rs)[λW∗v (β) + βW∗v (β + λν− λνz1)L∗(β + λ)]

−λβW∗v (β)L∗(β + λ) + (1− G∗(λ))λβL∗(β + λ)W∗v (β + λν− λνz1)

×βG∗(λ)[β + λ−W∗v (β)(β + λL∗(β + λ))]

ρs =
λνE(Rs)

G∗(λ)

E(Rs) is the mean service time and the system’s stability condition ρs < 1 is obtained from (39).

3. Performance Measures

Mean System Length:
We assume that
Wv, Rs - mean orbit size in WV period, RS period.
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Wvw, Rsw - mean waiting time of the customer in the orbit during WV period, RS period. Then

Wv =
d
dz

Wv(z)
∣∣∣
z=1

=
d
dz

[W∗0 (z, 0) + W∗1 (z, 0)]
∣∣∣
z=1

=
d
dz

[
S(z)

(β + λν− λνz)Dr1(z)
+

K(z)
Dr1(z)

]
W0,0

∣∣∣
z=1

where,

S(z) = λ(1−W∗v (β + λν− λνz))[z(β + λ)−W∗v (β + λν− λνz1)

(L∗(β + λ)(β + λ− λz) + λz)]

K(z) = λz(1− L∗(β + λ))(W∗v (β + λν− λνz)−W∗v (β + λν− λνz1))

Dr1(z) = z(β + λ)−W∗v (β + λν− λνz)(L∗(β + λ)(β + λ− λz) + λz)

At z = 1 Wv turns,

=

{
βDr1(1)S′(1)− S(1)[βDr′1(1)− λDr1(1)]

(βDr1(1))2 +
Dr1(1)K′(1)− K(1)Dr′1(1)

(Dr1(1))2

}
W0,0

By Little’s formula Wvw =
Wv

λ
,

Rs =
d
dz

RS(z)
∣∣∣
z=1

=
d
dz

[R∗1(z, 0) + R∗0(z, 0)]
∣∣∣
z=1

=
d
dz

[
Nr1(z)(1− G∗(λ)) + Nr2(z)Nr3(z)

Dr1(z)(λν− λνz + β)Dr2(z)

]
W0,0

∣∣∣
z=1

where,

Nr1(z) = βzR∗s (λν− λνz)(1−W∗v (β + λν− λνz))
{
(β + λ)z−W∗v (β + λν− λνz1)

×[(β + λ− λz)L∗(β + λ) + λz]
}
+ (β + λν− λνz)βz2(1− L∗(β + λ))

×[W∗v (β + λν− λνz)−W∗v (β + λν− λνz1)]− (1−W∗v (β + λν− λνz1))z

×(λν− λνz)
{
(β + λ)z−W∗v (β + λν− λνz)[(β + λ− λz)L∗(β + λ) + λz]

}
−(1−W∗v (β + λν− λνz1))(β + λν− λνz)(1− R∗s (λν− λνz))

{
(β + λ)z

−W∗v (β + λν− λνz)[(β + λ− λz)L∗(β + λ) + λz]
} zλ

α
Nr2(z) = (1− R∗s (λν− λνz))

Nr3(z) = βz[(β + λν− λνz)G∗(λ) + λνz](1− L∗(β + λ))[W∗v (β + λν− λνz)

−W∗v (β + λν− λνz1)]− (1−W∗v (β + λν− λνz1))[(β + λν− λνz)G∗(λ)

+λνz]{(β + λ)z−W∗v (β + λν− λνz)(β + λ− λz)L∗(β + λ) + λz)}
+βz(λ + β)[W∗v (β + λν− λνz)−W∗v (β + λν− λνz1)]L∗(β + λ)

−λ

α
(1−W∗v (β + λν− λνz1))G∗(λ)(β + λν− λνz)

{
(β + λ)z

−W∗v (β + λν− λνz)[λz + (β + λ− λz)L∗(β + λ)
}

Dr1(z) = (β + λ)z−W∗v (β + λν− λνz)[L∗(β + λ)(β + λ− λz) + λz]

Dr2(z) = z− R∗s (λν− λνz)[(1− z)G∗(λ) + z]
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At z = 1 Rs turns,

Rs =
Mr4

2(βηDr1(1)Dr′2(1))
2 W0,0

Mr4 = (1− G∗(λ))
[
2Nr′1(1)Dr′2(1)(ληDr1(1)− βηDr′1(1)) + βηDr1(1)(Dr′2(1)Nr′′1 (1)

−Nr′1(1)Dr′′2 (1))
]
+ 2βηNr′2(1)Dr′2(1)(Dr1(1)Nr′3(1)− Nr3(1)Dr′1(1))

+Nr3(1)Dr1(1)[2ληNr′2(1)Dr′2(1) + βηDr′2(1)Nr′′2 (1)− βηNr′2(1)Dr′′2 (1)]

By Little’s formula Rsw =
Rs

λ
,

4. Special cases

(a) If the service time distribution follows an exponential distribution, ν = 1 and no service during
the vacation period, then the present model will be remodelled as a time-dependent analysis of
the M/M/1 queue with server vacations and a waiting server.
(b) If the server does not wait after the completion of the RS period, ν = 1 and there is no retrial
time in the system then the present model will be remodeled as an M/G/1 queue with multiple
working vacation.
(c) If the server does not wait after the completion of the RS period, ν = 1 and the server never
takes a vacation, then the present model will be remodelled as an M/G/1 retrial queue.

5. Numerical results

The curved graph constructed in Figure 1 and the values tabulated in the Table 1 are obtained by
setting the fixed values µv = 1.5, µs = 9, µvr = 1.5, µsr = 4.5, α = 0.6, ν = 0.5 and varying the
values of λ from 1 to 2 incremented with 0.2 and extending the values of β from 1 to 2 in steps of
0.5, we observed that as λ rises Wv also rises and hence the stability of the model is verified.

Table 1: Rs with turn over of λ

λ β = 3 β = 5 β = 7

1.0 0.0055 0.0081 0.0087
1.2 0.0082 0.0117 0.0125
1.4 0.0116 0.0161 0.0172
1.6 0.0156 0.0226 0.0226
1.8 0.0290 0.0271 0.0290
2.0 0.0262 0.0343 0.0363

β 3

β 5

β 7

1.0 1.2 1.4 1.6 1.8 2.0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

λ

R
s

Figure 1: Rs with turn over of λ
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Table 2: Rsw with turn over of λ

λ β = 1.5 β = 2 β = 2.5

1.0 0.0062 0.0109 0.0131
1.2 0.0087 0.0134 0.0157
1.4 0.0114 0.0160 0.0184
1.6 0.0142 0.0188 0.0212
1.8 0.0174 0.0218 0.0242
2.0 0.0208 0.0251 0.0275

β 1.5

β 2

β 2.5

1.0 1.2 1.4 1.6 1.8 2.0
0.005

0.010

0.015

0.020

0.025

0.030

λ

R
s
w

Figure 2: Rsw with turn over of λ

Table 3: Wv with turn over of λ

λ β = 1 β = 1.5 β = 2

1.0 0.0510 0.0352 0.0247
1.2 0.0680 0.0460 0.0321
1.4 0.0862 0.0573 0.0397
1.6 0.1051 0.0688 0.0474
1.8 0.1245 0.0804 0.0551
2.0 0.1440 0.0920 0.0628

β=1

β=1. 5

β=2

1.0 1.2 1.4 1.6 1.8 2.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

λ

Figure 3: Wv with turn over of λ

The curved graph constructed in Figure 2 and the values tabulated in the Table 2 are obtained
by setting the fixed values µv = 2.6, µs = 9.7, µvr = 1.5, µsr = 3.9, α = 0.5, ν = 0.3 and varying
the values of λ from 1 to 2 incremented with 0.2 and extending the values of β from 1.2 to 1.6
in steps of 0.2. We observed that as λ rises Wvw also rises which is expected. The curved graph
constructed in Figure 3 and the values tabulated in the Table 3 are obtained by setting the fixed
values µv = 3.5, µs = 7.5, µvr = 2.5, µsr = 6.5, α = 0.7, ν = 0.3 and varying the values of λ
from 1 to 2 incremented with 0.2 and extending the values of β from 3 to 7 in steps of 2. We
observed that as λ rises Rs also rises which shows the stability of the model. The curved graph
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Table 4: Wvw with turnover of λ

λ β = 1.2 β = 1.4 β = 1.6

1.0 0.0198 0.0178 0.0159
1.2 0.0217 0.0196 0.0174
1.4 0.0234 0.0211 0.0187
1.6 0.0249 0.0223 0.0198
1.8 0.0263 0.0235 0.0207
2.0 0.0274 0.0244 0.0216

β=1.2

β=1.4

β=1.6

1.0 1.2 1.4 1.6 1.8 2.0

0.016

0.018

0.020

0.022

0.024

0.026

0.028

λ

Figure 4: Wvw with turnover of λ

constructed in Figure 4 and the values tabulated in the Table 4 are obtained by setting the fixed
values µv = 2.2, µs = 9.9, µvr = 1.2, µsr = 3.3, α = 0.2, ν = 0.3 and altering the values of λ from 1
to 2 incremented with 0.2 and extending the values of β from 1.5 to 2.5 in steps of 0.5. From the
graph, we studied that as λ rises Rsw also rises which shows the stability of the model.

6. Conclusion

In this paper, an M/G/1 retrial queue with working vacation, nonpersistent customers, and
a waiting server is evaluated. We obtain the PGF for the number of customers and the mean
number of customers in the orbit. Further with the waiting time distribution and the performance
measures are derived. The current problem is verified with some existing models through adding
and assuming some particular values. We illustrate the mean orbit size and mean waiting time of
customers during working vacation and regular service periods against the arrival rate of the
customers. This model’s results are very useful for better service management in various fields.
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Abstract

This article constructs a Repetitive Sampling Inspection Plan under Truncated life test (RSIPTL) when
the lifetime follows the One Parameter Polynomial Exponential (OPPE) family of distributions. In
RSIPTL, a lot can be accepted or rejected in the first, second, and so on, based on the number of defective
items in each sample. The OPPE has infinite support. It has transformed into its unit form to utilize finite
support, i.e., having the support (0, 1). The Lindley distribution, a particular choice of the OPPE, has
been studied in detail. We obtained the minimum number of items required in a lot to satisfy the consumer
risk. Extensive tables are prepared for easy understanding and use of the plan for industrial workers. The
RSIPTL is compared with a single sampling plan (SSP) and a two-stage reliability acceptance sampling
plan (TSRASP) for Lindley and Exponential distributions. Two data sets are discussed and comparative
statements are made with respect to the proposed plan.

Keywords: Consumer’s risk, Operating characteristic function, Scale-invariant family of distribu-
tions, Truncated life test, unit-Lindley distribution.

1. Introduction

When a product is prepared to be sold to a consumer, it is crucial to verify its quality. Because
reputation on the global market largely depends on product quality, it is imperative to confirm the
quality of each product. This means that the manufacturers should focus more on each product’s
quality. It is possible to use an acceptance sampling plan to guarantee the items’ quality. Several
types of acceptance sampling are there, like attribute sampling plans, variable sampling plans,
sequential sampling plans, etc. In these acceptance sampling plans, we aim to reduce sample
size and make decisions about the lot to protect both the producer and consumer interests. We
also know that any experiment is not free from error; here, we face two types of errors: 1st type
of error known as producer error(α), where a good lot can reject; 2nd type of error known as
consumer error (β), where a lousy lot can be accepted. So, in the sampling plan, we have to
minimize these risks.

In real-life experiments like in medical or life testing experiments, we can see two types of
censoring. In the first case, we fixed the time duration of the test, and in the second case, the
number of failures was fixed. To reduce the cost of the experiment and testing time, we performed
the 1st type of censoring, i.e., fixed the test duration. In the life testing process, researchers
truncated the testing procedure at a specific time to minimize the cost and time required for the
experiment. The product’s lifetime is the quality of interest in reliability acceptance sampling
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strategies. All consumers anticipate that their products will last for an extended period. In other
words, a product should be expected to last a long time. Furthermore, the buyer will accept the
goods with trust if it is demonstrated that their real life exceeds its stated lifetime. Because of
the expense and time involved, waiting until every sampled item fails in a life test is not ideal.
A time-truncated life test, which ends at a particular time, can be helpful in this situation to
guarantee a lifetime with the least amount of money and effort.

Many authors, including [10], [29], [12], [14], [13], [17], [24], [21], [1], [8], [2], [28], [4] proposed
acceptance sampling for truncated life tests. Few studies have been done on acceptance sampling
inspection plans assuming the Lindley distribution [see [22], [25]. [3] and [30] devised an
acceptance sampling technique based on the assumptions of a two-parameter Lindley distribution
and a truncated life test. [27] first designed the attribute repetitive sampling plan for normal
distribution. According to him, this sampling scheme gives producers and consumers the
minimum sample size and the required protection. He also said that a repetitive sampling plan
is more effective than a single one and less effective than a sequential one. [6] and[7] designed
the repetitive group sampling (RGS) plan for variable inspection. Some other authors have also
studied the design of RGS plans under various situations, including reliability concepts like [11],
[15], [16]. In this paper, we construct a repetitive sampling plan for One Parameter Polynomial
Exponential (OPPE) distribution.

Most works on repetitive sampling inspection plans for truncated life (RSIPTL) tests are done
for scale-invariant distributions. Minimum sample size (n) are determined for different times
per unit mean ( t

µ0
). Our study aims to determine the RSIPTL for the OPPE distribution and

compare it to that for the exponentially distributed quality characteristics. The OPPE distribution
does not belong to a scale-invariant family of distributions. Therefore, the utilization of time per
mean is beyond our scope. We may directly chalk the plan with plan parameters (n, c1, c2, t).
Since the OPPE distribution has support (0,∞), we may utilize it with the finite support by
transforming into its unit form, i.e., having the support (0,1) with the transformation V = e−T .
Using the unit-Lindley form, we make tables by choosing V and the mean µv in the interval (0,1).
Utilizing this benefit, we choose optimal (n, c1, c2) and then revert to plan parameter t from
the relation of the transformation. So, in a nutshell, our objective is to develop an RSIPTL for
the OPPE distributed quality characteristic. Based on the time-truncated life test, the plan saves
the organization’s time and cost while being very helpful in determining whether to accept or
reject a lot. The OC is derived for choosing the optimal plan based on the consumer’s confidence
level. Tables of minimum sample sizes are examples for easy understanding and execution of the
proposed plan. It is implemented for real-life experimental data, and the OC surface is depicted
to provide a clear picture of the plan.

The following is the arrangement of the rest of the paper. The OPPE and unit-OPPE distribu-
tions are described in section 2. Section 3 describes the sampling design, operating characteristics
function, and operating procedure. The sampling results for the Lindley and exponential distri-
butions, in particular, are presented in tabular form. Section 4 compares the sample size for the
repetitive, two-stage, and single-sampling plans. In section 5, we use the said sampling plan to
work on real-world data. Section 6 concludes.

2. The One Parameter Polynomial Exponential Distribution And Its Unit

Version

The probability density function (PDF) of a random variable T of the OPPE distribution can be
written as

fT(t; θ) = h(θ)p(t)e−θtt > 0, θ > 0, (1)
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where, h(θ) = 1
∑r

k=0 ak
Γ(k+1)
θk+1

, p(t) = ∑r
k=0 aktk, a′ks are known non-negative constants and r is known

non-negative integer. The distribution is also known as

fT(t, θ) = h(θ)
r

∑
k=0

aktke−θt

=
∑r

k=0 ak
Γ(k+1)

θk+1 fGA(t; k + 1, θ)

∑r
k=0 ak

Γ(k+1)
θk+1

, (2)

where fGA(t; k + 1, θ) is the PDF of a gamma distribution with shape parameter (k+1) and scale
parameter θ. The distribution is a finite mixture of (r+1) gamma distributions. The cumulative
density function (CDF) is given by

FT(t, θ) = 1 −

∑r
k=0

akΓ(k+1)Γ(k+1,θt)
θk+1

∑r
k=0 ak

k!
θk+1

 , t, θ > 0, (3)

where Γ(m, t) = 1
Γ(m)

∞∫
t

e−uum−1du.

The s-th order raw moment of OPPE is given by

µ′
s = E(Ts) =

∑r
k=0 ak

Γ(k+s+1)
θk+s+1

∑r
k=0 ak

Γ(k+1)
θk+1

. (4)

Now, if we take a transformation V= e−T , then the OPPE turns into unit-OPPE in the range of
(0,1). The PDF and CDF of unit-OPPE are given by,

fV(v, θ) = h(θ)
r

∑
k=0

ak(− ln v)kvθ−1

=
∑r

k=0 ak
Γ(k+1)

θk+1 fUGA(v; k + 1, θ)

∑r
k=0 ak

Γ(k+1)
θk+1

, 0 < v < 1, (5)

where fUGA(v; k + 1, θ) = θk+1

Γ(k+1) (− ln v)k+1vθ−1 is the PDF of the unit-gamma distribution with
shape parameter (k+1) and scale parameter θ, and

Fv(v, θ) = 1 −

∑r
k=0

akΓ(k+1)Γ(k+1,−θlnv)
θk+1

∑r
k=0 ak

k!
θk+1

 , 0 < v < 1, θ > 0, (6)

respectively.
The s-th order raw moment of unit-OPPE is given by

µ′
s = E(Vs) =

∑r
k=0 ak

Γ(k+1)
(s+θ)k+1

∑r
k=0 ak

Γ(k+1)
θk+1

. (7)

The Lindley distribution (for r=1,a0 = a1 = 1), introduced by [9] to analyze failure time data, has
the PDF, CDF, and hazard rate function (HRF) as

fT(t; θ) =
θ2

θ + 1
(1 + t)e−θt t > 0, θ > 0, (8)

FT(t; θ) = 1 − 1 + θ + θt
θ + 1

e−θt (9)
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and

hT(t; θ) =
θ2(1 + t)
1 + θ + θt

t > 0, θ > 0, (10)

respectively.

The mean of the random variable T is

µ =
θ + 2

θ(1 + θ)
. (11)

The unit-Lindley distribution with parameter θ has the PDF , CDF and HRF respectively , as
follows:

f (v; θ) =
θ2

1 + θ
(1 − logv)

(
vθ−1

)
0 < v < 1, θ > 0, (12)

F(v; θ) =
vθ(1 + θ(1 − logv))

1 + θ
0 < v ≤ 1, θ > 0, (13)

h(v; θ) =
θ2(1 − logv)

v(θlogv − (1 + θ)(1 − v−θ))
0 < v < 1, θ > 0. (14)

We will choose the exponential distribution and its corresponding unit version for comparison
purposes. The unit version of the exponential distribution with parameter θ has the PDF, CDF,
and HRF as

fv(v, θ) = θvθ−1, 0 < v < 1, θ > 0, (15)

Fv(v, θ) = vθ , 0 < v ≤ 1, θ > 0, (16)

hv(v, θ) =
θvθ−1

1 − vθ
, 0 < v < 1, θ > 0, (17)

respectively. In this case , µv = θ
1+θ implying θ = µv

1−µv
.

3. Sampling Process of Repetitive Sampling Inspection Plan under

Truncated life test (RSIPTL) for OPPE distribution

According to the product’s mean life, this sampling plan labels a lot (of products) as good or
bad. The RSIPTL has the plan parameters n, c1, c2, and t. Engineers and practitioners use the
tabulated value or algorithm to implement the plan properly. Tables are presented for fixed
t and c1, c2, the optimal value of n. Since the value of t ∈ (0, ∞), fixing t is tedious, whereas
choosing v ∈ (0, 1) is easy and comprehensive.

3.1. Design of the sampling plan

A product is defective if it fails before truncation time v. The fraction defective, i.e., the probability
that a product is defective, is

p(v) = F(v; θ) = 1 −

∑r
k=0

akΓ(k+1)Γ(k+1,vθ)
θk+1

∑r
k=0 ak

k!
θk+1

 , 0 < v < 1, θ > 0. (18)

In particular, for the unit-Lindley distribution,

p(v) = F(v; θ) =
vθ(1 + θ(1 − logv))

1 + θ
0 < v < 1, θ > 0. (19)

In this equation, we replace the shape parameter θ as the function of the product’s mean life (µ).
We can say that θ = g(µ), and we get the value of θ by solving the equation by numerical method,
and hence we have p(v) = F(v, µv).
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The Operating Characteristic (OC) function, i.e., the probability of accepting the lot according to
the RSIPTL plan (also see [27]), is

L(p) =
Pa

Pr + Pa
(20)

and the average sample number (ASN) of RSP is obtained as

ASN =
n

Pr + Pa
(21)

where the lot acceptance probability is

Pa =
c1

∑
i=0

(
n
i

)
pi(1 − p)n−i, (22)

The lot rejection probability is

Pr = 1 −
c2

∑
i=0

(
n
i

)
pi(1 − p)n−i, (23)

where p=F(v, µv).

3.2. Sampling Procedure

We propose the sampling procedure as follows.

1. Put n items in the test for t0 times.

2. Count the number of defectives (d) and, if the number of defectives is less than or equal
to the acceptance number, c1, then accept the lot. If the number of defectives exceeds the
acceptance number, c2, then reject the lot.

3. If c1 < d ≤ c2, then repeat the test.

The triplet (n, c1, c2) is the plan parameters of the proposed plan, which are to be estimated. The
minimum sample size n is estimated subject to constraints

L(p) ≤ 1 − P∗, (24)

0 ≤ c1 < c2, (25)

n > 1, c1, c2 are integers. (26)

3.3. Sampling plan result

The minimum values of n satisfying the inequality are obtained and shown in Tables 1-4 for the
unit-Lindley (Lindley) and that for the unit-exponential (exponential) in Tables 5-6 for P∗= 0.95
and 0.99, and the truncation time t = 2, 3, 4, 5 and µ0 = 2, 3, 4, 5.
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Table 1: Determination of optimal sample size for Lindley set up

P∗ = 0.95, c1 = 1, c2 = 2
µ0

v(µ0)|v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3002(2) 4 6 7 9
0.2065(3) 3 4 5 6
0.1515(4) 3 3 4 4
0.1162(5) - 3 3 4

P∗ = 0.95, c1 = 1, c2 = 3
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 5 6 7 10
0.2065(3) - 4 5 6
0.1515(4) - - 4 5
0.1162(5) - - - 4

P∗ = 0.95, c1 = 1, c2 = 4
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 5 6 8 10
0.2065(3) - 5 6 7
0.1515(4) - - - 5
0.1162(5) - - - -

Table 2: Determination of optimal sample size for Lindley set up

P∗ = 0.95, c1 = 2, c2 = 3
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3002(2) 6 8 9 11
0.2065(3) 5 6 7 8
0.1515(4) - 5 5 7
0.1162(5) - - 5 7

P∗ = 0.95, c1 = 2, c2 = 4
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 6 8 9 12
0.2065(3) - 6 7 8
0.1515(4) - - 6 6
0.1162(5) - - - -

P∗ = 0.95, c1 = 3, c2 = 4
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 7 9 11 14
0.2065(3) 7 7 9 10
0.1515(4) - - 7 8
0.1162(5) - - - 7
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Table 3: Determination of optimal sample size for Lindley set up

P∗ = 0.99, c1 = 1, c2 = 2
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 5 7 9 11
0.2065(3) 4 5 6 7
0.1515(4) 4 4 5 6
0.1162(5) 3 4 4 5

P∗ = 0.99, c1 = 1, c2 = 3
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 5 7 9 11
0.2065(3) 4 5 6 7
0.1515(4) 4 4 5 6
0.1162(5) - 4 4 5

P∗ = 0.99, c1 = 1, c2 = 4
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 6 7 9 11
0.2065(3) 5 6 7 8
0.1515(4) - 5 5 6
0.1162(5) - - 5 5

Table 4: Determination of optimal sample size for Lindley set up

P∗ = 0.99, c1 = 2, c2 = 3
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 7 9 10 16
0.2065(3) 6 7 8 9
0.1515(4) 5 6 6 7
0.1162(5) 5 5 6 8

P∗ = 0.99, c1 = 2, c2 = 4
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 7 9 12 17
0.2065(3) 6 7 8 10
0.1515(4) - 6 7 7
0.1162(5) - - 6 6

P∗ = 0.99, c1 = 3, c2 = 4
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3001(2) 9 11 14 18
0.2065(3) 7 9 10 12
0.1515(4) 7 7 8 9
0.1162(5) - - 7 8
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Table 5: Determination of optimal sample size for Exponential set up

P∗ = 0.95, c1 = 1, c2 = 2
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3334(2) 12 20 34 58
0.25(3) 8 12 17 24
0.2(4) 6 9 12 15

0.1667(5) 6 7 9 12
P∗ = 0.95, c1 = 1, c2 = 3

µ0
v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)

n n n n
0.3334(2) 12 21 36 60

0.25(3) 8 12 18 25
0.2(4) 7 9 12 16

0.1667(5) 6 8 10 12
P∗ = 0.95, c1 = 1, c2 = 4

µ0
v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)

n n n n
0.3334(2) 13 22 38 74

0.25(3) 8 13 19 27
0.2(4) 7 10 13 17

0.1667(5) 6 8 10 13

Table 6: Determination of optimal sample size for Exponential set up

P∗ = 0.95, c1 = 2, c2 = 3
µ0

v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)
n n n n

0.3334(2) 16 27 46 76
0.25(3) 11 16 23 32
0.2(4) 9 12 16 21

0.1667(5) 7 10 12 16
P∗ = 0.95, c1 = 2, c2 = 4

µ0
v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)

n n n n
0.3334(2) 16 28 47 78

0.25(3) 11 16 23 33
0.2(4) 9 12 16 21

0.1667(5) 8 10 13 16
P∗ = 0.95, c1 = 3, c2 = 4

µ0
v(µ0)v(t) 0.1353(2) 0.0498(3) 0.0183(4) 0.0067(5)

n n n n
0.3334(2) 19 33 56 94

0.25(3) 13 19 28 40
0.2(4) 11 14 19 25

0.1667(5) 9 12 15 19

Few observations:

1. If c1 increases, the sample size increases. For example, Tables 1 and 2.

2. If c2 increases, the sample size decreases. For example, Tables 1 and 2.
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3. If the confidence level increases, the sample size increases. For example, Tables 1 and 3.

4. The sample required is less in this plan for the Lindley distributed quality characteristic
than the exponential one. For example, Tables 2 and 6.

4. Comparison of sample sizes among different sampling plans

We compared this RSIPTL with a single sampling plan (SSP) and two-stage reliability acceptance
sampling plan (TSRASP) at a fixed time point 5, 10, and 15 and mean lives at 5, 10, and 15,
respectively, for Lindley and Exponential distributions. The optimal sample size comparison for
confidence level P∗ = 0.95 is shown in Table 7. It is observed that RSIPTL has a smaller sample
size than others if it exists for a specified confidence level. Moreover, the sample sizes for the
Lindley distribution are less than that of the exponential distribution.

Table 7: Optimal Sample Size Comparison for Different Sampling Plans

P∗ = 0.95
RSIPTL TSRASP SSP

Distribution µ 6.74 × 10−3(5) 6.74 × 10−3(5) 6.74 × 10−3(5)
n c1 c2 n c1 c2 n c

Lindley 0.1162(5) 3 0 2 4 0 2 5 2
0.0447(10) - 0 2 - 0 2 4 2
0.0236(15) - 0 2 - 0 2 3 2

Exponential 0.1667(5) 8 0 2 9 0 2 15 2
0.0909(10) 4 0 2 8 0 2 8 2
0.0625(15) 4 0 2 6 0 2 7 2

Distribution µ 4.54 × 10−5(10) 4.54 × 10−5(10) 4.54 × 10−5(10)
n c1 c2 n c1 c2 n c

Lindley 0.1162(5) 4 0 2 6 0 2 8 2
0.0447(10) - 0 2 - 0 2 4 2
0.0236(15) - 0 2 - 0 2 4 2

Exponential 0.1667(5) 24 0 2 52 0 2 45 2
0.0909(10) 8 0 2 14 0 2 15 2
0.0625(15) 5 0 2 10 0 2 10 2

Distribution µ 3.059 × 10−7(15) 3.059 × 10−7(15) 3.059 × 10−7(15)
n c1 c2 n c1 c2 n c

Lindley 0.1162(5) 6 0 2 8 0 2 12 2
0.0447(10) - 0 2 - 0 2 5 2
0.0625(10) - 0 2 - 0 2 4 2

Exponential 0.1667(5) 67 0 2 150 0 2 197 2
0.0909(10) 14 0 2 26 0 2 34 2
0.0625(15) 8 0 2 14 0 2 8 2

5. Real-life data analysis

This section considers two cited data sets for applying the proposed RSIPTL under the exponential
and Lindley setup. Since these are cited data sets, the sample sizes are known. Therefore, we have
found out optimal (c1, c2) for given n and P∗ and decision tables are shown different choices of
v(t) and µ0

v(µ0).
Using the maximum likelihood technique, we estimate the parameters of the distributions.

The trial-and-error method determines the non-negative constants ai of the OPPE. The selection
criteria for each data set is Akaike’s Information Criterion (AIC = −2 log−likelihood + 2k, where
k is the number of parameters in the model). The lower the value of AIC, the better the model fit.
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The goodness-of-fit of the distribution to a data set is made through Kolmogorov-Smirnov (K-S)
test.

Data set 1: Let us consider data on the mileages at which 19 military personnel carriers failed
in service. There is no censoring, and the mileages are ([19], page 194) 162, 200, 271, 320, 393,
508, 539, 629, 706, 777, 884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880. Table 8 shows that the
Lindley distribution better fits the data based on the AIC value and the p-value. It is reflected in
the Histogram, fitted distributions, and the P-P plot in Figure 1.

Table 8: Comparison of Exponential and Lindley Distribution for Data Set 1.

Distribution Estimate of θ Negative Log-likelihood AIC K-S Statistic p-value
Exponential 0.001000977 150.2123 302.4247 0.14983 0.7328

Lindley 0.0020019 148.4087 298.8174 0.075969 0.9995

The failure times of the military carriers are 400,800,1600 and 2400. To make the decision
table, we select the specified mean life as 400, 800, 1600, and 2400. The average failure time of the
military carriers is 998.1579. To find the optimal c1 and c2 (the acceptance and rejection number
of items for a lot), Table 9 and 10 are constructed for the Lindley and exponential distributions.
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Figure 1: Histogram, fitted distributions, and P-P plot for Data Set 1.

If d ≤ c1, we accept the lot; if d > c2, we reject the lot, and if d lies between c1 and c2, we
repeat the plan until we get any result. In table 9, we choose a failure time point 1600 and a
specified mean life of 800. Since the number of defective, d = 10 and c1=10, we accept the lot.
The OC surface of RSIPTL under Lindley set up has been shown in Figure 2 for n=19, c1 = 12,
c2 = 14.
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Figure 2: OC surface of RSIPTL under Lindley set up for n=19, c1 = 12, c2 = 14

Data set 2: Sixteen units are drawn randomly from a population and put on a time-truncated
life test. After testing for 92 hours, which is prespecified, the test is terminated, by which time 15
fail. The failure times, in hours, are 13.4, 14.2, 28.8, 29, 29.8, 33, 37.8, 39.6, 43.4, 49.8, 54.8, 58.2,
70.2, 91.2, from [18]. Table 11 indicates the OPPE (a0 = 9, a1 = 4, a2 = 0.1) distribution better fits
the data. Histogram, fitted distributions, and P-P plot in Figure 3 are in the same tune.

Table 11: Comparison of Exponential and OPPE (a0 = 9, a1 = 4, a2 = 0.1) Distribution for Data Set 2.

Distribution Estimate of θ Negative Log-likelihood AIC K-S Statistic p-value
Exponential 0.02359375 66.45064 134.9013 0.35038 0.04846

OPPE(9,4,0.1) 0.05615 62.82411 127.64822 0.24319 0.3246

To make the decision table, we select the specified mean life as 20,40,60,80. The average failure
time is 42.37143. To find the optimal c1 and c2 , table 12 and 13 are constructed for the OPPE
(a0 = 9, a1 = 4, a2 = 0.1) and exponential distributions. In table 13, if we choose a failure time
point 20 and specified mean life 40, we can say that the lot is accepted because d (=8) is less than
c1(= 10). The OC surface of RSIPTL under OPPE (a0 = 9, a1 = 4, a2 = 0.1) set up has been
shown in Figure 4 for n=15, c1 = 7, c2 = 9.

For all these data sets, the RSIPTL under the exponential set-up, the optimal sample sizes are
enormous and are not recommended from an economic point of view.
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Figure 3: Histogram, fitted distribution, and P-P plot for data set 2
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Figure 4: OC surface of RSIPTL under OPPE (a0 = 9, a1 = 4, a2 = 0.1) set up for n=15, c1 = 7, c2 = 9

6. Concluding remarks

This article proposes a Repetitive Sampling Inspection Plan under Truncated life test (RSIPTL)
when the lifetime follows the One Parameter Polynomial Exponential (OPPE) family of distri-
butions. It is a more general setup than a two-stage reliability acceptance sampling plan, where
a lot can be accepted or rejected based only on the first or second sample. Since the OPPE has
infinite support, it has transformed into its unit form to utilize finite support, i.e., having the
support (0, 1) for preparing tables for industrial workers to determine optimal sample sizes. The
Lindley distribution, a particular choice of the OPPE (r = 1, a0 = a1 = 1), has been studied in
detail. The Lindley distribution does not belong to the scale-invariant family, whereas the works
so far on RSIPTL are chalked out for the scale-invariant family in the literature. The optimal
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plan parameters are estimated by transforming the Lindley distribution into its unit form. A
few representative examples are presented for an easy and comprehensive understanding of
the scientists and quality practitioners for implementation to find the optimal sample size of
the lot to satisfy the consumer risk. Two data sets are analyzed to implement the proposed
plan and compared with the widely used exponential model. The approach may be adopted to
construct RSIPTL for other lifetime quality characteristic distributions that do not belong to the
scale-invariant family.
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