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Abstract 

 

Accurate and early diagnosis of Alzheimer’s Disease (AD) is crucial for effective intervention and 

treatment. This study presents a Convolutional Neural Network (CNN)-based approach for the 

classification of brain MRI images into four categories: Mild Demented, Moderate Demented, Non-

Demented, and Very Mild Demented. To address the challenges of class imbalance inherent in the 

dataset, we employed class weighting and focal loss during training. Class weighting ensured that 

underrepresented classes received adequate attention, while focal loss emphasized harder-to-classify 

examples, resulting in improved model performance on minority classes. The model achieved 

remarkable results, with an accuracy of 97.66%, precision of 97.66%, recall of 97.66%, F1-score of 

97.66%, specificity of 98.98%, and Cohen's Kappa of 96.14%, indicating a robust performance across 

all metrics. A comparative analysis with state-of-the-art methods demonstrated that our approach 

outperformed many existing models, including Siamese CNNs, 3D DenseNet ensembles, and other 

transfer-learning-based techniques. The ROC-AUC analysis further highlighted the model's ability 

to distinguish between classes with near-perfect curves for all categories. These results underscore 

the effectiveness of combining CNN architectures with class imbalance-handling strategies for 

medical image classification. The proposed method holds promise for improving diagnostic accuracy 

and early detection in AD, thereby supporting clinical decision-making. 
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I. Introduction 
 

Neurological disorders (NLD) impact the central nervous system, including the brain, spinal 

cord, and nerves (both cranial and peripheral). Even slight disruptions in the functioning of these 

critical systems can lead to severe physiological conditions. Alzheimer’s disease (AD) is one 

prominent example of an NLD, currently affecting 55 million people worldwide, as highlighted in 

the latest World Alzheimer Report [1], [2]. This figure is projected to rise to 139 million by 2050, 

according to the World Health Organization (WHO). Additionally, dementia, which includes AD, 

incurs an annual global cost of $1.3 trillion as of 2019—a figure expected to exceed $2.8 trillion by 

2030 due to the aging population. Every three seconds, someone develops dementia, underscoring 

its significant global impact[1]. As one of the leading causes of death worldwide, AD is an incurable, 

progressive, and life-altering neurodegenerative condition. Within the brain cells, protein 
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structures—referred to as plaques and tangles—gradually degrade when impacted by AD. This 

protein damage results in a substantial decline in cognitive abilities, ultimately causing significant 

impairments in both personal and social aspects of life[2], [3] . 

Alzheimer's disease significantly impacts individuals, leading to memory impairment, 

behavioral disturbances, and various physical challenges, including difficulties with vision and 

mobility. One of the primary obstacles to early detection is the general lack of public awareness 

about the disease[2]. This often results in cognitive decline and associated behaviors being 

misinterpreted as typical aspects of aging or symptoms of other psychiatric conditions. Additionally, 

issues such as geographical isolation, a shortage of trained caregivers, and limited access to 

specialists and advanced diagnostic tools exacerbate the challenges faced by patients [1]. These 

barriers can severely affect their ability to maintain independence in daily and social activities. 

Therefore, early detection of AD is crucial to alleviate the burden on patients and their families. 

Alzheimer's disease is primarily diagnosed through observation of patient symptoms, a process 

that can often take years to confirm [4]. However, advances in diagnostic research have identified 

several biomarkers, such as Magnetic Resonance Imaging (MRI), Positron Emission Tomography 

(PET), Computed Tomography (CT), and blood tests that support early detection. When integrated 

with Artificial Intelligence (AI), these biomarkers enable healthcare professionals to achieve more 

precise diagnoses and improve patient care. Machine learning (ML) classifiers have been widely 

adopted across healthcare, demonstrating significant effectiveness in AD classification [2]. In recent 

years, Deep learning (DL) techniques have become increasingly prominent in the healthcare field 

due to their ability to develop accurate end-to-end models using complex datasets [5]. This surge in 

DL applications has revolutionized the identification of neurological disorders, including AD, by 

enhancing diagnostic accuracy. Coupling DL with neuroimaging has provided critical insights into 

brain activity and associated disorders [6]. Various computer-aided diagnosis (CAD) systems have 

been proposed for predicting AD using neuroimaging techniques like functional MRI (fMRI), 

structural MRI (sMRI), and PET. Structural MRI, in particular, provides crucial details such as brain 

white matter (WM), gray matter (GM), cortical thickness, and volumetric measurements. These 

metrics are essential for assessing the neurodegenerative processes that contribute to AD. By 

enhancing high-resolution imaging data and the robust feature extraction capabilities of DL, 

clinicians can make informed decisions about complex AD cases. 

To classify the imbalanced classes MildDemented, ModerateDemented, NonDemented, and 

VeryMildDemented, a comparison was made between a standard Convolutional Neural Network 

(CNN) model and a ResNet-based transfer learning approach using an MRI dataset sourced from 

Kaggle [7]. While CNNs are capable of extracting spatial features, ResNet's residual learning 

framework allows deeper network architectures, addressing vanishing gradient issues and making 

it well-suited for handling complex neuroimaging datasets[8]. To address the class imbalance 

inherent in the dataset, a combination of class weighting and focal loss was utilized. Class weights 

were assigned inversely proportional to the class frequencies, ensuring better representation of 

minority classes. Focal loss further emphasized hard-to-classify samples, reducing the dominance of 

well-classified instances during training[9]. This dual approach enhanced the model's ability to 

handle imbalanced data. Moreover, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 

Open Access Series of Imaging Studies (OASIS) datasets, recognized for their comprehensive 

neuroimaging data, provided the foundational context for this work, emphasizing the importance 

of MRI-based analysis in Alzheimer's disease classification [10], [11]. Results demonstrated that 

ResNet outperformed the standard CNN model, enhancing transfer learning to extract high-level 

features and achieve better generalization across imbalanced classes. 

The objective of this study is to explore and evaluate the use of a Kaggle-sourced dataset for 

Alzheimer's disease classification, conducting a comparative analysis of different modeling 

approaches alongside experiments to validate the effectiveness of the implemented techniques. The 
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following are the key contributions of this work: 

1. A comparative analysis of CNN architectures, evaluating their effectiveness in classifying 

imbalanced classes of Alzheimer's disease stages using the Kaggle dataset. 

2. Implementation of a combined approach utilizing class balancing and focal loss to address 

class imbalance, enhancing the model's ability to accurately classify minority classes. 

Comprehensive evaluation of the proposed methods on the Kaggle MRI dataset, providing 

insights into their practicality and performance in real-world Alzheimer's disease classification 

scenarios. 

 

II. Related Works 
 

Recent advancements in neuroimaging and machine learning have enabled significant progress 

in Alzheimer's disease diagnosis and classification. Numerous studies have explored the use of deep 

learning models, such as CNNs and transfer learning-based architectures, to analyze neuroimaging 

data and address challenges like class imbalance and feature extraction. 

[4] proposed a Siamese Convolutional Neural Network (SCNN) using a triplet-loss function to 

generate k-dimensional embeddings of MRI images for 4-way Alzheimer's Disease classification. 

Both pre-trained and non-pretrained CNNs were utilized for embedding generation. The model 

achieved accuracies of 91.83% on the ADNI dataset and 93.85% on the OASIS dataset, outperforming 

comparable methods in the literature. 

[6] proposed a 3D DenseNet ensemble achieved 83.33% accuracy in 4-way classification using 

the ADNI dataset, distinguishing AD, healthy controls, EMCI, and LMCI. Dense connections and a 

probability-based fusion method enhanced feature extraction and improved performance over state-

of-the-art models. 

[12] utilized VGG16, Xception, and a customized CNN model with transfer learning to classify 

four stages of Alzheimer's Disease using 2D MRI images. The customized CNN achieved superior 

performance, with 94.77% accuracy and an F1-score of 0.9481. This approach demonstrated 

improved efficiency and reduced complexity compared to 3D MRI-based CNN models and 

conventional SVM techniques. 

[13] introduced a swarm multi-verse optimizer with a deep neuro-fuzzy network 

(CSMVO + DNFN) for Alzheimer's Disease classification using MRI. Preprocessing involved a 
median filter, followed by segmentation with a channel-wise feature pyramid network module 

(CFPNet-M). Extracted features included Haralick, CNN, and texture attributes. The model achieved 

89.9% accuracy, 89.6% sensitivity, and 87.0% specificity, demonstrating efficiency in classifying AD 

stages. 

[14] investigated automated pre-detection of Alzheimer's Disease symptoms using the ADNI 

dataset. An initial experiment employed SVM for AD detection, achieving 84.4% accuracy, 95.3% 

sensitivity, and 71.4% specificity. Due to suboptimal results, a CNN-based approach was explored, 

incorporating various image segmentation methods. The best segmentation method achieved 96% 

accuracy, 96% sensitivity, and 98% specificity, highlighting the potential of deep learning for early 

AD diagnosis. 

[15] purposed ensemble transfer-learning techniques for early Alzheimer's Disease diagnosis 

using structural brain MRI from the ADNI dataset. They compared an ensemble of five pretrained 

architectures, a 3D CNN trained from scratch, and a fusion of conventional SVM-based classifiers. 

The transfer-learning ensemble achieved 90.2% AUC for AD vs. CN, 83.2% for MCIc vs. CN, and 

70.6% for MCIc vs. MCInc, performing slightly lower than the SVM-based fusion. The 3D CNN 

underperformed due to limited training data, highlighting transfer learning's potential in generic 

image pretraining for neuroimaging tasks. 
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III. Materials and methods 
 

In this study, a Convolutional Neural Network (CNN) model was employed for classifying 

Alzheimer's disease into four classes (NonDemented, VeryMildDemented, MildDemented, and 

ModerateDemented) using an imbalanced MRI dataset sourced from Kaggle shown in figure 1.  

 

 

 

 

  

 

  

Figure 1: Show sample images from each of the four imbalance classes 

 

To address the imbalance issue, a combination of class weighting and focal loss was integrated 

into the model training process. The dataset was preprocessed by resizing all images to a uniform 

size of 128×150×3 pixels from the original size 176x208x3, ensuring compatibility with the CNN 

model. Training and validation datasets contained 5,119 for training and 1,281 for validation images, 

respectively, distributed across the four classes shown in Figure 2. 

 

 
 

Figure 2: The purpose model using CNN with Class weights and Focal Loss 

 

The class distribution of training and validation datasets for four classes: VeryMildDemented, 

NonDemented, ModerateDemented, and MildDemented. The training dataset is significantly 

imbalanced, with the majority class being NonDemented (2560 images) and the minority class being 

ModerateDemented (51 images). Similarly, the validation dataset shows a similar imbalance, with 

NonDemented having the highest count (640 images) and ModerateDemented the lowest (13 

images) as depicted in Figure 2. This imbalance highlights the need for techniques like class 

weighting and focal loss to improve model performance. 

Non Demented Very Mild Demented Mild Demented Moderate Demented 
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Figure 3: Show the different class distribution of training and validation datasets 

 

The class weights computed to address the class imbalance in the dataset. The weight for 

Moderate Demented is the highest at 25.09, as it is the most underrepresented class. In contrast, Non-

Demented has the lowest weight (0.50), reflecting its dominance in the dataset. These weights ensure 

that the model pays proportionally more attention to minority classes during training Figure 3. 

Additionally, a focal loss function is employed to further handle the class imbalance. Focal loss 

dynamically scales the standard cross-entropy loss by focusing more on hard-to-classify examples. 

It does so by down-weighting the loss for well-classified samples (where the predicted probability 

is high) and up-weighting the loss for misclassified ones. This is controlled by parameters alpha 

(0.25) and gamma (2.0). Combining class weights and focal loss enhances the model's ability to learn 

from imbalanced data effectively. 

 

 
Figure 4: Show the weighted class value distributions for the imbalance class 

 

The spatial dimensions of the input image (150×128×3) evolve through each layer of the CNN 

model up to the flatten layer. The first convolution reduces the dimensions to 148×126×32, followed 

by max pooling, which downsamples it to 74×63×32. The second convolution further reduces it to 

72×61×64, and another pooling layer brings it to 36×30×64. Finally, the Flatten layer reshapes this 3D 

tensor into a 1D vector of size 69,120, which serves as the feature input for fully connected layers. 

After the feature input first dense layer is a fully connected layer with 128 neurons and ReLU 

activation, enabling the model to learn complex features. A dropout layer with a 50% rate is applied 
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next to prevent overfitting by randomly dropping connections during training. Finally, the output 

layer is a fully connected layer with neurons equal to the number of classes (4 in this case) and 

softmax activation to produce class probabilities for multi-class classification. 

 

IV. Results 
 

The Results section presents the evaluation of the proposed model's performance, highlighting 

its ability to address the challenges posed by the imbalanced medical image dataset. Key metrics 

such as accuracy, precision, recall, F1 score, specificity, and Cohen's kappa are analyzed to 

demonstrate the effectiveness of the CNN based approach with class balancing and focal loss model. 

These metrics rely on the confusion matrix, which summarizes the performance of a classification 

model using the following components: True Positives (TP), True Negatives (TN), False Positives 

(FP), False Negatives (FN). 

1.Performance Analysis 

Accuracy: Accuracy measures the proportion of correctly classified instances out of the total 

instances shown in equation(i). 

                                   Accuracy (ACC) = (Tp+Tn)/ (Fp + Fn + Tp + Tn)                               (1) 

Precision (Positive Predictive Value): Precision indicates the proportion of true positive 

predictions out of all positive predictions shown in equation(ii). 

                                                                 Precision = Tp/(Tp+Fp)                             (2) 

Recall (Sensitivity or True Positive Rate): Recall shows the proportion of actual positives 

correctly identified shown in equation(iii). 

                                                   Sensitivity (Recall) =Tp/(Tp+Fn)                            (3) 

F1-score: F1-score combines precision and recall into a single metric, emphasizing their 

harmonic mean shown in equation(iv). 

                                                F 1 – Score = 2 * Tp/2*(Tp + Fp + Fn)                        (4)     

Specificity (True Negative Rate): Specificity measures the proportion of actual negatives 

correctly identified in equation(v). 

                                                                 Specificity = Tn/ (Tn+Fp)               (5) 

Cohen's Kappa: It relies on observed and expected agreements, accounting for randomness in 

predictions. 

                                                                     Kappa=po− pe / 1 – pe                                           (6)  

Where:  

po = observed agreement (accuracy) 

pe = expected agreement (calculated based on random chance) 

Indicates the level of agreement between predictions and ground truth, accounting for chance 

agreement. 

2. CNN with class balancing and focal loss 

The model employs a CNN architecture integrated with class balancing techniques and focal 

loss, ensuring robust learning even in the presence of class imbalances. The plots demonstrate the 

training and validation performance of the model in Figure 4. The loss curve indicates a consistent 

decrease in training and validation loss, confirming the model's ability to learn effectively. The 

accuracy curve highlights a steady improvement in accuracy for both training and validation 

datasets, demonstrating good generalization without overfitting. The model was compiled using the 

focal loss function with parameters α=0.25 and γ=2.0, specifically designed to address class 
imbalance by focusing more on hard-to-classify samples. 
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Figure 5: Show the Performance Analysis of Loss and Accuracy Over Epochs using CNN 

 

An Adam optimizer with a learning rate of 0.001 was used, enabling adaptive learning. Training 

was performed with a batch size of 32 and incorporated early stopping with a patience of 10 epochs, 

ensuring the model did not overtrain while restoring the best weights. Additionally, class weights 

were applied to further handle the class imbalance effectively. 

 

 
Figure 6: Confusion matrix of the four classes’ datasets 

 

The performance metrics of the trained CNN model, evaluated on the test dataset, are shown 

in Figure 6. The model achieved exceptional accuracy (97.66%) in classifying the data, demonstrating 

its robustness and reliability. Precision, recall, and F1-score are all equally high at 97.66%, indicating 

a balanced performance in identifying both positive and negative cases accurately. Specificity, at 

98.98%, highlights the model's ability to correctly identify true negatives, which is crucial for 

avoiding false positives in medical diagnoses. The Cohen's kappa score of 0.9614 further confirms 

strong agreement between the predicted and true labels, accounting for chance agreement. These 

results showcase the effectiveness of using focal loss and class balancing strategies in enhancing the 

model's performance on imbalanced datasets. 
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Figure 7: The performance of CNN model with utilizing class balancing and focal loss. 

 

The ROC AUC curve shows the model's exceptional performance in distinguishing between 

the four classes: "Mild Demented," "Moderate Demented," "Non-Demented," and "Very Mild 

Demented." Each curve represents the one-vs-all ROC for a class, with AUC scores above 0.99 for all 

classes, indicating near-perfect classification as shown in Figure 7.  

 

 
Figure 8: The ROC AUC curve of the four AD classes 

 

The "Moderate Demented" class achieves a perfect AUC of 1.0, while the other classes—though 

slightly lower—still display excellent discrimination. The curves are close to the top-left corner, 

reflecting a high true positive rate (TPR) and low false positive rate (FPR) for each class. This 

validates the model's robustness, even with class imbalance, confirming its suitability for this multi-

class classification task. 

V. Discussions 
 

In this study, a Convolutional Neural Network (CNN) was employed to classify brain MRI 

images into four classes: "Mild Demented," "Moderate Demented," "Non-Demented," and "Very 
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Mild Demented." Addressing the challenge of class imbalance, we integrated class weighting and 

focal loss into the training process. Class weighting ensured that underrepresented classes received 

higher penalties during misclassification, thereby guiding the model to pay balanced attention to all 

classes. Meanwhile, focal loss effectively reduced the impact of easy-to-classify samples and focused 

on harder examples, further enhancing the model's performance on minority classes. 

 

Table 1: Comparing of the combining CNN with class weighting and focal loss with other approaches 

Study Model/Method Dataset Accuracy Key Features 

[4] Siamese 

Convolutional 

Neural Network 

(SCNN) with triplet-

loss 

ADNI, 

OASIS 

91.83% (ADNI), 

93.85% (OASIS) 

Generated k-

dimensional 

embeddings with pre-

trained and non-

pretrained CNNs for 

robust classification. 

[6] 3D DenseNet 

Ensemble 

ADNI 83.33% Used dense 

connections and 

probability-based 

fusion for better 

feature extraction. 

[12] Customized CNN 

with Transfer 

Learning 

OASIS 94.77% Outperformed 

traditional 3D CNN 

and SVM models; 

focused on efficiency 

with 2D MRI. 

[13] CSMVO + DNFN 

(Swarm Multi-Verse 

Optimizer with 

Deep Neuro-Fuzzy 

Network) 

Unspecified 89.90% Integrated 

segmentation and 

advanced feature 

extraction (Haralick, 

CNN, texture 

features). 

[14] CNN with 

optimized 

segmentation 

methods 

ADNI 96.00% Improved pre-

detection of AD 

symptoms with 

segmentation 

techniques. 

[15] Ensemble transfer-

learning methods 

ADNI 90.20% (AUC) Used pretrained 

architectures and 

conventional SVM-

based classifiers for 

early diagnosis. 

Our 

Model 

CNN with weighted 

class and focal loss 

OASIS 

(kaggle) 

97.66% Balanced class 

performance using 

weighted loss and 

focal loss for 

imbalanced datasets. 

From the comparison, it is evident that the proposed CNN model achieves a superior accuracy 

of 97.00%, outperforming many state-of-the-art methods such as the Siamese CNN in [4] and the 

customized CNN in [12]. This improvement can be attributed to the integration of class weighting 

and focal loss, which effectively addressed the class imbalance challenge. Additionally, the proposed 

method demonstrated consistent performance across all classes, as seen in the ROC AUC curves, 
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further validating its robustness. While segmentation techniques in [14] achieved slightly higher 

accuracy, the complexity of preprocessing makes our method more efficient and easier to implement 

in real-world scenarios. 

 

VI. Conclusions 
 

In this study, we proposed a CNN model integrated with class weighting and focal loss to 

address the challenges of class imbalance in the classification of brain MRI images into four stages 

of Alzheimer’s Disease: Mild Demented, Moderate Demented, Non-Demented, and Very Mild 

Demented. The performance metrics of the model, as depicted in the bar chart, demonstrate 

exceptional results across all key measures: accuracy (97.66%), precision (97.66%), recall (97.66%), 

F1-score (97.66%), specificity (98.98%), and Cohen's Kappa (96.14%). These high values indicate the 

model's robustness in correctly identifying all classes, even in the presence of imbalanced data. 

By enhancing class weighting, the model ensured that underrepresented classes were 

prioritized during training, minimizing the risk of bias towards majority classes. The incorporation 

of focal loss further enhanced the model's ability to focus on harder-to-classify samples, improving 

performance on minority classes. Compared to state-of-the-art methods, the proposed approach 

achieves competitive or superior performance while maintaining simplicity and computational 

efficiency. These results underscore the potential of combining CNN architectures with tailored loss 

functions for effective medical image classification and early diagnosis of Alzheimer’s Disease. 
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