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Abstract 

 
Organic chemistry, which is an experimental science, deals with the acquisition and characterization 

of pure organic compounds from natural or synthetic pathways by appropriate methods.  In addition 

to a good textbook in chemistry education, the laboratory of this course is also of great importance. 

For the realization of the processes, equipment made of various materials and their efficient use are 

required. This study has been prepared in order to make this laboratory more understandable and 

more enjoyable for students to recognize organic synthesis and see its products. In this article, 

Iodoform Synthesis experiment is taken as the basic experiment to explain the system. A virtual 

experimental environment powered by a Large Language Model (LLM) was created. The system 

presents students with a multi-step experiment which they are asked to complete correctly. The 

innovative side of this environment is how it interacts with the student when they make a mistake. 

This study was also conducted in an Organic Laboratory class, and thus created a research question: 

How did the idea of using Large Language Model in organic chemistry course affect student’s mental 

workload? 
 

Keywords: Laboratory instruction, large language model, chemistry education. 
 

 
I. Introduction 

 
Organic chemistry is a sub discipline of chemistry that investigates the synthesis, reactions and 

properties of compounds containing carbon in their structure Organic chemistry is basically an 
experimental field, the final decisions on the identity and structure of reaction products, their 
thermodynamic properties, and spectroscopic appearance are based on observation and 
measurement [1]. The laboratory is the place where students learn and apply the synthesis, 
separation, purification and analysis techniques of organic compounds and thus become acquainted 
with the experimental aspect of organic chemistry. However, the laboratory environment can be 
very complex for students. Students may have difficulty in performing experiments in organic 
chemistry laboratories. This study investigates the role of virtual experiment environment 
strengthened by an LLM in chemistry education. Artificial intelligence (AI) tools are spurring rapid 
developments in the chemical industry and academia [2]. Traditional learning methods in chemistry 
education, often limited to static textbooks and one-way knowledge transfer, have been changing 
lately to interactive AI tools. 
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II. The applications in organic chemistry laboratory 
 

Students often use worksheets while conducting experiments in organic chemistry laboratory 
applications. With worksheets, known laws, principles, etc. can be revealed (induction) or verified 
(deduction) [3]. In the worksheet, the diagram of the experimental setup, the steps of the experiment, 
the collection of data and the evaluation of the data are given. Sometimes students can be expected 
to find the result by asking partially guiding questions [4]. These students who completed the 
experiment in accordance with the worksheet were not mentally challenged and did not succeed in 
becoming active participants of the experiment [5].  Because it is seen that a printed scenario can 
neither present specific laboratory techniques ready for reproduction nor prepare students for 
laboratory work well enough [6]. 

In order to provide students with a successful laboratory experience, it is necessary to use 
authentic organic chemistry applications that reflect organic chemistry practices and include 
modern techniques [7]. It is thought that especially prospective chemistry teachers who are not 
successful enough in experiments will react positively to such an innovative application in organic 
chemistry laboratory. Because learning can be more meaningful when the cognitive load caused by 
experimental work can be reduced [8].  

One of the unique problems of students during organic laboratory applications is mental 
workload. Mental workload is defined as the amount of mental work required for a person to 
complete a task over a certain period of time. The fact that organic chemistry laboratory courses are 
conducted via experiments creates a mental workload rather than a physical workload. Issues such 
as the temporal pressures on students caused by long lectures at the laboratory and experimental 
reports that must be completed by the due date, and coordinating with the courses by showing 
intense effort create mental workload on students. 

 
III. The Large Language Models in Organic Chemistry Laboratory Development 

 
Organic Chemistry Laboratory I and II courses include a multifaceted education in which the 

basic concepts of organic chemistry and the necessary scientific skills are acquired. For this study, a 
different laboratory day was prepared for 16 students. The students were not given laboratory 
worksheets to perform the iodoform synthesis experiment. The students were given only materials 
required to synthesis the iodoform. A special application was prepared for students that they could 
follow on their mobile phones. We created a virtual experiment environment strengthened by an 
LLM.  As the LLM, OpenAI’s ChatGPT-3.5-Turbo was used.  The system presents students with a 
multi-step experiment which they are asked to complete correctly.  

The Iodoform Synthesis experiment is taken as the base experiment to explain the system. The 
student is expected to complete the experiment in the correct order among the mixed steps. There 
are some locked steps as can be seen (Figure 1). Even in this relatively short experiment consisting 
of only 8 steps, a mistake in one critical step could lead to many different outcomes and confuse the 
student. Thus, we created locked steps and did not allow the students to make mistakes when they 
came to the locked step and forced them to find the correct step without prompting any question to 
the LLM. Locked steps change their state once they have been selected in the correct order. 
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Figure 1: The user interface seen by a student who has successfully reached step 7 
 

Below is an example of how the system feedback the student once they selected the step “The 
mixture is left to stand for 10 minutes.” instead of “The substance formed in the mixture precipitates 
and separates.”:  

 
 

Figure 2:  LLM's response to a student who made a mistake in step 5 of the experiment 
 

Thanks to the working principle of LLMs, the system does not give the same answer when the 
same mistake is made again. It explains the same result with different words and expressions. This 
is a serious advantage as a student is likely to grasp something that he/she could not fully grasp 
before, using different expressions. Furthermore, there is no chance for the system to remain silent 
against a mistake. 

 

IV. Data Collection Tool 
 

This study, conducted in an Organic Laboratory Course through Large Language Model, had 
a research question. How did the idea of using Large Language Model   in organic chemistry course 
affect student’s workload? Several types of uni- and multidimensional subjective scales exist. 
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However, results from various studies have shown that NASA-TLX [9] is superior to SWAT in terms 
of sensitivity, especially for low mental workloads [10, 11]. Therefore, it was decided to use the 
NASA-TLX method to determine the mental workload of students (jobs required intense mental 
demands, physical requirements, and time constraints imposed by long-term analyses, etc.).  

NASA-TLX is a multidimensional scale for which the overall mental workload is a function of 
mental demand, physical demand, temporal demand, performance, effort, and frustration 
dimensions, with each of these dimensions on a continuum. In the method, the workload score is 
determined in stages: scoring and ranking. Students in the first stage; considering the work they did, 
scored the workload they felt for the 6 dimensions by valuing a scale between 0 (very low) and 100 
(very high) (divided into 5-point intervals) [12]. The determined scores are considered at five levels: 
very low (0-20), low (21-40), medium (41-59), high (60-79), and very high (80-100) [13].      

The workload score was created by multiplying the scores given to the six criteria by the 
percentages of repetitions of the choices prioritized in the pairwise comparison. The NASA-TLX and 
mobile application solutions are evaluated according to the levels determined  in the NASA-TLX 
solution. 

 

 
 

Figure 3: NASA-TLX solution 
 

It was determined that the mental workload of 5 students was between 0-20 points, which is 
considered to be a very low level.  It was determined that the mental workload of 11 students was 
between 21-40 points, which is considered to be at a low level. 

 

IV. Student Views of the LLM 
 

This study investigates student responses of virtual experiment environment strengthened by 
an LLM in an organic laboratory chemistry course.  At the end of the study, the performance of 
application asked to the students.  An 18-app survey questions, with scores ranging from 0 to 10, 
was administered to assess the students’ experience. Student responses are shown in Table 1. 

 
Table 1: Students’ responses by survey statement. 

Item  1 2 3 4 5 6 7 8 9 10 

  % 

1 How do you rate your overall experience 

with our app? 

      18 37 12 33 
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2 How difficult is it to read the characters? 75 20  5       

3 How useful is our product for you?       12 18 33 37 

4 How would you rate the user-friendliness 

of the product interface? 

      26 18  56 

5 Considering that you use our interface 

extensively, how likely are you to 

recommend it to your friends and 

colleagues? 

      20 25 5 50 

6 If you were to review the product, how 

would you rate it out of 10? 

      18 32 32 18 

7 Overall, how easy did you find it to use?       8 10 32 50 

8 How would you rate the usability of our 

app? 

       32 43 25 

9 How would you rate your experience?      44   37 19 

10 How would you rate the reliability of 

app? 

    1 18 18 10 12 37 

11 How do you evaluate the quality of the 

content presented on the screen? 

    3 3 10 10 32 32 

12 How would you rate the speed of our 

application? 

  3 3 10 10 32 32   

13 How would you evaluate the interface 

design of our application? 

    12 15 9 43 12 9 

14 How useful are the displayed error 

messages? 

      13 13 13 61 

15 How well does our app keep you 

informed about the progress of a task? 

       25 25 50 

16 How difficult is it to read the characters 

on the screen? 

       19 19 62 

17 How consistent is the use of terms across 

the application? 

      25 25 7 43 

18 How much do you like the look of this 

app? 

    1 18 18 10 12 37 
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Student responses are shown in Table 1. Students engaged with LLM to follow experiment 
steps, revealing overall positive perceptions toward their usefulness. The responses in general were 
found to have high agreement in terms of playability, usability, and content and demonstrated that 
the LLM had positive features. Only item 12 showed that students were indecisive in speed of the 
application. This might stem from the fact that this was the first time these students were 
participating in a LLM about organic chemistry laboratory. In addition, they used the LLM with the 
slow internet. 

 

VI. Results 
 

Chemistry teacher candidates are given theoretical knowledge in organic chemistry I and II 
courses at the university, while experimental organic chemistry knowledge is explained 
comparatively in organic chemistry laboratory I and II courses. Students can learn both the 
application of theories and models in the interpretation and explanation of experimental results and 
the chemistry of organic compounds comparatively. Students derive their knowledge from the 
analysis of data collected by scientific methods. Therefore, laboratory applications are very 
important for chemistry education [14].  

This study created a virtual experiment environment strengthened by an LLM.  The LLM 
application includes the application steps of the ‘Iodoform Experiment’ that students should do in 
the organic chemistry laboratory. This application was a route that helped students to perform the 
steps of the experiment in order and was drawn to iodoform synthesis. The application aims to 
introduce students to modern chemistry through the use of artificial intelligence in organic 
chemistry laboratory. To date, despite the interesting progress made in artificial intelligence, 
artificial intelligence applications have not been common in chemistry teaching laboratories. The 
existence of an error rate should not be ignored in any AI system, but this is still not an obstacle to 
systems being able to use AI. With the development of artificial intelligence, it is inevitable that some 
of the traditional education methods we know will disappear, while others will change radically. In 
this first phase of LLMs, we see that learning and education can be significantly personalized. The 
use of LLMs in chemistry education offers a different learning style by providing a real-time 
feedback system in a virtual experimental environment.  

As of the day this paper was written, one of the most advanced LLMs is ChatGPT from OpenAI. 
The most ideal way is to fine-tune an LLM for this specific purpose. Due to its requirements of 
serious resources, we did not go into fine-tuning, instead we built the system on ChatGPT in a way 
that can be considered a proof of concept. Overall, students in this study have a positive view of the 
utility of generative virtual experiment environment strengthened by an LLM in the organic 
chemistry laboratory course. 

The minimum number of errors a student can possibly make in a virtual experiment consisting 
of 8 steps in total, 2 of which are locked, is 15. Similarly, for a 15-step experiment with 3 steps locked, 
the minimum number of errors that can be made is 66. It takes an unprecedented knowledge for a 
teacher to know what the consequences of all the different combinations of errors will be in all the 
different chemistry experiments. However, LLMs have already reached this level of knowledge, 
because the datasets they were trained on already contain the vast majority of errors that can be 
possibly made. One important application is the use of Large Language Models (LLMs) to provide 
instant feedback in virtual experimental environments. In this paper, we explored the role of LLMs 
in a virtual chemistry experimental environment and investigated their applications and impact on 
improving student learning outcomes. The innovative side of this environment is how it interacts 
with the student when they make a mistake. Rather than simply marking the answer as incorrect, 
the system stops the experiment and prompts an LLM to analyze the error and provide a technically 
detailed explanation. Research data were obtained from NASA-TLX. LLM application has enabled 
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them to do the experiment in the remaining time of a course, and it has not burdened them with an 
intense study task and a very high mental workload. With LLMs, the effects of such a stressful 
workload could be alleviated and flexibility could be provided. 
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